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Abstract

This paper presents a novel method for the reconstruc-
tion of 3D edges in multi-view stereo scenarios. Previous
research in the field typically relied on video sequences and
limited the reconstruction process to either straight line-
segments, or edge-points, i.e., 3D points that correspond
to image edges. We instead propose a system, denoted as
EdgeGraph3D, able to recover both straight and curved 3D
edges from an unordered image sequence. A second contri-
bution of this work is a graph-based representation for 2D
edges that allows the identification of the most structurally
significant edges detected in an image. We integrate Edge-
Graph3D in a multi-view stereo reconstruction pipeline and
analyze the benefits provided by 3D edges to the accuracy
of the recovered surfaces. We evaluate the effectiveness of
our approach on multiple datasets from two different col-
lections in the multi-view stereo literature. Experimental
results demonstrate the ability of EdgeGraph3D to work
in presence of strong illumination changes and reflections,
which are usually detrimental to the effectiveness of classi-
cal photometric reconstruction systems.

1. Introduction
Reconstructing the 3D shape of a scene captured by a

set of images represents a long-standing problem faced by
the computer vision community. Structure from Motion
methods address the simultaneous estimation of camera po-
sitions and orientations together with a point-based repre-
sentation of the environment [27, 15, 17, 20]. Multi-View
Stereo algorithms usually bootstrap from such estimations
to recover a mesh-based dense reconstruction.

State-of-the-art mesh-based algorithms [26, 12, 11, 18]
are initialized through Delaunay-based space carving algo-
rithms such as [24, 13, 9, 19] which estimate a mesh from
the structure from motion points or from dense point clouds
computed through depth maps. The authors of [19] showed
that the Delaunay triangulation built upon 3D edge-points,
i.e., points belonging to 3D edges, is able to represent the
shape of the environment better than using 3D points recon-

structed from classical 2D features. The usage of 3D edges
or 3D edge-points presents two significant benefits: they
are robust to significant illumination changes that can neg-
atively affect standard photometric-based depth maps esti-
mation, and they are a compact representation of the salient
part of a scene, i.e., they avoid redundancies along flat sur-
faces.

The reconstruction of 3D edges can be performed by
matching directly their 2D observations across a sequence
of images. This is a challenging task since corresponding
edges often cannot be matched just on the basis of their
geometric parameters. In literature, edge reconstruction is
often limited to the reconstruction of line-segments, i.e.,
straight edges, and existing approaches rely their estimation
on video sequences. Only Hofer et al. [8] with Line3D++
proposed an approach to estimate 3D segments in a Multi-
View Stereo scenario. This method, however, is not able to
recover curved edges.

In this paper we propose a novel algorithm for the re-
construction of 3D edges, both straight and curved, from
an unordered set of images. Furthermore, we illustrate how
the points belonging to 3D edges can significantly improve
the appearance and the accuracy of the 3D models recon-
structed from sparse point clouds, using the algorithm pro-
posed by [13] and improved by [19]. We tested our algo-
rithms on the fountain-p11 dataset provided in the EPFL
Multi-View Stereo collection [21] and on the recent DTU
dataset [10].

In Section 2 we overview the state-of-the art of 3D edge
reconstruction. In Section 3 we show the 2D edge represen-
tation we use in our algorithm. In Section 4 we describe the
proposed method to reconstruct 3D edges and introduce the
EdgeGraph3D system. In Section 5 we discuss the results
of our approach on two well-known datasets. In Section 6
we conclude the paper and we illustrate some possible fu-
ture research directions.

2. Related works
In literature, a limited amount of works address directly

the issue of edge reconstruction, and usually they recover
only long straight edges. Tian et al. [23] track 2D points
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before filtering after filtering

Figure 1. Edge-graph filtering: (left) original edge-graph, generated from an edge-image produced by the algorithm presented in [14]
(right) filtered edge-graph, in which non-structural edges have been removed

belonging to images edges along a video sequence and esti-
mate their 3D position, then they recover the 3D edges that
connect these 3D points. Zhang and Baltsavias [28] pro-
pose an algorithm for the reconstruction of road edges from
aerial images. They match only straight edges, since these
are prevalent in urban environments, by using epipolar ge-
ometry.

