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Abstract

A coupling method is presented that aims at computing the dynamics of
constrained mechanical systems connected by algebraic constraints. A relaxed
coupling method is proposed, where each subsystem is reformulated as a set of
ODEs and solved with an iteration process. The method is straightforward to
implement, also for parallelization. The core idea is to eliminate the Lagrange
multipliers of the DAEs that describe the constraint dynamics of each subsys-
tem using a proper constraint stabilization technique. A linear combination of
the constraint equations at position and velocity level is enforced, to prevent the
occurrence of numerical drifting. The associated stabilization parameter is cho-
sen in relation to the time step size. The effectiveness of the proposed approach
is verified by solving a three-dimensional problem with rigid and flexible bod-
ies. The results show that the method is effective in co-simulating algebraically
constrained mechanical systems.
Keywords: constrained mechanical systems; flexible systems; algebraic con-
straints; ordinary differential equations; co-simulation

1 Introduction

Coupling techniques, also called co-simulation, have been successfully developed
in the past decades; for an accurate description of the state of the art, one can
refer to [1–3]. Co-simulation approaches have been widely applied to multidisci-
plinary problems, such as fluid/structure interaction [4–7], vehicle dynamics [8–10],
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coupled multibody and hydraulic systems [11, 12], and coupled particle model and
multibody system dynamics [13, 14]. Co-simulation approaches are also success-
fully used in mono-disciplinary areas [15–21]. In the field of multibody systems,
co-simulation is often used to parallelize computations, optimizing the use of com-
puter resources and reducing the complexity of the problem [22].

Recently, many researchers focused on algorithms for coupling already distributed
subsystems, either by algebraic constraint equations [17, 23–28] or by constitutive
equations [20,29–32]. In addition, in terms of the computation sequence of the sub-
system integration, the coupling schemes can either be parallel, namely the Jacobi
scheme, or sequential, such as Gauss-Seidel’s. The basic idea of coupling (or gluing)
distributed subsystems is to exchange information at the interface of the subsys-
tems. In this context, information is either one of the displacements, velocities, and
accelerations of the interface or the action-reaction forces at the interface. Such in-
formation is subsequently updated iteratively to satisfy coupling conditions, which
are either equilibrium or compatibility conditions. The advantage of this perspec-
tive is that only interface information is transmitted between the coupled subsys-
tems, preserving the independence of each subsystem. Drawback are the potential
loss of algorithmic stability and the complexity of the algorithms themselves. For
example, [27] reports that “... the implementation of the method is more compli-
cated [...] the time step size for the subsystem integration has to be chosen properly
to correctly calculate the coupling Jacobian”.

The methods above are successfully applied to the co-simulation of rigid sys-
tems in MBD [23–32]. In contrast, investigations on co-simulating an MBD system
with flexible bodies are rarely found in the literature; some relevant research can be
found in [24, 35]. In flexible systems, if flexible joints are in the coupling condition
among DAE subsystems, which is usually necessary with the gluing co-simulation
technique, the algorithm will likely fail to converge in practical applications. In [24],
for a planar four-bar mechanism with one flexible bar, the equations of motion of
both subsystems are first reduced to ODEs before applying the above gluing co-
simulation technique. In [35], in the case of an elastic multibody chain, the effects of
flexible joints are incorporated into differential equations with an explicit solution
of joint constraint forces. Besides, although planar MBD systems were frequently
studied in the field of co-simulation, research on spatial problems is less frequent;
some can be found in the literature [36, 37]. Flexible mechanical systems, which
exhibit more complexity than planar ones in terms of both rotation description and
deformation of flexible bodies, received less attention; relevant research is discussed
for example in [38].

Here, an alternative perspective is considered to handle a general spatial MBD
system with rigid and flexible bodies. This alternative is to partition the whole sys-
tem into several subsystems and exchange the information of generalized coordi-
nates and velocities at the communication macro-time nodes in an iterative pro-
cess during each time step. The strategy takes advantage of parallel computing
that enables large scale multibody systems to be simulated with ready-made par-
allel algorithms and machines. In this light, research was done in the past decades
[33–35,39,40]. In particular, the waveform relaxation (WR) method, which was orig-
inally applied to the parallelization of large-scale integrated circuits in [41], was ex-
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tended by Leimkuhler to solve DAEs of constrained mechanical systems [39]. For a
pair of multibody systems, the governing equations of subsystem i (i = 1,2) are

Mi q̈i +cT
i qi
λi = Fi

ci = 0

where M is the mass matrix, q is the vector of the generalized coordinates, F is the
vector of the generalized forces,λ is the vector of the Lagrange multipliers, and c de-
notes the vector of the constraint equations. If two subsystems are coupled through
force terms F1 and F2, applying the WR iteration leads to

Mk+1
1 q̈k+1

1 +cT
1q1
λ1 = F1(t ,qk+1

1 , q̇k+1
1 ,qk

2 , q̇k
2 )

c1(qk+1
1 , t ) = 0

(1)

and
Mk+1

2 q̈k+1
2 +cT

2q2
λ2 = F2(t ,qk+1

2 , q̇k+1
2 ,qk

1 , q̇k
1 )

c2(qk+1
2 , t ) = 0

(2)

where k is the iteration counter. To advance one time step forward, iterations are
mandatory. During each iteration, the coupling information of the subsystem comes
from the previous results of the other subsystem. This method was demonstrated
feasible for subsystems coupled by constitutive equations. However, for subsystems
coupled through constraint equations, a case of interest in many multibody prob-
lems, this strategy of splitting systems at constraint interfaces while applying the
WR method will fail to converge. As recommended by Tseng and Hulbert in [23],
one remedy could be to replace DAEs with ODEs before applying WR. Following this
idea, if the subsystems’ dynamics can be expressed as ODEs, applying a WR iteration
method will yield

