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Abstract 

Neurocomputing methods have contributed significantly to the advancement of modelling 

techniques in surface water hydrology and hydraulics in the last couple of decades, primarily 

due to their vast performance advantages and usage amenity. This comprehensive review 

considers the research progress in the past two decades, the current state-of-the-art, and future 

prospects of the application of neurocomputing to different aspects of hydrological sciences, 

i.e., quantitative surface hydrology and hydraulics. An extensive literature survey, by running 

over more than 800 peer-reviewed papers, outlines and concisely explores the past and recent 

tendencies in the application of conventional neural-based approaches and modern 

neurocomputing models in relevant topics of hydrological and hydraulic sciences. Apart from 

segregated descriptions and analyses of the main facets of surface hydrology and hydraulics, 

this review offers a practical summary of prevailing neurocomputing methods used in different 

subfields of hydrology and water engineering. Six relevant topics to modelling hydrological 

and hydraulic sciences are articulated and analysed, including modelling of water level in 

surface water bodies, flood and risk assessment, sediment transport in river systems, urban 

water demand prediction, modelling flow through hydro-structures, and hydraulics of sewers. 

This review is meant to be a mainstream guideline for researchers and practitioners whose work 

is associated with data mining and machine learning methods in various areas of water 

engineering and hydrological sciences to assist them to decide on suitable methods, network 

structures and modelling strategies for a given problem. 

 

Keywords: Artificial neural networks; Machine learning; Hydroinformatics; Hydrosciences; 
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Introduction 

1.1.Background  

Topics associated with hydrological sciences broadly include two primary disciplines: 

hydrology and hydraulics, covering subjects which range, for instance, from hydrological 

forecasts and hydraulic modelling to water resource management and risk analyses. Soft 

computing and machine learning (ML), or neurocomputing in short, have been widely applied 

to a wide range of scientific and technological aspects in hydrological and hydraulic sciences. 

In this context, neurocomputing serves as a cross-cutting discipline to address modelling and 

solve complex and sophisticated problems that involve technical and societal aspects, data 

science, computer science, information and communication technologies (Makropoulos & 

Savic, 2019).  

Hydrological sciences tools enable the emulation of various natural processes of the water cycle 

with mathematical models, mainly classified into three categories: black-box models, 

conceptual models, and physically based models. While conceptual and physically based 

models, such as the HBV model (Bergström, 1976), SWIM (Krysanova et al., 2000), and 

TELEMAC-MASCARET model (Hervouet, 2007) are based on many physical and 

topographical parameters and sometimes require expensive computational efforts, black-box 

models, e.g., neurocomputing models, can infer the underlying functional relationships between 

the historical data and the resulting sought variables, without any priori physical background. 

The neurocomputing methods, including methods based on machine learning, have been 

increasingly used in the water management field in the last decades, demonstrating their great 

potential and raising increasing interest in the hydrological sciences research community (Chen 

et al., 2018; Zounemat-Kermani et al., 2020a). Over the last two decades, machine learning 

methods have achieved a high level of success and have become a reliable alternative to the 
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conventional mathematical and hard computing methods in numerous areas of application, such 

as robotics and image recognition (Stone and Veloso, 2000; Man et al., 2013). Given their 

computational efficiency and flexibility, these approaches have also been intensively applied to 

address various challenges related to hydrological sciences.   

1.2. Theory and Methods 

Neurocomputing and related neural-based models, e.g., Artificial Neural Networks (ANNs), 

are the fundamental and principal soft computing methods and inseparable elements of ML 

models, capable of learning from different types of datasets. The theoretical and technical 

aspects of various types of neurocomputing models have already been introduced in detail in 

the literature (e.g., ASCE Task Committee, 2000; Ham and Kostanic, 2000; Govindaraju and 

Rao, 2000; Jain et al., 2007; Ding et al., 2013; Amezquita-Sanchez et al., 2016; van Gerven and 

Bohte, 2017, and references therein). In brief, neurocomputing models are interconnected 

networks composed of different layers (input layer, hidden layer(s), and output layer), each of 

which consists of several processors called artificial neurons (Figure 1). In general, neurons in 

each layer are connected to the neurons of the previous and next layers, so that they transmit 

information. Each neuron receives input signals from the other ones (through synaptic weights 

and biases), then processes them with predetermined functions (activation functions), and 

finally sends the processed information as output to the connected neurons in the next layer. 

The activation or transfer functions convert the input signals to the output responses. Most of 

the conventional ANNs implement the basic impression of using artificial neurons and their 

connections through layers. Yet, other mathematical and statistical tools, such as fuzzy logic 

and wavelet transforms, can be also embedded to create combined neurocomputing models 

(sometimes they are referred to as hybrid neural networks), e.g., Adaptive Neuro-Fuzzy 

Inference System (ANFIS) and Wavelet Neural Network (WaveNet) (Keshtegar et al., 2018; 

Bakshi and Stephanopoulos, 1993). In most of the neurocomputing networks, the transition of 
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the data is realised through forward transmission (feedforward) from the antecedent layers to 

the subsequent layers, such as the Multi-Layer Perceptron neural network (MLP) or the Group 

Method of Data Handling Network (GMDH. In other types of neurocomputing models, 

information can be returned to the preceding layers in a loop mechanism so that they can be 

stored and use new information during the processing procedure, e.g., recurrent neural networks 

(Figure 1a). Figure 1b depicts the internal architectures of four types of commonly-used 

standard neurocomputing models. 

The training process of neurocomputing model is accomplished by adjusting the network 

parameters, such as synaptic weights and biases, of connections between the artificial neurons 

in the layers usually based upon a back-propagation process. Various mathematical (e.g., 

Levenberg–Marquardt algorithm) and heuristic (e.g., particle swarm optimization algorithm) 

techniques might be utilized for training the networks. Regardless of their nature, these training 

algorithms are designed to adjust the weights and biases in a way to minimise the network's 

predicting error (Barnard, 1992; Ilonen et al., 2003). 
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Fig 1. a) Schematic structure of neurocomputing models: feedforward vs. recurrent approaches; 

b) Internal architecture of different types of standard neurocomputing models (MLPNN: Multi-

Layer Perceptron ANN, GRNN: Generalized Regression ANN, RBNN: Radial Basis ANN, 

GMDH: Group Method of Data Handling)  

 

Neurocomputing models are now known as the most popular and common ML models in 

simulating and predicting hydrological and hydraulic phenomena (Mosavi et al., 2018). Figure 

2 presents and classifies the most common types of neurocomputing models used in 

hydrological and hydraulic sciences in three main categories including (i) their general structure 

and architecture (i.e. a feedforward structure or a recurrent structure), (ii) the learning 

methodology, such as the ensemble learning or the individual (stand-alone) learning, and (iii) 

the nature of the training procedure. Detailed information about the mentioned neurocomputing 

models given in Figure 2 can be found in the following references:  
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Recurrent Neural Networks (Mandic and Chambers, 2001), Gated Recurrent Unit Networks 

(Wang et al., 2018), Deep Learning Neural Networks (Schmidhuber, 2015), Long Short Term 

Memory Neural Networks (Kratzert et al., 2018), and Nonlinear Autoregressive Exogenous 

Networks (Zounemat-Kermani et al., 2019a). Feedforward Neural Networks (Svozil et al., 

1997), Inductive ANNs (Mahdavi-Meymand & Zounemat-Kermani, 2019), Extreme Learning 

Machines (Alizamir et al., 2018), WaveNet (Rajaee, 2011), Adaptive Neuro-Fuzzy Inference 

Systems (Firat and Güngör, 2008), and Conventional ANNs (Zounemat-Kermani, 2014). 

Ensemble Neural-Based Models (Araghinejad et al., 2011), and Integrative Neural-Based 

Models (Zounemat-Kermani et al., 2020a). 

 

 

Fig 2. The illustrative diagram for different categories and types of mostly used 

neurocomputing models in hydrological and hydraulic sciences. 

1.3. Rationale, Research Motivation, and Framework 
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Despite the increasing usage of neurocomputing in hydrological and hydraulic sciences, to the 

authors' best knowledge, a comprehensive review of the most recent applications of 

neurocomputing models in the relevant topics is still missing. This paper reviews peer-reviewed 

articles published over the last two decades (2000-2019), presenting the applications of 

neurocomputing models in quantitative surface water hydrological and hydraulic sciences. But 

it is worth noting that the current review does not include the use and application of 

neurocomputing in the field of surface water quality (Anmala et al., 2015; Anmala et al., 2019). 

The focus of this work is twofold: 

 First, this study presents a comprehensive, inclusive, and general review of the 

application of neurocomputing in various fields of surface hydrology, hydraulics, and 

water engineering sciences (see Section 2).   

 Second, the current study aims to analyse and categorise the state-of-the-art of different 

neurocomputing models in six main fields of quantitative hydrological and hydraulic 

sciences categorized in two facets: i) surface hydrology, and ii) hydraulics in civil and 

water engineering (see Section 3).  

We expect this work to contribute to problem-specific guidelines and recommendations for 

future usage of neurocomputing models for addressing water-related modelling challenges (see 

Sections 4-6). 

The remainder of this review is organized as follows. In section 2, we present the methods 

adopted to build and organize this literature review and list the specific fields of applications 

that we investigate to reveal the recent advances of neurocomputing models in hydrological and 

hydraulic sciences. The current status quo, research challenges, and specific directions 

associated with neurocomputing applications in each of the above fields are discussed in section 

3. We make final remarks in section 4. Finally, in sections 5 and 6, research gaps, 

recommendations and directions for the future researches are provided. 
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 2.     General Overview and the Review Methods 

The application of neurocomputing models in hydrology and hydraulics has received 

considerable attention during the last decades, and it is still an expanding field of research. 