Edges have been also integrated in structure from motion
pipelines as elements to robustly recover or optimize the
camera poses. In [22], the authors propose a structure from
motion algorithm based on-line segments correspondences
in an image sequence. Instead of classical point-based re-
projection error measure, they optimize a non-linear objec-
tive function that measures the total squared distance be-
tween the observed edge segments and the projections of the
reconstructed lines on the image plane. Ansar et al. [1] pro-
pose the mathematical foundations of a camera pose estima-
tion systems able to use both points and lines for real-time
camera pose estimation using linear optimization, while [6]
proposes a monocular Simultaneous Localization and Map-
ping (SLAM) algorithm which adopts as landmarks small
edges, i.e., the edgelets, instead of the classical point-based
features. Also the latter algorithms are able to estimate 3D
straight edges, while curved edges are neglected, moreover
they rely on video sequences.

In [19], the authors estimate the 3D position of 2D points
belonging to images edges, and they embedded them into
a Delaunay triangulation to make the triangulation edges
closer to the real 3D structure of the scene. In this case even
points on curved edges are taken into account, but the actual
3D edges are not explicitly reconstructed. Similarly, Bodis
et al. [3] present a reconstruction algorithm for large-scale
multi-view stereo, able to produce meshes that are consis-
tent with the bidimensional edges of the input images; they
enforce the Delaunay Triangulation, employed in the recon-

struction, to be properly divided along edges. While the
purpose of the system is not the actual reconstruction of the
3D edges, they further show the benefits that edges offer to
the reconstruction process by sharply defining the architec-
tural elements in urban scenes.

This review shows that edges or the points belonging to
edges are sometimes adopted to improve the robustness of
3D reconstruction, camera tracking or SLAM algorithms.
However these techniques deal only with video sequences
to simplify the process of edge matching and they focus
only on straight edges estimation; a general approach to 3D
edge reconstruction from unordered set of images is thus
the novel contribution of this paper that is also beneficial
for more complex dense 3D reconstruction algorithms.

3. 2D Edge-Graphs
Decades of research in computer vision produced sev-

eral edge detection algorithms. Many of the proposed tech-
niques, such as [4], are able to describe both straight and
curved edges through an image output, but they represent
the edges only at pixel level. On the other hand, other ap-
proaches as [25], estimate line-segments, which describe
edges with subpixel accuracy, but are not able to properly
represent and detect curved edges. Here, we introduce an
alternative representation for 2D edges, able to both rep-
resent curved edges and to reach sub-pixel accuracy. We
propose to use an undirected graph, named 2D edge-graph,
in which nodes represent 2D points on an image, and con-
nections between nodes indicate detected edges connecting
their extremes. An additional benefit provided by the use
of edge-graphs is the direct description of the connections
between different edges detected in an image, which will be
key to the techniques presented in Section 4.3.

We generate an edge-graph from the edge-images pro-
duced by the standard edge-detection algorithms presented
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Figure 2. Proposed 3D edge reconstruction pipeline

in [14]. We assign a node to the center of each edge-pixel;
then, for each pair of adjacent edge-pixels, we connect the
corresponding nodes if it does not generate small, unde-
sired, loops of length shorter than 4 px, e.g., which do
not represent meaningful connections between edges in the
original edge-image. Since edges recovered using this pro-
cess still follow the discretized structure described by the
original edge-image, we apply a polyline smoothing step.
A polyline is a sequence of edges in the graph, in which
all intermediate nodes have exactly two connections. Poly-
line smoothing is a process by which the original poly-
line is transformed so that: i) the extremes of the polyline
are left unaltered ii) the sequence of intermediate nodes is
modified to the shortest sequence guaranteeing that a dis-
tance no greater than 1 pixel separates the original polyline
from the final one. We employed a variant of the Douglas-
Peucker [5] algorithm to achieve this result. Using this tech-
nique, it is possible to obtain a suitable representation for
edges in a scene, at subpixel-accuracy.

