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Nonlinear Prediction in Marker-Based Spacecraft Pose
Estimation with Polynomial Transition Maps

Simone Servadio∗

Massachusetts Institute of Technology, Cambridge, 02139, MA, USA

Francesco Cavenago† and Pierluigi Di Lizia‡ and Mauro Massari§
Politecnico Di Milano, Milano 20156, Italy

Spacecraft relative state estimation is of paramount importance in the problem of ren-

dezvous with an uncooperative target; indeed, an accurate prediction of its relative position

and attitude are crucial for safe proximity operations, especially considering autonomous guid-

ance, navigation and control. Therefore, a key point for the success of these missions is the

development of efficient algorithms capable of limiting the computational burden without any

reduction in performance. This paper addresses the issue proposing and analyzing nonlin-

ear filters based on differential algebra (DA). High-order numerical extended Kalman filter

and unscented Kalman filter are developed in the DA framework and their performance is

assessed and compared in terms of accuracy, robustness and computational time, highlighting

advantages and drawbacks. The European Space Agency e.deorbit mission, involving Envisat,

is considered as reference case and the analysis is carried out through numerous numerical

simulations, taking into account different measurement acquisition frequency and level of

uncertainties.

Nomenclature

Γ = Rotation Matrix

µ = Gravitational Parameter

ζ = Modified Rodriguez Parameters

ρ = Marker Position w.r.t. the center of mass

σr = Position Standard Deviation

σv = Velocity Standard Deviation

ωc = Chaser angular velocity
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ωr = Relative angular velocity

ωt = Target angular velocity

Jt = Inertia Matrix of the Target

K = Kalman gain

m− = Predicted State Mean

m+ = Updated State Mean

Ma pp = Apparent Torques

Mc i = Chaser-Inertial Torques

Mg = Gyroscopic Torques

n− = Predicted Measurement Mean

P− = Predicted State Covariance

P+ = Updated State Covariance

Pxz = State and Measurement Predicted Cross-Covariance

Pzz = Measurement Predicted Covariance

q = Quaternions

Q = Process Noise Covariance

r = Spacecraft relative position

r̄ = Earth-chaser distance

R = Measurement Noise Covariance

v = Spacecraft relative velocity

x = State of the system

X = State Sigma Points Matrix

w = Sigma Points weights

z = Measurement Outcome

Z = Measurement Sigma Points Matrix

I. Introduction
Missions like active debris removal, on-orbit servicing, satellite inspection have gained increasing importance in

the space community due to the necessity of reducing costs and guaranteeing a safer environment. In this context,

autonomous guidance, navigation and control (GNC) plays a fundamental role in the problem of rendezvous with an

uncooperative target. Especially, the estimation of the relative position and the prediction of the target attitude are

crucial for safe proximity operations [1]. This requires complex computations to be executed on-board with a frequency
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that guarantees the fulfillment of the accuracy requirements. Unfortunately, current space processors have limited

computational power which restricts the implementable estimation processes. Therefore, a key point for the success of

these missions is the development of efficient algorithms capable of limiting the computational burden without losing

out the necessary performance. To this aim, this study analyzes the exploitation of nonlinear filters based on differential

algebra (DA). Especially, high-order numerical extended Kalman filter (HNEKF) and unscented Kalman filter (UKF)

are implemented in the DA framework.

Many filtering techniques have been developed to deal with estimation problems. At present time, one of the

most exploited estimation algorithm is the extended Kalman filter (EKF) [2]. The EKF is based on the main idea of

linearizing the equations of motion and the measurement equations via first-order Taylor expansions around the current

mean and covariance (the uncertainties are assumed to be Gaussian distributed). In some cases, however, the linear

assumption may fail due to the nature of the dynamics or the number of available measurements, leading to inaccurate

realization of the local motion. Therefore, alternative methods capable of accounting for system nonlinearity must be

used. A different approach is the UKF [3, 4]. This technique is based on the unscented transformation, which does not

contain any linearization. Carefully-chosen sample points are propagated through the true nonlinear system in order

to capture the posterior mean and covariance. Thanks to its nonlinear nature, UKF provides superior performance

with respect to the EKF in highly nonlinear situations. In 2007, Park and Scheeres [5, 6] developed the HNEKF by

implementing a semi-analytic orbit uncertainty propagation technique, that is by solving for the higher-order Taylor

series terms, that describe the localized nonlinear motion, and by analytically mapping the initial uncertainties. These

higher-order filters are more accurate than the EKF, as the prediction step relies on a fully nonlinear mapping of the

means and covariances. However, the HNEKF needs to derive the so-called higher-order tensors, which makes it in

many cases difficult to use due to computational complexity. Majji, Turner, and Junkins [7], on the other hand, expand

the work by Park and Scheeres to include measurement updates in all the higher order central moments. They develop a

new tensorial mechanization to exploit Object Oriented Coordinate Embedding method (OCEA) to evaluate desired

order state transition tensors (STT) automatically. However, their technique still relies on the evaluation of STTs, and

the relative storage.

The complexity of integrating multiple points, for UKF, and of deriving the high-order tensor, for the HNEKF, to

map the mean and covariance can be easily solved using DA techniques. By substituting the classical implementation

of real algebra with the implementation of a new algebra of Taylor polynomials, any function f of n variables can be

easily expanded into its Taylor polynomial up to an arbitrarily order m in the DA framework [8, 9]. This has a strong

impact when the numerical integration of an ordinary differential equation (ODE) is performed by means of an arbitrary

integration scheme. Any integration scheme is based on algebraic operations, involving the evaluation of the ODE

right hand side at several integration points. Therefore, starting from the DA representation of the initial conditions

and carrying out all the evaluations in the DA framework, the flow of an ODE is obtained at each step as its Taylor
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expansion in the initial conditions. Consequently, by propagating the mean trajectory and evaluating the measurement

function in the DA framework, not only their pointwise values are obtained, but also the higher-order partials. This

eliminates the need to calculate the higher-order tensors at each time step by solving a complex system of augmented

ODE, for the HNEKF [10–12]. Moreover, it reduces the multiple integration of the UKF to an easier evaluation of the

Taylor expansion of the flow in different sample points.

The European Space Agency (ESA) e.deorbit mission [13], involving the Envisat satellite, is used as reference test

case for the developed filters. For the filtering, the measurements are given by a camera that acquires the position of

markers on the target and, through image processing, provides information about the relative position and attitude. Both

HNEKF and UKF are applied to this target application and compared in terms of accuracy and computational burden.

The performance are assessed through a sensitivity analysis to the measurement acquisition frequency and level of

uncertainties in the system. Moreover, occurrence of failures in the markers recognition is taken into account.

The main contributions of this work are: 1) the development of the UKF in the DA framework for the first time,

which results in a new filter as accurate as the standard UKF, but computationally lighter; 2) a more comprehensive

study with respect to [12] on the application of DA-based filters to the relative pose estimation problem, which includes

the performance assessment of the new DA-based UKF, the introduction of nonlinear coupled measurement equations

and a robustness analysis considering a variable number of available measurements and even the lack of them; 3) a

performance comparison among the DA-based filters, highlighting their strengths and weaknesses for the application

case.

The paper is organized as follows. First, an introduction to DA is given and the derivation of the DA-based HNEKF

and DA-based UKF are explained. Afterwards, the considered relative pose estimation problem is introduced and the

dynamics and measurement models are developed. Finally, the performance of the filters are assessed through numerical

simulations.