Within the scope of this review, scientific peer-reviewed articles were retrieved by searching 

on Scopus (https://www.scopus.com/home.uri) for the combinations of the following 

keywords: 

 Keywords related to the neurocomputing part: Neural Network/ Neural/ Neuro-/ 

Neural-Based/ Neurocomputing/ ELM/ NARX/ GMDH/ ANFIS/ WaveNet/ LSTM/ 

DBNN/ DeepESN/ GRU/ ESN/ ENN/ RNN/ CNN; 

 Keywords related to the surface hydrology part: Water level/ flow discharge/ 

hydrology / flow rate/ river flow/ streamflow/ open channel flow/ compound 

channel/ suspended sediment/ sediment yield/ bedload/ sediment transport/ rainfall-

runoff/ flood;  

 Keywords related to the hydraulics part: urban water/ water demand/ hydraulic/ 

hydro-structure/ dam/ spillway/ outlet works/ waterworks/ weir/ sewer/ water 

treatment plant/ wastewater/ overflow/ conduit/ intake/ stilling basin/ chute. 

Moreover, we distinguish between two neurocomputing categories in this paper: 

 Conventional neurocomputing models include the feedforward, standard, and 

stand-alone versions of neurocomputing models, such as MLPNNs, GRNNs, etc. 

(see Figure 2);  

 Modern neurocomputing models include more advanced model techniques such as 

integrative, recurrent, and deep learning networks as well as other complementary 

types of neurocomputing models. 
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Overall, the publication rate of papers in hydrological modelling using the conventional 

neurocomputing models has not been significantly increasing during the last two decades, with 

an average of 11 papers published per year (from 2000 to 2019). Conversely, there has been a 

noticeable increasing trend in the number of studies using modern neurocomputing models in 

different subjects related to surface hydrology since 2000 (15 papers per year, on average 

between 2000 and 2019, with 32 papers published in 2018 alone). Similar to the surface 

hydrology facet, there has been increasing attention in employing modern neurocomputing 

models in hydraulic sciences.  

Due to the existence of a large number of reported applications of neurocomputing models to 

the vast areas of hydrological and hydraulic sciences (more than 800 papers since the year 

2000), we summarize in this section the content of those published as Review Articles. 

Overview of these Review Articles and their major remarks are summarized in Table 1. This 

section is primarily designed to provide readers with an overall insight regarding the past and 

present status of neurocomputing applications in hydrological and hydraulic sciences as a 

general perspective. A more detailed discussion of different specific fields will be given in the 

next section.  

Table 1. An overview of the application of neurocomputing models in hydrological and 

hydraulic sciences based on the published Review Articles between the 2000 and 2019 

Researcher(s) Category/ 
Bibliography period 

Application Discussed topics 

Maier & Dandy, 
2000 

Water resources 
 
(1994-1998) 

Rainfall, 
Water quality, 
Water level 

This research states some 
guidelines for the process of 
choosing suitable factors, such 
as principles for optimising 
network geometry, in setting up 
neural networks for issues 
related to water resources. 

Dawson & Wilby, 
2001 

Surface-water 
hydrology 
 

Rainfall-runoff This study surveys some of the 
traditional neurocomputing 
methods for rainfall–runoff 
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(1992-2000) modelling.  Advisable 
information is also given on data 
preparation and the 
fundamentals of constructing 
neural networks in hydrological 
sciences. 

Maier et al., 2010 Water resources 
 
(1999-2007) 

Water quantity  This study reviews researches in 
using neurocomputing models 
for predicting water resources in 
river systems. In addition, 
information is given in 
establishing ANN models. 

Kumar et al., 
2011 

Hydrometeorology 
 
(2000-2010) 

Evapotranspiration This study discusses the 
potential of neurocomputing in 
evapotranspiration modelling. 
The characteristics of neural 
networks from different aspects 
are also explored. 

Nourani et al., 
2014 

Surface-water 
hydrology 
Hydrometeorology 
Hydrogeology 
 
(2003-2013) 

Precipitation, 
River flow, 
Rainfall-runoff, 
Sediment transport, 
Groundwater 

This study reviews papers 
related to artificial intelligence 
models, including neural 
networks and the wavelet 
transform used in surface 
hydrology and hydrogeology. 

Ghalehkhondabi 
et al., 2017 

Hydraulics 
 
(2005-2015) 

Water demand This study focuses on soft 
computing methods, including 
neural networks, fuzzy logic, 
and Support Vector Machines 
for water consumption 
forecasting.  

Fahimi et al., 
2017 

Surface-water 
hydrology 
Hydrometeorology 
Hydrogeology 
 
(1998-2015) 

River flow, 
Flood, 
Rainfall-runoff, 
Evaporation, 
Water level 

The application of different 
types of neurocomputing models 
in water resources and 
hydrology are reviewed and 
discussed. 

Mosavi et al., 
2018 

Surface-water 
hydrology 
 
(2008-2017) 

Flood This paper demonstrates the 
state of the art of machine 
learning models, such as ANN 
in flood prediction. Machine 
Learning methods are evaluated 
in terms of robustness, 
effectiveness, accuracy, and 
computational efficiency. 

Rajaee et al., 2019 Hydrogeology 
 
(2001-2018) 

Groundwater  Artificial Intelligence methods 
are reviewed and surveyed for 
groundwater level modelling 
and forecasting. The application 
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of some neurocomputing models 
in groundwater modelling is 
discussed in detail. 

Yaseen et al., 
2019 

Surface-water 
hydrology 
 
(2014-2019) 

River flow This paper presents a 
comprehensive review of 
Extreme Learning Machine 
models and their application in 
river flow forecasting. 

 

According to the review articles as summarised in Table 1 for existing research in using 

neurocomputing in hydrological and hydraulic sciences, it is apparent that the majority of the 

neurocomputing models have been developed and applied to surface water hydrology problems, 

in particular, river flow modelling. In conclusion, considering the state-of-the-art of 

neurocomputing applications in hydrological and hydraulic sciences, it emerges that there has 

been a tremendous interest in using modern types of neurocomputing models rather than the 

traditional versions.  

Figure 3 depicts the general trends of using neurocomputing models in hydrological and 

hydraulic sciences. As can be seen in Figure 3, four separate chronological stages might be 

recognized in terms of the number of published papers during the last two decades (2000-2019). 

Based on past trends, we might expect the commencement of a new stage of using 

neurocomputing in hydrological and hydraulic sciences roughly in a five-year period. The main 

reason for this may be related to the emerging of new neurocomputing technologies and their 

applications in a period of five years.  
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Fig. 3. Illustration of the four chronological stages of using neurocomputing models in 

hydrological and hydraulic sciences during the past two decades (2000-2019). 

 

3. Applications of Neurocomputing in Hydrology and Hydraulics 

Surface water hydrology and hydraulics includes a vast variety of subjects related to water 

engineering, water resources management, hydrology, hydrogeology, hydrometeorology, 

hydraulics, sanitary engineering, and river engineering. In this review, the focus is laid on six 

different aspects of hydrosciences, i.e., three hydrological topics, and three hydraulic topics.  

The three topics in surface hydrology are: 

 Topic 1: Prediction of water level in surface water bodies 

 Topic 2: Flood modelling, mapping, and risk assessment 

 Topic 3: Modelling sediment transport in river systems 

The following three topics are associated with the hydraulic facet of the current study: 

 Topic 4: Urban water demand prediction 

 Topic 5: Modelling flows through hydraulic structures 
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 Topic 6: Flow and sediment modelling in sewers 

Each topic is reviewed and discussed in the following subsections. 

 

3.1 Topic 1: Prediction of Water Level in Surface Water Bodies 

The hydrodynamics in surface water bodies, for instance, free-surface wetlands, lakes, 

reservoirs, rivers, and oceans, are governed by nonlinear processes and often predicted through 

numerical simulations using deterministic models. Large sets of physical and topographical 

data and complex hydrological conditions are needed to set up such models, besides the high 

computational time. The neurocomputing approaches have been emergently used by many 

researchers for predicting water level and hydrodynamics in surface water bodies because of 

their capability to detect the nonlinear relationships existing in historical data series of water 

level and discharge in a catchment, and their much cheaper computational cost. 

Complex natural and anthropogenic processes are continued to create impacts on the surface 

water bodies on Earth; information about water levels is important for understanding the 

impacts and informing decision-making for many aspects of engineering interventions and 

management. First, prediction of water level is crucial for optimizing water resources 

management and, thus, planning multiple water uses such as hydropower plants (HPP), 

irrigation agriculture and water supply (e.g., Chang and Chang, 2006), as well as to assess flood 

risk and develop flood control/mitigation strategies (e.g., Chang et al., 2014; Yu et al., 2006). 

Furthermore, water level predictions are required for river and ocean navigation (Hou et al., 

2014; Ma et al., 2018) – especially concerning cargo capacity calculations, journey duration, 

planning of arrival times at ports and harbours – and for designing hydraulic structures 

(offshore, dams, weirs). Extensive research has been also conducted to monitor and understand 

the effects of climate, evaporation, and HPP on water level fluctuations, and to assess their 
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various impacts on sediments, water quality parameters and related processes, such as sediment 

drying (e.g., Keitel et al., 2015) and transport of nutrients (e.g., Matta et al., 2018). 

While recognising the importance in measuring/predicting water level fluctuations, this 

acquisition of information must be achieved with a suitable lead time for various applications. 

For example, for flood control operations and peak mitigation, the interest lies in the short-term 

forecast (i.e., minutes, hours); while for navigation planning or for water quality assessments, 

it is more relevant to the mid-term or long-term forecast (i.e., days or even months). 

As an example of the early studies, See & Openshaw (2000) applied different soft computing 

approaches and developed a complex hybrid system for river level forecasting. The dataset was 

taken from the River Ouse in northern England, choosing a prediction horizon of 6 h. Self-

Organizing Maps (SOM) was used as a pre-classifier to develop individual MLPs, which have 

been linked using a fuzzy logic model and genetic algorithm optimization (GA). While the 

hybrid system demonstrated its suitability for flood forecasting and high-water level detection, 

the fuzzy model was still not able to reproduce the lower levels and, thus, required further 

experimentation. 

