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P-flag spaces and incidence stratifications

Davide Bolognini1 Paolo Sentinelli2,

Abstract

For any finite poset P , we introduce a homogeneous space as a quotient

of the general linear group. When P is a chain this quotient is a complete

flag variety. Moreover, we provide partitions for any set in a projective

space, induced by the action of incidence groups of posets. Our general

framework allows to deal with several combinatorial and geometric objects,

unifying and extending different structures such as Bruhat orders, parking

functions and weak orders on matroids. We introduce the notion of P -flag

matroid, extending flag matroids.

1 Introduction

Flag varieties are classical homogeneous spaces, studied from several different
points of view. They parameterize the flags of V , i.e. sequences of subspaces
V1 ⊆ . . . ⊆ Vn = V , where V is an n-dimensional F-vector space and Vi ⊆ V
is an i-dimensional subspace of V . They can be obtained as quotients of the
general linear groupGL(n,F) with the subgroup B of invertible upper triangular
matrices. The action of B on the flags gives rise to a partition into Schubert
cells. Their Zariski closures are the so-called Schubert varieties, which are in
bijection with the symmetric group Sn. The Bruhat order on Sn is the poset of
Schubert varieties ordered by inclusion. Similar facts hold for the Grassmannian

GrF(k, n), replacing Sn with the subset S
(k)
n of Grassmannian permutations.

In this article we introduce a new class of homogeneous spaces, namely the
quotients FlP(F) := GL(n,F)/I∗(P ;F), where I∗(P ;F) is the so-called incidence
group of a poset P = ({1, . . . , n},6P ), i.e. the group of invertible elements of
the incidence algebra of P . Since the Borel subgroup B is the group I∗(cn;F),
where cn is the chain on n elements, we recover classical flag varieties.

In Definition 3.1 we introduce P -flags in V . They are tuples (V1, · · · , Vn) of
vector subspaces of V , satisfying, among others, the following properties (see
Proposition 3.3):

• Vi ⊆ Vj if and only if i 6P j;

• dim(Vi) = |i↓|, where i↓ = {j ∈ [n] : j 6P i}.

We prove that FlP(F) is a homogeneous space parametrizing P -flags in V (The-
orem 3.9). For this reason, we call FlP(F) the P -flag space over F. The elements
of these spaces are certain spanning subspace configurations, see Remark 3.15.
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The second main contribution of this paper is a new tool to obtain finite
partitions of any subset X of a projective space, introducing the notion of in-
cidence stratifications, see Definition 4.6. In fact, an incidence group I∗(Q;F),
where Q is a poset of cardinality n, acts on the projective space P(Fn) by left
multiplication; the orbits of this action are indexed by non-empty order ideals
of Q (Theorem 4.2).

This general framework allows to deal with several combinatorial and geomet-
ric objects, unifying and extending different structures such as Bruhat orders,
parking functions and weak orders on matroids.

For the Grassmannian GrF(k, n) →֒ P
(

∧k V
)

, we consider a suitable poset

Qk
< (Definition 4.8) to realize an incidence stratification. In this setting, for

Q = cn, we recover the classical Schubert cells (Proposition 4.16). When Q = tn,
the incidence group I∗((tn)

k
<;F) is a maximal torus and we obtain the matroid

strata introduced in [14] and studied, e.g. in [11], [12], [29], [31]. See also [2,
Section 2.4] and references there.

We introduce a poset QP (Definition 5.1) to provide an incidence stratifica-

tion of the P -flag space FlP(F) →֒ P

(

n
⊗

i=1

∧|i↓
P
|
V

)

. In this way the Schubert

stratification of a flag variety is recovered, see Proposition 5.5.
One more contribution is the construction, for FlP(F), of the Q-Bruhat poset,

whose elements are order ideals of QP (Definition 5.6). In a completely combi-
natorial way, we obtain the Bruhat order of Sn as the cn-Bruhat order on the
classical flag variety, see Proposition 5.16. The study of the tn-Bruhat poset
of FlP(F) is one motivation to introduce P -flag matroids (Definition 5.18), ex-
tending flag matroids. The representable ones (Definition 5.20) determine the
tn-stratification of FlP(F) (Corollary 5.23). In general, we believe that a Q-
Bruhat poset is graded, see Conjecture 5.24.

The paper is organized as follows:

• In Section 2 we fix notation and we recall useful facts concerning sym-
metric groups, incidence algebras and matroids. Several classical topics
overviewed in the section are extended in this paper.

• In Section 3 we introduce P -flags in a vector space (Definition 3.1). We
prove that P -flags are parameterized by a homogeneous space FlP(F) (The-
orem 3.9), which for F = R is a differentiable manifold (Corollary 3.10).

In Theorem 3.23, we describe as homogeneous spaces some of the orbits
of the action of I∗(Q,F) on P -flags, where Q is any poset of cardinality
n. This shows that also classical Schubert cells are homogeneous spaces,
where the isotropy subgroups are the incidence groups of posets whose
Hasse diagrams are the graphs introduced in [5], see Remark 3.20.

• Section 4 and Section 5 are devoted to the study of incidence stratifica-
tions of Grassmannians GrF(k, n) and P -flag spaces. First we provide full
information about the orbits (and their Zariski closures) of the action of
I∗(Q,F) on P(V ) (Theorem 4.2). Then we characterize Q-Schubert cells
in both cases, indexing them with order ideals in suitable posets; the char-
acterization is given in terms of representable matroids (Theorem 4.19)
and sets represented by P -flags (Definition 5.12 and Theorem 5.15). We
introduce the Q-Bruhat posets of GrF(k, n) and FlP(F) (Definitions 4.17

2



and 5.6). The cn-Bruhat orders coincide with the Bruhat order on S
(k)
n

and Sn, respectively (Propositions 4.24 and 5.16). On the other hand, the
tn-Bruhat order of GrF(k, n) is the so-called weak order on representable
matroids of rank k, see Remark 4.20.

The last part of the paper describes the cn-stratification of Fltn(F) in
terms of (dual) parking functions (Theorem 5.27).

2 Notation and preliminaries

In this section we fix notation and recall some definitions useful for the rest
of the paper. We refer to [26] and [27] for posets and their incidence algebras,
to [1] and [16] for the theory of Coxeter groups, to [2], [4] and [21] for matroids
and flag matroids, to [7], [17], [18], and [25] for general results on Grassmannians
and flag varieties.

Let N be the set of non-negative integers. For n ∈ N\{0}, we use the notation
[n] := {1, 2, . . . , n}. For a finite set X 6= ∅, we denote by |X | its cardinality, by
P(X) its power set, by Xn its n-th power under Cartesian product and we let
X0 := {()}. If x ∈ Xn, we denote by xi the projection of x on the i-th factor.

The q-analog of n is a polynomial defined by [n]q :=
n−1
∑

i=0

qi; the q-analog of the

factorial is the polynomial [n]q! :=
∏

k∈[n]

[k]q. Let k ∈ N with k 6 n. We define

the set
[n]k< :=

{

(x1, . . . , xk) ∈ [n]k : x1 < x2 < . . . < xk

}

.

It is clear that there exists a bijection
n
⋃

k=0

[n]k< → P([n]). Hence, the Boolean

operations on P([n]) make sense in
n
⋃

k=0

[n]k<.

The notations End(O) and Aut(O) stand for the set of endomorphisms and
automorphisms of an object O in a category.

The symmetric group of permutations of n objects is denoted by Sn. A
permutation σ ∈ Sn can be written in one line notation as σ(1)σ(2) . . . σ(n).
An inversion in σ is a pair (i, j) ∈ [n]2< such that σ(i) > σ(j). The number of
inversions in σ is denoted by inv(σ).

For any field F let Mat(n,F) be the set of n × n matrices over F, Idn the
identity matrix and GL(n,F) the group of invertible matrices of size n.

The projective space of a vector space V is denoted by P(V ) and the Grass-
mannians by

GrF(k, n) := {W ⊆ Fn : W is a vector subspace of dimension k} .

Let φ : GrF(k, n) → P
(
∧k Fn

)

be the Plücker embedding, i.e. the injective
function defined by φ(W ) = [w1 ∧ . . . ∧ wk], for any basis {w1, . . . , wk} of W ∈
GrF(k, n).

Finally, the set of complete flags in Fn is

Fln(F) := {W1 ⊆ . . . ⊆ Wn : Wi ∈ GrF(i, n), ∀ i ∈ [n]} .
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2.1 Posets, incidence algebras and incidence groups

All posets considered in this paper are finite. An interval in a poset (X,6)
is a subset [x, y] := {z ∈ X : x 6 z 6 y}, where x, y ∈ X and x 6 y. When
|[x, y]| = 2, we use the notation x ⊳ y. The following two posets appear repeat-
edly in the sequel:

• cn := ([n],6), the chain of n elements;

• tn the trivial poset on [n], i.e. the poset without relations.

We need to introduce the following definition in order to deal with incidence
algebras as matrix algebras.

Definition 2.1. Let n > 0. Define the set of naturally labeled posets as

POS(n) := {([n],6P ) : i 6P j ⇒ i 6 j, ∀ i, j ∈ [n]} .

The set of relations of P ∈ POS(n) is

TP :=
{

(i, j) ∈ [n]2< : i <P j
}

.

The elements of POS(n) can be ordered by setting

P 6 Q ⇔ TP ⊆ TQ,

for all P,Q ∈ POS(n). This is a particular case of weak order on binary relations,
as defined in [9]. The poset (POS(n),6) has minimum and maximum, namely
tn and cn, respectively.

The following notions are fundamental for the rest of this article.

Definition 2.2. The incidence algebra of a poset P ∈ POS(n) over a field F is

I(P ;F) :=
{

A ∈ Mat(n,F) : Ai,j = 0, if i > j or (i, j) ∈ [n]2< \ TP

}

,

where Ai,j is the ij-entry of the matrix A. The incidence group of P over F is

I∗(P ;F) := I(P ;F) ∩GL(n,F).

The unipotent group of P is the subgroup of I∗(P ;F) defined by

U(P ;F) := {A ∈ I∗(P ;F) : Ai,i = 1, ∀ i ∈ [n]} .