Mk+1
1 q̈k+1

1 = Q1(t ,qk+1
1 , q̇k+1

1 ,qk
2 , q̇k

2 ) (3)

and
Mk+1

2 q̈k+1
1 = Q2(t ,qk+1

2 , q̇k+1
2 ,qk

1 , q̇k
1 ) (4)

Along these lines, a potentially applicable method is proposed in the present work.
The proposed co-simulation method is based on a set of ODEs and employs

ODE integration schemes to conduct a relaxed coupling process based on the Gauss-
Seidel scheme. Constrained mechanical systems with rigid and flexible bodies are
considered here, formulated as index-3 DAEs. The Lagrange multipliers in the DAEs
are eliminated by adopting a constraint stabilization technique. The numerical re-
sult is free from drift, since the constraint equations at position and velocity level
are enforced through stabilization. Also, the mass matrices of the constrained sys-
tems in both rigid and flexible cases can be assumed to be constant during the co-
simulation, such that they can be calculated and stored beforehand. Another ad-
vantage is that when implicit integration schemes are used, a numerically evaluated
Jacobian matrix can often replace the analytical one without impacting the accuracy
of the solution, since the value of the stabilization parameter is related to the time
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step size. For complex three-dimensional problems, where the derivation of the an-
alytical Jacobian matrix can be highly intricate, this benefit is of particular signifi-
cance. Although the simplicity of implementation with good numerical behaviour
is achieved, the proposed method also suffers from some drawbacks. The method
requires the iterative update of the variables exchanged between subsystems, which
may not be possible in co-simulation environments that do not allow rollback.

The paper is structured as follows: Section 2 presents a review of the governing
equations for constrained rigid and flexible bodies based on the Lie group method-
ology. Stabilized index-2 DAEs are correspondingly obtained, using the algorithm
proposed by Gear et al. [42]. Only holonomic constraints are considered. Section 3
illustrates the derivation of ODEs from index-2 DAEs using a constraint stabilization
technique. In Section 4, a monolithic system is partitioned into ODE subsystems,
and the co-simulation implementation details are given. Section 5 presents three-
dimensional numerical examples. Finally, conclusions are drawn in Section 6.

2 Problem Formulation

This section describes the formulation of the constrained dynamics of rigid and flex-
ible bodies. The well-known Floating Frame of Reference Formulation (FFRF) and
the Absolute Nodal Coordinate Formulation (ANCF) [45] are used in the latter case.
They are briefly recalled in the following, along with the formulation of the dynam-
ics of a rigid body, to show how these modeling paradigms can be all cast within the
frame of the proposed co-simulation approach.

2.1 Dynamics of a Rigid Body

The global position of an arbitrary point P on a rigid body is expressed as

rp = r(t )+A(t )u0

where r is the position vector of the center of mass and u0 is the position of point P
in the reference coordinate system; A is the orientation matrix. Considering a matrix
R constructed by

R = AT (tk )A(t ) (5)

where time t is at the vicinity of discrete time node tk , it is directly verified that

{RT R = I, det(R) = 1} ⇒ R ∈ SO(3)

Then the matrix R can be parameterized by

R(t ) = exp(θ̃) (6)

where the operator (̃·) denotes the skew symmetric matrix constructed from the cor-
responding three-dimensional vector; θ is the rotation increment from time tk that
defines the Lie group algebra θ̃; and the rotation increment exp(θ̃), with

exp(θ̃) = I3 + sin(|θ|)
|θ| θ̃+ 1−cos(|θ|)

|θ|2 θ̃θ̃
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Replacing the matrix R in Eq. (5) with the right hand side of Eq. (6) yields

A(t ) = A(tk )exp(θ̃) (7)

One can refer to [60] for related details.
The velocity of an arbitrary point P can be expressed as

ṙp = ṙ+ Ȧu0 = ṙ−Aũ0ω

where ω is the angular velocity vector, resulting from the time derivative of the ori-
entation matrix,

ω̃= AT Ȧ (8)

The angular velocity can be expressed as a function of the time derivative of the
rotation θ according to

ω= G(θ)θ̇ (9)

with

G(θ) = I3 + 1−cos(|θ|)
|θ|2 θ̃+ |θ|− sin(|θ|)

|θ|3 θ̃θ̃

Matrix G becomes singular for |θ| = 2nπ (n ∈ N+) in each time step. The singularity
of matrix G(θ) is avoided here as long as the incremental rotation is limited, namely
|θ| < 2π, which is usually the case (actually, |θ| ¿ 2π) when acceptable accuracy is
sought.

Therefore, the kinetic energy of a rigid body can be written as

K = 1

2

∫
V
ρṙp · ṙp d v = ṙT 1

2

∫
V
ρI3d v

m

ṙ+ 1

2
ωT

∫
V
ρũT

0 ũ0d v

J

ω= 1

2
ṙT mṙ+ 1

2
ωT Jω

where the component of matrix m is the mass of the body, and the matrix J is the
centroid principal axes of inertia moment. In analogy with the equality ω = Gθ̇ of
Eq. (9), the virtual rotation can be expressed as δπ= Gδθ. The virtual work done by
an arbitrary force f and an arbitrary torque t is

δW = δrT f+δπT t = δrT f+δθT GT t

Hence, the generalized forces with respect to the virtual displacements δr and δθ

are f and GT t, respectively. The Lagrange equations of the first kind yield a set of
DAEs for the constrained dynamical system

mr̈+
(
∂c

∂r

)T

λ= f, GT
{

Jω̇+ ω̃Jω
}+(

∂c

∂θ

)T

λ= GT t (10)

where c denotes the constraint equation and is assumed to be holonomic for sim-
plicity in this work; λ represents the related vector of Lagrange multipliers. Due to

the equality
∂c

∂θ
= ∂c

∂π

∂π

∂θ
= ∂c

∂π
G, substituting it in the second of Eqs. (10) and col-

lecting matrix GT yields

GT
{

Jω̇+ ω̃Jω+
(
∂c

∂π

)T

λ
}
= GT t
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Since matrix G is a function of a relative rotation vector θ, as in Eq. (9), it will not
become singular as long as |θ| < 2π. Thus, premultiplication by matrix GT can be
eliminated from both sides of the equation without affecting the solution. It is worth
noticing that this operation transforms the equilibrium of generalized forces, ener-
getically conjugated with the virtual perturbation of the rotation parametersδθ, into
true moment equilibrium equations, energetically conjugated with the virtual rota-
tions δπ. In this way, the governing equations of a rigid body can be expressed by

mr̈+
(
∂c

∂r

)T

λ= f

Jω̇+ ω̃Jω+
(
∂c

∂π

)T

λ= t

c(t ,r,A) = 0

(11)