Coulibaly (2010) explored to use of the Reservoir Computing method, namely Echo State 

Network (ESN), to predict monthly averaged water levels for up to 10 months ahead in four 

Great Lakes in the USA. The author compared the results with other two approaches (the 

Bayesian Neural Network, BNN, and the classical Recurrent Neural Network, RNN) and found 

out that the ESN performed well for up to 6 months ahead while the RNN gave better results 

than the ESN for longer lead times (8–12 months ahead). On the other hand, ESN could be 

further improved by including additional factors such as evaporation and precipitation. It was 

also less computationally demanding and demonstrated higher usage efficiency. Panda et al. 

(2010) compared a physically-based hydrodynamic model, i.e., MIKE 11HD, and a 

Feedforward Neural Network (FFNN) trained with the Levenberg-Marquardt algorithm to 
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predict water levels in the River branch Kushabhadra, Bay of Bengal, India. The previous five-

time lags of the hourly water level data at the upstream gauges were used as input to determine 

the downstream gauge level at the current time. FFNN showed superior performance, and the 

time to peak and the peak values were much closer to the measurements than those predicted 

by the computationally more expensive MIKE 11HD model. 

Chang et al. (2014) compared one static and two dynamic RNN type of models for water level 

prediction in flood control and mitigation in urban areas. Respectively, they set up a FFNN, an 

Elman Neural Network (ENN), and a Nonlinear Autoregressive Exogenous (NARX) neural 

network model to predict in the short-term (10-60 min) the multi-step-ahead water levels in a 

floodwater storage pond (FSP) in the Yu-Cheng Pumping Station located in Taipei City, 

Taiwan. Their results demonstrated that the FFNN, depending only on ‘static’ observed data, 

was inferior to the ENN and the NARX, which incorporated the observed data with time delay 

units through recursive inner connections from the hidden layer or from the output layer, 

respectively. Nevertheless, better performance was achieved by the NARX under the scenario 

of including not only the rainfall data of the neighbouring gauges as inputs, but also the current 

FSP water level. 

The study presented in Ma et al. (2019) investigated the capability of FFNN and Long Short-

Term Memory (LSTM) in predicting water levels at critical gauges of the Rhine River Basin 

(Germany), in order to support inland navigation logistics planning. The basic idea was to 

predict hourly and daily water levels at a specific gauge for up to 10 days ahead, only 

considering the historical data measurements at the same gauge and the upstream gauges. The 

LSTM model outperformed the FFNN on the longer term predictions (from 2 up to 10 days), 

and the greatest improvement was obtained when the hydrological model chain hindcasts of the 

German Federal Institute of Hydrology (BfG) from 2008 until 2015 were included as an 
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additional predictor to the inputs. Table 2 summarizes the researches related to the water level 

prediction using neurocomputing models. 

Table 2. Summary of the reviewed studies in applying various types of neurocomputing models 

for predicting water level in surface water bodies. 

Author(s) / 
Year 

Model Motivation Remarks 

See & 
Openshaw, 
2000 

MLP, 
SOM, 
NF 

Hourly river level 
predictions up to 6 h 
ahead in the Ouse River, 
northern England 

A hybrid forecasting system was 
developed for potential flood 
forecasting and warning systems, using 
a SOM prior to training and a fuzzy 
logic model integrated with a standard 
MLP based on current river levels and 
their changes. The system better 
predicted the high water levels than the 
lower water levels. 

Makarynskyy 
et al., 2004 

FFNN Hourly prediction of 
sea-level variations up 
to 24 h ahead, and 
forecast of half-daily, 
daily, 5-daily and 10-
daily mean sea levels 
(three steps ahead) 

Saliency analysis was adopted as an 
optimization method to find the best 
network architecture. The forecasts of 
the third time step ahead were less 
accurate compared to the previous 
steps. 

Khan & 
Coulibaly, 
2006 

MLP, 
SVM 
 

Averaged monthly water 
level predictions up to 
12 months ahead in 
Lake Erie, USA 

SVM could be more advantageous 
than MLP, due to its higher 
generalization capacity and smaller 
number of free parameters used, but 
the training of a large dataset was 
computationally more expensive. 

Coulibaly, 
2010  

BNN,  
ESN, 
RNN 

Averaged monthly water 
level predictions up to 
10 months ahead of the 
Great Lakes, USA 

ESN outperformed the BNN and RNN 
benchmark models and was 
demonstrated to be computationally 
more efficient. ESN could be further 
improved by including additional 
independent input variables. 

Panda et al., 
2010 

FFNN Hourly water level 
predictions in the River 
branch Kushabhadra, 
Bay of Bengal, India 

The authors compared the physically 
based hydrodynamic model MIKE 
11HD and a FFNN, where FFNN 
outperformed MIKE11HD in 
predicting the flood peaks. 

Chang et al., 
2014 

ENN, 
FFNN, 
NARX 

Real-time water levels 
in the floodwater storage 
pond (FSP) of a sewer-

Three different ANN types (static and 
dynamic) were compared to predict 
short-term (10-60 min) FSP water 
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Analysing the findings from the reviewed papers implies that some novel neurocomputing 

models such as LSTM and ESN are able to overcome the vanishing gradient problem that is 

typical to RNN  (Coulibaly, 2010; Liang et al., 2018). Generally, including hydrological records 

and/or using hybrid models (e.g., physically based models in combination with neurocomputing 

approaches and/or optimization methods) can significantly improve water level predictions, 

pumping system in 
Taipei City, Taiwan 

levels for urban flood control. The 
NARX model (dynamic) outperformed 
the others. 

Seo & Kim, 
2016 

ANN, 
ANFIS 
 

Daily river stage of two 
streamflow gauging 
stations in South Korea 

The hybrid models (an integration of 
the Wavelet Packet decomposition and 
data-driven models, WPANN and 
WPANFIS) might overcome certain 
issues of ANN and ANFIS when 
dealing with nonstationary data. 

Ghorbani et 
al., 2017 

MLP Water level predictions 
on a monthly time scale 
in Lake Egirdir, Turkey 

Firefly Algorithm (FFA) – i.e., 
heuristic optimization tool – was 
integrated with the Multilayer 
Perceptron (MLP-FFA). The further 
inclusion of a significative 
hydrometeorological variable yielded 
more accurate predictions. 

Kaloop et al., 
2017 

ANFIS, 
WNN 
 

Hourly water level 
change (WLC) 
predictions for one 
month at three tide 
gauges in Canada 

A WLC hourly prediction model for 
maritime applications based on a short 
period (approx. 2 months) of water 
level measurements was developed 
using the ANFIS approach, which 
outperformed the existent WNN 
models. 

Sung et al., 
2017 

FFNN Hourly water level 
predictions up to 3 h 
ahead in a tributary of 
the Han River, South 
Korea 

The predictions were satisfactory only 
up to 2 h ahead. In general, when the 
water levels at the main river gauging 
stations were integrated into the input 
data, the model gained higher 
accuracy. 

Liang et al., 
2018 

LSTM, 
SVM 

Daily water level 
predictions of Dongting 
Lake, China 

Grey Relational Analysis (GRA) was 
adopted to select the input data of the 
LSTM model, which delivered better 
results than the SVM (benchmark). 

Ma et al., 
2019  

FFNN, 
LSTM 

Daily water levels up to 
10 days ahead in the 
Rhine River Basin, 
Germany 

The LSTM model showed its 
capability to predict daily water levels 
for up to 10 days ahead in some 
critical gauges of the Rhine. 
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compared with the conventional neurocomputing models (See & Openshaw, 2000; Ma et al., 

2019). 

 

3.2 Topic 2: Flood Modelling, Mapping, and Risk Assessment 

Flooding is one of the most common natural hazards across the world. According to the EM-

DAT international disaster database (CRED 2018), flooding is responsible for over one-third 

of global economic loss and two-thirds of the people affected by all types of natural hazards. 

Managing flood risk is, therefore, an important task for both relevant governments and non-

governmental organisations across the globe.  

Flood prediction and forecasting are essential to facilitate risk assessment and increase the 

preparedness to subsequently mitigate damages from flooding. Flood prediction is usually 

performed using physically based models, data-driven approaches, or a combination of the two. 

A physically based modelling approach usually employs a catchment-scale hydrological 

models to predict rainfall-induced runoff, a 1D hydraulic model for flood routing and a 2D 

hydraulic model to simulate inundation. It is a well-established approach that has been widely 

used, e.g., in the UK Flood Forecasting Centre (Robson et al. 2017).  

The data-driven approaches, which usually require much less computational resources, are 

suited for real-time operational flood forecasting as an alternative to the physically-based 

models. Neurocomputing models are among the most popular methods for data-driven flood 

forecasting, which have traditionally been widely used for predicting runoff hydrograph, and a 

comprehensive review can be found in Mosavi et al. (2018). 

Herein, the application of neurocomputing models in real-time flood forecasting is firstly 

reviewed. Chang et al. (2010) developed a Clustering-based Hybrid Inundation Model (CHIM) 

for forecasting flood inundation depths. In their model, the flood inundation information 

(including locations and depths) simulated by HEC-1 and SWMM models were categorised 
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into clusters using a k-means clustering. Then FFNN was employed to predict the inundation 

depth for each cluster. For the test case in Central Taiwan, the model was much faster than a 

physically based flood forecasting model and was able to generate a 1-h-ahead flood inundation 

map within a few seconds with the Mean Absolute Error (MAE) for peak flood depths predicted 

as small as 0.06 m. Another reported method for flood inundation prediction using 

neurocomputing combined NARX neural network  with SOM (Chang et al., 2014). Rather than 

dividing flood inundation information into clusters, the hybrid SOM-NARX method firstly used 

SOM to organise the flood inundation maps into a two-dimensional matrix, with each matrix 

associated with a total inundated volume. Subsequently, the inundated volume predicted by 

NARX was used to find the most likely inundation map from the matrix. The hybrid SOM-

NARX method was shown to outperform the CHIM. Recently, this method was further 

improved by replacing NARX with a Recurrent NARX model (Chang et al. 2018). Kia et al. 