Many standard edge detection algorithms generate a sig-
nificant number of edges that do not correspond to struc-
tural elements in the scene. To filter them out, we propose
an edge-graph filtering step which retains only long poly-
lines composed by line-segments without significant sharp
variations in direction. Let us define:

Definition Regular length The regular length of a poly-
line is the length of the longest interval of connected
line-segments for which each angle between consecutive
elements is not greater than a fixed threshold αR (e.g.,
αR ≈ 20◦).

For each 2D edge-graph we rank all its polylines accord-
ing to their regular length and we compute l∗R as the shortest
length among the top 10% of these polylines. We then fil-
ter out all the connected components in the graph that do
not contain a polyline with regular length greater than l∗R.
In Figure 1, we show that structural edges are preserved,
while irrelevant edges are almost completely filtered out.

4. The EdgeGraph3D system
EdgeGraph3D is able to reconstruct three-dimensional

edges from their observations in the input views. Curved
edges are represented as 3D polylines, i.e., a sequence of
straight 3D line-segments connected to each other. The in-
puts of our method are the 2D edge graphs computed for
each image, the camera calibrations and an initial set of 3D
points estimated through structure from motion. To under-
stand the key idea behind the proposed algorithm, let us as-
sume a 3D edge-point and its 2D observations on a subset
of images are provided; these observations likely lie on 2D
edges. We simultaneously follow such 2D edges on all the
images involved, generating a sequence of corresponding
2D edge-points that identify new 3D edge-points. The se-
quence of the recovered 3D edge-points defines a 3D poly-
line representing the reconstructed 3D edge.

4.1. System Overview

In Figure 2 we illustrate the full pipeline of Edge-
Graph3D. From the input images we compute the camera
calibration via SfM. For each image we define the corre-
sponding 2D Edge-Graph presented in the previous section
that we use to match edges on multiple views and to define

Definition Potential edge correspondence (PEC) A PEC
is a set of 2D polylines (i.e., image edges), on multiple
views, that are considered projections the same 3D edges.

In Section 4.3 we illustrate how, for each image 2D edge-
point, we exploit the epipolar constraint to generate

Definition Potential edge-point correspondence (PEPC)
A PEPC is a set of possibly corresponding 2D edge-points
on multiple views, which may even contain multiple points
on the same view, from which it may be possible to generate
a new 3D edge-point.

We bound the number of PEPC, by relying on the spatial
information carried by the SfM 3D points and on the edge
matches collected in the PEC s. In Section 4.4, we vali-
date each PEPC, while reconstructing 3D edges. Finally
in Section 4.4.3 we illustrate how we improve the visibility



Figure 3. Visualization of the output of the edge matching
procedure on two 2D edge-graphs of the fountain-P11 [21]
dataset. Polylines with the same color belong to the same PEC.
This sample visually show the effectiveness of the approach,
regardless of the incompleteness of the detected edges on both
images.

image I0 image I1 image I2

(a)

image I0 image I1 image I2

(b)

Figure 4. Generation of PEPCs: (a) searching a new edge-
point (in orange) in the vicinity of a known 3D point (in green)
(b) searching a new edge-point using polyline matches, repre-
sented by edges shown in the same color on different images.
A new orange 2D edge-point on the blue match is selected as
target.

information associated to a 3D edge and how we remove
outliers.

4.2. Edge Matching and PEC generation

To compute PECs let us consider a pair of 2D polylines
γi and γj on images Ii and Ij ; if a pair of polylines shares
a significant amount of nearby 3D points, they must occupy
nearby locations in the 3D space, and are potentially associ-
ated to the same 3D edges. Therefore we define a similarity
measure s (γi, γj) for γi and γj as:

s (γi, γj) =

∑
p∈Pγi∩Pγj wp∑
p∈Pγi∪Pγj wp

, (1)

where P γi is the list of 3D points visible on Ii, that lie
within a distance of ds from γi, and the weight wp of a
point p is defined as the inverse of the average number of
polylines close to the reprojections of p, where p is visible.

Then, we build a polyline similarity graph as an undi-
rected weighted graph, in which nodes represent different
polylines on different images, and the weight of each edge
is equal to the similarity of the polylines associated to its
extremes. We then use the community detection algorithm
in [2], on the polyline similarity graph. Communities are
subsets of nodes of a graph that are densely interconnected,
hence in our case they are subsets of polylines, on multi-
ple views, with high degree of similarity, i.e., they represent
PECs, as Figure 4 shows.