Denoting q = (
rT , θT

)T
and v = (

ṙT , ωT
)T

, Eqs. (11) can be rewritten as

Mv̇+cT
qλ−F(t ,q,v) = 0
c(t ,q) = 0

(12)

where

M =
(

m 0
0 J

)
, F =

(
f

t− ω̃Jω

)
, cq =

(
∂c

∂r
,
∂c

∂π

)
The mass matrix of rigid bodies is constant in the body-fixed coordinate system.

2.2 Dynamics of a Flexible Body with Small Deformations

For a flexible body with small deformation, the FFRF can be used to describe the
small elastic deformation. The flexible deformation u f is described by n coordinates
p

u f (x, t ) = S (x)p (t )

where matrix S = [S1,S2, ...,Sn] contains n arbitrary shapes that are required to com-
ply with any kinematic boundary conditions of the problem. The global position of
an arbitrary point P on a flexible body is expressed as

rp = r(t )+A(t )
(
u0 +u f

)= r(t )+Aū(t ) (13)

where u0 is the position of point P in the reference configuration of the body coor-
dinate system. The velocity of point P can be expressed as

ṙp = ṙ+ Ȧū+A ˙̄u = ṙ−A ˜̄uω+ASṗ
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The kinetic energy of a flexible body can be written as

K = 1

2

∫
V
ρṙp · ṙp d v = 1

2
ṙT

∫
V
ρI3d v

m

ṙ+ 1

2
ωT

∫
V
ρ ˜̄uT ˜̄ud v

Ĵ

ω+ 1

2
ṗT

∫
V
ρST Sd v

M̂

ṗ

− ṙT A
∫

V
ρ ˜̄ud v

Φ

ω+ ṙT A
∫

V
ρSd v

Ψ

ṗ+ωT
∫

V
ρ ˜̄uS

Γ

ṗ

= 1

2
ṙT mṙ+ 1

2
ωT Ĵω+ 1

2
ṗT M̂ṗ− ṙT AΦω+ ṙT AΨṗ+ωTΓṗ

where the matrices m, M̂, andΨ are constant, and the matrices including J, Φ, and
Γ depend on the value of the modal coordinates p, so that they can be rewritten in a
more clear pattern as

Ĵ =
∫

V
ρũT

0 ũ0d v

Ĵ0

+pi

∫
V
ρS̃i T

ũ0d v

Ωi

+pi

∫
V
ρũT

0 S̃i d v +pi

∫
V
ρS̃i

T
S̃ j d v

Υi j

p j

= J0 + (Ωi +Ωi T )pi +Υi j pi p j

and

Γi =
∫

V
ρ ˜̄uSi d v =

∫
V
ρũ0Si d v

γi

+p j

∫
V
ρS̃ j Si d v

−ηi j

=γi −ηi j p j

Φ=
∫

V
ρũ0d v +

∫
V
ρS̃pd v = m̃r̊c + Ψ̃p

where r̊c is the center of mass of the body in the reference coordinate system (RCS),
and r̊c = 0 when the origin of the RCS coincides with the center of mass of the body.

The strain vector can generally be written as ε=DSp, where D is the linear spa-
tial differential operator that calculates strains from deformations. The elastic po-
tential energy is

U = 1

2

∫
V
εT Eεd v = 1

2
pT

∫
V

(DS)T E (DS)d v

K

p = 1

2
pT Kp

where E is the symmetric matrix of the elastic coefficients.
The virtual displacement of point P can be derived from Eq. (13)

δrp = δr+δAū+Aδū = δr+A ˜̄uTδπ+ASδp = δr+A ˜̄uT Gδθ+ASδp

Hence, the virtual work of an arbitrary distributed force f applied on the body is
expressed by

δW =
∫

V
δrT

p fd v = δrT f(t )+δθT GT t(t )+δqT m(t )
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where

f =
∫

V
fd v , GT t =

∫
V

GT ˜̄uAT fd v , m =
∫

V
ST AT fd v

are the generalized forces with respect to the virtual displacement, δr, rotation, δθ,
and modal coordinates, δp, respectively.

From the Lagrange equations of the first kind, the term with respect to transla-
tional coordinates, δr, is

mr̈−AΦω̇+AΨp̈−Aω̃Φω+2Aω̃Ψṗ+
(
∂c

∂r

)T

λ= f (14)

that related to the rotational coordinates, δθ, yields

GT
{

Ĵω̇+Γp̈−ΦT AT r̈+ ω̃Ĵω+2ṗi (Ωi +Υ j i pi )ω
}
+

(
∂c

∂θ

)T

λ= GT t (15)

and that related to the modal coordinates δp, yields

M̂p̈+ΨT AT r̈+ΓT ω̇−2ωTηi j ṗ j −ωT (Ωi +Υi j pi )ω+
(
∂c

∂p

)T

λ= m (16)

Similarly, replacing
∂c

∂θ
= ∂c

∂π
G in Eq. (15) and collecting matrix GT yield

GT
{

Ĵω̇+Γp̈−ΦT AT r̈+ ω̃Ĵω+2ṗi

(
Ωi +Υ j i pi

)
ω+

(
∂c

∂π

)T

λ
}
= GT t (17)