(2012) applied FFNN to predict flow hydrographs from elevation, topographic slope, flow 

accumulation, geology, land use, soil, and rainfall data. Then the inundation area was generated 

based on river cross-sections. Although the aforementioned studies are promising, they cannot 

provide results as accurate and as rich in information as a physically based model does. For 

instance, no neurocomputing or even general machine learning-based models have been 

reported to be able to predict flood depths at a high temporal resolution (minutes), or flood 

velocity maps. 

In the past two decades, neurocomputing models have also been used for deriving spatial 

information for flood prediction and risk management, including long-term prediction of flood 

risk, e.g., flood susceptibility mapping. Tien Bui et al. (2016) proposed an integrative model 

based on metaheuristic algorithms and Neuro-Fuzzy (NF) model (namely MONF). Their model 

took a number of independent factors, including elevation, slope, curvature, stream power 

index, topographic wetness index, distance to river, normalized difference vegetation index, 
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lithology, stream density, and rainfall as the input vectors, to predict a flood susceptibility map 

as the output. The model showed high accuracy and efficiency for both of the training and the 

validation datasets. Their study also showed that the vegetation index had the highest predictive 

power for flood susceptibility. Their method outperformed Random Forest (RF), SVM, and 

Adaptive Neuro-Fuzzy Inference System (ANFIS). In Razavi Termeh et al. (2018), three 

different ensemble-ANFIS models, as well as RF and SVM, were applied and compared for 

mapping flood susceptibility. In their models, the ensembles were constructed by training 

multiple models using the same method. They found that ensemble-ANFIS with Particle Swarm 

Optimization (PSO) gave more accurate results than others. Shafizadeh-Moghadam et al. 

(2018) used an ensemble of multiple types of models in which Feedforward Back Propagation 

(FFBP) ANN is one of the individual models. They suggested that the ensemble produced more 

stable and generalised results with higher predicting ability. However, they also suggested that 

there was no guarantee that an ensemble of models could always outperform an individual 

model. The method generally required a large amount of spatial information, e.g., topography, 

vegetation type, and lithology about the catchment under consideration. Obtaining these 

datasets over an entire catchment has been a challenging task, but with the advances of remote 

sensing, such a task is becoming increasingly feasible. A summary of the papers being reviewed 

in this section is given in Table 3 with the focus on the latest published papers. 

For flood prediction, mapping, and risk assessment, the strength of neurocomputing lies in its 

high computational efficiency (given the model has already been trained), and therefore enables 

real-time flood forecasting with moderate or low computational demand. The drawback of the 

existing neurocomputing models is their incompetence to capture the dynamic features of the 

flooding process and its reliance on large existing hydrometric datasets. A promising way 

forward lies in the combination of ANN-based models with physically based models to 

overcome these issues. 
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Table 3. Summary of the reviewed studies involving the application of various types of 

neurocomputing models for flood prediction and risk assessment. 

 

3.3 Topic 3: Modelling Sediment Transport in River Systems 

Author(s) / Year Model Motivation Remarks 
Chang et al., 2001 RBNN Flood 

forecasting 
The model was applied to 
successfully forecast flooding three 
hours ahead with reasonable 
accuracy. 

Dawson et al., 2006 MLP Flood estimation The results indicated that neural 
networks were able to estimate 
flood statistics for ungauged 
catchment.  

Chang et al., 2010 FFNN Flood 
inundation 
forecasting 

The ANN model could generate 
flood inundation maps within a 
few seconds with a MAE as small 
as 0.06 m. 

Kia et al., 2012 FFNN Flood 
inundation 
simulation 

A combined system of GIS tools 
and neural networks was used for 
creating flood inundation maps. 

Chang et al., 2014 SOM,  
NARX 

Flood 
inundation 
nowcasting 

The SOM was applied for the first 
time in this context, and promising 
results were obtained for 
nowcasting flood inundation. 

Bui et al., 2016 Integrative NF Flood 
susceptibility 
mapping 

Metaheuristic optimization could 
improve the performance of the 
neuro-fuzzy model. 

Razavi Termeh et 
al., 2018 

ANFIS Flood 
susceptibility 
mapping 

Ensemble ANFIS generally 
performed better than an individual 
(non-ensemble) approach. 

Shafizadeh-
Moghadam et al., 
2018 

FFNN Flood 
susceptibility 
mapping 

Ensemble methods had greater 
generalisation ability and higher 
predicting capability. 

Chang et al., 2018 SOM,  
NARX 

Flood 
inundation 
forecasting 

The recurrent NARX model 
produced better results than the 
SOM model.  

Sarker et al., 2019 CNN Flood mapping The applied convolutional network 
provided promising results in 
mapping flood areas from Landsat 
images across Australia. 



24 
 

Sediment behaviour is complex, dynamic and non-stationary as well as not uniformly related 

to the streamflow behaviour (Chien & Wan 1999; van Rijn et al., 2001). Fast moving flow can 

pick up sediments by turbulence and carry them in suspension. The suspended sediments may 

sink and deposit on the riverbed when moving flow becomes slow. Suspended sediment 

concentration (SSC) is often closely related to the dynamics of streamflow. However, this 

relationship is seldom unequivocal and can vary by several orders of magnitude due to such 

factors as hysteresis, seasonality, e.g., during a storm event the stream can carry much more 

sediment than it carries during a low flow period. As there is no unique mathematical relation 

between the SSC and the streamflow, predictive simulation of SSC remains a challenge (e.g., 

Zhou 2011, Goll 2017, Banda 2018, Zhao 2019).  

SSC is of paramount importance in waterway engineering as the amount of deposited sediment 

and time frame determine when dredging is required to ensure sufficient water depth for 

shipping or reservoir operation (Vollmer & Goelz 2006, Zhang 2018). Furthermore, suspended 

sediment may strongly affect water quality when polluted sediments are remobilised through 

dredging activities, as is the case for Upper Rhine in Germany (Goll 2017, Zhang 2018). 

Simplified approaches for the current practical applications are based on the classical sediment 

rating curve (SRC) method, which determines a functional relation for SSC and the streamflow 

based on measurements. A fast estimation of SSC depending on the measured streamflow is 

possible with the SRC. However, SRC has a limited capability to capture nonlinear processes 

with regard to streamflow and other hydrologic processes (Melesse et al., 2011; Rajaee, 2011; 

Rajaee et al., 2009). For complex river systems, neurocomputing models have proven their 

suitability. Being a data-driven approach, neurocomputing modelling offers an effective way to 

handle non-uniform data from dynamic and nonlinear systems (Alp and Cigizoglu, 2007; 

Nourani et al., 2014). The neurocomputing models may be considered as an alternative when 
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the physically based models show poor accuracy or demand a high computational cost 

(Wieprecht et al., 2013). 

There has been a lot of researches on neurocomputing models for predicting sediment 

concentration, including assessments of the model accuracies (see Table 4). In the study of 

Nagy et al. (2002), a FFNN model was developed to determine sediment concentration in rivers, 

and better results were obtained for 80 datasets compared with several commonly applied 

sediment discharge formulas. Rajaee et al. (2009) investigated several neurocomputing (e.g., 

FFNN & NeuroFuzzy, NF), Multiple Linear MLR, and SRC models for predicting time series 

of sediment concentration in two different rivers. Their results showed the superiority of FFNN 

and NF models compared with the MLR and SRC methods in reproducing sediment 

concentration measurements. Melesse et al. (2011) studied FFNN, Auto-Regressive Integrated 

Moving Average (ARIMA), MNLR (Multivariate Non-Linear Regression), and MLR models 

to compute daily suspended sediment loads for three major rivers in the USA (Mississippi, 

Missouri and the Rio Grande). They found that FFNN produced better predictions in most of 

the cases compared with MLR, MNLR, and ARIMA.  

Rajaee (2011) suggested a Wavelet-ANN (WNN) model for predicting daily suspended 

sediment load (SSL) in the Yadkin River in the USA, which decomposed each time series into 

discrete wave transforms for use as inputs in the ANN. In comparing the accuracy of WNN 

with MLR and SRC models, WNN performed the best, and furthermore, it could satisfactorily 

reproduce hysteresis phenomena. Liu et al. (2013) concluded that the WNN model outperforms 

the conventional models, such as MLP and SRC, in short-term (one-day) forecasting of 

nonlinear and non-stationary SSC time series. Zounemat-Kermani et al. (2016) predicted the 

daily sediment concentration based on an eight-year data series from hydro-metric stations in 

Delaware, Arkansas, and Idaho in the USA using MLP models. Their results demonstrated 

better performance of MLP models incorporated with the Broyden-Fletcher-Goldfarb-Shanno 



26 
 

training algorithm and recommended this as a suitable option for modelling hydrological 

processes. Joshi et al. (2016) applied FFNN to model stage-discharge suspended sediment 

relationships for melt runoff from the Himalayan Gangotri glacier, India in the ablation season 

(May-September). Their results revealed the suitability of FFNN to estimate daily sediment 

concentration in glacier melt runoff. Zhang (2018) applied FFNN and appropriate WNN models 

to forecast long-term daily sediment concentration based on predicted discharges. Khosravi et 

al. (2018) applied several novel data mining methods, including standard and hybrid models in 

predicting river sedimentation. It was reported that the hybrid models provide reliable and 

robust predictions.  

 

Table 4. Summary of the reviewed studies in applying various types of neurocomputing 

models for modelling suspended sediment transport in rivers. 

Author(s) / 
Year 

Model Motivation Remarks 

Nagy et al., 
2002 

FFNN Prediction of SSC in 
rivers 

The FFNN performed better than 
discharge formulas. 

Cigizoglu 
and Alp, 
2006 

GRNN, 
FFNN 

Daily discharge (Q) and 
SSC prediction 

GRNN and FFNN were superior 
compared to the traditional sediment 
rating curve formula. 

Cigizoglu 
and Kisi, 
2006 

FFNN, 
RDNN, LR 

Daily Q and SSC 
applied prediction 

RDNN provided the better results, and 
was superior to the conventional 
FFNN.  
 