II. Differential algebra
Differential Algebra techniques allow solving analytical problems through an algebraic approach [9]. Similar to the

computer representation of real numbers as Floating Point (FP) numbers, DA allows the representation and manipulation

of functions on a computer. Each sufficiently often differentiable function f is represented by its Taylor expansion

around an expansion point truncated at an arbitrary finite order. Without loss of generality, 0 is chosen as the expansion

point. Algebraic operations on the space of truncated Taylor polynomials are defined such that they approximate the

operations on the function space Cr (0) of r times differentiable functions at 0. More specifically, each operation is

defined to result in the truncated Taylor expansion of the correct result computed on the function space Cr (0). This

yields the so-called Truncated Power Series Algebra (TPSA) [8].

In a computer environment, each DA variable can be represented as a table of coefficients and exponents, while
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Fig. 1 Analogy between the floating point representation of real numbers in a computer environment (left
figure) and the introduction of the algebra of Taylor polynomials in the differential algebraic framework (right
figure)

each floating-point number is just, indeed, a number. Consider Fig. 1, which depicts the analogy between the floating

point (FP) representation of real number in a computer and the algebra of Taylor polynomials in the DA framework.

Take two real numbers a and b: in order to operate in a computer environment, they are represented by their FP

representation, ā and b̄ respectively. Then, given any operation “×” in the set of the real numbers, an adjoint operation

“⊗” is defined in the set of the FP numbers such that the diagram in Fig. 1 commutes. Consequently, the same result is

obtained either if the real numbers a and b are represented in their FP representation prior to operating on them, or if

the operation is carried out between the real numbers and subsequently the result expressed in its FP representation

(refer to the left portion of Fig. 1). Analogously, starting from two different, sufficiently regular, functions f and g,

using the DA framework, the computer environment operates on them by representing them with their Taylor series

expansions, referred respectively as F and G. Similarly to the representation of real numbers with their FP expression,

the functions f and g are now represented with their truncated Taylor series expansion up to a user-selected order c. For

each operation in the space of function, an adjoint operation in the space of Taylor polynomials is defined such that

the diagram in Fig. 1 commutes. As for real numbers, the same end result is obtain either by extracting the Taylor

expansions of f and g and operating on them in the set of Taylor polynomial, or by operating on f and g in the original

space and then extracting the Taylor expansion of the resulting function. To illustrate the process more clearly, consider

Fig. 2. The expression 1/(x + 1) is evaluated once in Cr (0) (top) and then in DA with truncation order 3. Starting with

the identity function x, one is summed to arrive at the function x + 1, the representation of which is fully accurate in DA

as it is a polynomial of order 1. Continuing the evaluation, the multiplicative inversion is performed, resulting in the

function 1/(1 + x) in Cr (0). As this function is not a polynomial any more, it is automatically approximated in DA

arithmetic by its truncated Taylor expansion around 0, given by 1 − x + x2 − x3. As already explained, by definition of

the DA operations, the diagram for each single operation commutes. That is to say the same result is reached by first

Taylor expanding a Cr (0) function (moving from the top to the bottom of the diagram) and then performing the DA

operation (moving from left to right), or by first performing the Cr (0) operation and then Taylor expanding the result.
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Fig. 2 Evaluation of the expression 1/(1 + x) in Cr (0) and DA arithmetic.

In addition to algebraic operations, the DA framework can be endowed with natural differentiation and integration

operators, completing the structure of a differential algebra. Intrinsic functions, such as trigonometric and exponential

functions, are built from elementary algebraic operations [9]. In this way, Taylor expansions of arbitrary sufficiently

smooth functions given by some closed-form expression can be computed fully algebraically in a computer environment.

An implementation of such DA computer routines is available in the software DACE 2.0 ∗, which is used to implement

the algorithms presented in this paper.

An important application of DA in engineering applications is the expansion of the flow ϕ(t; x0) of an Ordinary

Differential Equation (ODE) to arbitrary order with respect to initial conditions, integration times and system parameters

[14]. The following is a short summary of the underlying concept. For a more complete introduction to DA, as well as a

fully worked out illustrative example of a DA based ODE integrator using a simple Euler step, see [10].

Consider the initial value problem 
Ûx = f (x, t)

x(t0) = x0,

(1)

and its associated flow ϕ(t; x0). By means of classical numerical integration schemes, such as Runge-Kutta or multi-step

methods, it is possible to compute the orbit of a single initial condition x0 using floating point arithmetic on a computer.

Starting instead from the DA representation of an initial condition x0, and performing all operations in the numerical

integration scheme in DA arithmetic, DA allows propagating the Taylor expansion of the flow around x0 forward in time,

up to the desired final time t f , yielding a polynomial expansion of ϕ(t f ; x0 + δx0) up to arbitrary order. Indeed, at each

time step ti , DA creates a polynomial transition map that approximate the flow of a dynamical system up to an arbitrary

order. In the case of selecting first order, the coefficients of the transition map are the entries of the State Transition

Matrix (STM).

The conversion of standard explicit integration schemes to their DA counterparts is rather straightforward. One

simply replaces all operations performed during the execution of the scheme by the corresponding DA operations. Step

size control and error estimates are performed only on the constant part of the polynomial, i.e. the reference trajectory
∗https://github.com/dacelib/dace, accessed on 22 May 2019
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of the expansion point. The result is an automatic Taylor expansion of the result of the numerical method (i.e. the

numerical approximation to the flow) with respect to any quantity that was initially set to a DA value.

The main advantage of the DA-based approach is that there is no need to derive, implement and integrate variational

equations in order to obtain high-order expansions of the flow. As this is achieved by merely replacing algebraic

operations on floating-point numbers by DA operations, the method is inherently ODE independent. Furthermore, an

efficient implementation of DA such as the DACE 2.0 package, allows to obtain high-order expansions with limited

computational time.

III. High-order extended Kalman filter
This section is devoted to introducing the algorithm of the DA-based HNEKF and to provide a first assessment of its

performance. The equations of motion and measurement equations describing a generic dynamic system are as follows:

xk+1 = Φ(tk+1; xk, tk) + wk,

zk+1 = h(xk+1, tk+1) + vk+1,

(2)

where xk is the m-dimensional vector of state, wk is the process noise perturbing the state, zk is the n-dimensional

vector of actual measurements, h is the measurement function, and vk+1 is the measurement noise characterizing the

observation error. The process noise and the measurement noise are assumed to be uncorrelated, that is, E{vi wT
j } = 0,

with the autocorrelations E{wi w
T
j } = Qiδi j and E{vi vTj } = Riδi j for all discrete time indexes i and j. E{} denotes

the expectation operator.

Starting from the general theory of state estimation, HNEKF sequentially estimate the spacecraft state and the

associated uncertainty by incorporating system nonlinearity in terms of higher-order Taylor expansions and relying on

the assumption that uncertainties can be described using Gaussian statistics.