The algebra I(tn;F) is the algebra of diagonal matrices over F. In general,
it is clear that I(P ;F) is a subalgebra of the algebra I(cn;F) of n × n upper
triangular matrices over F.

Notice that P 6 Q implies I∗(P ;F) ⊆ I∗(Q;F), for all P,Q ∈ POS(n).
We are going to prove that the quotient I∗(Q;F)/I∗(P ;F) has a nice structure,
under suitable assumptions.

A graph on n vertices is a pair ([n], E), where E ⊆ [n]2< is the set of edges.
The comparability graph of P ∈ POS(n) is the graph ([n], TP ).

Definition 2.3. Let P,Q ∈ POS(n) such that P 6 Q. We say that P is
complemented in Q if ([n], TQ \TP ) is the comparability graph of a poset P c(Q).

4



Proposition 2.4. Let P,Q ∈ POS(n). Assume P complemented in Q. Then
U(P c(Q);F) ⊆ I∗(Q;F) and we have that the canonical projection I∗(Q;F) →
I∗(Q;F)/I∗(P ;F) restricts to a bijection

πU : U(P c(Q);F) → I∗(Q;F)/I∗(P ;F).

Proof. If P = Q then P c(Q) = tn and the result follows. Assume P < Q. It
is clear that P c(Q) 6 Q. Then U(P c(Q),F) ⊆ I∗(Q,F). Since U(P c(Q),F) ∩
I∗(P,F) = {Idn}, the function πU is injective.

It remains to prove that πU is surjective. Let A ∈ I∗(Q;F). It is suffi-
cient to prove that there exists X ∈ I∗(P ;F) with AX ∈ U(P c(Q),F), because
πU (AX) = πU (A). The condition AX ∈ U(P c(Q),F) is satisfied if and only if

1. Xi,i =
1

Ai,i
, for all i ∈ [n] and

2.
∑

i6Qk6P j

Ai,kXk,j = 0, for all (i, j) ∈ TP .

This gives a non homogeneous linear system whose matrix is an element of
I∗(TP ;F), where TP is the induced subposet of the Cartesian product Q × Q.
Then such a linear system admits a solution X .

Remark 2.5. The bijection of Proposition 2.4 is not a group isomorphism,
because in general I∗(P ;F) is not a normal subgroup of I∗(Q;F).

We end this section by defining the following duality function.

Definition 2.6. An involution ∗ : POS(n) → POS(n) is defined by letting
i 6P∗ j if and only if n + 1 − j 6P n + 1 − i, for every P ∈ POS(n). A fixed
point of ∗ is called a self-dual poset.

2.2 The symmetric groups as Coxeter groups

A Coxeter system (W,S) is a group W with a presentation whose generators
are the elements of a finite set S = {s1, · · · , sn−1}, with relations given by
s2i = e and (sisj)

mij = e, for suitable mij > 2 if i 6= j, where e is the identity
in W .

Given a Coxeter system (W,S), the length function ℓ : W → N is defined by
ℓ(w) := min {k ∈ N : w = si1si2 · · · sik}, for every w ∈ W .

For any J ⊆ S, the subgroup generated by J is denoted by WJ . Define

W J := {w ∈ W : ℓ(ws) > ℓ(w), ∀ s ∈ J} .

We recall an important result (see [1, Proposition 2.4.4]).

Proposition 2.7. Any element w ∈ W factorizes uniquely as w = wJwJ , where
wJ ∈ W J , wJ ∈ WJ and ℓ(w) = ℓ(wJ) + ℓ(wJ ).

Therefore one can define an idempotent function P J : W → W by setting
P J(w) := wJ .

One of the most important features of a Coxeter group is a natural partial
order 6 on it, called Bruhat order. It can be defined by the subword property
(see [1, Chapter 2] and [16, Chapter 5]). The induced subposet (W J ,6) is
graded with rank function ℓ (see [1, Theorem 2.5.5]) and the function P J is

5



order preserving, i.e. u 6 v implies P J (u) 6 P J (v), for all u, v ∈ W (see [1,
Proposition 2.5.1]).

The symmetric group Sn is a Coxeter group; its standard Coxeter presenta-
tion has generators S = {s1, . . . , sn−1}, where si is the permutation 12 . . . (i +
1)i . . . n, for all i ∈ [n− 1]. With respect to this presentation, ℓ(σ) = inv(σ), for
every σ ∈ Sn. Hence the element of maximal length is w0 = n(n− 1) . . . 21.

The following example should make clear how to obtain the permutation
P J(σ). For more information about how P J rearranges a permutation, we refer
to [1, Section 2.4].

Example 2.8. Let n = 7, J = {s1, s2, s4, s6} and σ = 4317625. Therefore
we have to rearrange increasingly the blocks 431, 76 and 25. It follows that
P J(σ) = 1346725.

We denote S
S\{sk}
n by S

(k)
n , for all k ∈ [n− 1], and we set S

(n)
n := {e}. It is

clear that

S(k)
n = {σ ∈ Sn : σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(n)} ,

for all k ∈ [n]. The elements of S
(k)
n are called Grassmannian permutations since

they index the set of Schubert varieties of GrC(k, n). Moreover the set S
(k)
n is

in bijection with the set [n]k<, for all k ∈ [n]. For example, 2357146 ∈ S
(4)
7

corresponds to (2, 3, 5, 7) ∈ [7]4<.

By the next result the Bruhat order on S
(k)
n corresponds to the component-

wise ordering of [n]k< (see [1, Proposition 2.4.8]).

Proposition 2.9. The induced Bruhat order on S
(k)
n is described by

σ 6 τ if and only if σ(i) 6 τ(i), for every i ∈ [k − 1],

for all σ, τ ∈ S
(k)
n .

By [1, Theorem 2.6.1], the Bruhat order on Sn can be given in terms of the

posets (S
(k)
n ,6), k ∈ [n]. Namely σ 6 τ if and only if PS\{sk}(σ) 6 PS\{sk}(τ),

for all k ∈ [n− 1].

The poset (S
(k)
n ,6) is isomorphic to the set of Schubert varieties in GrC(k, n)

ordered by inclusion. Analogously, (Sn,6) is the poset of Schubert varieties in
Fln(C) ordered by inclusion.

We are also interested in the so-called Gale ordering on S
(k)
n .

Definition 2.10. The Gale ordering 6σ on S
(k)
n induced by σ ∈ Sn, is defined

by letting u 6σ v if and only if PS\{sk}(σu) 6 PS\{sk}(σv), for all u, v ∈ S
(k)
n .

For example, let u = 2413567, v = 5712346 in S
(2)
7 , and σ = 3256174 ∈ S7.

Then u 6e v. Moreover σu = 2635174, σv = 1432567 and PS\{s2}(σv) =
1423567 6 2613457 = PS\{s2}(σu). Therefore v 6σ u.

Following [4, Section 1.7], we define the Gale order on a symmetric group.

Definition 2.11. The Gale ordering 6σ on Sn induced by σ ∈ Sn, is defined
by letting u 6σ v if and only if σu 6 σv, for all u, v ∈ Sn.

This is equivalent to require PS\{sk}(u) 6σ PS\{sk}(v), for every k ∈ [n− 1].
For example, let u = 324561, v = 623541 in S6, and σ = 325614 ∈ S6. Then

u 6e v. Moreover σu = 526143, σv = 425163 and 526143 
 425163. Hence
u 
σ v.

6



2.3 Matroids

Let n > 0 and k ∈ [n]. A set M ⊆ S
(k)
n is a matroid3 of rank k if it satisfies

the Maximality Property:

the induced subposet (M,6σ) has maximum, for all σ ∈ Sn.

Remark 2.12. Since the left multiplication by w0 is an antinvolution of the
poset (Sn,6), the Maximality Property is equivalent to saying that (M,6σ) has
minimum, for all σ ∈ Sn, i.e. has maximum and minimum, for all σ ∈ Sn.

The set of matroids in [n]k< can be ordered by inclusion (this is usually called
weak order, see e.g. [32, Chapter 9]).

Let W ∈ GrF(k, n) and {v1, . . . , vk} ⊆ Fn be a basis of W . If {e1, . . . , en} is
the canonical basis of Fn, one has that

v1 ∧ . . . ∧ vk =
∑

i∈[n]k<

aiei1 ∧ . . . ∧ eik .

It is well known that M(W ) :=
{

i ∈ [n]k< : ai 6= 0
}

is the set of bases of a

matroid. Recall that we identify the set S
(k)
n with [n]k<. We say that a matroid

M ⊆ [n]k< is representable over a field F if there exists a vector space W ∈
GrF(k, n) such that M = M(W ). The equivalence relation W1 ∼ W2 if and
only if M(W1) = M(W2), for all W1,W2 ∈ GrF(k, n), provides the matroid
stratification of GrF(k, n) introduced and studied in [14].

Remark 2.13. Notice that the equivalence classes of the relation ∼ are given by
the intersection between φ(GrF(k, n)) and the orbits of the action of the group of

invertible diagonal matrices, of size
(

n
k

)

, on P
(

∧k Fn
)

, where φ is the Plücker

embedding.

By using [3, Theorem 3.3], it is not difficult to characterize Bruhat inter-

vals in S
(k)
n as particular types of transversal matroids, namely lattice path

matroids, in the meaning of [3, Definition 3.1] (see also [19, Definition 22]).
By [19, Lemma 23] they are positroids.

We recall the following extension of the notion of matroid.

Definition 2.14. A subset F ⊆ Sn such that the induced subposet (F,6σ) has
maximum for all σ ∈ Sn, is said to be a flag matroid.

By [8, Theorem 4.4], any Bruhat interval in Sn is a flag matroid. For sake
of completeness we provide a proof of the following property which gives a
connection between flag matroids and matroids.

Proposition 2.15. Let k ∈ [n − 1]. If F ⊆ Sn is a flag matroid, then
{

PS\{sk}(f) : f ∈ F
}

is a matroid of rank k.