Rajaee et al., 
2009 

FFNN,  
NF 

Time series of daily Q 
and SSC in 2 rivers 

FFNN and NF performed better than 
MLR and SRC in reproducing SSC 
measurements.  

Melesse et 
al., 2011 

MLP  Daily and weekly 
predictions of SSL in 3 
US rivers 

MLP outperformed MLR, MNLR, and 
ARIMA in most cases. Daily 
predictions were better than weekly. 

Rajaee, 
2011 

WNN,  
FFNN,  

Daily SSL modelling in 
the US river  

WNN performed more favourably than 
FFNN, MLR, and SRC. 

Liu et al., 
2013 

WNN, 
FFNN, 

Highly nonlinear and 
non-stationary SSC time 
series one day ahead 
prediction 

WNN performed better than FFNN 
and the traditional sediment rating 
curve method. 
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Nourani et 
al., 2014 

WNN,  SSL modelling WNN was suitable to handle non-
uniform data from dynamic and 
nonlinear hydrological systems. 

Zounemat-
Kermani, 
2016 

MLP, 
PSO-MLP, 
ANFIS 

SSC dynamics in 
streamflow 

All of the applied neurocomputing 
models performed better than the 
statistical models. 

Joshi et al., 
2016 

FFNN Stage discharge 
suspended sediment 
relationships for melt 
runoff 

FFNN was suitable for the estimation 
of daily SSC. 
 

Kisi 
&Zounemat-
Kermani, 
2016 

MLP, 
ANFIS 

Suspended sediment 
modelling 

ANFIS model was superior to the 
MLP. 

Kumar et 
al., 2016 

FFNN, 
RBNN  

Daily SSC ANN and LS-SVR methods were 
better than the other models, such as 
MLR. 

Zounemat-
Kermani et 
al., 2016 

MLP Forecast/estimate daily 
SSC 

MLP and SVR performed better than 
MLR and SRC.  

Zounemat-
Kermani et 
al., 2018 

FFNN, 
RBNN, 
ANFIS, 
WNN 

Estimating incipient 
motion velocity of bed 
sediments 

WNN followed by integrative GA-
ANFIS, gave the better results. 

Zhang, 2018 FFNN, 
WANN 

Prediction of daily SSC  FFNN performed better than WNN and 
SRC.  

Khan et al., 
2019 

MLP Prediction of SSC in 
rivers 

 

The simple ANN models successfully 
predicted the SSC values. 

 

In the last two decades, neurocomputing models have been applied and extended to simulate 

and predict sediment transport in rivers. When compared to 1D, 2D, or 3D physically based 

numerical models that solve the shallow water flow and sediment transport equations, 

neurocomputing models are considerably more efficient from the computational point of view 

(Zhang 2018). Besides, many further studies have demonstrated that neurocomputing models 

perform better in predicting daily sediment transport compared to other mathematical methods 

(e.g., Cigizoglu and Alp, 2006; Cigizoglu and Kisi, 2006; Kumar et al., 2016; Liu et al., 2013). 

Among the common neurocomputing methods considered here, the FFNN, WNN, and MLP 
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have been widely applied in modelling sediment transport, and shown their superiority in 

comparison to the traditional and statistical models, such as SRC, MLR or ARIMA. 

3.4 Topic 4: Urban Water Demand Prediction 

Accurate prediction of water demand in urban settings is the key to inform optimal planning 

and management decisions in water distribution systems, improve utilities’ operations, and 

support the design of demand-side management programs (Donkor et al., 2012). Several types 

of models have been tested in the literature to capture existing relationships between water 

demand and its potential determinants, including natural and climatic factors, socio-

demographic factors, and responses to water demand management strategies (for recent 

comprehensive reviews, see House‐Peters & Chang, 2011; Donkor et al., 2012; Cominola et 

al., 2015). In the last two decades, neurocomputing models (e.g., FFNN, RBNN, MLP, CNN) 

have been increasingly adopted to develop forecasting models of water demand, mainly because 

of their ability to capture the nonlinear relationship between water demand and the 

aforementioned determinants, as well as because they require fewer assumptions than other 

parametric and more conventional methods based on regression techniques or time series 

analysis (Ghalehkhondabi et al., 2017; House‐Peters & Chang, 2011). 

Several studies in the literature (see Table 5) have demonstrated the suitability of various types 

and architectures of neural-based methods to accurately forecast urban water demand across 

different spatiotemporal scales. Most of these studies focus on predicting water demand at the 

city scale and in the short- or medium-term, with a temporal resolutions that spans from hourly 

(e.g., Herrera et al., 2010; Coelho & Andrade-Campos, 2019) or daily (e.g., Adamowski et al., 

2012; Al-Zahrani & Abo-Monasar, 2015) to weekly and monthly (e.g., Jain et al., 2001; Firat 

et al., 2009; Firat et al., 2010), often with an emphasis on peak demand during summer months 

(Bougadis et al., 2005; Adamowski, 2008; Adamowski & Karapataki, 2010). Only a few 

examples focused on long-term forecasting (Li & Huicheng, 2010).  
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The numerical results obtained in the state-of-the-art studies demonstrate that different types of 

neural-based models can provide more accurate forecasts than benchmark linear or nonlinear 

methods on specific case studies. For instance, the outcomes of a recent study by Mouatadid & 

Adamowski (2017) demonstrated that Extreme Learning Machines outperformed MLR, 

FFMLP, and SVM could accurately forecast daily urban water demand for the city of Montreal 

(Canada). Furthermore, the performance of neurocomputing methods can be enhanced by 

coupling neural networks with wavelet denoising (Campisi-Pinto et al. (2012) combined FFNN 

with wavelet denoising to reduce the variance of the model input dataset) or methods that aid 

the search for optimal input variables and network settings (e.g., GSA and BSA in Zubaidi et 

al. (2018); DWT and MSA in Altunkaynak & Nigussie (2017)). These promising insights are 

supported by the numerical outcomes of comparative studies that rigorously assessed the 

performance of neural-based methods against benchmark methods (e.g., Msiza et al., 2007; 

Adamowski & Karapataki, 2010; Odan & Reis, 2012; Pacchin et al., 2019). In addition to that, 

a few studies attempted to develop comprehensive models that are able to forecast urban water 

demand across different temporal scales and lead times (Ghiassi et al., 2008, Tiwari & 

Adamowski, 2013), showing that accuracy levels well above 90% can be reached.  

While such results overall support the use of neurocomputing methods to forecast urban water 

demand, some challenges and opportunities for further research can still be listed. First, most 

of the findings from the reviewed studies can be considered as case-specific and are hard to 

generalize to other applications. For instance, while there is consensus on the influence of 

maximum temperatures on water demand, there is no full agreement on which weather-related 

variables best inform neural-based model predictions (e.g., rainfall amount vs. rainfall 

occurrence; Adamowski, 2008). Secondly, several other socio-demographic factors constitute 

potential drivers/determinants of water demand. Yet, it is still unclear which of these 

determinants influence water demand at different spatial and temporal scales, and gathering 
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some of them is not under the control of water utilities (Donkor et al., 2012). Accurate short-

term water demand forecast at the urban scale can be obtained even with the inclusion of lagged 

historical demand (Babel & Shinde, 2011), but socio-demographics become relevant when 

household-scale models are developed (Liu et al., 2003). More in general, the identification of 

optimal neural-based model predictor set would prevent developing unnecessarily complex 

models that include redundant or non-informative variables likely to cause a decrease in the 

model performance (Coelho & Andrade-Campos, 2019). Thirdly, while different ANN 

architectures have been demonstrated to compete and outperform more classical statistical 

methods (Ghalehkhondabi et al., 2017), hybrid approaches, i.e., combined methods such as the 

MSA-MLP (Altunkaynak & Nigussie, 2017), GSA-FFNN (Zubaidi et al., 2018) and CNN with 

LSTM (Hu et al., 2019) are recently gaining interest and opening up opportunities for further 

investigation, with applications to both short-term and long-term (extended lead time) urban 

water demand forecasting.  

In addition, the digitalization of the water sector and the deployment of smart meter 

technologies are opening up new opportunities for the development of fine-scale descriptive 

and predictive demand models (Cominola et al., 2015, 2019). Bennett et al. (2013) 

demonstrated that neural-based methods, such as FFNN, BPNN and other ANN architectures, 

could forecast the household water demand at the end-use level, with data from over 200 

households in Southeast Queensland (Australia). The Hidden Layer Sigmoid Activation 

Linearly Activation Output FFNN model developed by Bennett et al. (2013) accounted for 

socio-economic, demographic, and appliance efficiency variables. Finally, further testing of 

neurocomputing water demand forecasting methods in water distribution network optimization 

approaches (e.g., Salomons et al., 2007) is needed to assess their usability in such integrated 

models and account for the effect of their uncertainties. Table 5 reports and summarizes the 
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reviewed studies that applied various types and architectures of neurocomputing methods to 

develop models for predicting urban water demand. 

 

Table 5. Summary of the reviewed studies in applying various types of neurocomputing 

models for predicting urban water demand at various spatial and temporal scales. 

Author(s) / 
Year 

Model Motivation Remarks 

Jain et al., 
2001 

FFNN  Short-term forecasting of 
weekly water demand for 
the Indian Institute of 
Technology (Kanpur) with 
ANNs 

The best ANN outperformed seven 
benchmark models based on 
regression and time series analysis.  
Water demand was found to be 
mainly influenced by maximum air 
temperature and rainfall occurrence. 

Liu et al., 
2003 

FFNN 
(embedded 
in the WDF-
ANN 
model) 

Forecasting of the average 
daily domestic water 
demand 

The WDF-ANN model showed R2 
and correlation coefficient between 
observed and forecasted water 
demands higher than 0.9.  

Bougadis et 
al., 2005 

FFNN Short-term forecasting of 
weekly peak water 
demand for the city of 
Ottawa (Canada) 

ANN outperformed regression and 
time-series methods, with R2 
reaching values up to 0.8. The effect 
of rainfall amount was found to be 
more significant than the rainfall 
occurrence. 