4.3. PEPC generation

To present the principle that inspires the two strategies
for PEPCs generation presented in this section, let us con-
sider a 2D edge-point xo in the 2D edge-graph of image
Io. To recover the corresponding 3D edge-point x we iden-
tify the potential 2D edge-points correspondences on other
views through epipolar geometry. The correspondence xi
on a second image Ii 6= Io must lie on the epipolar line li
generated on Ii by xo. Since we assume that the correspon-
dence xi is a 2D edge-point, we generate a finite set of po-
tential correspondences Hi = {hi1, hi2, . . . him} by inter-
secting the 2D edge-graph associated to Ii with the epipolar
line li. We repeat this process for all other views where the
new potential 3D edge-point may be visible. The cardinal-
ity of the sets of potential correspondences Hi is however
generally too high to search for the correct correspondences
on all views in acceptable computation time. Therefore, we
propose two approaches to limit the set of potential corre-
spondences on each view.

4.3.1 From SfM points

In the first approach (Figure 4(a)) we exploit the knowledge
of a 3D point position p, recovered through structure from
motion, and we constrain the search for a new 3D edge-
point x in its neighborhood, in particular, to a sphere SO
centered in p with radius rO. Given an image Io where p
projects on a location po, we search the initial 2D edge-
point xo within the projection of a sphere SI centered in
p with a radius rI < rO. This projection is an elliptic



conic section that we approximate with a circleOo centered
in po (green circle in image Io of Figure 4(a)), of radius
ro = rI

||co−p||
f , where co represents the center of camera

Co that produced Io, and f is the focal length. Then, for
each polyline passing through Oo, we select the 2D edge-
point closest to p (orange point in image Io of Figure 4(a))
as the initial edge-points for which we aim to find 2D to 2D
correspondences on other views.

For each image Ii 6= Io where p projects, we look for
correspondences near the projection pi of p on Ii (orange
point in images I1 and I2 of Figure 4(a)). In particular,
we constrain the search of correspondences within circle
Oi, centered in pi, of radius ri = rO

||ci−p||
f , which ap-

proximates the projection of sphere SO on Ii (green circles
in images I1 and I2 of Figure 4(a)). Since the correspon-
dences of xo on Ii are bound to lie on the epipolar line lo, we
combine both constraint looking for intersections between
lo and the edge-graph in Oi, to determine the set of poten-
tial correspondences Hi of xo on image Ii. Repeating the
same process on multiple views generates a new PEPC.

4.3.2 From PECs

The second approach (Figure 4(b)) makes use of PECs gen-
erated using technique presented in Section 4.2. Formally, a
PEC is a setM = {M1,M2, . . .MN}, which associates to
each image Ii of the N views observing the scene, a set Mi

of polylines of the corresponding 2D edge-graph involved
in the match.

To generate the PEPCs, let us consider one of the views
with a nonempty set of matched polylines set as the initial
view Io. We select an edge-point xo on one of the matched
polylines. Correspondences on each view Ii can be iden-
tified by intersecting the matched polylines on Ii set with
epipolar line lo generated by xo. Repeating the process for
all the views produces a set of possibly corresponding 2D
edge-points, i.e., a PEPC. The process is repeated for dif-
ferent initial edge-points, obtained by sampling the poly-
lines on an initial view at fixed intervals, to generate multi-
ple PEPCs from a single PEC.

4.4. PEPC validation and 3D edge generation

Each PEPCs generated with the techniques presented so
far associates a set of potential 2D correspondences on im-
ages Ii 6= Io to a 2D edge-point xo on Io. Given a PEPC
we define:

Definition PEPC-Selection A PEPC-selection is a subset
of the PEPC 2D correspondences such that each image has
at most one correspondence.

In Section 4.4.1 we explain how we choose among the
vast set of potential selections to recover the 3D edge-point
x that generated xo. In Section 4.4.2 we present the tech-

nique we use to recover from x the corresponding 3D edge.
In Section 4.4.3, we refine the visibility of the generated
edges, and we remove outliers. Figure 5 illustrates the com-
plete PEPC validation and 3D edge reconstruction pipeline.