Proof. We set Jk := S \ {sk}. Let σ ∈ Sn and fσ be the maximum of the poset

(F,6σ). We claim that P Jk(fσ) is the maximum of
{

P Jk(f) : f ∈ F
}

⊆ S
(k)
n

with respect to 6σ. Let u ∈ F ; then u 6σ fσ, i.e. σu 6 σfσ. Recall that the
projection P Jk is order preserving. Then P Jk(σu) 6 P Jk(σfσ). We have that
P Jk(σu) = P Jk(σuJkuJk

) = P Jk(σuJk) and similarly P Jk(σfσ) = P Jk(σfJk
σ );

then P Jk(σP Jk(u)) 6 P Jk(σP Jk(fσ)), i.e. P Jk(u) 6σ P Jk(fσ). This concludes
the proof.

3More precisely, the set of bases of a matroid.
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3 P-flag spaces

In this section we introduce a class of homogeneous spaces which is one the
main object of our study, recovering as particular cases the flag varieties and
the moduli space of n independent lines in Cn.

Let F be a field, n > 0 and P ∈ POS(n). Consider V := Fn, the F-vector
space with canonical basis {ei : i ∈ [n]}. Given any subset I ⊆ [n], we define
the vector subspace

VI := spanF {ei : i ∈ I} .

Recall that an order ideal in a poset P is a subset I ⊆ P such that i ∈ I
and j 6P i imply j ∈ I. The distributive lattice of order ideals of a poset
P ∈ POS(n) is denoted by J (P). It is clear that there is a bijection between
J (P) and the antichains of P , i.e. the set {max(I) : I ∈ J (P)}.

For i ∈ [n], we define the principal order ideal generated by i ∈ P by setting

i↓ := {j ∈ [n] : j 6P i} .

Given a subset I ⊆ [n], we define I↓ :=
⋃

i∈I

i↓, the order ideal of P generated by

I. We write i↓P and I↓P whenever we need to stress the poset under consideration.
Notice that the number of relations of P is |TP | =

∑

i∈[n]

|i↓| − n.

The following is one of the main definition of this article.

Definition 3.1. A P -flag in V is an n-tuple (V1, . . . , Vn) of vector subspaces
of V which satisfies the following condition:

dim

(

∑

i∈I

Vi

)

=
∣

∣I↓
∣

∣ ,

for every I ⊆ [n]. The set of P -flags of V is denoted by FlP(F).

We call standard P -flag of V the tuple

FP
e := (V1↓ , . . . , Vn↓).

A cn-flag is a complete flag in the usual meaning. On the other hand, a
tn-flag is an n-tuple of lines in Fn whose generators are linearly independent.
The following example shows an intermediate case between the previous ones.

Example 3.2. Let V = F6 and P ∈ POS(6) be the poset in the figure below:

6

4 5

3

21

Let us consider the following vector subspaces of V :

• W1 := spanF {e1}, W2 := spanF {e2},

8



• W3 := spanF {e1, e2, e3}, W4 := spanF {e1, e2, e3, e4},

• W5 := spanF {e1, e2, e3, e5}, W6 := spanF {e1, e2, e3, e5, e6}.

Then (W1,W2,W3,W4,W5,W6) is the standard P -flag.
The tuples (W1,W2,W3,W4,W6,W5) and (W1,W1,W3,W4,W5,W6) are not

P -flags. Examples of P -flags are

(W1,W2,W3,W5,W4,W6) and (W2,W1,W3,W5,W4,W6).

Recall that for F ∈ FlP(F), Fi is the projection on the i-th factor. The
following proposition states some properties of a P -flag.

Proposition 3.3. Let F ∈ FlP(F). Then

1. dim(Fi) = |i↓|, for all i ∈ [n];

2. dim(Fi ∩ Fj) = |i↓ ∩ j↓|;

3. Fi ⊆ Fj if and only if i 6P j;

4.
∑

i∈[n]

Fi = V .

Proof. Properties 1. and 4. are obtained by Definition 3.1, taking I = {i} and
I = [n], respectively.

By the Grassmann formula and Property 1., dim(Fi ∩ Fj) = dim(Fi) +
dim(Fj)− dim(Fi + Fj) = |i↓|+ |j↓| − |i↓ ∪ j↓| = |i↓ ∩ j↓|.

To prove Property 3., let Fi ⊆ Fj . This holds if and only if dim(Fi ∩ Fj) =
dim(Fi). But this is equivalent to |i↓ ∩ j↓| = |i↓|, which is equivalent to i↓ ⊆ j↓,
i.e. i 6P j.

Remark 3.4. Let F ∈ FlP(F). Note that, by Property 3. of Proposition 3.3,
Fi = Fj if and only if i = j.

Remark 3.5. Let F := (W1, . . . ,Wn) ∈ FlP(F) and σ ∈ Sn such that σF :=
(Wσ−1(1), . . . ,Wσ−1(n)) ∈ FlP(F). Then σ−1(1) ≺ . . . ≺ σ−1(n) is a linear
extension of P . In fact let i <P j, σ(i) =: h and σ(j) =: k. Then, by Proposition
3.3, Wi ⊆ Wj. Since (σF )h = Wi and (σF )k = Wj , we have that h 6P k and
this implies h < k, so σ−1(h) ≺ σ−1(k). It is straightforward to check that in
general the converse does not hold.

We are going to prove that the set of P -flags admits a structure of homoge-
neous space. To do this, we need the following function.

Definition 3.6. The Fon-Der-Flaass action (see [24]) is the invertible function
ΨP : J (P) → J (P) defined by

ΨP (I) := [minP ([n] \ I)]
↓
,

for all I ∈ J (P).

Notice that ΨP (∅) = min(P ) and ΨP (P ) = ∅. Now we are ready to prove one
of the main results of this section.
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Proposition 3.7. Let F ∈ FlP(F). Then there exists a basis B := {v1, . . . , vn}
of V such that Fi ∩B =

{

vj ∈ B : j ∈ i↓
}

, for all i ∈ [n].

Proof. For any k > 1, define the induced subposet

Pk :=

k
⋃

j=1

Ψj
P (∅)

and consider the vector space Wk :=
∑

i∈max(Pk)

Fi. It is clear that there exists

k ∈ N such that Pk = P . If Pk =
{

i1, · · · , i|Pk|

}

, being i1 < . . . < i|Pk|, then
(

Fi1 , . . . , Fi|Pk|

)

∈ FlPk
(F), since the order ideals of Pk are order ideals of P .

We construct the basis B by induction on k. Let k = 1. Then P1 = min(P )

and Fi = spanF {vi} for some vi ∈ V , for all i ∈ min(P ). Since dim

(

∑

i∈P1

Fi

)

=

|P1|, we have that | {vi : i ∈ P1} | = |P1| and the elements v1, . . . , v|P1| are
linearly independent. We let B1 := {vi : i ∈ P1}. Then Fi ∩ B1 = {vi} =
{

vj ∈ B1 : j ∈ i↓
}

, for all i ∈ P1.
Now let k > 1. By induction, we have a basis Bk−1 of Wk−1 such that

Fi ∩Bk−1 =
{

vj ∈ Bk−1 : j ∈ i↓
}

, for all i ∈ Pk−1 = Pk \max(Pk).
Let max(Pk) = {p1, . . . , pr}; by Proposition 3.3, Fq ⊆ Fpi

for all q ⊳ pi,
i ∈ [r], and

dim

(

∑

q⊳pi

Fq

)

=
∣

∣

∣{q ∈ Pk : q ⊳ pi}
↓
∣

∣

∣ = |p↓i | − 1 = dim(Fpi
)− 1.

This implies the existence of an element vpi
∈ Fpi

\

(

∑

q⊳pi

Fq

)

, for all i ∈ [r].

We let
Bk := Bk−1 ∪ {vp1 , . . . , vpr

} .

It remains to prove that Bk is a basis of Wk. Let i ∈ [r] and assume by
contradiction vpi

∈
∑

j∈Pk\{pi}

Fj . Then Fpi
⊆

∑

j∈Pk\{pi}

Fj . Hence

|Pk| = dim





∑

j∈Pk

Fj



 = dim





∑

j∈Pk\{pi}

Fj



 = |Pk| − 1.

If Pk = P , we let B := Bk. Then B is a basis of V with the stated property.

Corollary 3.8. Let F ∈ FlP(F). Then the set {Fi : i ∈ [n]} generates, by sums
and intersections, a distributive lattice isomorphic to J (P ). Moreover

dim

(

⋂

i∈I

Fi

)

=

∣

∣

∣

∣

⋂

i∈I

i↓
∣

∣

∣

∣

,

for all I ⊆ [n].
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Proof. By Proposition 3.7, the lattice generated by {Fi : i ∈ [n]} is isomorphic
to the lattice L generated by {Fi ∩B : i ∈ [n]}, with respect to the operations
∪ and ∩, which is distributive. From this we deduce also the last assertion.
Moreover, by construction L is isomorphic to J (P ).

Let F ∈ FlP(F). If B := {v1, . . . , vn} is a basis of V such that Fi ∩ B =
{

vj ∈ B : j ∈ i↓
}

, for all i ∈ [n], we say that B is F -adapted. Choosing an
F -adapted basis {v1, . . . , vn} of V for any P -flag F ∈ FlP(F), we can define a
function β : FlP(F) → GL(n,F) by setting β(F ) as the unique matrix which
satisfies β(F )ei = vi, for all i ∈ [n].

Theorem 3.9. Let π : GL(n,F) → GL(n,F)/I∗(P ;F) be the canonical projec-
tion. Then the function

π ◦ β : FlP(F) → GL(n,F)/I∗(P ;F)

is bijective.

Proof. An action of the group GL(n,F) on FlP(F) is given by

(AF )i := AFi,

for all i ∈ [n], A ∈ GL(n,F), and F ∈ FlP(F). In fact dimensions are preserved

and A

(

∑

i∈I

Fi

)

=
∑

i∈I

AFi for all I ⊆ [n], A ∈ GL(n,F). Since β(F )FP
e = F , for

all F ∈ FlP(F), this action is transitive and AFP
e = FP

e if and only A ∈ I∗(P ;F),
so the result follows.

For arbitrary fields, we call FlP(F) a P -flag space. The set FlP(R) turns
out to have a structure of differentiable manifold, which we call P -flag manifold.
We recover the real flag manifold for P = cn.

Corollary 3.10. Let P ∈ POS(n). The set FlP(R) is a differentiable manifold
of dimension n(n− 1)− |TP |.