Msiza et al., 
2007 

MLP, 
RBNN 

Comparing the 
performance of ANN and 
SVM models to forecast 
urban water demand 

Different ANN and SVM models are 
compared. The best ANN-based 
method was demonstrated to 
outperform the best SVM-based 
method. 

Adamowski, 
2008  

FFNN Forecasting of peak daily 
summer water demand 

ANN performed marginally better 
than MLR and time series analysis 
techniques.  

Ghiassi et al., 
2008 

DAN2 Urban water demand 
forecasting  

The DAN2 model reached a MAPE 
lower than 1% for monthly, weekly, 
and daily forecasts. MAPE slightly 
increased to 2-3% for hourly 
forecasts. Weather information 
improved hourly forecasts.   

Firat et al., 
2009 

GRNN, 
FFNN, 
RBNN 

Forecasting monthly water 
consumption 

The GRNN model with the monthly 
water bill, population, and monthly 
average temperature input 
outperformed the other methods. 
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Adamowski 
and 
Karapataki, 
2010 

MLP,  
RPNN,  
 

Comparing the 
performance of different 
types of ANN and MLP 
models to forecast peak 
weekly water demand 

The Levenberg Marquardt neural-
based models outperformed standard 
MLP, and it provided the best 
solutions, with R2  higher than 0.9. 
The effect of rainfall occurrence was 
found to be more significant than the 
rainfall amount. 

Firat et al.,  
2010 

GRNN, 
CCNN,  
FFNN 

Forecast monthly water 
consumption time series 

Tests on data from the city of Izmir 
(Turkey) demonstrated that CCNN 
provided the best solutions. 

Herrera et al., 
2010 

FFNN Predicting the hourly 
urban water demand 

Support vector regression was the 
best performing models, followed 
by multivariate adaptive regression 
splines, projection pursuit 
regression, and random forests. 
FFNN performance was lower than 
that of the above models. 

Li and 
Huicheng, 
2010 

NFNN Forecasting urban annual 
water demand in Dalian 
(China) 

NFNNs were combined with MLR 
models. The combined model 
predicted annual water demand with 
a relative error lower than 10%.  

Babel and 
Shinde,  
2011 

MLP Identifying the main 
explanatory variables to 
predict daily and monthly 
water demands 

High prediction accuracies 
(threshold static metric higher than 
98%) were found for short-term 
prediction, by using one lag of the 
historic daily demand as the only 
ANN input.  

Adamowski 
et al., 2012 

MLP,  
WA-ANN 

Comparing the 
performance of different 
predictive models to 
forecast daily urban 
demand for an urban area 
in Montreal (Canada) 

WA-ANN outperformed other 
benchmark methods, as assessed 
with multiple metrics: R2, Nash–
Sutcliffe model efficiency 
coefficient, RMSE, and relative 
RMSE. 

Campisi-
Pinto et al., 
2012 

FFNN 
(coupled 
with 
wavelet-
denoising) 

Forecasting urban monthly 
water demand for the 
municipality of Syracuse 
(Italy) 

The performance and generalization 
of FFNN were improved when a 
first-level wavelet decomposition 
was applied to reduce the variance of 
the input dataset.  

Odan and 
Reis, 2012 

MLP-BP,  
DAN2, two 
hybrid NN 
coupling 
MLP-BP 
and DAN2 
with FS 

Identifying the best model 
to forecast hourly water 
demand for the water 
system of Araraquara (São 
Paulo, Brazil) 

DAN2 models outperformed MLP-
BP models. The hybrid model 
coupling DAN2 with FS achieved 
the best performance (lowest mean 
absolute error) for 1- and 24-hour 
ahead forecasts. 

Bennett et 
al., 2013 

FFNN,  
RBNN 

Building a water end-use 
demand forecasting model 
at the household scale 

Moderate forecast accuracies (R2 in 
the range 0.33-0.60) were obtained 
for all end uses, except for bath 
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demand, by means of Hidden Layer 
Sigmoid Activation Linearly 
Activation Output FFNN. 

Tiwari and 
Adamowski,  
2013 

WBNN Forecasting daily, weekly, 
and monthly urban water 
demand for the city of 
Montreal (Canada) 

WBNN performed better than 
several other benchmark methods 
across different time resolutions and 
lead times. 

Al-Zahrani 
and Abo-
Monasar, 
2015 

GRNN 
(combined 
with time 
series 
models) 

Forecasting daily water 
demand for the city of Al-
Khobar (Saudi Arabia) 

With an R2 close to 0.9, the 
combined model performed better 
than time series models or GRNN 
models alone.  

Altunkaynak 
and Nigussie, 
2017 

MLP 
(coupled 
with DWT 
and MSA) 

Forecasting urban monthly 
water demand of Instanbul 
(Turkey) with extended 
lead time 
 

Stand-alone MLP could not predict 
monthly water consumption for a 
lead time longer than 1 month. The 
combined MSA-MLP outperformed 
stand-alone MLP and coupled DWT-
MLP. 

Mouatadid 
and 
Adamowski, 
2017 

ELM,  
MLR,  
FFMLP,  
SVM 

Comparing the 
performance of different 
linear and non-linear 
methods to forecast daily 
urban water demand for 
the city of Montreal 
(Canada) 

ELM achieved the best performance 
(R2 and RMSE) for urban water 
demand forecasting with 1- and 3-
day lead time. 

Zubaidi et 
al., 2018 

FFNN 
(coupled 
with GSA 
and BSA) 

Short-term forecasting of 
urban water demand 
considering weather 
variables 

The model coupling GSA with 
FFNN achieved better forecasting 
performance than the BSA-FFNN 
model. 

Coelho and 
Andrade-
Campos, 
2019 

FFNN Short-term forecasting of 
hourly water demand for a 
water network in Portugal 

Models based on FFNN overall 
performed better than benchmark 
naïve and exponential smoothing 
models when external predictors 
(e.g., anthropic and weather 
variables) were included.  

Hu et al., 
2019 

CNN 
combined 
with 
Bidirectional 
LSTM 

Short-term forecasting of 
daily urban water demand  

The hybrid model combining CNN 
with Bidirectional LSTM provided 
more accurate forecasts, compared to 
the single models.  

Pacchin et 
al., 2019 

MLP Comparing the 
performance of different 
predictive models to 
forecast hourly urban 
water demand 

Data-driven and pattern-based 
techniques achieved similar short-
term forecasting accuracy in 
calibration. Models based on 
moving-window techniques showed 
better accuracy in validation. 
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3.5 Topic 5: Modelling Flow through Hydraulic Structures 

Hydraulic structures are known as works and structures that are associated with any water 

bodies (submerged or partially submerged) including the rivers, coastal regions and estuaries, 

which may be constructed to retain, convey, or disrupt the natural flow of water. Accordingly, 

hydraulic structures can be classified into several categories, including water retaining 

structures (e.g., dams), water conveying structures (e.g., channels, spillways, flumes) and other 

special-purpose hydro-structures (e.g., fishways, water intakes, irrigation canals) depending on 

their purpose and impact on the natural streamflow (Chen, 2015). 

The proper design, control, and rehabilitation processes of hydraulic structures necessitate 

accurate and rapid simulations of flows. These can be carried out either via hard computing 

procedures (e.g., numerical models) or soft computing techniques (e.g., neurocomputing). In 

this section, the application and suitability of different types and configurations of 

neurocomputing models to simulate flow through hydraulic structures are investigated. Zeng 

and Huai (2009) used a three-layer MLPNN model to predict the friction factors in open channel 

flow, considering the Reynolds number and the relative roughness as input parameters. The 

MLP-simulated results were compared with the results obtained from empirical formulae. 

Comparison of results showed that the MLPNN model was more accurate in predicting the 

nonlinear relationship between the friction factor and effective input parameters. Sahu et al. 

(2011) made an attempt to predict the total flowrate in compound channels using an MLPNN 

model. Comparison of the estimated discharges obtained using different models demonstrated 

the superiority of MLP over the conventional models (e.g., the coherence method and the 

exchange discharge method). 

In another study, Zounemat-Kermani and Scholz (2013) employed ANFIS and MLPNN to 

study the volume of air required in low-level outlet works of dams. ML methods were utilized 

to estimate the discharge of vent air in different gate openings for embankment dams. The 
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results indicated that the fuzzy rule-based neural network model performed better than the 

standard MLP and MLR models. More recently, Zounemat-Kermani et al. (2019) examined the 

precision of three ML models (namely, Gene-Expression Programming (GEP), Chi-square 

Automatic Interaction Detector (CHAID), and Support Vector Machine (SVM)) and two types 

of neural networks (Bayesian Neural Network (BNN) and MLPNN) for the estimation of flow 

rate over triangular arced labyrinth weirs. The findings of the study showed that the MLP 

managed to estimate the flow rate over the weir with the highest accuracy based on statistical 

measures. Mahdavi-Meymand et al. (2019) investigated and challenged the capability of 

standard and integrated versions of different types of neurocomputing models, including 

ANFIS, Wavelet Neural Network (WNN), MLPNN, and RBNN to estimate the spillway aerator 

air demand in dams. Analysis of the model outputs revealed that ANFIS integrated with a 

genetic algorithm achieved the best performance.  

To sum up, Table 6 provides a summary of studies for predicting flow through hydraulic 

structures using various types of neurocomputing. According to the findings of the studies being 

reviewed, neurocomputing models have been successfully exploited in simulating flow through 

hydraulic structures and started to play an important role in the current engineering research 

and practice. 

 

Table 6. Summary of the reviewed studies applying various types of neurocomputing models 

for modelling flow through hydraulic structures. 

Author(s) / 
Year 

Model Motivation Remarks 

Zeng & Huai, 
2009 

MLP Prediction of the friction 
factor in open channel 
flow 

The adopted MLP model successfully 
predicted the friction and other 
influencing factors. 
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Bonakdari et 
al., 2011 

MLP Investigation of the flow 
patterns and velocity 
profiles in curved open 
channels 

The velocities in some sections were 
estimated and the results were 
compared with numerical predictions. 