Consider the system model equations (2). The filtering process can be summarized as follows:

1) Prediction step: at time tk+1, the mean and covariance of the state vector, m−
k+1 and P−

k+1, and the mean of the

measurements, n−
k+1, are estimated as:

m−
k+1,i = E{Φi(tk+1; xk, tk) + wk,i},

P−
k+1,i j = E{[Φi(tk+1; xk, tk) − m−

k+1,i + wk,i][Φj(tk+1; xk, tk) − m−
k+1, j + wk, j]},

n−
k+1,p = E{hp(xk+1, tk+1) + vk+1,p},

(3)

where i, j = 1, ...,m, p = 1, ..., n, and m−
k+1,i , P−

k+1,i j and n−
k+1,l are the components of m−

k+1, P
−
k+1, and n−

k+1

respectively;
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2) Update step: the new measurements acquired at time tk+1, zk+1, are incorporated into the updated estimate of the

state vector and covariance matrix as follows:

Pzz
k+1,pq = E{[hp(xk+1, tk+1) − n−

k+1,p + vk+1,p][hp(xk+1, tk+1) − n−
k+1,q + vk+1,p]},

Pxz
k+1,ip = E{[Φi(tk+1; xk, tk) − m−

k+1,i + wk,i][hp(xk+1, tk+1) − n−
k+1,p + vk+1,p]},

Kk+1 = Pxz
k+1(P

zz
k+1)

−1,

m+
k+1 = m−

k+1 + Kk+1(zk+1 − n−
k+1),

P+
k+1 = P−

k+1 − Kk+1P
zz
k+1K

T
k+1,

(4)

where q = 1, ..., n, Kk+1 is the Kalman gain matrix, Pxz
k+1 is the cross-covariance matrix of the state and the

measurement, and Pzz
k+1 is the covariance matrix of the measurements.

A. The DA-based HNEKF

The DA implementation of the HNEKF relies on the fact that DA can easily provide the arbitrary order Taylor

expansion of both Φ and h in Eq. (2). Thus, the arbitrary order expansion of the equations of motion and measurement

equations can be easily written, and component-wise reads:

xk+1,i = Φi(tk+1; m+
k
, tk) +

∑v
r=1

1
r!
Φ

i,γ1...γr
(tk+1,tk )δxγ1

k,1 . . . δxγr
k,m
+ wk,i,

zk+1,p = hp(Φ(tk+1; m+
k
, tk), tk+1) +

∑v
r=1

1
r!

hp,γ1...γr
(tk+1,tk ) δxγ1

k,1 . . . δxγr
k,m
+ vk+1,p,

(5)

where v is the order of the expansion, γi ∈ {1, ...,m}, Φi,γ1...γr
(tk+1,tk ) includes the higher-order partials of the solution flow,

which map the deviations at time k to time k + 1, and hp,γ1...γr
(tk+1,tk ) includes the higher-order partials of the measurement

function. Both Φi,γ1...γr
(tk+1,tk ) and hp,γ1...γr

(tk+1,tk ) are obtained directly by integrating the equations of motion and evaluating the

measurement equations in the DA framework.

The Taylor polynomials of Eq. (5) can be inserted into Eqs. (3) and (4) to obtain the steps of the high-order extended

Kalman filter:

1) Prediction step: at time tk+1, the mean and covariance of the state vector, m−
k+1 and P−

k+1, and the mean of the
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measurements, n−
k+1, are estimated as:

m−
k+1,i = Φi(tk+1; m+

k
, tk) +

∑v
r=1

1
r!
Φ

i,γ1...γr
(tk+1,tk )E{δxγ1

k,1 . . . δxγr
k,m
},

P−
k+1,i j =

∑v
r=1

∑v
s=1

1
r!s!
Φ

i,γ1...γr
(tk+1,tk )Φ

j,ξ1...ξs
(tk+1,tk )E{δxγ1

k,1 . . . δxγr
k,m

δxξ1
k,1 . . . δxξs

k,m
}+

−δmi
k+1δm j

k+1 +Qi j
k
,

n−
k+1,p = hp(Φ(tk+1; m+

k
, tk), tk+1) +

∑v
r=1

1
r!

hp,γ1...γr
(tk+1,tk ) E{δxγ1

k,1 . . . δxγr
k,m
},

(6)

where ξi ∈ {1, ...,m} and δmi
k+1 = Φi(tk+1; m+

k
, tk) − m−

k+1,i;

2) Update step: the new measurements acquired at time tk+1, zk+1, are incorporated into the updated estimate of the

state vector and covariance matrix as follows:

Pzz
k+1,pq =

∑v
r=1

∑v
s=1

1
r!s!

hp,γ1...γr
(tk+1,tk ) hq,ξ1...ξs

(tk+1,tk ) E{δxγ1
k,1 . . . δxγr

k,m
δxξ1

k,1 . . . δxξs
k,m
}+

−δnp
k+1δnq

k+1 + Rpq
k+1,

Pxz
k+1,ip =

∑v
r=1

∑v
s=1

1
r!s!
Φ

i,γ1...γr
(tk+1,tk )h

p,ξ1...ξs
(tk+1,tk ) E{δxγ1

k,1 . . . δxγr
k
δxξ1

k,m
. . . δxξs

k
}+

−δmi
k+1δnp

k+1,

Kk+1 = Pxz
k+1(P

zz
k+1)

−1,

m+
k+1 = m−

k+1 + Kk+1(zk+1 − n−
k+1),

P+
k+1 = P−

k+1 − Kk+1P
zz
k+1K

T
k+1,

(7)

where δnp
k+1 = hp(Φ(tk+1; m+

k
, tk), tk+1) − n−

k+1,p .

If the case of variables with Gaussian random distributions is considered, the higher-order moments E{δxγ1
k
. . . δxγp

k
}

can be completely described, at first, by the first two moments (i.e., mean and covariance), and can be easily computed

in terms of the covariance matrix using Isserlis’ formula on the monomials of the Taylor polynomial [15]. This is an

approximation of the actual propagated probability density function since, due to the nonlinear dynamics, the system

loses its Gaussian assumption. Finally, it is worth stressing that, in the DA framework, the high-order partials derivation

and integration, required by the standard HNEKF, is completely avoided.

IV. Unscented Kalman Filters
Differently from the HNEKF, the prediction step of the Unscented Kalman Filter (UKF) relies on the unscented

transformation (UT). Such transformation is based on the intuition that it is easier to approximate a Gaussian (probability)
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distribution than to approximate an arbitrary nonlinear function or transformation (see [16–18]). Following this

statement, the aim of the unscented transformation is to find a parametrization which accurately describes the mean

and the covariance information of the initial variable x and, at the same time, permits the direct propagation of the

information through the set of nonlinear equations (e.g. functions, transformations,..). In order to approximate the mean

m and covariance P of the m-dimensional state vector x, a set of 2m + 1 sigma points, collected in a structure X, are

exploited and computed as follows:

X {1} = m, (8)

X {i } = m + (
√
(m + λ)P )i−1, i = 2, ...,m + 1 (9)

X {i } = m − (
√
(m + λ)P )i−m−1, i = m + 2, ..., 2m + 1 (10)

where λ is a scaling parameter, while (
√
(m + λ)P )i is the ith row or column of the matrix square root of (m + λ)P.

Defining S such that P = SS, the matrix square root is computed through diagonalization:

P = VDV−1

= V

©­­­­­­­«
d11 . . . 0

0
. . . 0

0 . . . dmm

ª®®®®®®®¬
V−1

= V

©­­­­­­­«

√
d11 . . . 0

0
. . . 0

0 . . .
√

dmm

ª®®®®®®®¬

©­­­­­­­«

√
d11 . . . 0

0
. . . 0

0 . . .
√

dmm

ª®®®®®®®¬
V−1.

(11)

Therefore, the matrix square root of the covariance P can be obtained as:.

S = V

©­­­­­­­«

√
d11 . . . 0

0
. . . 0

0 . . .
√

dnn

ª®®®®®®®¬
V−1. (12)

So that:

SS = (VD1/2V−1)(VD1/2V−1) = P. (13)
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In this paper the Cholesky Matrix Square Root is adopted. This decomposition, often used in UKF implementation, is

efficient and stable, and thus particularly suitable for real-time estimation [19] [17].