Proof. Notice that I∗(P ;R) is a closed subgroup of the Lie group GL(n;R); in
fact an incidence group is defined by the vanishing of suitable entries, depending
on P . By the closed-subgroup theorem (see, e.g. [15, Theorem 9.3.7]), I∗(P ;R)
is a Lie subgroup and, by [15, Theorem 10.1.10], the quotient GL(n,R)/I∗(P ;R)
has a unique real manifold structure.

Since the Lie algebra of I∗(P ;R) is the Lie algebra of the incidence algebra
I(P ;R) and its dimension is |P | + |TP |, we obtain the stated formula (see,
e.g. [15, Corollary 10.1.12]).

Remark 3.11. By Theorem 3.9, there exists a canonical projection FlP(C) →
Fln(C) whose fibers are affine spaces of dimension

∣

∣[n]2< \ TP

∣

∣. It follows that
this projection is a homotopy equivalence.

By Theorem 3.9 we can deduce the cardinality of the set of P -flags on a
finite field of q elements.

Corollary 3.12. Let P ∈ POS(n). Then

|FlP(Fq)| = q
n(n−1)

2 −|TP |[n]q!.
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Proof. First of all recall the well-known formula

|GL(n;Fq)| =
n−1
∏

i=0

(qn − qi) = q
n(n−1)

2

n
∏

i=1

(qi − 1).

It is clear that |I∗(P ;Fq)| = (q−1)nq|TP |. Then the result follows from Theorem
3.9.

The following proposition reveals a duality phenomenon, which does not
appear in the classical case, since a chain cn is self-dual (see Definition 2.6).

Proposition 3.13. Let P ∈ POS(n). Then we have a bijection

Fl∗P : FlP(F) → FlP∗(F)

defined by setting

Fl∗P (F )i = spanF

{

vn+1−j : j ∈ i↓P∗

}

,

for all i ∈ [n], F ∈ FlP(F), where {v1, . . . , vn} is an F -adapted basis of V .

Proof. Let F ∈ FlP(F) and {v1, . . . , vn} be an F -adapted basis of V . Let wi :=
vn+1−i, for all i ∈ [n]; therefore, by Definition 2.6, {w1, . . . , wn} is an Fl∗(F )-
adapted basis of V . It is clear by construction that Fl∗P∗ ◦ Fl∗P and Fl∗P ◦ Fl∗P∗

are the identity on FlP(F) and FlP∗(F), respectively.

In the example below we present in a particular case the duality in Proposi-
tion 3.13.

Example 3.14. Given a positive integer n, the n-th configuration space of a
set X is

Confn[X ] := {(x1, . . . , xn) ∈ Xn : i 6= j ⇒ xi 6= xj} .

Unless otherwise specified, the symbol ≃ stands for a bijection.
Let P ∈ POS(3) be the poset whose Hasse diagram is the one on the left in

the following figure. The Hasse diagram on the right is the one of P ∗.

3

1 2 1

2 3

Let {v1, v2, v3} be a basis of V , V1 := spanF {v1}, V2 := spanF {v2} and V3 := V .
Then F := (V1, V2, V3) ∈ FlP(F) and

Fl∗P (F ) = (spanF {v3} , spanF {v2, v3} , spanF {v1, v3}) .

Moreover, it is immediate to check that FlP(F) ≃ Conf2
[

P(F3)
]

and FlP∗(F) ≃
Conf2 [GrF(2, 3)] ≃ Conf2

[

P(F3)
]

.

Remark 3.15. We observe that FlP(C) is a subset of the moduli space of span-
ning configurations Xα,n, introduced in [23], with α = (|1↓|, . . . , |n↓|). Moreover
Fltn(C) = X1n,n, where 1n = (1, 1, . . . , 1) ∈ [1]n. Notice that Fltn(C) is also the
moduli space Xn,n of n independent lines in Cn of [22].
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3.1 (Q,P )-cells

In this section we consider the left action of the incidence group I∗(Q;F) on
FlP(F), where P,Q ∈ POS(n). For P = Q = cn, the orbits of this action are the
classical Schubert cells of the flag variety, which are indexed by the elements of
the symmetric group Sn. In Proposition 3.16 we prove that for other choices
of Q and P , the action of I∗(Q;R) on FlP(R) has infinitely many orbits. For
other general results on infiniteness of double quotients see for instance [10], [13]
and references therein. Nevertheless we consider a finite subset of these orbits,
corresponding to permutations in Sn, which have a particularly nice description
as in the classical case.

Proposition 3.16. The double quotient I∗(Q;R)\GL(n;R)/I∗(P ;R) is finite
if and only if P = Q = cn.

Proof. It is well known that if P = Q = cn then the double quotient considered
is in bijection with the symmetric group Sn.

Let Q be any poset and P 6= cn. The maximal possible dimension d of an
orbit of I∗(Q;R) is reached when Q = cn and the isotropy group is the group

of invertible diagonal matrices I∗(tn;F); then d = dim(I∗(cn;R)) − n = n(n−1)
2

by [15, Corollary 10.1.12]. By Corollary 3.10, dim(GL(n;R)/I∗(P ;R)) = n(n−
1)− |TP |. Since P 6= cn, the minimum of n(n− 1)− |TP | is reached when P has

exactly two incomparable elements; its value is n(n−1)− n(n−1)−2
2 = n(n−1)

2 +1.
Therefore dim(GL(n;R)/I∗(P ;R)) is always strictly greater than the dimension
of every orbit of I∗(Q;R), which implies the infiniteness of the set of such
orbits.

Now we consider a collection of orbits of I∗(Q;F) on FlP(F) which share
some properties with the classical Schubert cells of the flag variety. For any
permutation σ ∈ Sn, let us define the P -flag

FP
σ :=

(

spanF

{

eσ(i) : i ∈ 1↓P

}

, . . . , spanF

{

eσ(i) : i ∈ n↓
P

})

.

When σ is the identity we recover the standard P -flag FP
e .

Definition 3.17. The (Q,P )-cell in FlP(F) corresponding to σ ∈ Sn is the orbit

CQ,P
σ (F) :=

{

AFP
σ : A ∈ I∗(Q;F)

}

.

These cells can be described as homogeneous spaces. Before to state this
result, we need some definitions.

Definition 3.18. Let P,Q ∈ POS(n) and σ ∈ Sn. The poset [QP ]σ :=
([n],6Q,P,σ) is defined by setting

i 6Q,P,σ j ⇔ i 6Q j and σ−1(i) 6P σ−1(j),

for every i, j ∈ [n].

Notice that [QP ]σ 6 Q, for every P,Q ∈ POS(n), σ ∈ Sn.

Example 3.19. Let Q ∈ POS(n). It is clear that [Qcn]e = Q and [Qtn]σ = tn
for all σ ∈ Sn. Moreover [Qcn]w0 = tn, where w0 = n · · · 321.

13



Remark 3.20. The Hasse diagram of the poset [cncn]σ is the graph Gσ defined
in [5]. This is also related to the inversion graph of the permutation σ (see [20]).

Remark 3.21. The induced subposet {[cncn]σ : σ ∈ Sn} ⊆ POS(n) is isomor-
phic to the dual of the right 6R weak order of Sn. In fact, by [1, Proposi-
tion 3.1.3], σ 6R τ if and only if TL(σ) ⊆ TL(τ), where TL(σ) is the set of left
inversions of σ. This is equivalent to [cncn]τ 6 [cncn]σ.

Definition 3.22. Let σ ∈ Sn. The (Q,P )-inversion number invQ,P (σ) of σ is
defined by

invQ,P (σ) := |
{

(i, j) ∈ [n]2< : i <Q j, σ−1(i) ≮P σ−1(j)
}

|.

For Q = P = cn this function gives the usual inversion number inv(σ) of a
permutation in Sn.

Theorem 3.23. Let P,Q ∈ POS(n) and σ ∈ Sn. Then we have the following
bijections:

CQ,P
σ (F) ≃ I∗(Q;F)/I∗([QP ]σ;F) ≃ FinvQ,P (σ) .

Proof. Let FP
σ = (V1, . . . , Vn), where Vj = spanF

{

eσ(i) : i ∈ j↓P

}

, for all j ∈ [n].

Let A ∈ I∗(Q;F) be an element of the isotropy group of FP
σ under the action

AFP
σ = (AV1, . . . , AVn). We prove that A ∈ I∗([QP ]σ;F).
We have that V1 = spanF

{

eσ(1)
}

and AV1 = V1 implies Ai,σ(1) = 0 for all
i <Q σ(1). Again AV2 = V2 implies Ai,σ(2) = 0 for all i <Q σ(2) such that

i 6∈
{

σ(k) : k ∈ 2↓P

}

. In general, AVj = Vj implies Ai,σ(j) = 0 for all i <Q σ(j)

such that i 6∈
{

σ(k) : k ∈ j↓P

}

. Therefore the isotropy group of FP
σ is contained

in the set

n
⋂

j=1

{

A ∈ I∗(Q;F) : Ai,σ(j) = 0, ∀ i 6∈
{

σ(k) : k ∈ j↓P

}}

=

n
⋂

j=1

{

A ∈ I∗(Q;F) : Ai,j = 0, ∀ i 6∈
{

k : σ−1(k) ∈ [σ−1(j)]↓P

}}

= I∗([QP ]σ;F).

By definition of FP
σ and [QP ]σ, it follows that I

∗([QP ]σ;F) is contained in the
isotropy group of FP

σ , and the first bijection is proved.
A coset of A ∈ I∗(Q;F) is determined setting Ai,i = 1 for all i ∈ [n] and

Aij = 0 whenever (i, j) ∈ T[QP ]σ . Since |TQ \ T[QP ]σ | = invQ,P (σ), the second
bijection follows.

Immediate consequences of Theorem 3.23 are the following statements.

Corollary 3.24. Let Fq be a finite field. Then

|CQ,P
σ (Fq)| = qinvQ,P (σ),

for all σ ∈ Sn.