Recalling that matrix G should not become singular thanks to the use of relative ro-
tations, premultiplication by matrix GT can be eliminated from both sides of the
equation without affecting the solution, turning Eq. (17) into a true moment equi-
librium equation. From Eqs. (14), (16), and (17), the governing equations can be
collected as in [43], yielding

M(q)v̇+cT
qλ−F(t ,q,v) = 0

c
(
t ,q

)= 0
(18)

where q = (
rT , θT , pT

)T
, v = (

ṙT , ωT , ṗT
)T

,

M =
 m −AΦ AΨ

−ΦT AT Ĵ Γ

ΨT AT ΓT M̂

 , cq =
(
∂c

∂r
,

∂c

∂π
,

∂c

∂p

)

and

F =
 f−2Aω̃Ψṗ+Aω̃Φω

t− ω̃Ĵω−2ṗi
(
Ωi +Υ j i p j

)
ω

m+2ωTηi j ṗ j +ωT
(
Ωi −Υi j pi

)
ω−Kp


The derived Eq. (18) is equivalent to the matrix form in [44], where a different pro-
cess of derivation is provided. It should be noticed that the mass matrix M is a func-
tion of the generalized coordinates, and theoretically, it needs to be evaluated at
each time step during the simulation.
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2.3 Dynamics of a Flexible Beam with Large Deformations

Suppose that the undeformed length of the beam is L; at time t , the line of the cen-
troids is expressed as r(x, t ), where x ∈ [0,L] is the arc-length coordinate of that line
for the undeformed body. The cross-section fiber can be described by two direc-
tional vectors in the cross-section plane ry (x, t ) and rz (x, t ). As shown in Fig. 1, the

Figure 1: Schematic of a flexible rod

global position of an arbitrary point P , labeled by its material coordinates (x, y, z) on
the section, can be written as

rp (x, y, z, t ) = r(x, t )+ r′p (y, z, t ) = r(x, t )+ yry (x, t )+ zrz (x, t )

The velocity of an arbitrary point P is

ṙp (x, y, z, t ) = ṙ(x, t )+ y ṙy (x, t )+ z ṙz (x, t )

The kinetic energy of a body can be written as

K = 1

2

∫ L

0

∫
a
ρṙp · ṙp d ad v = 1

2

∫ L

0

(
ρA ṙ · ṙ+ Jzz ṙz · ṙz + Jy y ṙy · ṙy −2Jy z ṙy · ṙz

)
d x

(19)
where

ρA =
∫

a
ρ(x)d a, Jzz =

∫
a
ρ(x)z2d a, Jy y =

∫
a
ρ(x)y2d a, Jy z =−

∫
a
ρ(x)y zd a

Therefore, for a flexible body with N elements, the kinetic energy of each nth ele-
ment (n = 1,2, · · · , N ) can be expressed by Eq. (19) with its generalized coordinates
qα at theαth node (α= 1, · · · , A) on the element. The vector qα(x, t ) is constituted by
the position vector r(xα, t ) and its gradients rx (xα, t ), ry (xα, t ), and rz (xα, t ) at each
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node. The vector fields r(x, t ), ry (x, t ), and rz (x, t ) in the nth element are interpo-
lated as

r(x, t ) = sα(x)qα(t ), ry (x, t ) = gα(x)qα(t ), rz (x, t ) = hα(x)qα(t ) (20)

where sα(x), gα(x), and hα(x) are the shape functions. Therefore, substituting Eqs. (20)
in Eq. (19), the kinetic energy of the nth element is expressed as

K = 1

2
mακ

n q̇T
α(t )q̇κ(t ), κ= 1,2, · · · , A (21)

where

mακ
n =

∫ xn

xn−1

[
ρA sαsκ+ Jzz gαgκ− Jy z (gαhκ+hαgκ+ Jy y hαhκ)

]
d x

The parameters mακ
n are constant and thus can be computed beforehand, and the

mass matrix of nth element is Me
n = mαβ

n I3.
For the potential energy, suppose the reference configuration of the body is r̊(x),

and on the central line we denote

Ḡ(x, t ) = ∂r(x, t )

∂x
, ˚̄G(x) = ∂r̊(x)

∂x

Then the strain tensor on the line of centroids can be written as

ε̄(x, t ) = 1

2
˚̄G−T (x)

(
ḠT (x, t )Ḡ(x, t )− ˚̄GT (x) ˚̄G(x)

)
˚̄G−1(x)

Denote
k̄i (x, t ) = Ḡ−1(x, t ) · rxi (x, t ), i = y, z

For an arbitrary point on the body, the direct computation yields

G(x, t ) = [
rx + yry x + zrzx ,ry ,rz

]= Ḡ(x, t )
[
I+ (y k̄y (x, t )+ zk̄z (x, t ))eT

1

]
(22)

where e1 = (1,0,0)T . On the reference configuration, it yields

G̊(x) = [
r̊x + y r̊y x + z r̊zx , r̊y , r̊z

]= ˚̄G(x, t )
[

I+ (y ˚̄ky (x, t )+ z ˚̄kz (x, t ))eT
1

]
(23)

Therefore, from the Eq. (22) and Eq. (23), the Cauchy-Green strain tensor can be
written as

ε(x, t ) ≈ ε̄(x, t )+ yK̄y (x, t )+ zK̄z (x, t ) (24)

where

K̄i (x, t ) = 1

2
˚̄G−T (x, t )

[
ki (x, t )eT

1 +e1kT
i (x, t )

] ˚̄G−1(x, t ), i = y, z

with the following curvature tensors

ki (x, t ) = ḠT (x, t ) · rxi (x, t )− ˚̄GT (x) · r̊xi (x), i = y, z
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After obtaining the Cauchy-Green strain tensor ε(x, t ), the potential energy can be
obtained if the stiffness tensor is known. By discretizing the potential energy using
Eq. (20) and computing its virtual perturbation, the element elastic force Fαe can be
obtained. More details are reported in [61].