Defined the sigma points, two weights are associated to each of them, computed as in Eqs. 14-15-16.

wm,1 =
λ

m + λ
, (14)

wP,1 = wm,1 + (1 − α2 + β), (15)

wm,i = wP,i =
1

2(m + λ), i = 2, ..., 2m + 1 (16)

wm,i is a weight referred to the mean, while wP,i is referred to the covariance. Parameters k ≥ 0 and α ∈ (0, 1] define

how far from the mean the sigma points are located. β is typically chosen equal to 2, since this value is the optimal

choice for Gaussian distributions. Finally, λ is a combination of the other parameters:

λ = α2(m + k) − m. (17)

It can be noted that there is no unique solution for the sigma points vector and the weights vectors, thus the sigma points

can (but do not have to) lie on the main axes of the covariance matrix. However, the selection must be such that the

following equations are respected:
2m+1∑
i=1

wi = 1, (18)

m =
2m+1∑
i=1

wm,iX {i }, (19)

P =
2m+1∑
i=1

wP,i(X {i } − m)(X {i } − m)T . (20)

The UKF prediction starts with a set of sigma points around the initial conditions, and their relative weights.

Afterwards, the set gets transformed by initializing each sigma point through the process model, giving the transformed

set (Eq. 21). Finally, the mean and the covariance of the propagated set is evaluated by weighting each transferred

sigma point (Eqs. 22-23).

X {i }
k+1 = Φ(tk+1;X {i }

k
, tk), (21)

m−k+1 =

2m+1∑
i=1

wm,iX {i }k+1, (22)

P−k+1 =

2m+1∑
i=1

wP,i{X {i }k+1 − m−k+1}{X
{i }
k+1 − m−k+1}

T . (23)
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The same approach is adopted for the measurement vector, where each sigma point goes through the observation model,

and then the predicted measurements are calculated:

Z {i }
k+1 = h(X {i }

k+1, tk+1), (24)

n−k+1 =

2m+1∑
i=1

wm,iZ {i }k+1. (25)

Since the observation noise is independent and additive, the covariance matrix of the measurement and the cross-

covariance matrix of the state and the measurement are evaluated as:

Pzz
k+1 =

2m+1∑
i=1

wP,i{Z {i }k+1 − n−k+1}{Z
{i }
k+1 − n−k+1}

T + Rk+1, (26)

Pxz
k+1 =

2m+1∑
i=1

wP,i{X {i }k+1 − m−k+1}{Z
{i }
k+1 − n−k+1}

T . (27)

This completes the UKF prediction process and the filtering can continue with the update equations of the classical

Kalman filter.

A. DA-based UKF

The UKF can be developed into the DA framework becoming the DA-based Unscented Kalman Filter (UKFDA).

This filter provides an improvement by reducing the computational time of the classical UKF when the equations of

motion are complex. DA is used to Taylor expand the function Φ: as a result, it builds an analytical map that connects

the state at time k with the state at time k + 1. The resulting polynomials can be evaluated to map the sigma points

through the model equations, replacing multiple integrations of Φ. Consequently, the DA-based approach tends to

outperform the classical one when the integration ofΦ is computationally demanding. The order at which the Taylor

polynomial is computed can be arbitrarily selected.

More specifically, at each step, the state x is initialized as DA variable around the current mean and propagated in the

DA framework through the equations of motions and of the measurements. Then the polynomials are evaluated at the

sigma points. The distance of each sigma point is known and given by the columns (or rows) of matrix S = ±
√
(m + λ)P.

The sigma points are propagated by simply evaluating the Taylor expansion at each column of S. As a results, the

UKFDA turns out to be faster than the plain UKF. Figure 3 gives a visual idea of the different propagation technique

used by the two unscented Kalman filters.
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Fig. 3 The propagation approaches of the sigma points in the UKF, classic, and UKFDA, through polynomial
transition map.

V. Relative Pose Estimation
This paper focuses on exploiting the proposed DA-based HNEKF and DA-based UKF to face the challenging

problem of estimating the spacecraft state for proximity operations during a rendezvous with an uncooperative target. In

particular, the ESA e.deorbit mission [13] is considered as reference and Envisat is selected as target satellite.

In the following analysis, some assumptions are made. Firstly, an a priori knowledge of both chaser and target is

assumed, i.e. the inertia properties are perfectly known. Secondly, the chaser motion is supposed to be deterministic

and, thus the related data are not affected by noise and uncertainties. Finally, neither flexible dynamics nor external

disturbances are considered. It should be noticed that neglecting external disturbances and flexibility implies the

decoupling of the relative translational and rotational dynamics.

A. Relative translational dynamics

The relative translational dynamic equations are developed in the local vertical local horizontal (LVLH) frame fixed

on the chaser. In this frame the target relative position rr and velocity vr can be defined as:

rr = x r̂ + yθ̂ + zĥ, (28)

vr = Ûx r̂ + Ûyθ̂ + Ûzĥ, (29)

where x, y and z are the three components of rr in the chaser LVLH frame and r̂ , θ̂ and ĥ are the versors of the

considered triad in the radial, transverse, and normal directions, respectively. The relative translational dynamics are

governed by the following equations [20]:

Üx − 2 Ûν Ûy − Üνy − Ûν2x = −µ(r̄ + x)/[(r̄ + x)2 + y2 + z2]3/2 + µ/r̄2, (30)
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Üy + 2 Ûν Ûx + Üνx − Ûν2y = −µy/[(r̄ + x)2 + y2 + z2]3/2, (31)

Üz = −µz/[(r̄ + x)2 + y2 + z2]3/2, (32)

where µ is the gravitational parameter, r̄ is the distance from the Earth center to the chaser and ν is the true anomaly.

Finally, the motion of the chaser is described by the following equations:

Ǖr = r̄ Ûν2 − µ/r̄2, (33)

Üν = −2 Û̄r Ûν/r̄ . (34)

B. Relative rotational dynamics

As for the rotational dynamics, the relative orientation of the body-fixed reference frame on the target with respect to

the body-fixed reference frame on the chaser can be described through a rotation matrix Γ. Consequently, the relative

angular velocity and acceleration of the target can be expressed as follows:

ωr = ωt − Γωc, (35)

Ûωr = Ûωt − Γ Ûωc + Ûωapp, (36)

Ûωapp = ωr × Γωc, (37)

where ωc and ωt are the angular velocity of the chaser and the target expressed in their body-fixed reference frame,

respectively, whereas ωr is the relative angular velocity expressed in the target body-fixed reference frame.

The relative attitude of the target can be described parameterizing the rotation matrix Γ. To this aim, the Modified

Rodrigues Parameters (MRP) are adopted in this study [21]. The MRP are related to quaternions and to the rotation

matrix by the following relations:

ζ =
q̃

1 + q0
, (38)
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Γ(ζ ) = I3 − αA
1 [ζ×] + α

A
2 [ζ×]

2, (39)


αA

1 = 4 1−ζT ζ
(1+ζT ζ)2

αA
2 = 8 1

(1+ζT ζ)2 ,

(40)

where ζ are the MRP, q̃ and q0 are the vector and scalar part of the quaternions, respectively, and I3 is the identity

matrix.

The time evolution of the MRP is governed by Eq. 41.

Ûζ = 1
4
Σ(ζ )ωr, (41)

Σ(ζ ) = (1 − ζT ζ )I3 + 2ζζT + 2[ζ×]. (42)

As for the dynamics, the chaser motion is described by the torque-free Euler equations, while the relative attitude

dynamics can be obtained substituting kinematics relationship in the Euler absolute equations of the target spacecraft.