A poset is said to be strict Sperner if it is a graded poset in which all
maximum antichains are rank levels. The next result gives a bijection between
a (Q,P )-cell CQ,P

σ (F) and the derived algebra of the Lie algebra I([QP ]cσ(Q);F),
whenever P is a strict Sperner poset.
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Corollary 3.25. If P is strict Sperner, then we have a bijection

CQ,P
σ (F) ≃ U([QP ]cσ(Q);F),

for all σ ∈ Sn.

Proof. By definition, if P is strict Sperner then the poset [QP ]σ is complemented
in Q. In fact, in a strict Sperner poset, the relation 
 is transitive. Then
TQ \ T[QP ]σ = T[QP ]cσ(Q). Hence the result follows by Proposition 2.4.

4 Incidence stratifications

In this section we provide a partition of the projective space P(Fn), induced
by the action of the incidence group I∗(Q;F), for any poset Q ∈ POS(n). The
orbits of such an action turn out to be in one-to-one correspondence with the
elements of the distributive lattice J (Q).

This decomposition induces a partition of any subset of a projective space.
We investigate the induced partition on Grassmannian varieties, recovering the
Schubert cell partition, for Q = cn, and the matroid strata introduced in [14],
for Q = tn.

4.1 Q-stratification of a projective space

Let Q ∈ POS(n), V = Fn and P(V ) its projective space. The subalgebra
I(Q;F) ⊆ End(V ) has invariant-subspace lattice isomorphic to J (Q), where
I(Q;F) acts on the elements of V by left multiplication.

Remark 4.1. The socle filtration of the action of I(Q;F) on V is given by

soci(Q) ≃
⊕

j∈max[Ψi
Q
(∅)]

spanF {ej} ,

for all i > 0 such that Ψi
Q(∅) ( Ψi+1

Q (∅), where ΨQ is the function of Definition
3.6.

Clearly this action carries an action of I∗(Q,F) on P(V ), whose orbits are
described in the following theorem. Recall that VI := spanF {ei : i ∈ I}, for any
subset I ⊆ [n].

Theorem 4.2. An orbit of the action of I∗(Q;F) on P(V ) is of the form

QI(F) := P(VI) \
⋃

i∈max(I)

P
(

VI\{i}

)

,

for any I ∈ J (Q) \{∅} and the collection of cells4 {QI(F) : I ∈ J (Q) \{∅}} is
a partition of P(V ). The Zariski closure of QI(C) is given by

QI(C) =
⊎

H∈J (I)\{∅}

QH(C) = P (VI) ,

for all I ∈ J (Q).

4The use of the word cell in this article does not refer in general to affine spaces.
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Proof. Let v ∈ V be expressed as v = a1ei1 + . . . + akeik for some k ∈ [n],
a1, . . . , ak ∈ F \{0}. Let M := maxQ{i1, . . . , ik} and I := M↓ ∈ J (Q). Then v
lies in VI \

⋃

i∈M

VI\{i}. Since the action of I∗(Q;F) on VI \
⋃

i∈M

VI\{i} is transitive

and the projection of this set on P(V ) is P(VI)\
⋃

i∈M

P
(

VI\{i}

)

, the first assertion

follows. Finally we have that QI(C) = P(VI); since VI is I∗(Q;C)-invariant,
the last assertion can be deduced by repeating the previous arguments to the
projective space P(VI).

In analogy with the case F = C in Theorem 4.2, for any field F, we say that
QI(F) is a Q-Schubert cell of P(V ) and we define QI(F) :=

⋃

H∈J (I)\{∅}

QH(F),

saying that QI(F) is a Q-Schubert variety of P(V ), which turns out to be a
projective space.

The following are immediate consequences of Theorem 4.2.

Corollary 4.3. Let Q ∈ POS(n) and I ∈ J (Q) \{∅}. Then

dim(QI(C)) = |I| − 1.

Corollary 4.4. The poset of Q-Schubert varieties of P(V ), ordered by inclusion,
is isomorphic to J (Q) \{∅}. Moreover, if I ∩ J 6= ∅ then

QI(F) ∩QJ(F) = QI∩J(F).

In the case of a finite field Fq, we provide a formula for the number of points
of a Q-Schubert cell QI(Fq).

Corollary 4.5. Let Fq be a finite field. Then

|QI(Fq)| =
∑

H∈J (I)\{∅}
I\H⊆max(I)

(−1)|I\H|[|H |]q.

Proof. By Theorem 4.2 we know that P(VI) =
⊎

H∈J (I)\{∅}

QH(Fq). It is known

(see [27, Example 3.9.6]) that the Möbius function of a distributive lattice is

µ(H, I) =

{

(−1)|I\H|, if I \H ⊆ max(I);
0, otherwise.

Since |P(Fn
q )| = [n]q, we obtain our formula by Möbius inversion.

With the following definition we introduce a general procedure to decompose
subsets of projective spaces. In the subsequent sections we apply this approach
to Grassmannians and P -flag spaces.

Definition 4.6. Let X ⊆ P(Fn). Given a poset Q ∈ POS(n), we call incidence
stratification of X the set

{

QI(F) ∩X : I ∈ J (Q)
}

\ {∅} .
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4.2 Q-stratification of a Grassmannian

Let n > 0, k ∈ [n] and Q ∈ POS(n). We need to define a suitable poset
Qk

< in order to realize an incidence stratification of the Grassmannian GrF(k, n),
generalizing Schubert varieties and matroidal strata.

Consider the Cartesian k-th power Qk of the poset Q. Recall that the order
on Qk is defined by

i 6Qk j ⇔ ih 6Q jh, for every h ∈ [k],

for all i, j ∈ [n]k, where ih is the projection of i on the h-th component.
The poset Qk admits an action of the symmetric group Sk, as showed in the

next proposition, whose proof is straightforward.

Proposition 4.7. Let σ ∈ Sk. Then the action on [n]k defined by

σi := (iσ−1(1), . . . , iσ−1(k)),

for all i ∈ [n]k, is an automorphism of the poset Qk. This defines a group
morphism Sk → Aut(Qk).

The following poset is fundamental for our constructions.

Definition 4.8. The poset Qk
< :=

(

[n]k<,4Qk

)

is defined by letting

i 4Qk j ⇔ σi 6Qk j,

for some σ ∈ Sk, for all i, j ∈ [n]k<.

Notice that Q1
< = Q. For k > 1 it could be not obvious that Qk

< is a poset.
This follows from Proposition 4.7, as we are going to show. Let i, j, h ∈ [n]k<.

1. reflexivity: straightforward, by taking σ = e.

2. antisymmetry: let σi 6Qk j and τj 6Qk i, for some σ, τ ∈ Sk. Then
τσi 6Qk i. From the fact that i1 < . . . < ik, we obtain τσ = e. Hence
i 6Qk τj 6Qk i, which implies τ = σ = e and i = j.

3. transitivity: let h 4Qk i and i 4Qk j; then there exist σ, τ ∈ Sk such that
σh 6Qk i 6Qk τj. This implies τ−1σh 6Qk j.

It is clear that i 6Qk j implies i 4Qk j, i.e. the poset Qk
< is a refinement of

([n]k<,6Qk), the induced subposet of Qk. If Q = cn, they are actually the same
poset, as stated in the following proposition.

Proposition 4.9. Let n > 1 and k ∈ [n]. Then (cn)
k
< = ([n]k<,6ckn

).

Proof. Let i, j ∈ [n]k< with i 
ckn
j. Then there exists a minimal h ∈ [k] such

that jh < ih. If h = k then it is immediate to check that σi 
ckn
j, for all σ ∈ Sk.

Let h < k and σ ∈ Sk. There are three cases to be considered.

1. σ−1(h) = h: we have that jh < ih = iσ−1(h) and this implies σi 
ckn
j.

2. σ−1(h) > h: in this case iσ−1(h) > ih > jh, so σi 
ckn
j.

3. σ−1(h) < h: in this case h > 1. There exists t ∈ [h − 1] such that
σ−1(t) > h; then iσ−1(t) > ih > jh > jt and σi 
ckn

j.
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Then i 4ckn
j implies i 6ckn

j.

We can consider Qk
< as an element of POS

((

n
k

))

; in fact the lexicographic
order on [n]k< provides a natural labeling of Qk

<, as showed in the next proposi-
tion.

Proposition 4.10. Let Q ∈ POS(n) and k > 1. Then a 4Qk b ⇒ a 6lex b, for
all a, b ∈ [n]k<.

Proof. We claim that Q 6 P implies Qk
< →֒ P k

<, for all Q,P ∈ POS(n). In fact,
σa 6Qk b implies σa 6Pk b, for all a, b ∈ [n]k<, σ ∈ Sk. Since Q 6 cn, we obtain
Qk

< →֒ (cn)
k
<. By Proposition 4.9, (cn)

k
< = ([n]k<,4ckn

) = ([n]k<,6ckn
). Moreover

we have that ([n]k<,6ckn
) →֒ ([n]k<,6lex) is a linear extension of (cn)

k
<. Then

Qk
< →֒ (cn)

k
< →֒

(

[n]k<,6lex

)

≃ c(nk)
gives a linear extension of Qk

<.

The duality proved in the following proposition is a poset theoretic version
of the Grassmannian duality GrF(k, n) ≃ GrF(n− k, n).

Proposition 4.11. Let Q ∈ POS(n). Then the following poset isomorphism
holds for all k ∈ [n− 1]:

Qk
< ≃

(

Qn−k
<

)∗
.

Proof. Let a, b ∈ [n]k<. Recall that we consider
n
⋃

k=0

[n]k< as the Boolean algebra

P([n]). We let gc := [n] \ g ∈ [n]n−k
< , for all g ∈ [n]k<. We claim that a 4Qk b

if and only if a \ b 4Qh b \ a, where h := k −m and m := |a ∩ b|. If a ∩ b = ∅
there is nothing to prove. Assume a ∩ b 6= ∅.

1. a 4Qk b ⇒ a \ b 4Qh b \ a: by hypothesis there exists ω ∈ Sk such that
a 6Qk ωb. Let ai := z ∈ a∩ b, aj := x 6Q z =: (ωb)j and z 6Q y =: (ωb)i.
Then x 6Q y and a 6Qk (τω)b, where, if i 6= j, τ ∈ Sk is the transposition
such that (τωb)j = y and (τωb)i = z, otherwise τ is the identity. We then
conclude by repeated use of this argument.