The virtual displacement of an arbitrary point P on the body can be expressed
by

δrp (x, y, z, t ) = δr(x, t )+ yδry (x, t )+ zδrz (x, t ) = (
sα(x)+ y gα(x)+ zhα(x)

)
δqα(t )

Suppose the distributed force f is applied to the deformable body, then its corre-
sponding generalized force on nth element is

Qα
n =

∫ xn

xn−1

[
sα(x)

∫
a

fd a + gα(x)
∫

a
yfd a +hα(x)

∫
a

zfd a

]
d x (25)

As a result, the generalized coordinates x of a body are the collection of the gen-
eralized coordinates of all elements and can be expressed as x = [qT

1 , · · · ,qT
α , · · · ]T .

The mass matrix M can be assembled from the element matrix Me
n . The generalized

force F of a body can be assembled from the elastic force Fαe and generalized force
Qα

n . Therefore, the equations of motion of the constrained dynamical system can be
written as

Mẍ+cT
x λ−F(t ,x, ẋ) = 0
c(t ,x) = 0

(26)

where cx = ∂c

∂x
and matrix M is constant.

2.4 Constrained System Dynamics with Index Reduction

From Eqs. (12), (18), and (26), the index-3 governing equations of rigid and flexible
bodies subjected to either small or large deformation can be all written in the form

Mv̇+cT
q

(
t ,q

)
λ−F

(
t ,q,v

)= 0
c
(
t ,q

)= 0
(27)

Equation (9) shows that the angular velocityω and the relative rotation vector θ are
related through matrix G. Therefore, in rigid and flexible systems, the relationship
between the generalized velocities and generalized coordinates can be expressed by

v = Uq̇ (28)

where matrix U is defined in Table 1, which also summarizes the specific form and
the generic expressions that Eqs. (27) assume in each case.

The index of the DAE problem is reduced by simultaneously enforcing constraint
equations at the position and velocity levels, which requires the introduction of an
additional set of Lagrange multipliers, µ, which yields the well-known stabilization
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Table 1: Summary of different formulations

M q v cq U

Rigid const
[

rT , θT ]T [
ṙT , ωT ]T

[
∂c

∂r
,
∂c

∂π

] [
I3 0
0 G

]
FFRF non-const

[
rT , θT , pT ]T [

ṙT , ωT , ṗT ]T
[
∂c

∂r
,
∂c

∂π
,
∂c

∂p

]  I3 0 0
0 G 0
0 0 In


ANCF const x ẋ

∂c

∂x
Im

method proposed in [42]. The following stabilized index-2 DAE system is obtained,

Mv̇+cT
q

(
t ,q

)
λ−F

(
t ,q,v

)= 0 (29a)

cq
(
t ,q

)
v+ct

(
t ,q

)= 0 (29b)

M
(
Uq̇−v

)+cT
q

(
t ,q

)
µ= 0 (29c)

c
(
t ,q

)= 0 (29d)

whereµ can be interpreted as a projection term in the kinematical differential equa-
tion. For planar problems, one rotational parameter is capable to describe the rota-
tional motion, yielding U = I.

3 Constraint Stabilization

To derive the underlying ODEs, two methods, i.e., the algebraic elimination of the
Lagrange multipliers and the coordinate partitioning method, are practicable. The
first method eliminates the Lagrange multipliers to obtain a set of ODEs, including
Baumgarte’s stabilization technique [46], the augmented Lagrangian formulation by
Bayo and Ledesman [47], a self-stabilized algorithm [48], and Gear’s penalty meth-
ods [49]. The latter method eliminates the constraint equation by selecting a min-
imal set of coordinates; a practical coordinate partitioning approach can be seen
in [50]. Without exception, all these methods underline the difficulty of dealing with
constraint drift. A detailed review of constraint enforcement methods can be found
in [51].

In this paper, a stabilization technique is adopted to obtain a set of ODEs by
eliminating the Lagrange multipliers. An algebraic constraint equation

f (t ,x) = 0 (30)

is replaced by a corresponding first order differential equation

ḟ +β f = fx(t ,x)ẋ+ ft (t ,x)+β f (t ,x) = 0 (31)

whose global asymptotically stable solution

f (t ,x) = f (t0,x)e−βt (32)
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approaches zero, f = 0, with exponential rate, when the parameter β is positive.
When it is large enough, any constraint drift and error in initial values will be quickly
pulled back onto the constraint manifold. A first order Taylor expansion of Eq. (30)
yields

f (t +h,x+dx) ≈ f (t ,x)+ fx(t ,x)dx+ ft (t ,x)h (33)

Prescribing the vanishing of the higher-order term f (t +h,x + dx) ≈ 0, Eq. (33) is
equivalent to Eq. (31) with dx = ẋh and β = 1/h. In this sense, Eq. (31) shows some
resemblance with the revised holonomic constraints proposed in [52].

By using this technique, i.e. by combining Eq. (29b) with its derivative according
to Eq. (31), one obtains

cqv̇+ (
cqv

)
q v+2cqt v+ct t +β

(
cqv+ct

)= 0 (34)

Denoting γ = (
cqv

)
q v + 2cqt v + ct t , extracting v̇ from Eq. (29a) and replacing it in

Eq. (34), then extractingλ and replacing it back in Eq. (29a), one obtains

v̇ =
(
I−M−1cT

q∆
−1cq

)
M−1F−M−1cT

q∆
−1

(
γ+β(

cqv+ct
))

(35)

with∆= cqM−1cT
q . Similarly, applying the same technique to Eq. (29d) yields

cqUq̇+ct +βc = 0 (36)

Extracting q̇ from Eq. (29c) and replacing it in Eq. (36), then extractingµ and replac-
ing it back in Eq. (29c), one obtains

q̇ = U−1
{(

I−M−1cT
q∆

−1cq

)
v−M−1cT

q∆
−1 (

ct +βc
)}

(37)