The resulting dynamic system is:

Jt Ûωr + ωr × Jtωr = Mapp − Mg − Mci, (43)

Mapp = Jtωr × Γωc, (44)

Mci = JtΓ Ûωc, (45)

Mg = Mgc + Mgcoup, (46)

Mgc = Γωc × JtΓωc, (47)

Mgcoup = (ωr × JtΓωc + Γωc × Jtωr ), (48)

where Jt is the matrix of inertia of the target, Mapp is the apparent torques, Mci is the chaser-inertial torques and Mg is
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the gyroscopic torques.

C. Measurement model

In real applications, the image processing software is set up to look for some target points in each image taken:

these points are referred to as markers [22]. Therefore, a measurement model that considers marker positions instead of

directly states is developed. The software processes the image sent from the camera and analyses it: once the position of

the markers is found, it sends this information to the filter. A common solution is to select the target corners as markers.

Assuming to have information about Envisat’s mass, dimensions, center of mass (CM) location, moments of inertia,

geometrical center (GC) and volume[23], markers can provide information about the spacecraft position and attitude,

since their location with respect to the center of mass (%i), in the target body-fixed reference frame, is well known (see

Table 1).

Envisat main body, without the solar panel, can be described as a simple parallelepiped with 8 corners: these

corners have been selected as the filter markers. Each marker is called with an alphabetical letter in order to have a clear

identification: hence, there are Marker A, B, C, D, E, F, G, and H.

Marker %i [m]

A +8.9150 +1.3840 +1.5970
B +8.9150 +1.3840 -1.6030
C +8.9150 -1.3660 -1.6030
D +8.9150 -1.3660 +1.5970
E -1.1050 +1.3840 +1.5970
F -1.1050 +1.3840 -1.6030
G -1.1050 -1.3660 -1.6030
H -1.1050 -1.3660 +1.5970

Table 1 Assumed Envisat markers position vectors with respect to its center of mass.

Being rr the position vector of the target center of mass with respect to chaser center of mass, the measurements are

calculated separately for each single marker in the following way:

zi = Γ
T %i + rr, i = A, . . . ,H (49)

where zi is the position of marker i with respect to the chaser center of mass and the rotation matrix Γ comes from the

knowledge of the MRP. The visibility of the markers is assessed using the prior probability density function, where the

prediction of Γ directly connects to the markers that are seen by the camera. Therefore, the line of sight of the markers

is defined through a face visibility analysis, as shown later in the paper. Only the needed predicted measurements

are evaluated as in Eq. 49. Afterwards, noise is introduced additively as an exponentially correlated random variable
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according to the following model:

E(tk+1) = KE(tk) +
√

1 − K2 · N(0, σ), (50)

K = exp(−1/( f τ)), (51)

where E is the error with respect to the true states, N(0, σ) is a random number generated with a normal distribution of

zero mean and standard deviation σ, f is the measurement acquisition frequency and τ is the autocorrelation time. In

this model, the error at time k + 1 is exponentially correlated to the error at the previous instant, and this correlation

decays with a time scale defined by τ. Considering a camera, this seems to be a more reasonable model than the

Gaussian one, in which error values at different time instant are completely uncorrelated[24].

The presented measurement model is based on the position of the 8 corners of Envisat main body. However, the

camera is not able to locate all the markers position in one single frame due to the fact that Envisat structure will cover

some markers. The visibility and the correct association of a corner to the correspondent marker is fundamental since

larger is the number of located markers better is the estimation accuracy. Therefore, the markers visibility must be

assessed.

When thinking about visibility of the corners of a parallelepiped, it is better to understand which face of the

parallelepiped is visible and then associate the respective corners. Basically, there are only three different options: 1, 2

or 3 faces are visible, and thus 4, 6 or 7 markers are visible in each frame.

In order to implement this process, a set of unit vectors η̂i , with i = α, . . . , ζ indicating the faces, is defined in the

target body-fixed reference frame. In Table 2 the faces with the associated markers and unit vectors are listed.

The requirement for the face visibility is expressed by the following inequality:

rr · ΓT η̂i < 0. (52)

If the scalar product between the relative chaser-target position vector and the unit vector perpendicular to the face is

negative, it means that the face is looking forward the camera and the markers associated to the face are visible.

In the following, the performance of the filters will be assessed both exploiting the whole set of available markers,

which means a shape-shifting measurement vector that adapts to the number of visible markers for each acquisition, and

limiting the set to three markers, namely the minimum number to derive the target state.

In the latter case, the selection of the markers is based on a simple criterion: the filter has to work with the 3 markers

creating the triangle with the largest area on the plane of sight. The plane of sight, from now on called π1, is the plane

defined by the relative position chaser-target vector and passing through the target center of mass. This plane gives
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Face η̂i Markers Seen

α η̂α =
©­­«
1
0
0

ª®®¬ A - B - C - D

β η̂β =
©­­«
0
1
0

ª®®¬ A - B - E - F

γ η̂γ =
©­­«
0
0
1

ª®®¬ A - D - E - H

δ η̂δ =
©­­«
−1
0
0

ª®®¬ E - F - G - H

ε η̂ε =
©­­«

0
−1
0

ª®®¬ C - D - G - H

ζ η̂ζ =
©­­«

0
0
−1

ª®®¬ B - C - F - G

Table 2 Envisat main body faces and visible markers relations.

information on how the camera sees the target. Therefore, each marker is projected on π1 and its projection represents

the vertex of a number of triangles depending on the number of visible markers. Afterwards, the area of the triangles is

evaluated and the maximum one is selected.

The marker projection is performed as follows:

bi =
rr
| |rr | |

· ΓT %i . (53)

%̃i = Γ
T %i − bi

rr
| |rr | |

, (54)

where %̃i is the vector projection of the marker i on π1, and bi is the scalar projection of the marker vector %i on direction
rr
| |rr | | .

In order to identify the markers forming the triangle with the maximum area, it is convenient to notice that Envisat

geometrical model is a slender parallelepiped with one predominant principal inertia axis υ̂, expressed here in the chaser

body-fixed reference frame, and subdivide the markers into two groups at the ends of this axis: the master group and

slave group. The former group presents more visible markers that the latter one. Then, it is possible to define a line l

through a versor υ̃ obtained by projecting the axis υ̂ on plane π1, as reported in Eq. 55.
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υ̃ = υ̂ − ( rr
| |rr | |

· υ̂) rr
| |rr | |

. (55)

The markers combination that has the triangle with the largest area can be directly found by selecting the two furthest

marker projections from line l in the master group and the nearest marker projection in the slave group. The distance

di of each marker projection from line l is evaluated in the following way:

di = | |%̃i ∧ υ̃ | |. (56)

Virtually, 56 combinations of 3 markers can be identified (binomial coefficient of 8 over 3), since the total number

of markers is 8. However, some combinations are physically impossible due to Envisat geometry model, i.e. opposite

markers can not be visible at the same time. Hence, there are 4 pairs of markers that will never be part of the same

group: AG, BH, CE and DF, and they lead to a total of 24 impossible combinations. Moreover, 3 markers belonging

to the same side of the parallelepiped can not be chosen, and thus only 24 combination are actually allowed. Table 3

reports and classifies all the combinations of 3 markers.