2. a \ b 4Qh b \ a ⇒ a 4Qk b: by hypothesis there exists ω ∈ Sh such
that a \ b 6Qh ω (b \ a). Let σ, τ ∈ Sk be the permutations such that
σa = (u1, . . . , um, v1, . . . , vh) and τb = (u1, . . . , um, z1, . . . , zh), where
(u1, . . . , um) = a ∩ b, (v1, . . . , vh) = a \ b and (z1, . . . , zh) = ω (b \ a).
Hence σa 6Qk τb and this implies a 4Qk b.

Notice that ac \ bc = b \ a and bc \ ac = a \ b; hence, by the previous claim we
have that

a 4Qk b ⇔ a \ b 4Qh b \ a

⇔ bc \ ac 4Qh ac \ bc

⇔ bc 4Qn−k ac,

where h := k − |a ∩ b|.

Remark 4.12. By the proof of Proposition 4.11, we know that a 4Qk b if and
only if a \ b 4Qh b \ a, for all a, b ∈ [n]k<, where h := k − |a ∩ b|. This is very
useful when dealing with explicit examples of the poset Qk

<.
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Let Q ∈ POS(n); there exists a representation πk
Q : I∗(Q;F) → Aut

(
∧k V

)

given by diagonal action:

A(v1 ∧ . . . ∧ vk) = Av1 ∧ . . . ∧ Avk,

for every A ∈ I∗(Q;F) and v1, . . . , vk ∈ V .

Theorem 4.13. The group morphism πk
Q is injective and πk

Q(I
∗(Q;F)) is a

subgroup of the incidence group I∗(Qk
<;F).

Proof. Let A ∈ I∗(Q;F) such that πk
Q(A) = Id. Then any subspace of dimension

k of V is A-invariant. This implies that A = Idn. Moreover we have that, for
i ∈ Qk

<,

Aei1 ∧ . . . ∧ Aeik =





∑

h∈i
↓
1

Ah,i1eh



 ∧ . . . ∧





∑

h∈i
↓
k

Ah,ikeh





∈
⊕

j∈I

spanF {ej1 ∧ . . . ∧ ejk} ,

where I :=
{

j ∈ [n]k< : j 4Qk i
}

.

Let φ : GrF(k, n) → P
(
∧k

V
)

be the Plücker embedding. According to the

action of the incidence group I∗(Qk
<;F) on P

(
∧k V

)

, we provide an incidence
stratification of the Grassmannian GrF(k, n).

Definition 4.14. Let QI(F) be an orbit of the action of I∗(Qk
<;F) on the pro-

jective space P
(
∧k V

)

, for any order ideal I ∈ J (Qk
<). The set

[Q]I(F) := (Qk
<)I(F) ∩ φ(GrF(k, n))

is called Q-Schubert cell of GrF(k, n) whenever [Q]I(F) 6= ∅. A Q-Schubert

variety in GrF(k, n) is [Q]I(F) := (Qk
<)I(F) ∩ φ(GrF(n, k)).

The next result follows directly from Definition 4.14 and Theorem 4.2.

Proposition 4.15. Let I ∈ J (Qk
<) and [Q]I(F) be a Q-Schubert cell. We have

that
[Q]I(F) =

⊎

H∈J (I)

[Q]H(F).

Now we are going to prove that, in a Grassmannian variety, a cn-Schubert
cell is a Schubert cell. In other words, a Schubert cell is the intersection of
GrF(k, n) with a (cn)

k
<-Schubert cell of the projective space P

(
∧k V

)

.

Proposition 4.16. Let σ ∈ S
(k)
n be a Grassmannian permutation and Cσ(F)

the corresponding Schubert cell of GrF(k, n). Then

Cσ(F) = [cn]Iσ (F),

where Iσ :=
{

a ∈ [n]k< : a 4ckn
(σ(1), . . . , σ(k))

}

.
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Proof. A Schubert cell Cσ(F) in φ(GrF(k, n)) is an orbit under the action of
πk
cn
(I∗(cn;F)) of the line spanF

{

eσ(1) ∧ . . . ∧ eσ(k)
}

. By Theorem 4.13, the

group πk
cn
(I∗(cn;F)) is a subgroup of I∗((cn)

k
<;F); therefore the orbits of the

action of I∗((cn)
k
<;F) on P

(
∧k

V
)

are partitioned into orbits of πk
cn
(I∗(cn;F)).

But the Schubert cells give a partition of GrF(k, n), so the result follows.

By the fact that a Schubert variety is union of Schubert cells according to

the Bruhat order of S
(k)
n , the cn-Schubert varieties in GrC(k, n) are exactly the

Schubert varieties.
We define the set of Q-Schubert cells of GrF(k, n) as

Qk
B(F) :=

{

I ∈ J (Qk
<) : [Q]I(F) 6= ∅

}

.

Definition 4.17. Let Q ∈ POS(n). We call (Qk
B(F),⊆) the Q-Bruhat poset of

GrF(k, n).

Remark 4.18. By Proposition 4.16, the cn-Bruhat poset of GrF(k, n) is iso-

morphic to S
(k)
n with the Bruhat order, which by Proposition 2.9 is isomorphic

to ([n]k<,6ckn
). Moreover, by Proposition 4.9, these posets are isomorphic to

(cn)
k
<.

Notice that the poset (Q1
B(F),⊆) is equal to (J (Q) \ {∅} ,⊆), for all Q ∈

POS(n); see Theorem 4.2.
We provide a characterization of the Q-Schubert cells in terms of matroids

representable over F.

Theorem 4.19. Let Q ∈ POS(n), k ∈ [n] and I ∈ J (Qk
<). Then [Q]I(F) 6= ∅

if and only if max(I) ∪ I ′ is a matroid representable over F, for some subset
I ′ ⊆ I.

Proof. Let I ′ ⊆ I be any subset. The result follows by observing that max(I)∪I ′

is the set of bases of a matroid representable over F if and only if there exists
A ∈ I∗(Qk

<;F) such that

A





∑

i∈max(I)

ei1 ∧ . . . ∧ eik



 =
∑

i∈max(I)∪I′

aiei1 ∧ . . . ∧ eik

is an element of φ(GrF(k, n)), where ai ∈ F \ {0} for all i ∈ max(I).

Remark 4.20. By Theorem 4.19, ((tn)
k
B(F),⊆) is the poset of representable

matroids on F of rank k on the set [n], ordered by inclusion of the sets of
bases. This is the so called weak order on matroids, see e.g. [21, Chapter 7]
and [32, Chapter 9].

Remark 4.21. It follows by basic topology that the Zariski closure of the orbit
corresponding to a matroid M in the matroid stratification of GrC(k, n) is in-
cluded in [tn]M (C). This inclusion can be strict as in [12, Counterexample 2.6].
Notice that the defining ideal of the tn-Schubert variety [tn]M (C) in GrF(k, n) is
the Grassmannian ideal PM of the matroid M , as defined in [6, Section 3].

From the fact that a singleton {(i1, . . . , ik)} is always the set of bases of a
matroid representable over any field, we deduce the following corollary.
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Corollary 4.22. If I ∈ J (Qk
<) is a principal order ideal, then [Q]I(F) 6= ∅.

The poset (Qk
B(F),⊆) has maximum [n]k<, the uniform matroid; it is not

difficult to see that its minimal elements, which correspond to the minima of
the poset Qk

<, are the Grassmannian permutations σ such that the Q-inversion
number invQ(σ) :=

{

(i, j) ∈ [n]2< : σ(j) <Q σ(i)
}

is zero.

Example 4.23. Let Q ∈ POS(4) be the poset on [4] such that 1 ⊳ 2, 1 ⊳ 3,
2 ⊳ 4 and 3 ⊳ 4. Then Q2

< is the following poset:

(2, 4) (3, 4)

(2, 3) (1, 4)

(1, 2) (1, 3)

Let (S4, {s1, s2, s3}) be the symmetric group of order 24 with its standard Coxeter
presentation and J := {s1, s3}. The Q-Bruhat on GrC(2, 4) is then:

S
(2)
4

[e, s1s3s2]
J s2[e, s1s3s2]

J

[e, s1s2]
J [e, s3s2]

J

{e, s2}

{e} {s2}

where, if u, v ∈ SJ
n and u 6 v, then [u, v]J :=

{

z ∈ SJ
n : u 6 z 6 v

}

is a Bruhat

interval in the poset (SJ
n ,6) and w[u, v]J :=

{

P J (wz) : z ∈ [u, v]J
}

, for all w ∈
Sn.

By using the identification of [4]2< with S
(2)
4 , we have

• {e} = (1, 2)↓, {s2} = (1, 3)↓ and {e, s2} = {(1, 2), (1, 3)}
↓
;

• [e, s1s2]
J = (2, 3)↓ and [e, s3s2]

J = (1, 4)↓;

• [e, s1s3s2]
J = (2, 4)↓ and s2[e, s1s3s2]

J = (3, 4)↓.

Notice that, by Theorem 4.19, the order ideal {(2, 3), (1, 4)}
↓
is not an ele-

ment of the Q-Bruhat poset, i.e. [Q]I(F) = ∅.
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By Corollary 4.22, |Qk
B(F)| > |S

(k)
n |. In the next proposition we obtain

directly that the Bruhat order on S
(k)
n is the cn-Bruhat poset, without using

Proposition 4.16.

Proposition 4.24. Let n > 0 and k ∈ [n]. Then (S
(k)
n ,6) ≃ ((cn)

k
B(F),⊆).

Proof. Let I1, I2 ∈ J ((cn)
k
<) such I1 ⊆ I2 and max(I1) ∪ I ′1, max(I2) ∪ I ′2

are matroids representable over F for some subsets I ′1 ⊆ I1, I
′
2 ⊆ I2. Since

the Gale order 6e on [n]k< is 4ckn
, by the Maximality Property of matroids,

|max[max(I1) ∪ I ′1]| = |max(I1)| = 1 and |max[max(I2) ∪ I ′2]| = |max(I2)| = 1.

Moreover, if max(I) ∈ (cn)
k
< ≃ S

(k)
n and |max(I)| = 1, then max(I) is

clearly a representable matroid. Hence, by Theorem 4.19, I ∈ (cn)
k
B(F).