4.4.1 Correspondences selection

A correct PEPC-selection retains, for each view, the one,
if it exists, associated to the initial 2D edge-point xo on the
initial view Io used to generate the PEPC. The identification
of the correct PEPC-selection is therefore a combinatorial
problem defined on the search space of all possible selec-
tions of edge-point correspondences. A PEPC-selection of
2D edge-point correspondences requires at least three ob-
servations to provide minimal geometrical evidence that the
correspondences identify the same 3D point, by three-view
triangulation. The number of potentially acceptable selec-
tions, with at least three views, is therefore:

∏
Hi∈H,
Hi 6=Ho

(|Hi|+ 1)︸ ︷︷ ︸
all combinations
that include xo

−

pairs of the form
(xo,hia)︷ ︸︸ ︷∑
Hi∈H,
Hi 6=Ho

|Hi| −

only xo
is selected︷︸︸︷

1︸ ︷︷ ︸
invalid combinations with

less than 3 selected correspondences

, (2)

whereHi is the set of correspondences in the PEPC on view
Ii, andH is the set of allHi. To reduce the size of the search
space, we initially limit the selection problem to only three
views, of which one is the initial view Io. The other two
views Ii and Ij can be chosen arbitrarily. All the potential
selections on the three views, amounting to |Hi| ∗ |Hj |, can
be independently checked for correctness.

A PEPC-selection is not acceptable if it is not possible
to generate a 3D point from it, through multi-view triangu-
lation, with a small maximum reprojection error of ε (e.g.,
ε ≈ 2 − 3 px). Due to inaccuracies, however, incorrect
PEPC-selections can satisfy the geometrical constraint im-
posed by the triangulation, hence to be considered valid a
selection must: (i) triangulate to a valid 3D point (ii) gener-
ate a valid 3D edge, as presented in Section 4.4.2 . We only
accept a PEPC-selection if it is the only one in the PEPC
that respects the above conditions.

4.4.2 3D Edge reconstruction

Given an initial PEPC-selection and the triangulated 3D
edge-point we check whether it is possible to follow the 2D
edge-graphs among images to generate a sequence of cor-
responding 2D edge-points. Starting from the initial edge-
point xso generated by a 3D edge-point xs on the first view
Io, it is possible to follow the 2D polyline in two differ-
ent directions. The first step match the different directions
of the polylines on only three images, i.e., I0, I1 and I2.
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We first move along the corresponding polyline in the di-
rection d0, by a small fixed length ld ≈ 10 px, and se-
lect a new edge-point xao on Io. The sampling interval ld
has been chosen, without tuning, to closely follow the di-
rection changes of a polyline, without generating irrelevant
edge-points. The correspondences of xao on the other view
Ii can be identified by tracing the epipolar line on Ii and
selecting the first intersection xai between that line and the
corresponding polyline on Ii, starting from the initial edge-
point observation xsi , and moving towards the direction di.
We apply this process on both views 1 and 2, and we ver-
ify that the two edge-point correspondences, xai and xaj to-
gether with xao triangulate to a valid 3D point. If this oper-
ation is successful, the direction is considered valid. New
edge-points can be recursively found following the direc-
tions (d0, d1, d2) and the opposite (−d0,−d1,−d2) until
a failure, either in finding correspondences or in the multi-
view triangulation, occurs. Note that the extent of the move-
ment between edge-point samples on the first view controls
for the degree of approximation of curved edges.

The above process is the initial step in the definition of a
new 3D edge. If a solution is accepted for three views, i.e.,
it is the only valid selection, other potential 2D edge-point
correspondences in the PEPC on additional views, excluded
in the initial selection, should still be integrated if compat-
ible with the current 3D edge. We consider a new poten-
tial 2D to 3D edge-point observation hk1 for the initial 3D
edge-point xs, on a new view Ik. The first step in validating
the new observation is checking whether it is compatible,
by multi-view triangulation, with the current bidimensional
observations of xs and that it is possible to match directions

between the current 3D polyline-edge, and the 2D polyline
on Ik. Using the new observations, we can further extend
the current 3D edge, and improve its accuracy.