Groups

ABG ACG ADG AEG AFG AGH ABH BCH
impossible BDH BEH BFH BGH ACE BCE CDE CEF

CEG CEH ADF BDF CDF DEF DFG DFH
forbidden ABC ABD BCD ACD EFG EFH FGH EGH

ABE ABF BCF BCG CDH CDG ADE ADH
allowed ACF ACH BDE BDG AEF BEF BFG CFG

CGH DGH AEH DEH BEG DEG AFH CFH
Table 3 Classification of all possible combination of 3 markers.

D. Software architecture

Fig. 4 reports the software architecture, which is made up of three main blocks. The first one is the "dynamics

simulator+noise generator" that receives as inputs the initial states, then propagates the dynamics through a variable-step

integrator (Runge-Kutta78) and generates the measurements adding noise computed with the exponentially correlated

random model. These computations are performed in advance and the outputs are loaded in memory before running the

filter.

For the filtering, the decoupling of the equations of motion can be exploited to separate the propagation of the

two dynamics, translational and rotational, leading to a faster and more efficient algorithm. In this case a fixed-step

integrator is used, because computationally lighter. On the other hand, as regards the estimation of the measurements,

the translational and rotational information has to be used jointly, since the measurement equations are coupled.
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Fig. 4 Software architecture.

The filter is initialized providing an initial estimate of the relative states in terms of mean and covariance. Moreover,

before starting the estimation, the filter uses the information of the previous step to calculate the markers visibility.

Finally, the estimated relative state is compared with the true state propagated by the dynamics simulator to assess

the performance of the filters.

VI. Results
In the numerical analysis, the chaser and the target are assumed to be on the same orbit at a reasonable distance for a

proper functioning of the camera. The initial conditions of the relative states are reported in Table 4. The attitude is

initialized randomly, while the angular velocity is selected in order to have an absolute value of about 2.5 deg/s.

The assessment of the performance of the DA-based HNEKF is limited to the use of first and second order expansions

in the following analyses. Indeed, no relevant improvement is obtained with higher orders, since Kalman filters are

based on a Gaussian representation of the propagated uncertainties[12].

Tr. Dyn. Rot. Dyn.

x (m) -0.002 φ (rad) 1.66
y (m) -31.17 θ (rad) 2.27
z (m) 0 ψ (rad) -0.38
Ûx (m/s) -3.5e-6 ωr,x (rad/s) 0.02
Ûy (m/s) -2.0e-6 ωr,y (rad/s) 0.02
Ûz (m/s) 0 ωr,z (rad/s) 0.04

Table 4 Initial conditions.
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Dynamics Sensors Frequency

σrr ,0 (m) K*1 σs
x,y (m) 0.02 0.05 Hz to 3 Hz

σvr ,0 (m/s) K*0.1 σs
z (m) 0.03

σζ,0 () K*0.002 0.05 Hz to 3 Hz
σωr ,0 (rad/s) K*0.01

K = [1,5,10]
Table 5 Sensitivity to acquisition frequency, initial velocity and angular velocity uncertainty.

A. Accuracy and robustness analysis

Before presenting the results, some comments are provided to guide the reader through the following analyses.

First, the target velocity can be assumed to be the most uncertain variables since neither a priori knowledge nor

direct measurements are available. Then, when limited-resource systems are considered, low measurement acquisition

frequency could be imposed or at least beneficial. Therefore, a Monte Carlo-based sensitivity analysis is carried out

to assess the robustness of first and second order filters with various acquisition frequencies and initial uncertainty

reported in Table 5, with σi,0 and σs
i being the initial standard deviation and the sensor standard deviation, respectively,

of the variable i.

For each case, 1000 samples are generated around the true initial conditions, according to the statistics, and then the

furthest 100 are selected and used as initial estimate of the relative state in the filter. This choice is motivated by the will

to study the worst circumstances, in which the nonlinearities are expected to play a prominent role.

Afterwards, the performance are quantified by means of some statistical indexes, reported in Eqs. (57) and (58).

f ilter µ̄ =

∑100
i=1 RMSEi

100
(57)

f ilterσµ̄ =
[∑100

i=1( f ilter µ̄ − RMSEi)2

100

] 1
2 (58)

RMSEi is the root mean square error of the estimated variables computed at steady state for the ith simulation, f ilter µ̄

and f ilterσµ̄ are the mean and the standard deviation of RMSE, respectively. Fig. 5 provides a deeper insight of the

indexes: µ̄ gives the mean accuracy of the filter, while σµ̄ quantifies the dispersion around the mean. If the standard

deviation is high, the final accuracy strongly depends on the estimate of the initial conditions and thus large initial errors

may result in bad performance or even failure. The statistical indexes are computed considering only the simulations

that converge reaching a final error at steady state one order of magnitude lower than the initial error.

In the following, the case with 3 markers is deeply analyzed because it is the most significant. The results and

conclusions considering the case with the whole set of markers are basically the same, since the extended set just slightly
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Fig. 5 Graphical representation of the statistical indexes.

improves the accuracy of the filters.

The translational dynamics is almost static and linear since the two spacecraft are very close on the same orbit,

which is nearly circular. In [12], it is shown that high-order filters do not provide better performance with respect to

the linear one, which is already capable of following the dynamic evolution. However, differently from [12], here the

measurement equations are nonlinear and coupled. In particular, the performance of the translational filter strictly

depends on the performance of the rotational one. Indeed, the rotational states are the most demanding ones to be

estimated, due to the high nonlinearities in the dynamics. At the higher acquisition frequencies, both first and second

order filters provide good performance with the similar error at steady state, which is in the order of 10−4 m for the

position and 10−7 m/s for the velocity. The estimation of the translational states deteriorates at lower frequency due to

the coupling with the rotational states. Consequently, the rotational filter is deemed to deserve a deeper study, which is

reported in the following. In Fact, as already stated, the nonlinearities affect the estimation more significantly, especially

in case of high uncertainties and low observability of the system, and thus it merits a more detailed analysis.

From now on, the first and second order DA-based HNEKF are referred to as EKFDA1 and EKFDA2, respectively,

while the DA-based UKF is referred to as UKFDA2 since it exploits a second order Taylor expansion of the flow.

From Tables 6-7, it can be noticed that filters do not show significant difference in the performance for low

uncertainties and high acquisition frequency. However, the situation changes moving to high uncertainties and low

frequency. Especially, it can be observed how the convergence was not achieved with the EKFDA (both 1 and 2) in the

case with frequency 0.05 Hz and K = 10 and fewer samples reached convergence for similar scenarios. The UT-based

filters have higher convergence rate of samples at low frequency with respect to DA-based HNEKF filters, but the

EKFDA2 still shows slightly better accuracy. On the other hand, the EKFDA1 is the least accurate filter. Indeed, even if

the improvement gained by high order filters in terms of the mean error accuracy is not so relevant, EKFDA1σµ̄ shows
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Modified Rodrigues Parameters Relative Angular Velocity (rad/s)
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10

EKFDA1 µ̄

0.05 9.29e-4 2.54e-3 - 0.05 1.78e-5 4.15e-5 -
0.1 4.47e-4 1.05e-3 2.43e-3 0.1 1.17e-5 2.02e-5 2.96e-5
0.5 8.68e-5 1.08e-4 3.07e-4 0.5 1.30e-6 2.20e-6 7.12e-6
1 6.74e-5 7.66e-5 1.27e-4 1 4.36e-7 8.58e-7 2.50e-6
3 8.51e-6 1.40e-5 3.46e-5 3 1.30e-7 3.17e-7 9.88e-7