It is natural to go on with further investigations on the Q-Bruhat orders
introduced in this section. For instance, supported by several computational
examples, we formulate a conjecture.

Conjecture 4.25. Let Q ∈ POS(n) and k ∈ [n]. Then the poset (Qk
B(C),⊆) is

graded with rank function ρ(I) = dim([Q]I(C)), for all I ∈ Qk
B(C).

Conjecture 4.25 holds when Q = cn, since the Bruhat order on the quotients
is graded with rank function the inversion number of the permutation. For k = 1
the conjecture holds for every poset Q, by Corollary 4.3. The dimension of the
tn-Schubert cells in GrC(k, n) is provided by [31, Theorem 2.5].

5 Incidence stratifications of P-flag spaces

In this section we study incidence stratifications of FlP(F), for every field
F. In order to do this we embed FlP(F) in a projective space and we need to
construct suitable posets.

Recall that V = spanF {ei : i ∈ [n]}. Let P ∈ POS(n) and consider the
function

φP : FlP(F) → P





n
⊗

i=1

|i↓
P
|

∧

V



 ,

induced by the assignment

F 7→
(

v11 ∧ . . . ∧ v1|1↓|

)

⊗ . . .⊗
(

vn1 ∧ . . . ∧ vn|n↓|

)

,

for all F ∈ FlP(F), where
{

vi1, . . . , v
i
|i↓|

}

is any basis of Fi, for all i ∈ [n]. It is

easy to see that this function is injective.
Let Q ∈ POS(n). There exists a representation

πQ : I∗(Q;F) → Aut





n
⊗

i=1

|i↓
P
|

∧

V





obtained extending the action of I∗(Q;F) on V :

A
(

v11 ⊗ (v21 ∧ . . . ∧ v2|2↓|)⊗ . . .⊗ (vn1 ∧ . . . ∧ vn|n↓|)
)
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= (Av11)⊗ (Av21 ∧ . . . ∧ Av2|2↓|)⊗ . . .⊗ (Avn1 ∧ . . . ∧ Avn|n↓|),

for all A ∈ I∗(Q;F).

Definition 5.1. Let Q,P ∈ POS(n). We define a poset

QP := Q×Q
|2↓

P
|

< × . . .×Q
|n↓

P
|

< .

By Proposition 4.10, it is clear that the lexicographic order on QP provide
a natural labeling and then we consider QP ∈ POS

(

|QP |
)

.

Theorem 5.2. The group morphism πQ is injective and πQ(I
∗(Q;F)) is a sub-

group of the incidence group I∗(QP ;F).

Proof. Let A ∈ I∗(Q;F) be such that πQ(A) = Id. Then Av1 ∈ spanF {v1} for
all v1 ∈ V , i.e. A is the identity matrix. The other assertion follows by Theorem
4.13.

We can decompose the projective space P

(

n
⊗

i=1

∧|i↓
P
| V

)

according to the

action of the incidence group I∗(QP ;F), giving an incidence stratification of
FlP(F).

Definition 5.3. Let QP
I (F) be an orbit of the action of I∗(QP ;F) on the pro-

jective space P

(

n
⊗

i=1

∧|i↓|
V

)

, for any order ideal I ∈ J (QP ). The set

[Q]PI (F) := QP
I (F) ∩ φP (FlP(F))

is called Q-Schubert cell of FlP(F), whenever [Q]PI (F) 6= ∅. A Q-Schubert

variety in FlP(F) is defined by [Q]PI (F) := QP
I (F) ∩ φP (FlP(F)).

The next result follows directly from Definition 5.3 and Theorem 4.2.

Proposition 5.4. Let I ∈ J (QP ) and [Q]PI (F) be a Q-Schubert cell of FlP(F).
We have that

[Q]PI (F) =
⊎

H∈J (I)

[Q]PH(F).

The following proposition asserts that, in a flag variety, a cn-Schubert cell
is a Schubert cell. In other words, a Schubert cell is the intersection of Fln(F)

with a (cn)
cn -cell of the projective space P

(

n
⊗

i=1

∧i
V

)

.

Proposition 5.5. Let σ ∈ Sn and Cσ(F) be the corresponding Schubert cell of
Fln(F). Then

Cσ(F) = [cn]
cn
Iσ
(F),

where the principal order ideal Iσ of (cn)
cn is defined by

Iσ := ({σ(1)}< , {σ(1), σ(2)}< , . . . , {σ(1), σ(2), . . . , σ(n)}<)
↓

and {x1, . . . , xh}< ∈ [n]h< is the tuple obtained ordering x1, . . . , xh.
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Proof. A Schubert cell Cσ(F) in φcn(Fln(F)) is an orbit of the flag φcn(Fσ)
under the action of πQ(I

∗(cn;F)). By Theorem 5.2, the group πQ(I
∗(cn;F))

is a subgroup of I∗((cn)
cn ;F) and we conclude as in the proof of Proposition

4.16.

We define the set of Q-Schubert cells of FlP(F) as

QP
B(F) :=

{

I ∈ J (QP ) : [Q]PI (F) 6= ∅
}

.

Definition 5.6. Let P,Q ∈ POS(n). We call (QP
B(F),⊆) the Q-Bruhat poset

of FlP(F).

By Propositions 5.4 and 5.5, the cn-Bruhat poset of Fln(F) is isomorphic to
Sn with the Bruhat order.

In order to characterize the Q-Schubert cells of FlP(F) we need to introduce
a Gale order on the underlying set of QP .

5.1 P -flags and the Maximality Property

Let P ∈ POS(n) and define the set

[n]P :=
n
∏

i=1

[n]
|i↓|
< .

For example, we have that [n]tn ≃ [n]n. The symmetric group Sn acts on [n]P

by setting

σ
(

(i1,1) ,
(

i2,1, . . . , i2,|2↓|
)

, . . . ,
(

in,1, . . . , in,|n↓|

))

:=

(

{σ(i1,1)}< ,
{

σ(i2,1), . . . , σ(i2,|2↓|)
}

<
, . . . ,

{

σ(in,1), . . . , σ(in,|n↓|)
}

<

)

,

for all σ ∈ Sn.
We introduce the following useful order on [n]P .

Definition 5.7. The Gale ordering 6σ
P on [n]P is defined by letting

a 6
σ
P b ⇐⇒ σa 6(cn)P σb,

for all a, b ∈ [n]P .

In particular, ([n]P ,6e
P ) = (cn)

P and the Gale ordering 6e
tn

on [n]tn is [n]n

ordered componentwise.

Remark 5.8. As in the proof of Proposition 4.10, we have that QP →֒ (cn)
P ,

for all P ∈ POS(n). In particular, QP →֒ ([n]P ,6e
P ).

The following definitions are crucial for the study of incidence stratifications
of a P -flag space, see Section 5.2.

Definition 5.9. A subset F ⊆ [n]P has the Maximality Property if the poset
(F ,6σ

P ) has maximum for all σ ∈ Sn.

Remark 5.10. By Remark 2.12, if F ⊆ [n]P has the Maximality Property, then
the poset (F ,6σ

P ) has minimum for all σ ∈ Sn.
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Remark 5.11. It should be clear that, by definition, given F ⊆ [n]P with the
Maximality Property, the set Mi := {Fi : F ∈ F} is a matroid of rank |i↓|, for
all i ∈ [n].

Recall from Section 2.3 that M(W ) stands for the matroid represented by
the vector space W .

Definition 5.12. We say that G ⊆ [n]P is represented by a P -flag F ∈ FlP(F)
if G = M(F1)× . . .×M(Fn).

As usual we identify
n
⊎

k=0

[n]k< with the power set P([n]). We define the

following subset of [n]P :

[n]P⊆ :=
{

a ∈ [n]P : i <P j ⇒ ai ( aj , ∀ i, j ∈ [n]
}

.

Theorem 5.13. Let G ⊆ [n]P be represented by a P -flag F ∈ FlP(F). Then G
has the Maximality Property and its 6σ

P -maximum lies in [n]P⊆, for all σ ∈ Sn.

Proof. By Definition 5.12, Gh = M(Fh) is a matroid, for every h ∈ [n]. Let
σ ∈ Sn and mσ

h ∈ Gh be the maximum of the poset (Gh,6
σ), for all h ∈ [n]. It

is clear that (mσ
1 , . . . ,m

σ
n) is the maximum of (G,6σ

P ).
Let i <P j. Then |i↓| < |j↓| and (Fi, Fj) is a partial flag; by [4, Theo-

rem 1.7.3], the matroidsM(Fi) andM(Fj) are concordant (see [4, Section 1.7.3]).
By [4, Corollary 1.7.2], the pair

(

mσ
i ,m

σ
j

)

satisfies mσ
i ( mσ

j , for all σ ∈ Sn.

The next result provides a fundamental tool to describe the tn-stratification
of a P -flag space, see Corollary 5.23.

Proposition 5.14. Let F ,G ⊆ [n]P represented by P -flags. Then

F ∩ [n]P⊆ = G ∩ [n]P⊆ =⇒ F = G.

Proof. By contradiction, assume F 6= G and let m ∈ Fi \ Gi, for some i ∈ [n].
Then there exists σ ∈ Sn such that m = max (Fi,6

σ). By Theorem 5.13 there
exists a := max (F ,6σ

P ) ∈ [n]P⊆ and, by hypothesis, a ∈ G. Hence m = ai ∈ Gi,
a contradiction.

5.2 Q-stratification of P -flag spaces

Now we are able to provide a characterization of Q-Schubert cells in the
space FlP(F).

Theorem 5.15. Let P,Q ∈ POS(n) and I ∈ J (QP ). Then [Q]PI (F) 6= ∅ if
and only if there exists I ′ ⊆ I such that max(I) ∪ I ′ is represented by some
F ∈ FlP(F).