The problem is reformulated as the integration of two sets of ODEs, namely
Eqs. (35) and (37); the latter also contains the constraint equation, c, and the former
its first derivative, ċ, both multiplied by the relaxation parameter β. To eliminate
numerical drift from the constraint manifold, β should be selected depending on
the characteristics of the problem. For a non-stiff system, a small value compared
to 1/h can be chosen, and the ODEs can be solved by explicit integration; implicit
ODE integrators are better suited for stiff ODEs, along with larger values for β. If
explicit integration is to be used, some specific explicit integration schemes, such as
the Runge-Kutta-Chebyshev family of integrators [53], could be a valid choice to deal
with mildly stiff subsystems, due to their long-tail stable domain on the negative real
axis in the complex plane. Moreover, the solution of the problem can also consist in
the integration of Eq. (35), if the Lie group generalized-αODE integrator [59] is used.
In this respect, the computation of the inverse matrix U−1 during each time step is
completely avoided.

4 Co-Simulation Process

For a constrained rigid or flexible multibody system, the generalized coordinates of
the bodies are partitioned into different subsystems, regardless of being rigid or flex-
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ible. Denote that qi and vi are the generalized coordinates and velocities of subsys-
tem i . The subsystems are connected by the constraint equations c(t ,q1,v1,q2,v2 . . .),
thus their interaction relies on the exchange of the information {q1,v1,q2,v2 . . .}.

Consider two subsystems, 1 and 2; the implementation of the co-simulation pro-
cess is given by

q̇k+1
1 = Q1

(
t ,qk+1

1 ,vk+1
1 ,qk

2 ,vk
2

)
, v̇k+1

1 = V1

(
t ,qk+1

1 ,vk+1
1 ,qk

2 ,vk
2

)
(38a)

q̇k+1
2 = Q2

(
t ,qk+1

2 ,vk+1
2 ,qk

1 ,vk
1

)
, v̇k+1

2 = V2

(
t ,qk+1

2 ,vk+1
2 ,qk

1 ,vk
1

)
(38b)

where k is the iteration counter, and the functions Qi and Vi (i = 1,2) represent the
right hand sides of Eqs. (37) and (35) corresponding to the generalized coordinates
qi

Qi = U−1
i

{(
Ii −M−1

i

[
cT

q∆
−1cq

]
i

)
vi −M−1

i

[
cT

q∆
−1 (

ct +βc
)]

i

}
(39a)

Vi =
(
Ii −M−1

i

[
cT

q∆
−1cq

]
i

)
M−1

i Fi −M−1
i

[
cT

q∆
−1

(
γ+β(

cqv+ct
))]

i
(39b)

where Mi is the mass matrix of subsystem i ; Fi denotes the generalized force of sub-
system i ; Ui is a matrix which is a function of the generalized coordinates of sub-
system i , defined according to the formulas in Table 1;∆= cqM−1cT

q ; the expression
[·] denotes the part of the matrix or the vector in the square brackets corresponding
to the index of the generalized coordinates of subsystem i ; Ii is the corresponding
unitary matrix. Equation (38a) and (38b) represent the equations of subsystems 1
and 2, respectively. Figure 2 depicts the co-simulation implementation of these two
sets of equations. As shown in Fig. 2, q2 and v2 in subsystem 1 are obtained from

Figure 2: Schematic of the co-simulation process

subsystem 2 at communication time nodes, and vice versa. Therefore, in each sub-
system, the values of Q and V in Eqs. (38a) and (38b) can be evaluated. During a
given iteration, ODE integrators are used to solve the Eqs. (38a) and (38b) indepen-
dently. The information exchanges between subsystems; then, numerical integra-
tion is performed again for each subsystem. The above process is repeated until the
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iteration reaches convergence. During the simulation, the time step size hi and the
stabilization parameter βi satisfy βi hi = 1. Furthermore, as mentioned in Section 3,
the computation of the inverse matrix U−1 can be completely avoided when the Lie
group generalized-α ODE integrator is used to solve Eqs. (38).

5 Numerical Examples

The proposed co-simulation scheme is applied to a spatial slider-crank mechanism.
The problem is derived from a rigid multibody benchmark1 proposed by IFToMM’s
Technical Committee for Multibody Dynamics (https://www.iftomm-multibody.
org/). It was previously analyzed in [54]. The problem is sketched in Fig. 3. The

Figure 3: Spatial slider-crank mechanism

mechanism consists of a rigid crank AB of length 0.08 m, a connecting rod BC of
length 0.3 m, and a rigid sliding block. The crank, connected to the ground by rev-
olute joint A, can rotate freely from the initial position, corresponding to an angle
θ = 0 rad, with an initial angular velocity of 6 rad/s. The block is constrained to the
ground by a translational joint D that allows sliding along the x axis. A spherical joint
at B and a universal joint at C connect the link to the crank and to the slider, respec-
tively. A uniform gravity field of magnitude 9.81 m/s2 is assumed in the negative z
direction. No other load is applied to the system.

1See https://www.iftomm-multibody.org/benchmark/problem/Spatial_rigid_
slider-crank_mechanism/ for further details.
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The masses of crank and sliding block are mc = 0.12 kg and ms = 2.0 kg, respec-
tively. The mass moments of inertia of the two bodies are

Jc =
 1 0 0

0 0.1 0
0 0 1

 ·10−4, Js =
 1 0 0

0 1 0
0 0 1

 ·10−4

The center of mass of both crank and rod is assumed to be at their mid-span.
In this work, the connecting rod BC is modeled either as a rigid or flexible body.

