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Summary 

A real case of a city tramcar generating very high curve squeal noise levels has 

motivated research in this area considering the simultaneous presence of two 

contact points. In this paper, available measurements are summarised in a 

qualitative manner in order to highlight the most important frequencies involved 

and a theoretical model in the frequency domain is developed with the aim of 

predicting curve squeal tones. Good matching is found between numerically 

predicted and measured unstable frequencies and a peculiar shift toward higher 

frequencies is found both in measurements and predictions. 

1 Introduction 

Curve squeal is one of the most serious noise problems connected with the 

operation of trains, tramways and metros in urban environments. The phenomenon 

has been analysed by many authors, by means of both experimental tests and 

theoretical models, and it is agreed that it is produced by the self-excited vibration 

of the wheel, as a result of the contact phenomena taking place at wheel-rail 

interface during curve negotiation. 

Although some research has been carried out in order to point out the influence 

of the different contact conditions at the inner and outer wheel of a leading axle on 

the occurrence of squeal noise, no specific investigation for urban tramways with 

grooved rails is available. This paper describes research into squeal noise 

measurements and modelling for a case of a city tramway with independent 

resilient wheels on very sharp curves [1]. Very high squeal noise levels were 

recorded and both the flange back of the inner wheel and the flange of the outer 

wheel were believed to be in contact with the head and grooved-head due to the 

highly worn condition of the rail.  

Since Rudd’s paper [2], there has been a general understanding that flange 

contact does not represent an important source of noise in curves and in ‎[3][3] it 

was even shown that squeal noise was not occurring with the contact point located 

on the flange while it appeared as soon as the wheel was slightly moved to have 
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the contact point on the tread. However, it is known that squeal noise can be also 

generated by flange contact (see e.g. ‎[4][4]) involving predominantly radial modes 

of the wheel. Indeed, measurements described in ‎[1] represent exactly this 

situation and give an important motivation for investigating the effect that two 

contact points have on squeal noise. 

To the authors’ knowledge there are no models available in the literature to 

address curve squeal in the presence of two-point contact; therefore Sect. 3 is 

devoted to describing how the model developed by Huang ‎[5][5] has been 

extended and updated to consider the simultaneous presence of two contact points. 

It is known that the curve squeal phenomenon is far from being deterministic and 

parameters like temperature, humidity and even dirt and particles on the rail can 

have a strong effect on its occurrence. For this reason, in the model presented 

here, some input parameters are defined as uncertain variables. As a result, the 

model is used to give the frequency values of possible unstable eigenvalues of the 

system while the range of uncertain parameters is randomly spanned. The 

definition of the nominal kinematic condition at the contact (position of the 

contact points and creepages) has been determined by means of a vehicle 

dynamics numerical model described in ‎[6][6]. The model developed is of general 

purpose and can be used for any wheel-rail combination; as a first application 

results have been verified against measurements of ‎[1][1] showing a good 

reliability in predicting the frequencies involved in curve squeal.  

2 Measurements 

Experimental data was collected in a test campaign on a curve which particularly 

suffers from squeal noise problems. The selected test section is an 18 m radius, 

left curve, with grooved rails and ballasted track. The test vehicle is a modern 

articulated city tram, with seven car-bodies and four bogies, equipped with 

resilient and independently rotating wheels. 

Before performing test runs on the selected curve, experimental modal analysis 

was carried out on the test wheel mounted in the bogie through its own bearings 

and in suspended configuration. The main wheel vibration modes falling in the 

frequency range involved in the squeal noise (up to 4 kHz) were identified in 

terms of natural frequencies, mode shapes and damping ratios. Those that will 

appear to be involved in squeal are identified in Fig. 1. 

In a second stage an axisymmetric Finite Element model of the resilient wheel 

has been developed; rubber parameters have been tuned to match identified 

modes. Identified damping ratios have been used along with numerically 

computed mode shapes and natural frequencies to prepare a modal model of the 

wheel. This is one of the inputs required for the curve squeal model. Mobilities 

obtained numerically are compared with measurements in Fig. 1 showing a good 

agreement in the range of interest. 

Line tests on the selected curve were then performed, in two different 

configurations. The instrumented wheel first was positioned on the leading axle of 
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the second bogie, on the outer side of the curve. Then it was moved to the inner 

side of the same axle, and the train passages on the test curve were repeated. 

Since, in these two cases, the wheel experiences completely different contact 

conditions, their influence on the excitation of the squeal can be clearly identified. 

During each passage of the test tram, simultaneous measurements of wheel 

vibration, rail vibration and radiated noise were taken [1]. 

 

Fig. 1. Wheel mobilities at nominal contact point. a: axial direction. b: radial direction. 

  : measurements; : FE model. 