EKFDA1σµ̄
0.05 1.43e-4 1.02e-3 - 0.05 5.60e-6 1.76e-5 -
0.1 8.46e-5 7.98e-4 1.65e-3 0.1 3.23e-6 2.11e-5 1.71e-5
0.5 3.22e-6 4.12e-5 3.42e-4 0.5 1.52e-7 1.36e-6 7.88e-6
1 3.03e-6 2.29e-5 9.79e-5 1 1.66e-8 5.68e-7 2.94e-6
3 4.48e-7 7.83e-6 3.60e-5 3 1.08e-8 2.63e-7 1.21e-6

EKFDA2 µ̄

0.05 9.12e-4 1.76e-3 - 0.05 2.05e-5 2.42e-5 -
0.1 4.55e-4 8.15e-4 1.71e-3 0.1 1.24e-5 1.80e-5 3.14e-5
0.5 8.80e-5 1.07e-4 2.95e-4 0.5 1.37e-6 2.16e-6 6.83e-6
1 6.46e-5 7.34e-5 1.24e-4 1 4.41e-7 8.38e-7 2.45e-6
3 7.76e-6 1.31e-5 3.36e-5 3 1.25e-7 3.04e-7 9.68e-7

EKFDA2σµ̄
0.05 4.42e-5 3.48e-4 - 0.05 2.64e-6 8.49e-6 -
0.1 1.93e-5 5.00e-4 1.58e-3 0.1 9.24e-7 1.27e-5 3.33e-5
0.5 3.44e-6 3.87e-5 3.23e-4 0.5 1.57e-7 1.29e-6 7.48e-6
1 3.07e-6 2.24e-5 9.64e-5 1 2.49e-8 5.34e-7 2.89e-6
3 3.50e-7 7.58e-6 3.57e-5 3 6.71e-9 2.54e-7 1.20e-6

UKFDA2 µ̄

0.05 9.12e-4 2.19e-3 2.67e-3 0.05 1.89e-5 3.96e-5 4.82e-5
0.1 4.53e-4 1.06e-3 2.42e-3 0.1 1.20e-5 1.94e-5 3.91e-5
0.5 8.79e-5 1.08e-4 3.00e-4 0.5 1.37e-6 2.21e-6 6.98e-6
1 6.47e-5 7.38e-5 1.24e-4 1 4.42e-7 8.39e-7 2.46e-6
3 7.76e-6 1.31e-5 3.38e-5 3 1.25e-7 3.03e-7 9.69e-7

UKFDA2σµ̄
0.05 9.99e-5 1.39e-3 1.32e-4 0.05 2.98e-6 4.46e-5 2.16e-5
0.1 7.22e-5 8.90e-4 1.77e-3 0.1 3.17e-6 1.55e-5 3.70e-5
0.5 3.53e-6 4.04e-5 3.29e-4 0.5 1.59e-7 1.35e-6 7.60e-6
1 3.07e-6 2.24e-5 9.67e-5 1 2.48e-8 5.46e-7 2.90e-6
3 3.50e-7 7.58e-6 3.57e-5 3 6.72e-9 2.54e-7 1.20e-6
Table 6 3 markers: sensitivity analysis for rotational dynamics.
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EKFDA1 EKFDA2 UKF UKFDA2
Freq. K K K K
(Hz) 1 5 10 1 5 10 1 5 10 1 5 10
0.05 8 5 0 8 7 0 11 8 2 11 8 2
0.1 58 30 11 63 72 27 57 41 16 57 41 16
0.5 100 100 100 100 100 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100 100 100 100

Table 7 3 markers: success rate for each combination of frequency and amplitude factor, for rotational
dynamics.

marked higher values, namely an higher dispersion of the final error. This means that, in case of large deviations from

the true initial conditions, the first order filter performance deteriorates leading to final estimates worse than the second

order filters. To visualize this result, see Fig. 6. Note that in Fig. 6 all the simulations that converge are reported to

highlight the concept.

Hence, it is clear that filters that work with the full knowledge of the first two moments perform better with respect

to the filter based on linearization. Among them, EKFDA2 seems to appear the filter with the best accuracy, especially

for low frequencies and high uncertainties, indeed it presents lower standard deviations.

The filters based on the UT, i.e. UKF and UKFDA2, provide the same results: their difference is not at the accuracy

level but on the computational time required by the filter itself, as it will be shown later. In fact, the introduction of the

DA inside the UKF has the purpose of implementing a faster filter, while the accuracy is not improved.

For completeness, Table 8 reports the results considering the whole set of visible markers; as already explained, the

conclusions that can be drawn are the same of the 3-markers case.

B. Computational time

Table 9 shows the software computational time performed on a 3000 seconds simulation. The characteristic time

used to describe the performance of the filters at each frequency is evaluated as a mean among all the simulations in

which the error converges. The computational mean time is evaluated in the following way:

Ψf =

∑3
j=1

∑κ f , j
i=1 τf , j,i

κ f , j

3
, (59)

where Ψf is the computational mean time associated to frequency f = [0.05, 0.1, 0.5, 1, 3]Hz; j indicates the

amplification factor K of the simulation ( j = 1 → K = 1, j = 2 → K = 5, j = 3 → K = 10); κ f , j is the number of

simulations in which convergence is achieved with frequency f and amplification factor j; and τi, j,k is the computational

time of the ith sample in simulation ( f , j). The graph in Fig. 7 (left) is a graphical representation of the computational
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Fig. 6 EKFDA1 and EKFDA2 accuracy for the whole set of 100 samples in the case with frequency 0.05 Hz
and K = 1 for the relative position and MRP.

time behavior of the filters at different frequencies in the case where all the visible markers are used as measurement.

The computational time is the running-time on an Intel Core i7-6700K processor with a total of 4 cores @ 4.0 GHz and

16 GB of RAM.

Fig. 7 All visible markers: mean computational time of the filters at different frequencies (left) and UKFDA2
prediction step time saving percentage over UKF (right).
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Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10

EKFDA1 µ̄

0.05 8.90e-4 1.98e-3 5.13e-3 0.05 1.82e-5 3.48e-5 4.31e-5
0.1 4.43e-4 1.33e-3 2.64e-3 0.1 9.46e-6 2.51e-5 3.24e-5
0.5 9.46e-5 1.06e-4 2.27e-4 0.5 1.93e-6 2.31e-6 5.37e-6
1 5.16e-5 5.39e-5 6.87e-5 1 3.93e-7 5.30e-7 1.11e-6
3 9.44e-6 1.06e-5 1.44e-5 3 1.52e-7 1.95e-7 3.55e-7

EKFDA1σµ̄

0.05 1.49e-4 6.31e-4 3.34e-4 0.05 3.84e-4 1.94e-5 3.79e-5
0.1 6.96e-5 1.17e-4 2.20e-3 0.1 2.75e-6 2.40e-5 2.46e-5
0.5 1.81e-6 3.27e-5 2.13e-4 0.5 8.81e-8 1.01e-6 4.48e-6
1 1.24e-6 8.82e-6 3.27e-5 1 1.21e-8 2.07e-7 9.52e-7
3 1.37e-7 1.44e-6 7.30e-6 3 6.16e-9 6.63e-8 2.79e-7

EKFDA2 µ̄

0.05 9.36e-4 1.21e-3 2.82e-3 0.05 2.35e-5 2.51e-5 2.17e-5
0.1 4.49e-4 7.60e-4 1.23e-3 0.1 1.05e-5 1.64e-5 2.24e-5
0.5 9.46e-5 1.04e-4 2.13e-4 0.5 1.96e-6 2.25e-6 5.01e-6
1 5.07e-5 5.30e-5 6.79e-5 1 3.88e-7 5.24e-7 1.10e-6
3 9.17e-7 9.98e-6 1.41e-5 3 1.49e-7 1.91e-7 3.50e-7

EKFDA2σµ̄

0.05 1.54e-5 4.01e-4 2.21e-3 0.05 6.56e-7 6.79e-6 8.79e-6
0.1 9.47e-6 6.23e-4 1.10e-3 0.1 4.29e-6 1.19e-5 2.38e-5
0.5 1.75e-6 3.05e-5 1.96e-4 0.5 8.47e-8 9.51e-7 4.17e-6
1 1.23e-6 8.67e-6 3.24e-5 1 1.03e-8 2.02e-7 9.41e-7
3 1.23e-7 1.38e-6 7.25e-6 3 5.58e-9 6.45e-8 2.77e-7

Table 8 All visible markers: sensitivity analysis for rotational performance.