Proof. Let I ′ ⊆ I be any subset. The result follows by observing that max(I)∪
I ′ = M(F1) × . . . × M(Fn) for some F ∈ FlP(F) if and only if there exists
A ∈ I∗(QP ;F) such that

A





∑

i∈max(I)

ei1 ⊗ . . .⊗ ein



 =
∑

i∈max(I)∪I′

aiei1 ⊗ . . .⊗ ein = φP (F ),
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where ai ∈ F \ {0} for all i ∈ max(I) and we have defined

ex := ex1 ∧ . . . ∧ exk

for all x ∈ [n]k<.

As a consequence of Theorem 5.15 we recover the Bruhat order of Sn.

Proposition 5.16. We have that (Sn,6) ≃
(

[n]cn⊆ ,6(cn)cn

)

≃ ((cn)
cn
B (F),⊆).

Proof. The first poset isomorphism is clear by definition. Let I1, I2 ∈ J ((cn)
cn)

such that I1 ⊆ I2 and max(I1)∪I
′
1, max(I2)∪I

′
2 are represented by flags, for some

subsets I ′1 ⊆ I1, I
′
2 ⊆ I2. Since the cn-Gale order 6e

cn
on [n]cn is (cn)

cn , by the
Maximality Property, |max[max(I1)∪I ′1]| = |max(I1)| = 1 and |max[max(I2)∪
I ′2]| = |max(I2)| = 1. By Theorem 5.13 we have that max(I1),max(I2) ∈ [n]cn⊆ .
Moreover, if max(I) ∈ [n]cn⊆ then max(I) is clearly represented by a flag. Hence,
by Theorem 5.15, I ∈ (cn)

cn
B (F).

The following example shows the stratification of Fl3(F) induced by the
action on the projective space P [V ⊗ (V ∧ V )] of the group I∗(Q×Q2

<;F), where
Q ∈ POS(3) is one of the posets of Example 3.14. In this case the factor V ∧V ∧V
is redundant.

Example 5.17. Let P = c3 and Q ∈ POS(3) be the poset whose cover relations
are 1 ⊳Q 3 and 2 ⊳Q 3. Then the poset Q × Q2

< has the following Hasse
diagram5:

(3, 13) (3, 23)

(1, 13) (1, 23) (3, 12) (2, 13) (2, 23)

(1, 12) (2, 12)

By Remark 5.8 and Theorem 5.13, the principal order ideals of Q×Q2
< which

satisfy the condition of Theorem 5.15 are the ones with maximum in the set

{(1, 12), (2, 12), (1, 13), (2, 23), (3, 13), (3, 23)} ,

which corresponds to the symmetric group S3. We consider S3 with its standard
Coxeter presentation with generators {s, t}. Then s = 213 = (2, 12), t = 132 =
(1, 13), st = 231 = (2, 23), ts = 312 = (3, 13) and sts = 321 = (3, 23).

Using Theorem 5.13, the non-principal order ideals to be considered are
{(1, 12), (2, 12)}, which is represented by the flag

(spanF {e1 + e2} , spanF {e1 ∧ e2}) ,

and the order ideal I = {(1, 13), (1, 23), (2, 13), (2, 23)}
↓
. We have that max(I)

is represented by the flag

(spanF {e1 + e2} , spanF {(e1 + e2) ∧ e3}) .

Therefore the poset (Qcn
B ,⊆) has the following Hasse diagram:

5We omit parentheses when writing the elements of [n]< and [n]2
<
.
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[n]cn

ts↓ I sts↓

{e, t} {e, s} {s, st}

{e} {s}

Notice that the action of Sn on [n]P restricts to an action on [n]P⊆. We are
ready to introduce the notion of P -flag matroid which extends the one of flag
matroid, see Definition 2.14.

Definition 5.18. A subset F ⊆ [n]P⊆ is a P -flag matroid if it has the Maximality
Property.

The set [n]P⊆ is a P -flag matroid, which we call uniform P -flag matroid. Notice
that cn-flag matroids coincide with flag matroids in Sn.

Example 5.19. The uniform t2-matroid is [2]2 = {(1, 1), (1, 2), (2, 1), (2, 2)}.
We list all the t2-matroids F ( [2]2:

1. |F| = 1: {(1, 1)}, {(1, 2)}, {(2, 1)}, {(2, 2)}.

2. |F| = 2: {(1, 1), (1, 2)}, {(1, 1), (2, 1)}, {(1, 1), (2, 2)}, {(1, 2), (2, 2)},

{(2, 1), (2, 2)}.

3. |F| = 3: {(1, 1), (1, 2), (2, 2)}, {(1, 1), (2, 1), (2, 2)}.

For instance, the set {(1, 2), (2, 1)} is not a t2-matroid.

Definition 5.20. A P -flag matroid F is called representable over F, if there
exists G ⊆ [n]P represented by F ∈ FlP(F) such that F = G ∩ [n]P⊆.

Example 5.21. Since [n]tn⊆ = [n]tn , then ((tn)
tn
B (F),⊆) is the poset of F-

representable tn-flag matroids. The F-representable t2-flag matroids are {(1, 2)},
{(2, 1)}, {(1, 1), (1, 2)}, {(1, 1), (2, 1)}, {(1, 2), (2, 2)}, {(2, 1), (2, 2)} and the uni-
form one. The Hasse diagram of (t2)

t2
B is

•

• • • •

• •

The following results extend the flag matroid stratification of a flag variety.

Proposition 5.22. Let P ∈ POS(n) and I, J ∈ J ((tn)
P ) such that [tn]

P
I (F) 6=

∅ and [tn]
P
J (F) 6= ∅. Then

I ∩ [n]P⊆ = J ∩ [n]P⊆ =⇒ [tn]
P
I (F) = [tn]

P
J (F).
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Proof. By Theorem 5.15, we have that I = max(I) and J = max(J) are repre-
sented by some P -flags F and G, respectively. The result follows by Proposition
5.14.

Corollary 5.23. The set (tn)
P
B(F) is in bijection with the set of F-representable

P -flag matroids.

Proof. Let I ∈ J
(

(tn)
P
)

. By Theorem 5.15, I ∈ (tn)
P
B(F) if and only if it

is represented by a P -flag. By Theorem 5.13, I has the Maximality Property.
Then I ∩ [n]P⊆ is a P -flag matroid and, by Definition 5.20, it is representable
over F. Hence the result follows by Proposition 5.22.

We conclude with the following conjecture.

Conjecture 5.24. Let n > 0 and Q,P ∈ POS(n). Then the poset (QP
B(C),⊆)

is graded.

By Proposition 5.16, when Q = P = cn Conjecture 5.24 holds, since the
Bruhat order on Sn is graded. Also for P = tn and Q = cn the poset is graded,
see Corollary 5.31.

5.3 The t
n
-flag space and its parking function stratifica-

tion

In this section we provide an incidence stratification of a tn-flag space by
parking functions. We refer to [28, Exercise 5.49], [30] and [33] for further
details and references on parking functions.

Definition 5.25. A parking function over n is an element a ∈ [n]n such that
(a1, . . . , an) 6cnn

(σ(1), . . . , σ(n)), for some permutation σ ∈ Sn.

For example (4, 1, 1, 1, 2, 6, 4) is a parking function over 7 whereas the element
(6, 6, 6, 1, 2, 3, 4) is not a parking function.

Definition 5.26. Let a ∈ [n]n. If a >cnn
(σ(1), . . . , σ(n)) for some σ ∈ Sn, we

say that a is a dual parking function over n.

For example (6, 3, 5, 1, 2, 7, 7) is a dual parking function over 7 whereas the
element (1, 2, 2, 2, 2, 4, 3) is not a dual parking function. Notice that the self-dual
parking functions are the permutations.

In the following theorem we describe the cn-stratification of the space Fltn(F).

Theorem 5.27. Let I be an order ideal of (cn)
tn . Then [cn]

tn
I (F) 6= ∅ if and

only if |max(I)| = 1 and max(I) is a dual parking function.

Proof. Notice that subsets of [n]tn represented by tn-flags coincide with repre-
sentable tn-flag matroids. By Remark 5.8, only principal order ideals have to
be considered in Theorem 5.15, for the other ones have more than one maximal
element.

A representable tn-flag matroid over F is represented by an element v := v1⊗

. . .⊗ vn ∈
n
⊗

i=1

Fn, such that v1, . . . , vn are linearly independent or, equivalently,

by a matrix M(v) ∈ GL(n,F) with columns v1, . . . , vn. Therefore

v =
∑

i∈[n]n

((v1)i1 · · · (vn)in) ei1 ⊗ . . .⊗ ein ,
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where (vi)j ∈ F is the j-th component of the vector vi, for all i, j ∈ [n]. It is clear
that, sinceM(v) ∈ GL(n,F), there exists σ ∈ Sn such that (v1)σ(1) · · · (vn)σ(n) 6=
0.

If [cn]
tn
I (F) 6= ∅ then, by our previous considerations and Theorem 5.15,

there exists σ ∈ Sn such that (σ(1), . . . , σ(n)) ∈ I. This implies max(I) >cnn

(σ(1), . . . , σ(n)); so max(I) is a dual parking function.
On the other hand, if max(I) = a is a dual parking function then a >cnn

(σ(1), . . . , σ(n)) for some σ ∈ Sn and the vector

v :=
∑

(σ(1),...,σ(n))6cnn
b6cnn

a

eb1 ⊗ . . .⊗ ebn

=





∑

σ(1)6i16a1

ei1



⊗ . . .⊗





∑

σ(n)6in6an

ein





represents over F a tn-flag matroid, since the matrix M(v) is equivalent to
an invertible upper triangular matrix. Then the condition of Theorem 5.15 is
satisfied.

Remark 5.28. The tn-flag space has been stratified by permutations in [22]
by gluing the orbits of the left action of the group of lower triangular matrices
(more in general the varieties Xn,k studied there have been stratified by Fubini
words, which reduce to permutations when k = n).

Remark 5.29. An incidence stratification of Fltn (F) made of parking func-
tion can be obtained by considering the action of the group of lower triangular
matrices.

Remark 5.30. By Theorem 5.27, an analog of Corollary 4.22 for Q-Schubert
cells of FlP(F) does not hold.

Corollary 5.31. The poset ((cn)
tn
B (F),⊆) has cardinality (n + 1)n−1 and it is

graded, with rank function ρ(a) :=
n
∑

i=1

(ai − i), for any dual parking function

a ∈ [n]n.
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