In the rigid case, to compare with the results originally proposed by Ramin Masoudi,
the mass is mr = 0.5 kg, and its mass moments of inertia are

Jr =
 4 0 0

0 0.4 0
0 0 4

 ·10−3

In the flexible case, the rod is assumed to be uniform, of density ρ = 7870 kg/m3.
The cross-section of the rod is assumed to be solid circular. The mass of the rod is
mr = 0.5 kg. The total mass moment of inertia slightly differs from the rigid case. In
addition, a Young modulus of 207 GPa, and a Poisson ratio of 0.29, are considered.
The FFRF and ANCF are considered. For validation purposes, the results of the rigid
simulations are compared with those originally proposed by Masoudi on IFToMM’s
website (where the Rosenbrock method [55] is applied with the relative and abso-
lute tolerances being 1.10−4) and the corresponding results obtained using the free
general-purpose multibody solver MBDyn [56] (http://www.mbdyn.org/). The re-
sults of the flexible models are compared with those from MBDyn.

5.1 Case 1: Rigid Multibody System

When the problem is modeled as a rigid multibody system, the generalized coordi-
nates can be partitioned into two ODE subsystems: the slow subsystem 1 and the
fast subsystem 2. Subsystem 1 consists of the generalized coordinates of two rigid
bodies: the crank AB (subscript c) and the rod BC (subscript r ),

subsystem 1: q1 =
(
rT

c , θT
c , rT

r , θT
r

)T
, v1 =

(
vT

c ,ωT
c , vT

r ,ωT
r

)T

Subsystem 2 consists of the slider C (subscript s),

subsystem 2: q2 =
(
rT

s , θT
s

)T
, v2 =

(
vT

s ,ωT
s

)T

The ODE subsystems are formulated according to Eqs. (38). In the co-simulation, to
evaluate∆−1 that appears in functions Q and V of Eq. (38), the inverse mass matrices
of the mechanism are required. The mass matrices are

M1 = diag(mc ,Jc ,mr Jr ) , M2 = diag(ms ,Js ) , M = diag(M1, M2)

where matrices M1 and M2 are constant. The inverse matrices M−1
1 , M−1

2 , and M−1

can be calculated beforehand and stored.
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As for constraints, the revolute joint at point A provides 5 independent constraint
equations, the universal joint at B yields 4 constraint equations, the spherical joint
at C provides 3 constraint equations, and the translational joint at D contributes 5
constraint equations. Therefore, the size of the constraint equations vector c is 17×1.
Considering the 18 generalized coordinates of the three rigid bodies, the size of cq is
17×18 and the system has exactly 1 degree of freedom.

The value of the stabilization parameter for both subsystems is chosen as β =
20000. The size of the time step is chosen as h = 0.00005 s, namely h = 1/β. The Lie
group generalized-α ODE integrator with constant step size is used to integrate the
ODEs of Eqs. (38), with the Jacobian matrix evaluated numerically. Figure 4 shows
that the co-simulation results for position and velocity of the sliding block agree
with those obtained analyzing the monolithic problem with MBDyn (h = 0.004 s),
as well as, for the position alone, with Masoudi’s ones as available from IFToMM’s
website (velocity is not provided). Figure 5 shows that also the co-simulation results
for crank angle and angular velocity coincide with the corresponding ones obtained
with MBDyn, as well as, for the angle alone, with Masoudi’s. The total energy of the
rigid system is presented in Fig. 6. The slow decay of the total mechanical energy,
despite being the problem conservative, is associated with algorithmic dissipation.
In addition, the convergence plot in Fig. 7 presents co-simulation results with dif-
ferent time steps, showing that as the time step size gets smaller the co-simulation
results tend to those obtained with the monolithic problem using MBDyn.

5.2 Case 2: Rigid-Flexible Multibody System, with Flexible Connect-
ing Rod

As anticipated, the floating frame of reference and the absolute nodal coordinate
formulations are used to describe the deformation of the flexible bodies with the
same structural properties provided in an earlier section.

Floating frame of reference formulation

Assuming that the elastic deformation of the rod is small, the floating frame of ref-
erence formulation (FFRF) can be used. The generalized coordinates can be parti-
tioned into two ODE subsystems: the slow subsystem 1 and the fast subsystem 2.
Subsystem 1 consists of the generalized coordinates of two rigid bodies: the crank
AB (subscript c) and the sliding block (subscript s)

subsystem 1: q1 =
(
rT

c , θT
c , rT

s , θT
s

)T
, v1 =

(
vT

c ,ωT
c , vT

s ,ωT
s

)T

Subsystem 2 consists of the flexible rod BC (subscript r )

subsystem 2: q2 =
(
rT

r , θT
r , pT )T

, v2 =
(
vT

r ,ωT
r , uT

p

)T

The ODE subsystems are formulated according to Eqs. (38). As discussed in the pre-
vious case, to evaluate ∆−1 that appears in the functions Q and V of Eq. (38), the
inverse mass matrices of the mechanism are required. The mass matrices now are

M1 = diag
(
mc ,Jc ,ms, Js

)
, M2 = M̄, M = diag(M1, M2)
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(a) Slider position

(b) Slider velocity

Figure 4: Comparison of slider position and velocity

where M1 is constant, and M̄ is the mass matrix of the FFRF, which is a matrix func-
tion of the modal coordinates. Based on the assumption of small deformations, the
modal coordinates can be viewed as minor quantities, whose contribution to the
mass matrix can often be neglected. This practice is reasonable because the most
significant errors in co-simulation are from delayed data communication, interpo-
lations, and extrapolations. Also in this case, the inverse matrices M−1

1 , M−1
2 , and

M−1 can be calculated beforehand and stored.
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(a) Crank rotation

(b) Crank angular velocity

Figure 5: Comparison of crank angle and angular velocity

Absolute nodal coordinate formulation

The generalized coordinates and velocities of the rigid bodies are assumed as the
slow variables, while those of the flexible bodies are considered the fast ones. Hence,
the generalized coordinates can be partitioned into two ODE subsystems. Subsys-
tem 1 consists of the generalized coordinates of the two rigid bodies: the crank AB
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Figure 6: System total energy