4.4.3 Visibility refinement and outliers filtering

Once a 3D polyline-edge γ is generated, we can optimize
its visibility information by checking whether the 3D edge
is visible in a view that was not considered so far. Let us
consider Ii, on which no observation of the 3D polyline γ
has been found. New bidimensional observations of poly-
line γ, if existent on Ii, are expected to be near the projec-
tion of γ on Ii. In the proposed system, we look for new
2D edge-point observations for each of the 3D edge-points
that define γ. Let us consider xa ∈ γ, and its projection
x̃ai on Ii. The goal is finding, if existent, a new edge-point
observation xai of xa on Ii. We look for polylines within a
distance dv from x̃ai. If a single polyline γi is found, we
select the edge-point on γi closest to x̃ai as the new poten-
tial 2D observation xai of xa. By multi-view triangulation
we verify the compatibility of xai with the current observa-
tions set of xa. If this check is successful, we can verify
that the 2D polyline γi is compatible, in the vicinity of xai ,
with the 3D polyline γ. This can be done by matching both
directions of γ from the initial point xa ∈ γ, with the two
directions on γi starting from xai , using techniques analo-
gous to the ones presented in Section 4.4.2. This process is
applied to all edge-points of γ that have not been observed
on Ii yet, and can be repeated for every view Ii to ensure
that all potential observations of the 3D polyline γ are cor-
rectly identified.



Table 1. Comparison between EdgeGraph3D and OpenMVG.
num. point cloud mesh

points MAE RMSE σ MAE RMSE σ

fountain-P11 OpenMVG 5570 8.433 9.603 12.78 88.94 209.3 189.4
EdgeGraph3D 41725 12.19 15.98 20.10 64.58 159.3 145.6

DTU-006 OpenMVG 5903 0.477 0.938 1.052 4.077 11.53 10.79
EdgeGraph3D 47927 0.542 1.230 1.344 2.805 8.497 8.021

DTU-023 OpenMVG 9651 0.826 1.886 2.059 4.585 9.223 8.003
EdgeGraph3D 97770 0.825 1.911 0.020 3.207 7.898 7.218

DTU-028 OpenMVG 5008 1.961 3.607 4.106 20.24 54.07 50.14
EdgeGraph3D 46220 1.013 2.766 2.946 13.22 35.74 33.21

DTU-037 OpenMVG 4321 1.326 1.830 2.260 23.36 40.21 32.72
EdgeGraph3D 38577 1.478 2.372 2.795 25.32 40.12 31.12

DTU-098 OpenMVG 2091 4.658 9.501 10.58 24.89 55.32 49.40
EdgeGraph3D 26575 3.831 8.449 9.277 5.907 18.42 17.45

DTU-118 OpenMVG 1839 2.770 7.311 7.818 19.93 39.49 34.10
EdgeGraph3D 14611 3.065 7.894 8.468 7.806 21.06 19.55

average variation +2.8% +13.7% +10.6% -36.0% -30.3% -29.2%

Finally, we consider polylines with a low amount of ob-
servations to be likely outliers, hence we filter them out.
The minimum amount of observations kv is computed as
kv = max

(
4, vM2 + 1

)
, where vM is the median number

of observations for all the 3D edge-points recovered by the
system. The output of this final step is a set of accurate
3D polyline-edges that can properly represent even curved
edges.

5. Experimental Results
We evaluate the results obtained by EdgeGraph3D on

the fountain-P11 sequence of the EPFL dataset [21] and
on 6 sequences of the DTU dataset [10] by reconstructing
the 3D edges, extracting a point cloud by finely sampling
them, used to reconstruct a mesh using the algorithm in [19]
which is then compared with the ground truth. All the tests
have been conducted on a Intel i5-3570K quad-core proces-
sor (3.80 GHz frequency, 6 MB smart cache) and 8 GB of
DDR3 RAM. The values of the parameters of the algorithms
presented in Section 4, such as the maximum reprojection
error of ε, have been chosen to properly represent the geo-
metrical properties associated with them and have not been
subject to tuning in our experiments.