Sahu et al., 
2011 

MLP Discharge estimation 
compound channels 

The adopted MLP model produced 
better results than several conventional 
models. 

Kamanbedast, 
2012 

MLP Investigation of 
discharge coefficient for 
morning glory spillways 

MLP provided promising results in 
predicting the discharge through 
spillway. 

Zounemat-
Kermani & 
Scholz, 2013 

ANIFS, 
MLP 

Studying of air demand 
in low-level outlet 
works of dams 

The ANFIS and MLP models 
performed better than the applied 
empirical relations. 

Parsaie and 
Haghibi, 
2015 

MLP Estimating the discharge 
coefficient over side 
weirs. 

The MLPs outperformed the 
traditional models and improved the 
accuracy of discharge estimation. 

Hosseini et 
al., 2016 

ANFIS Estimation of the 
discharge coefficient of 
the labyrinth spillway 

The construction cost obtained from 
the integrative ANFISs were up to 
20% lower in comparison to a real 
benchmark design. 

Parsaie et al., 
2018 

MLP, 
GMDH 

Estimation of energy 
dissipation of flow over 
stepped spillways 

The GMDH gave better results than 
the MLP models. 

Zounemat-
Kermani et 
al., 2019b 

MLP, 
BNN 

Discharge prediction 
over triangular arced 
labyrinth weir 

The MLP was superior to the BNN 
model and successfully estimated the 
flow rate over the weir. 

Mahdavi-
Meymand et 
al., 2019 

MLP, 
RBNN, 
WNN, 
ANFIS 

Estimating the spillway 
aerator air demand in 
dams 

The integrated ANFIS produced more 
accurate results. 

 

3.6 Topic 6: Flow and Sediment Modelling in Sewers 

In the recent years, different mathematical and numerical approaches have been used for 

modelling flow and sediment transport in sewer networks and sewage collection systems. 

However, the majority of the applied models and simulation techniques are known as 

deterministic hard computing techniques (Cataño-Lopera et al., 2017). Such models and 

techniques require detailed information on the hydraulic characteristics of the flow/sediment as 

well as the knowledge of the sewer network geometries, some of which are difficult to acquire 

or are simply unavailable (Zounemat-Kermani et al., 2020b). In this respect, a number of studies 
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have been conducted to apply soft computing methods such as neurocomputing for predicting 

flow or sediment transport in sewers (e.g., short-term predictions of wastewater). Consistent 

with the topic of this study, some of the most pertinent studies using neurocomputing in 

modelling flow and sediment transport in sewers are reviewed as follows. 

El-Din & Smith (2002) presented a feedforward MLPNN for short-term prediction of 

wastewater outflow rate of a sewer network entering a wastewater treatment plant. The 

established MLP used observed rainfall data as inputs and produced promising results. It was 

demonstrated that the MLP model could be integrated with a real-time control algorithm for 

minimizing the total pollution from the wastewater treatment plant. 

Fernando et al. (2006) employed a FFNN model to forecast the incidents of wastewater 

overflows in a combined sewerage system. Their results showed that the proposed model 

provided promising results in forecasting sewer overflow rates. One of the main findings was 

that precise forecasting of overflow rates was highly dependent on the antecedent real-time flow 

rate data measured at the overflow structure. In other words, the FFNN model failed in 

producing satisfactory results without having access to the past records of flow rates. Mounce 

et al. (2014) assessed the potential of MLPs in predicting the hydraulic performance of 

combined sewer overflows as an alternative method to hydraulic models. The applied MLP 

models were capable of predicting the depth of sewer overflows with less than 5% error in more 

than one hour ahead. They concluded that neural networks are useful alternatives to fully 

physically based models, removing manual modelling overheads, and geometric data 

requirements for model calibration. 

Ebtehaj et al. (2016) applied three neurocomputing models, i.e., Radial Basis Neural Network 

(RBNN), integrative Particle Swarm Optimization RBNN (PSO-RBNN) and hybrid RBNN 

(combined with decision trees, DT), to predict sediment transport in sewer collectors. It 

appeared that the hybrid DT-RBNN predicted more accurate results than the other two RBNN 
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methods. Zhang et al. (2018) evaluated different neurocomputing models, including MLP, 

Gated Recurrent Unit (GRU), LSTM and WNN, for predicting the water level of a combined 

sewer overflow structure. Comparison of the predicted results indicated that the LSTM and 

GRU presented superior capabilities for time series prediction. It was also found that the 

conventional MLP neural network could only provide reasonable short-term predictions (just 

one- and two-step ahead). However, the WNN model managed to improve predictions of 

multiple steps ahead. Overall, the LSTM and GRU outperformed WNN and MLP and produced 

satisfactory results for multi-step-ahead prediction. The LSTM model showed slightly better 

performance than GRU, but the GRU model presented certain advantages, such as quicker 

learning process and simpler architecture. Safari (2019) investigated bedload sediment transport 

in sewer pipes with clean bed and non-deposition condition using Generalized Regression 

Neural Network (GRNN). Results from the model performance indicators showed that GRNN 

outperformed conventional regression models. Table 7 summarizes the key researches related 

to the application of neurocomputing models in predicting flow rate and sediment transport in 

sewer systems. 

 

Table 7. Summary of the reviewed studies involving the application of various types of 

neurocomputing models for modelling flow and sediment in sewers. 

Author(s) / 
Year 

Model Motivation Remarks 

El-Din & 
Smith, 2002 

MLP Prediction of wastewater 
inflow incorporating 
rainfall events 

The MLP model was found to be 
efficient in providing accurate 
predictions of inflow. 

Fernando et 
al., 2006 

MLP Forecasting the 
occurrences of 
wastewater and sewer 
overflows 

Accurate forecasting of overflow rates 
could be achieved by MLP when 
records of real-time overflow were 
available.  

Azamathulla 
et al., 2012 

ANFIS Prediction of sediment 
transport in sewer pipes 

The ANFIS model gave acceptable 
results in comparison to the existing 
empirical models. 
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Ebtehaj and 
Bonakdari, 
2013 

MLP Prediction of sediment 
transport in sewer pipes 

Compared with other empirical 
formulations, the MLP provided more 
accurate results. 

Mounce et 
al., 2014 

MLP Predicting combined 
sewer overflows 
 

The trained MLP model provided a 
fair prediction of the depth of 
combined sewer overflows. 

Ebtehaj et 
al., 2016 

RBNN, 
DT-RFNN, 
PSO-
RBNN 

Predicting sediment 
transport in sewer pipes 

The hybrid DT-RBNN (a combination 
of neural network and decision tree) 
produced more accurate results than 
the other models. 

Najafzadeh 
& 
Bonakdari, 
2016 

GMDH, 
PSO-
GMDH 

Predicting the threshold 
deposition velocity in 
storm sewer systems 

Compared to the GMDH, the 
integrated PSO-GMDH model 
provided more accurate predictions. 

Wolfs and 
Willems, 
2017 

MLP Modelling sewer water 
quantity simulations 

ANN models were suited to capture 
complex flow dynamics. 

Zhang et al., 
2018a 

LSTM, 
MLP, 
WNN, 
GRU 

Predicting water level of 
combined sewer 
overflow  

In contrast to the conventional 
neurocomputing models, both LSTM 
and GRU presented accurate 
predictions. 

Ebtehaj et 
al., 2018 

Hybrid 
MLP,  
RBF 

Sediment transport 
prediction in clean 
sewer collectors 

The Hybrid MLP outperformed the 
standard RBF model.  

Zhang et al., 
2018b 

ENN, 
LSTM, 
NARX 

Forecasting overflow in 
sewers 

The recurrent LSTM model was 
superior to the other neurocomputing 
models. 

Safari, 2019 GRNN Modelling sediment 
transport in sewer pipes 

GRNN model outperformed the 
conventional regression models. 

Al-Ani and 
Al-Obaidi, 
2019 

MLPNN Prediction of sediment 
accumulation for trunk 
sewer 

MLPNN model found to be practical 
and gave better results compared to the 
MLR model.  

Zaji and 
Bonakdari, 
2019 

RBNN Modelling the discharge 
and velocity field in 
sewer structures 

The RBF method performed 
significantly better than the multiple 
nonlinear regression model. 

 

As indicated in Table 7 (by closely looking at the chronological order of the studies as listed), 

there is a clear increasing trend in the application of neurocomputing approaches in modelling 

sewer systems in the last five years. Majority of studies focus on predicting flow or sediment 

transport in sewers based on the hydraulics of flow and geometries of structures. These 

researches have effectively demonstrated the competence of neurocomputing approaches in 

modelling the hydraulics of sewer networks. 
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4. Summary and Conclusion Remarks 

4.1. General Findings 

This study is focused on critically analysing and classifying the state-of-the-art applications 

of neurocomputing approaches in modelling surface water hydrology and hydraulics, 

published as peer-reviewed articles over the last two decades (2000-2019). The main 

concluding remarks are provided as follows: 

(1) In the past two decades, neural-based and neurocomputing models have been proven to 

be flexible and promising tools for modelling a variety of problems in hydrological and 

hydraulic sciences. In addition, in comparison with the traditional statistical models, 

stochastic methods, and empirical formulations, these models have great potential in 

providing more accurate and reliable predictions.  

(2) Although they are capable of identifying the relationship between the input and output 

(target) variables using a black-box strategy, neurocomputing models cannot provide a 

straightforward and explicit function for articulating the physical essences behind the 

modelling process. On the other hand, other types of machine learning models such as 

Gene Expression Programming (GEP) and Regression Trees (RT) do not suffer from 

this specific issue and may be considered as alternative options in certain cases. 

(3) Approaches to developing neurocomputing models differ substantially in relation to a 

number of factors, such as input vector decomposition, selection of network type, 

adoption of network architecture and choice of proper learning scheme. Existing works 

in the literature indicate that the use of decomposition techniques such as wavelet 

methods improves the performance of the adopted neurocomputing models, especially 

for sophisticated and high-dimensional hydroscience applications, such as flood 

modelling. 
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(4) Fuzzy-based neurocomputing models, e.g., NFNN and ANFIS, demonstrate great 

potential in capturing the nonlinearity of complex hydrosystems dynamics.  