To summarise the wheel behaviour in terms of squeal noise the inner wheel of 

the leading axle is taken as example; in this case the flange back is in contact with 

the grooved head. Fig. 2 shows the spectrogram of the wheel vibration velocity in 

radial and axial directions during the passage through the curve. Although the 

darker corridors in the figure are relatively wide it is still possible to identify the 

following as the frequencies mainly involved in squeal: 530 Hz, 1330 Hz, 

1550 Hz, 2100 Hz, 2550 Hz, 3600 Hz and 3730 Hz. The contribution at 3100 Hz 

is likely to be the second harmonic of 1550 Hz which appears due to the 

non-linearity of the phenomenon. 

According to curve squeal theory each tone recorded during the vehicle passage 

is expected to be related to a wheel mode. In this case this is not always 

straightforward. In fact, it is peculiar to observe that the modes at 1270 Hz and 

1420 Hz seem to generate squeal at higher frequencies (1330 Hz and 1550 Hz) 

and the mode at 2480 Hz has a similar behaviour. 

3 Theoretical model 

The model consists of a linear description of the wheel and rail dynamics while 

the non-linear representation of friction coefficients as a function of creepages 

presented by Kraft ‎[7][7] is adopted to calculate the contact forces. A stability 
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analysis of the open loop transfer function of the overall system yields the possible 

unstable frequencies. 
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Fig. 2. Spectrogram of inner wheel vibration velocity during tram pass-by. a: axial; b: radial. 

Darker regions correspond to higher levels. 

Fig. 3a shows the general structure of the model. The wheel is represented by 

means of its modal basis to give the mobilities at the nominal contact point. By 

knowing the steady state position of the contact points along the curve, direct and 

transfer mobilities at these locations are calculated by means of rigid translations 

and rotations. 
W

klijY ,  in the figure represents a single element of the wheel 

mobility matrix, subscripts i and j represent the degrees of freedom (d.o.f.) at the 

contact while k and l represent the contact points (see Fig. 3b). The d.o.f. 

considered in the model are longitudinal, lateral, normal to contact plane and spin 

(rotation around the normal); it is believed that the other two rotations can be 

neglected. 

For the track, different analytical models are used depending on the d.o.f. 

considered. For the vertical direction a Timoshenko beam on a double elastic layer 

is adopted while a multi-beam model described in [8] allows lateral vibrations to 

be coupled with torsion. Simple formulae are implemented to estimate 

longitudinal and spin mobilities. Again, track mobilities are transferred to the 

contact points by means of rigid rotations and translations. 
R

klijY ,  in the figure 

represents one element of the rail mobility matrix. 

The contact stiffness is considered in the vertical direction for the wheel-rail 

contact mobility matrix (
C

klijY , ) and is calculated according to Hertz theory. 

Complex dynamic sliding velocities V
s
 and complex dynamic contact forces 

F at the contact points are finally related through mobility matrices as follows: 
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where each element of the matrix Y is calculated by adding wheel, rail and contact 

mobilities and the subscripts in eq. (3.1) indicate the two contact points. 

  

Fig. 3. a: general structure of the model. b: reference frames at contact points 1 and 2 (0 is 

nominal contact point). 

After algebraic manipulation taking into account that the vertical sliding 

velocity is zero, the following quantities can be defined: 
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and eq. (3.1) rewritten as 

  EFFbdbdCV   2211
TTs     (3.5) 

The matrix C in eq. (3.5) is formed from the matrix Y by removing the rows 

and columns related to the vertical direction; vectors d and b are defined in eq. 

(3.2)-(3.4). E is one of the key elements of the self-excited loop represented in 

Fig. 3a. 

To describe the relationship between friction coefficients and creepages the 

FASTSIM algorithm is adopted (see ‎[9][9]). To introduce the falling region, a 

heuristic correction formula (see ‎[7][5, 7]) of the form: 

 totkekk
 

 1      (3.6) 

is assumed; λk and κk are empirically determined for each contact point k and γtot 

combines the contribution of all creepages. 

At a contact point k the linearized relation between contact forces and 

creepages can be expressed, independently of the other contact point, as: 

,kkkkk 3FHVKF       (3.7) 
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In eq. (3.8) N0,k is the normal force at point k, μi,k is the friction coefficient in 

direction i at contact point k, γi,k is the creepage in direction i at contact point k and 

f3,k is the dynamic force in the direction normal to the contact plane at point k. 

Combining eq. (3.7) and (3.4) with (3.5) the equation for the self-excited loop 

of Fig. 3a results as 
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In order to find the possible unstable frequencies, the eigenvalues of the open 

loop transfer function are computed and those having an imaginary part equal to 

zero and a real part greater than unity are classified as possible sources of 

instability. 

4 Results 

The theoretical model described in Sect. 3 has been verified against measurements 

summarised in Sect. 2. In order to obtain reliable values for the vehicle dynamic 

parameters a multi-body model of the tram has been developed by means of the 

software described in [6]. Steady state creepages and contact point positions have 

been obtained. Where necessary, variability is added to these parameters. The 

most important uncertain and deterministic input parameters are summarised in 

Tab. 1.  