Our algorithm bootstraps from the SfM point cloud gen-
erated by OpenMVG [16], which provides very accurate
points; therefore we compare the point cloud sampled from
the 3D edges, against those estimated by OpenMVG by
means of the CloudCompare software [7]. In Table 1 we list
the Mean Absolute Errors (MAE), the Root Mean Squared
Errors (RMSE) and the variance of the errors (σ). As
expected, we significantly increase the number of recon-
structed points (by one order of magnitude); despite our
algorithm reconstructed full 3D edges, the accuracy of the

Table 2. Comparison between meshes produced by EdgeGraph3D
and Line3D++ [8].

MAE RMSE σ

fountain-P11 Line3D++ 101.8 272.5 252.7
EdgeGraph3D 64.59 159.4 145.7

DTU-006 Line3D++ 1.792 6.552 6.302
EdgeGraph3D 2.805 8.497 8.021

DTU-023 Line3D++ 4.778 10.06 8.851
EdgeGraph3D 3.207 7.898 7.218

DTU-028 Line3D++ 21.10 60.19 56.38
EdgeGraph3D 13.22 35.74 33.21

DTU-037 Line3D++ 20.13 36.18 30.07
EdgeGraph3D 25.32 40.12 31.12

DTU-098 Line3D++ 17.69 47.22 43.79
EdgeGraph3D 5.907 18.42 17.45

DTU-118 Line3D++ 9.498 20.05 17.66
EdgeGraph3D 7.806 21.06 19.56

average -15.6% -17.0% -17.2%variation

reconstructed points remained close to the accuracy of the
OpenMVG point cloud, which are easier to estimate, and
in some cases this accuracy is even improved. As Figure
6 shows, the proposed algorithm is able to recover struc-
tural elements that may remain completely undetected by
the standard SfM process. For instance in DTU-006, we
are able to reconstruct edges of any inclination, recovering
all the structural elements in the scenes; in the DTU-098
dataset, the high reflectivity of the metallic cans causes the
SfM pipeline to fail in reconstructing a considerable portion
of the surfaces, while the same areas are fully recovered by
the proposed system.
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Figure 6. By row: ground truth, point cloud from OpenMVG, point cloud from our method, mesh from OpenMVG cloud, mesh from
proposed cloud

Since the enhancement of 3D Delaunay-based mesh re-
constructions is one of the most relevant reasons why we
estimate 3D edges, we also compared the two 3D meshes
reconstructed through the algorithm described in [19] from
the OpenMVG points, from Line3D++ [8] and from the
points sampled from the 3D edges. As suggested in [21]
we compare depth map generated by the reconstructed and
the ground truth meshes from the central camera of the se-
quence of each dataset. Table 1 shows that our algorithm ex-
tends to a multi-view stereo setting the hypothesis suggested
in [19]: a Delaunay-based reconstruction significantly im-
proves whenever we adopt 3D points belonging to 3D real
world edges. Indeed, the meshes estimated from 3D edges
points are considerably more accurate than the meshes com-
puted with only SfM points (see Figure 6). Moreover Table
2 shows that in general, in the context of 3D reconstruction
our approach generates a point clouds that induce more ac-
curate mesh with respect to the mesh reconstructed on the
point cloud generated by Line3D++. Execution times range
from a minimum of 4 minutes (DTU-118), to a maximum
of 30 (DTU-023), and average at of 13 minutes for the con-
sidered datasets.

6. Conclusion and Future Works

In this paper we proposed a novel method to es-
timate 3D edges and introduced EdgeGraph3D: a sys-
tem able to recover 3D edges in a scene observed
in a set of views. The source code that imple-

ments the proposed system is also made available at
https://github.com/abignoli/EdgeGraph3D. While existing
methods rely on video sequences and estimate only straight
edges, our algorithm is able to recover straight and curved
edges from an unordered set of images. We represent the
image edges as edge-graphs and we match them according
to epipolar and spatial constraints. We also showed how
Delaunay-based 3D reconstruction improves when built
upon points sampled from reconstructed 3D edges. As a fu-
ture work we plan to integrate the 3D edges into the bundle
adjustment process and to embed the recovered 3D edges
into the reconstruction algorithm exploiting the Constrained
3D Delaunay triangulation.
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