(5) Employing a recurrent structure for the network (namely RNN), for example, NARX, 

and LSTM, improves the performance of feedforward models in predicting time series 

of hydrological problems. RNN facilitates time delay units through feedback 

connections, being computationally more efficient and biologically more plausible than 

feedforward structures. 

(6) Most of the works being reviewed suggest that integrating meta-heuristic and nature-

based optimization algorithms may enhance the accuracy of the training process of the 

standard neurocomputing models. However, the use of these optimization algorithms 

increases the computation cost. 

(7) Regarding the application of different neurocomputing approaches in different problems 

of hydrological and hydraulic sciences, it can be concluded that modern 

neurocomputing models, such as Extreme Learning Machine, Deep Learning models, 

integrative networks, and Wavelet Neural Network, are likely to perform better than the 

conventional models, such as Multi-layer Perceptron and Generalized Regression 

Neural Network. However, it is not possible to distinguish one particular type of modern 

neural network-based models as a prominent candidate for all different applications.  

4.2. Findings Related to Surface Water Hydrology and Hydraulics 

Besides the overall review of the pertaining literature, six topics within the surface water 

hydrology and hydraulic sciences were appraised and evaluated in detail from the 

neurocomputing perspective. Specific findings and concluding remarks are given as follows: 

(1) The selection of a specific neurocomputing approach for time-dependent problems in 

hydrology (e.g., water level prediction, flood modelling, and sediment transportation) 

is highly dependent on the scope of the study. Commonly, traditional FFNNs can 
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perform well in the short-term predictions and should be preferred in such cases for their 

easy implementation, while RNN and WNN models are in general more suitable for 

longer-term-predictions. 

(2) Multi-dimensional physically based numerical models for complex hydrological and 

hydraulic phenomena, such as sediment transport in rivers and sewers, need many 

physical parameters (e.g., settling velocities, initial grain size distributions, critical shear 

stresses for erosion and deposition) which are ideally determined through laboratory 

experiments requiring substantial time and effort, especially for fractional sediment 

transport. Meanwhile the overall accuracy of these models is still limited in many cases. 

Neurocomputing provides a reliable alternative with fewer required inputs and CPU 

time to predict the nonlinear and non-unique behaviour of sediment transport, without 

necessity of investigating in detail the nature of all physical processes involved and their 

interactions. 

(3)  Neurocomputing models have proven to be superior with regard to the prediction of 

daily suspended transport when compared with other mathematical models. This is due 

to the fact that, in these models, the value of the dependent variable computed in the 

previous time step(s) can be used as an (additional) input for the current time step, 

contributing to a better simulation of hysteresis phenomena. In addition, 

neurocomputing can provide more reasonable predictions for extremely high or low 

values (Zhu et al., 2007), because specific algorithms using distributed neurons and 

nonlinear transforms are involved.  

(4) Some studies showed that the neurocomputing models can detect water level peaks 

better than a hydrodynamic model (e.g., Panda et al., 2010). While in other applications, 

the lower or higher peaks were under- or overestimated (as in See and Openshaw, 2000) 

or slightly delayed (as in Ma et al., 2019). 
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(5) The review of the methods for urban water demand prediction suggests that a variety of 

neural-based models constitute viable alternatives to other linear or nonlinear models, 

often achieving better performances as measured by heterogeneous error metrics. Their 

flexibility and computational efficiency make them suitable for identifying the 

underlying dependencies between water demand and potential drivers/determinants 

(Cominola et al., 2018), which can vary for different case studies or spatiotemporal 

scales. 

(6) The application of physically based models for predicting water level in rivers, flooding, 

wastewater overflows, and flow rate in sewers requires accurate physical data, such as 

topography and bathymetry, and usually demands high computational costs. 

Neurocomputing methods can effectively overcome these drawbacks and can predict 

water level and flow rate at a much lower computational cost without the necessity of 

knowing any physical information about the study area, provided that historical 

hydrological data series are available. 

(7) In general, the inclusion of historical re-forecast modelling information, a smart pre-

processing of input and output data, the integration of different neurocomputing 

methods and/or the combination of neurocomputing methods with physically based 

models can improve model performance. Specifically, for water level prediction along 

a gauged stream, including the historical data at the target gauge can increase the 

accuracy of the results and it is usually recommended. This is also valid with regard to 

the supervision of the model training, e.g., considering time delays units through 

recursive inner connection (Chang et al., 2014). 

(8) In modelling surface water hydrology (e.g., water level prediction) and hydraulic (e.g., 

flow over hydraulic structures) problems, data pre-processing plays an important role in 

detecting the most relevant variables for the problem under consideration (e.g., feature 

selection analysis, also to avoid redundant information); in some cases, the inclusion of 
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additional predictor(s) such as precipitation, temperature, slope, in the input dataset can 

lead to a higher accuracy and better performance of the model(s). 

5. Research Gaps, Lacunae, and Limitations 

Neurocomputing methods usually require long historical data series and high-quality data to 

deliver good results. Also, being black box models, inner physical relations cannot be explicitly 

identified, and this could be the limitation for some applications. In other words, one major 

limitation of neurocomputing models is their need for long time series data for training and 

testing. It is evident from the literature review that for hydrological and hydraulic simulations 

with long series of data, neurocomputing works very well. However, this type of models is 

much less competent in applications without sufficient data. For instance, few studies have 

addressed neurocomputing for estimating flood dynamics and sediment concentrations in 

poorly gauged or ungauged catchments. 

In sediment transport modelling, there are only very few studies about long-term forecasts. 

Many studies are focused on exploring the capability of models based on a historical re-forecast, 

i.e., they first prepare the input combinations using the entire data series and later divide them 

into calibration and validation data sets to set up and test the models. As a consequence, the 

resulting input used to forecast the value at a particular moment is computed using information 

from the ‘future’; such information is clearly not available in the realistic forecasting process 

(Zhang et al, 2015b, Zhang, 2018). Therefore, the historical re-forecast modelling can be used 

to compare capabilities of models or one-step advance predictions, but is not suitable for long-

term predictions. Development of neurocomputing methods in operational hydrodynamics and 

morphodynamics forecasting has gained particular interest over the past years. But there are yet 

few neurocomputing models that are able to support long-term prediction with acceptable 

accuracy. Some of the recurrent neural networks such as ESN and LSTM (e.g., Coulibaly, 2010; 
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Ma et al., 2019) have been shown to be promising, but further research in this direction is still 

needed.   

Related to the application of neurocomputing for water demand prediction, existing limitations 

are primarily linked to the generalisation of the developed models and the accuracy of the 

results, rather than the model implementation. For instance, the models presented in the 

literature have been mostly trained and validated on specific case studies, targeting the 

prediction of water demand at different spatial and temporal scales, forecast horizons, and 

considering a variety of different predictors. The obtained results are, thus, often hard to cross-

compare and seldom valid for a different setting. Future comparative studies should perform 

sensitivity analysis and assessment of the portability of state-of-the-art models to different case 

studies, along with their robustness with respect to uncertainties in the input set, sampling 

resolution of their input/output variables, required forecast horizon, and model 

parameterization. 

6. Recommendations and Future Directions 

In the retrospectives of most published researches related to the application of neurocomputing 

models in hydrological and hydraulic sciences (see Tables 1 to 7), two interesting facts related 

to their historical trends may be highlighted. Firstly, unlike the use of neurocomputing models 

for hydrological predictions, their application to predicting flow through hydraulic structures 

does not have a long history and it is mostly limited to the last decade. Secondly, the majority 

of the published works have used the prevailing and conventional version of neurocomputing 

models, namely MLPNN, for various applications. Hence, there is still a wide scope for 

researchers to pursue this specific topic using novel neurocomputing models, such as deep 

learning and integrative models. In general, a robust supervision of neurocomputing models is 

essential to support their successful application to tackle hydrological- and hydraulic-related 

challenges, e.g. through data pre-processing using SVM, feature-selection and/or optimization 
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algorithms. From this review, the following recommendations may be made for future research 

in terms of developing or applying neurocomputing models for different types of hydroscience 

problems: 

(1) Substantial researches have been reported in the development and application of 

neurocomputing models in hydrological and hydraulic sciences. A number of different 

machine learning approaches have been used and achieved different level of success, 

such as tree-based and vector-based models. Conducting a comprehensive survey on the 

susceptibility of soft computing models (e.g., machine learning models) versus hard 

computing models (e.g., numerical methods) in hydrological sciences is highly 

encouraged. 

(2) Although this paper provides a detailed review of the application of neurocomputing in 

six different topics in hydrological and hydraulic sciences, it is inevitable that some 

related subjects have to be excluded, which should be included in the future studies, 

e.g., groundwater modelling, irrigation systems, water quality simulation, precipitation 

forecast, evaporation estimation, and rainfall-runoff processes. 

(3) A forward step in developing and deploying neurocomputing models is to integrate 

these models into physically and geospatial-based models. In that case, both the pre-

processing and post-processing parts of the models can be directly linked to the 

geographic information system (GIS) in the information layer.  

(4) Hybridization and integration of neurocomputing models and other types of soft 

computing concepts should be considered for enriching the original neurocomputing 

simulation models and overcoming the restrictions of the individual models. Several 

studies have been carried out to develop hybrid neurocomputing models in the recent 

years, and this has led to some novel combined models showing improved performance 

for different types of problems. It is worth noting that, in some cases, combining 
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different soft computing methods would not necessarily enhance the performance of the 

resulting hybrid models; more research effort is needed to develop more efficient and 

accurate hybrid models in the future.  

(5) Limited studies have been recorded in the application of DL models, such as ESN and 

CNN models to predict water level fluctuations in rivers, flooding, sediment transport, 

flow through the hydraulic structures, and flow rate in sewer systems as well as 

assessing water quality; further research in this direction is also encouraged. 
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