Table 1. Input parameters at contact points 1 and 2 for inner and outer wheels. U indicates a 

uniform distribution between the stated limits. 

Name Unit Description 
Values 

Inner Outer 

N0,1 kN Normal force 1 U(17,25) U(14.5,21.7) 

N0,2 kN Normal force 2 U(0,6.5) U(0,12) 

V0 m/s Speed U(1.9,3.6) U(1.9,3.6) 

κ1 - Eq. (3.6) 1 U(0.04,0.06) U(0.04,0.06) 

κ2 - Eq. (3.6) 2 U(0.12,0.17) U(0.12,0.17) 

λ1 - Eq. (3.6) 1 0.8 0.8 

λ2 - Eq. (3.6) 2 0.8 0.8 

θ1 ° Contact angle 1 U(2.4,3.4) U(-3.4,-2.4) 

θ2 ° Contact angle 2 U(-73,-63) U(-76,-66) 

γx1 - Creepage x 1 U(0.0038,0.0057) U(0.0067,0.0101) 

γy1 - Creepage y 1 U(-0.0651,-0.0434) U(-0.0651,-0.0434) 

γsz1 1/m Spin-creep z 1 U(0.12,0.18) U(0.12,0.18) 

γx2 - Creepage x 2 U(-0.0310,-0.0207) U(-0.0193,-0.0128) 

γy2 - Creepage y 2 U(-0.1587,-0.1058) U(-0.2000,-0.1334) 

γsz2 1/m Spin-creep z 2 U(2.2560,3.3840) U(2.2960,3.4440) 

P1 mm Contact 1 [0  U(-9.5,0.5)  -0.22]  [0  U(-9,1)  0.2]  

P2 mm Contact 2 [50.1  40.2  10.4] [50.6  -20  8] 
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In order to produce a single set of inputs and to run a single case, uncertain 

parameters are randomly extracted from a uniform distribution and, for each case, 

the eigenvalues of the open loop transfer function are calculated as a function of 

frequency. Fig. 4 summarises the results for the inner and outer leading wheels, 

with black dots depicting the unstable frequencies for each run; the wheel mobility 

at the flange contact point is also shown for reference. A total of 450 cases have 

been calculated giving an idea of the variability of the phenomenon. 

The model predicts unstable frequencies that are very close to measured ones 

(Fig. 2). In particular the most important frequencies 1330 Hz, 1550 Hz and 

2550 Hz are the most likely to be unstable in the model as well. Frequencies such 

as 2100 Hz and 3700 Hz that, although present in the measurements, have less 

importance in terms of levels and persistency, are also found in the predictions.  

Interestingly, in the predictions it is often found that unstable eigenvalues have 

higher frequencies than the corresponding natural mode. For example, the mode at 

1420 Hz appears to generate squeal at around 1550 Hz. This has been verified by 

adding fictitious damping to the mode at 1420 Hz; as a consequence the unstable 

frequencies at around 1550 Hz disappeared. Further research is in progress to 

understand better the details of the phenomenon. In this sense it has been verified 

that neither the high damping values related to the resilient wheel nor the presence 

of the rail in the model are responsible. Moreover it has also been determined 

experimentally that the positions of the peaks in the wheel FRF are hardly 

influenced by the vehicle load; therefore this also cannot explain the shift in 

frequency. 

Finally, by modifying damping ratios in the wheel modal model, those values 

capable of decreasing the chances of instability can be sought. In this case, 

multiplying the damping ratios of the modes at 2480 Hz, 1420 Hz and 1270 Hz by 

factors of 15, 5 and 6, respectively, would greatly decrease the occurrence of 

squeal. By repeating the same analysis that generated Fig. 4 it has been found that, 

with this amount of added damping, these modes are likely to be involved in 

squeal in less than 10% of the 450 cases considered. 

5 Conclusions 

Despite the relatively low interest in the railway noise literature, curve squeal can 

also occur due to flange contact; moreover, when a grooved rail or a check rail is 

fitted onto the track, the flange-back contact can also have a significant role. 

A real case of a tramcar negotiating a sharp curve has given the motivation for 

developing a model capable of considering two-point contact. By performing 

stability analysis of the open loop transfer function, possible unstable frequencies 

have been predicted. A degree of uncertainty has been given to the most important 

input parameters. 

Qualitative comparison with measurements showed that the most important 

tones recorded during the tram pass-by can be found in the predictions. 

Noticeably, the same frequency shift between wheel natural frequency and 
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unstable frequency value as measured is found in the predictions. Further 

investigations are in progress to understand the physical reason for this. 

In order to verify whether all the predicted unstable frequencies would really 

appear and what the noise levels would be, a time domain solution of the same 

loop can be developed. 

 

Fig. 4. Black dots: curve squeal occurrences. Lines: mobility at flange contact point. 

  : normal; : tangent. a: inner wheel. b: outer wheel. 
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