Figure 7: Convergence: comparison of crank angle between monolithic solution by
MBDyn and proposed method with various time steps

(subscript c) and the sliding block (subscript s)

subsystem 1: q1 =
(
rT

c , θT
c , rT

s , θT
s

)T
, v1 =

(
vT

c ,ωT
c , vT

s ,ωT
s

)T

Subsystem 2 consists of the flexible connecting rod BC

subsystem 2: q2 = x, v2 = u
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The two ODE subsystems are formulated according to Eqs. (38). The mass matrices
are

M1 = diag
(
mc ,Jc ,ms, Js

)
, M2 = M̄, M = diag(M1, M2)

where M̄ is now the mass matrix of the ANCF formulation, and M1, M2, and M are
constant matrices. Also in this case the inverse matrices M−1

1 , M−1
2 , and M−1 can be

calculated beforehand and stored.
To describe the deformation of rod BC, the three-dimensional ANCF rod ele-

ment [43], sketched in Fig. 8, is adopted here. For this element, the position and

Figure 8: Three-dimensional ANCF rod element

slope vectors at both terminal nodes, as well as the cross-section slope vectors at
the middle node constitute the generalized coordinates, amounting to 30 degrees of
freedom. The position vector r(x, t ) and the slope vectors ry (x, t ) and rz (x, t ) at the
nodes are interpolated independently in a way that the position vector at any point
along the element is expressed by

r(x, t ) = (1−3ξ2 +2ξ3)r0(t )+ l (ξ−2ξ2 +ξ3)r0
x (t )+ (3ξ2 −2ξ3)r1(t )+ l (ξ3 −ξ2)r1

x (t )

where l is the element length and ξ = x/l . The cross-section slope vectors at any
point on the element can be written as

rκ(x, t ) = (1−3ξ+2ξ2)r0
κ(t )+4ξ(1−ξ)r1/2

κ (t )+ξ(2ξ−1)r1
κ(t )

where κ= y, z.

Simulation results

In the FFRF, 6 modal coordinates, namely the first two transverse, the first two lat-
eral, and the first longitudinal and torsional modal shapes, are adopted to describe
the deformation. Considering the 12 generalized coordinates of the two rigid bodies
and 6 generalized coordinates for the reference motion of the flexible rod, there are
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24 generalized coordinates in total. Since the size the of constraint equations vector
is 17, matrix cq is 17×24. The stabilization parameter of both subsystems is β= 105.
The time step size is h = 10−5 s. The Lie group generalized-α ODE integrator with
constant step size is used to solve the ODEs of Eqs. (38), with the Jacobian matrix
evaluated numerically.

In the ANCF, 4 elements are used to model the rod, so that the generalized co-
ordinates of the rod is 84. In addition to the 12 generalized coordinates of the two
rigid bodies, the total number of generalized coordinates is 96. Hence, the size of
the matrix cq is 17×96. The stabilization parameter for both subsystems is taken as
β= 2×105. The Lie group generalized-α ODE integrator is employed here with the
step size h = 5× 10−6 s for both ODE subsystems of Eqs. (38). The resulting posi-
tion of the sliding block is coincident with the results of the corresponding flexible
system analyzed using MBDyn (h = 0.001 s) with 5 three-node finite volume beam
elements [57, 58], as shown in Fig. 9. The rotation of the crank angle is compared in

Figure 9: Slider position

Fig. 10, showing that the co-simulation results of the spatial rotation in the flexible
cases coincide with those of the monolithic solution. The total energy of the flexible
system is depicted in Fig. 11. In both cases, the slow decay of the total mechanical
energy is caused by the algorithmic dissipation introduced by the numerical scheme
and the co-simulation procedure. Specifically, the numerical approximations intrin-
sic in index reduction and co-simulation manifest themselves as a form of algorith-
mic dissipation that is magnified through its propagation in the strain energy of the
problem.
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Figure 10: Crank angle

Figure 11: System total energy

5.3 Further Discussion

Constant or block diagonal mass matrices are important features in the simulation
of constrained mechanical systems. For example,

1. the mass matrices of rigid bodies and flexible bodies formulated with the ANCF
are constant;
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2. the mass matrix of a flexible body formulated with the FFRF is a function of
the modal coordinates. However, since the values of the modal coordinates
are limited, the mass matrix can often be treated as constant, with negligible
error compared to that introduced by the decayed data communication. This
practice is validated here.

Therefore, the inverse mass matrices in the proposed formulation only need to be
computed once and stored for later use.

The simulation of the rigid system is faster than that of flexible ones; among
them, the FFRF simulation is much faster than that based on ANCF, thanks to the
reduced number of generalized coordinates and its ability to converge when longer
time steps are used. The absolute timings are not relevant, as the code was not op-
timized for performance. For example, considering the rigid system’s simulation as
the reference, the flexible model based on FFRF requires twice the time, whereas the
simulation based on the ANCF is about nine times longer, as detailed in Table 2. This
result is attributed to the use of a constant inverse of the mass matrix, the numerical
computation of the Jacobian matrix, and the iteration process.

Table 2: Relative computational times

time step h = 10−4 h = 10−5

FFRF/rigid (24/18 generalized coordinates) ∼2 ∼2
ANCF/rigid (84/18 generalized coordinates) (no convergence) ∼9

6 Conclusion

A relaxed coupling method is proposed to compute the dynamics of constrained
mechanical systems that are connected by joints. Instead of directly trying to solve
the index-3 DAEs with a waveform relaxation method, a set of ODEs is obtained and
solved iteratively, which makes the implementation straightforward. To achieve this,
the constraint equations are enforced by a constraint stabilization technique. Sub-
systems are formulated using a constant mass matrix, either exactly or through ap-
proximation in the floating frame of reference case. Consequently, the inverse of the
mass matrix can be stored beforehand without computing it at each time step. The
presented method is suitable for the parallel solution of algebraically constrained
multibody systems when a Jacobi coupling scheme is used.
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