The linear filter EKFDA1, as expected, is the fastest one. The EKFDA2 is the filter with the most demanding

computational time at high frequency, while it is faster than standard UKF at very low frequency. The UKFDA2 has

nearly the same trend of the UKF but it requires less time. Therefore, the improvement of including DA in the UT is

evident: the two filters have the same accuracy, but the one based on DA is faster in the whole frequency range. The

histogram in Fig. 7 (right) emphasizes the computational advantage gained by the DA implementation of the UKF. Each

bar represents the percentage of workload saved by UKFDA2 (over the UKF) during all the prediction steps, for each

simulation at different acquisition frequencies.

Looking at Table 9, the overall simulation time has decreased, for each filter and for all the frequencies, in the

3 markers limitation cases. The EKFDA1 is always the fastest filter, followed by UKFDA2 with almost double

computational time. The main difference between the all-markers simulation and the 3-markers one lies in the

comparison between EKFDA2 and UKF. The reduced length of the measurement vector implies a faster inversion of the
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Freq. EKFDA1 EKFDA2 UKF UKFDA2
(Hz) Ψf (s) Ψf (s) Ψf (s) Ψf (s)

All Markers
0.05 1.47 5.84 8.06 2.41
0.1 1.67 6.70 8.50 2.69
0.5 3.23 13.88 12.47 5.66
1 5.18 22.43 17.23 9.31
3 11.54 50.13 29.16 21.94

3 Markers
0.05 1.40 5.49 7.98 2.23
0.1 1.53 6.00 8.26 2.41
0.5 2.93 10.19 11.15 4.22
1 3.37 15.25 14.29 6.43
3 6.23 30.10 20.43 13.31
Table 9 Computational time analysis of the filters.

measurement covariance matrix, which is the most time demanding passage in the DA-based filter. Therefore, for the

3 marker simulation, the EKFDA2 reduces its computational time as the frequency decreases with a stronger slope

compared to the UKF. As a result, EKFDA2 and UKF have almost the same computational time near 1 Hz and the UKF

becomes the most demanding filter, in terms of time, at lower frequencies.

C. Acquisition Failure

Measurement failures can be critical in sequential state estimation application; indeed, the lack of proper data

management could lead to an unforeseen behavior of the filters. Therefore, in this section, the filters are tested against

marker position data failure.

Considering a set of 3 markers, 8 different situations can arise, depending on the number of markers not recognized.

Indeed, using a binary notation where 1 identifies acquisition failure and 0 identifies the correct acquisition, the 8

combinations of failures are 111 - 100 - 010 - 001 - 110 - 101 - 011 - 000. Given a failure probability level, p = 20%, it

is possible to calculate the probability of having a certain amount of failures in the set of 3 markers. Defining with α the

number of markers not recognized, then the probability of having α misrecognition in a set, Pα, is evaluated according

to the following equation:

Pα = [pα(1 − p)(N−α)]γ, (60)

where N , number of elements, is in this case 3 since the set includes 3 markers, and γ is an integer number that indicates

how many combination of failures having α markers not recognized are possible.

In table 10, it can be seen that only half of the time steps work without any failure (with probability threshold p),
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α γ Pα
3 1 0.80%
2 3 9.60%
1 3 38.40%
0 1 51.20%

Table 10 Probability of failures in a set of 3 markers.

and that the failure set of probability Pα follows Eq. 61.

N∑
α=0
Pα = 1 (61)

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10

EKFDA2 µ̄

0.05 9.88e-4 1.82e-3 2.54e-3 0.05 2.09e-5 2.17e-5 1.69e-5
0.1 4.66e-4 1.11e-3 1.42e-3 0.1 1.16e-5 1.99e-5 2.22e-5
0.5 9.97e-5 1.63e-4 5.71e-4 0.5 1.55e-6 3.72e-6 1.19e-5

EKFDA2σµ̄

0.05 1.37e-4 7.87e-4 0 0.05 2.62e-6 3.85e-6 0
0.1 7.29e-5 9.21e-4 1.31e-3 0.1 2.76e-6 1.56e-5 1.98e-5
0.5 1.96e-5 1.46e-5 8.76e-4 0.5 4.93e-7 3.90e-6 1.71e-5
Table 11 Sensitivity analysis for rotational dynamics with failure.

EKFDA1 EKFDA2 UKF UKFDA2
Freq. K K K K
(Hz) 1 5 10 1 5 10 1 5 10 1 5 10
0.05 3 3 0 6 6 1 9 2 1 10 4 1
0.1 48 24 10 63 51 20 58 31 13 58 31 13
0.5 100 100 89 100 100 94 100 100 93 100 100 93

Table 12 Success rate for each combination of frequency and amplitude factor, considering failures, for
rotational dynamics.

Table 11 shows that, as expected, failures affect negatively the filters performance. Robustness to acquisition failures

has been tested at low frequency, where the lack of measurement becomes more relevant. Only the results of the

EKFDA2 are reported to give a comparison with respect to the case without failures. It can be observed that the accuracy

decreases in terms of both the mean value and standard deviation of the RMSE. However, the main difference is in the

latter one. In fact, the RMSE standard deviation considerably increases, which means that, due to the stochastic nature

of the failures, the convergence of one single run highly depends on when and where the failure occurs. Moreover,
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looking at Table 12 it can be noticed that the success rate of all the filters decreases further at low frequency.

The performance comparison among the filters presents the same behavior described in the simulations with no

failures. However, the difference between high order filters and the classical EKF is here more marked, especially in the

ability of high order filters to be more robust and consistent. Indeed, the EKFDA1 achieves convergence, but it tends to

show anomalous behaviors, meaning less robustness to failures.

VII. Conclusion
In this paper different nonlinear filtering techniques based on DA have been proposed with the aim of estimating,

onboard, 6DoF state. The problem of real-time relative pose estimation during proximity operations has been considered

as target application, using the e.deorbit mission with the target Envisat as reference scenario. In particular, a DA-based

HNEKF and DA-based UKF have been developed, analyzed and compared. The results show that second order

filters guarantee higher level of robustness and accuracy with respect to first order one, especially for relatively large

initial errors and uncertainties, or for relatively low acquisition frequencies. Nevertheless, the second order filters

outperform the first order filter in terms of final error dispersion and robustness to failure. Finally, it has been proven

that the implementation of the UKF in the DA framework, limited to the 2nd order, reduces the computational weight,

providing a markedly faster algorithm. Moreover, the UKFDA2 turns out to be almost as accurate as the EKFDA2, but

computationally lighter.
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