
Multibody System Dynamics (2022) 54:263–301
https://doi.org/10.1007/s11044-021-09806-9

Performance of implicit A-stable time integration methods
for multibody system dynamics

Huimin Zhang1,2 · Runsen Zhang1,2 · Andrea Zanoni2 · Pierangelo Masarati2

Received: 30 June 2021 / Accepted: 22 October 2021 / Published online: 18 January 2022
© The Author(s) 2022

Abstract
This paper illustrates the performance of several representative implicit A-stable time inte-
gration methods with algorithmic dissipation for multibody system dynamics, formulated
as a set of mixed implicit first-order differential and algebraic equations. The integrators
include the linear multi-step methods with two to four steps, the single-step reformulations
of the linear multi-step methods, and explicit first-stage, singly diagonally-implicit Runge–
Kutta methods. All methods are implemented in the free, general-purpose multibody solver
MBDyn. Their formulations and implementation are presented. According to the compar-
ison from linear analysis and numerical experiments, some general conclusions on the se-
lection of integration schemes and their implementation are obtained. Although all of these
methods can predict reasonably accurate solutions, the specific advantages that each of them
has in different situations are discussed.

Keywords Implicit · A-stability · Time integration methods · Multibody system dynamics

1 Introduction

Multibody system dynamics problems can be typically formulated as a set of Differential-
Algebraic Equations (DAEs), often in semi-explicit form. The numerical treatment of DAEs
is more challenging than that of Ordinary Differential Equations (ODEs). Typically, two
strategies are employed: direct discretization of DAEs and discretization after reformula-
tion [3]. Reformulation usually consists of some sort of index reduction that can convert
DAEs into ODEs, and thus allows the problems to be solved using relatively conventional
methods. However, this process may be costly, since it may require substantial user inter-
vention and may be convenient only when a substantial reduction in coordinates can be
achieved, which is not the case for examples where mechanisms are analyzed made of flexi-
ble components, so direct discretization has gained more attention in software development.

Direct discretization poses strict requirements on time integration methods. Explicit in-
tegrators, such as the central difference method [13] and the explicit Runge–Kutta meth-
ods [10], are difficult to use to solve DAEs directly because they cannot satisfy the algebraic

� H. Zhang
huimin.zhang@polimi.it

1 School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

2 Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Milano 20156, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-021-09806-9&domain=pdf
http://orcid.org/0000-0003-3129-0170
mailto:huimin.zhang@polimi.it

264 H. Zhang et al.

constraint equations at the position level. Implicit integrators, including the linear multi-
step methods [23, 24], the implicit Runge–Kutta methods [9] and many direct integration
methods [30], are required. They are designed to possess good accuracy, A-stability (un-
conditional stability), and tunable algorithmic dissipation to provide accurate and robust
solutions.

Implicit time integrators are briefly reviewed here. In the field of structural dynam-
ics, several single-step single-solve methods, such as the Newmark method [25], the
Wilson-θ method [31], the HHT-α method [17] (proposed by Hilber, Hughes and Tay-
lor), the generalized-α method [11, 22], the GSSSS (Generalized Single-Step Single-Solve)
method [37], and many others [18, 32], have been developed since the 1950s. Most of these
methods have second-order accuracy, A-stability and tunable algorithmic dissipation from
linear analysis. They were initially designed to solve second-order ODEs in structural dy-
namics, and some of their improved formulations can also be used to solve DAEs and general
first-order differential equations [2, 8, 20]. Some comparisons between the linear two-step
method and single-step methods have already been presented in [34, 36] and are not repro-
duced here. Therefore, these single-step methods are not considered further in this work.

In the class of multi-step methods, the linear two-step method [24], and several back-
ward difference formulas (BDFs) [19, 28], have been efficiently used in multibody system
dynamics. The optimal parameters of the linear three- and four-step methods with second-
order accuracy, A-stability and tunable algorithmic dissipation were given in [36]. Accord-
ing to Dahlquist’s second barrier [12], the linear multi-step methods cannot exceed second-
order accuracy to possess A-stability. To eliminate the additional starting procedures of the
multi-step methods, their equivalent single-step reformulations, obtained by introducing a
few auxiliary variables, have been also proposed in [36]. These multi-step and equivalent
single-step integrators are designed for systems of first-order differential equations, and can
be generalized to solve second- and higher-order differential equations in a straightforward
way.

Another important branch of implicit integrators are the multi-stage methods, represented
by the Runge–Kutta family [10]. They evaluate the states at intermediate time points per
step, and compute the states at discrete time points using a scheme like the quadrature for-
mula. For solving DAEs, the stiffly-accurate Runge–Kutta methods without the quadrature
step are more practical, because the constraints are satisfied at the final stage, but may not be
satisfied after implementing the quadrature formula. Multi-stage methods can be designed
to have higher-order accuracy and A-stability simultaneously, as in [1, 6, 21, 35]. Con-
sidering the computational cost, the singly diagonally-implicit Runge–Kutta methods [27],
which perform the computation of each stage in sequence, are more convenient and recom-
mended. Consequently, a few recently proposed second- and higher-order stiffly-accurate,
singly diagonally-implicit Runge-Kutta methods with explicit first-stage [21, 35] are em-
ployed in this work.

The purpose of this work is to present a comparative study of several representative im-
plicit, A-stable and algorithmically dissipative time integration methods for multibody sys-
tem dynamics. The time integration methods employed include the linear multi-step meth-
ods [23, 24, 36], their equivalent single-step methods [36], and stiffly-accurate, explicit first-
stage, singly diagonally-implicit Runge–Kutta (ESDIRK) methods [21, 35]. These methods
are implemented in the free general-purpose multibody dynamics analysis software MB-
Dyn1 [24]. Their formulation is presented in Sect. 2, whereas Sect. 3 describes their imple-
mentation in MBDyn. Considering a linear problem, the accuracy, algorithmic dissipation

1https://www.mbdyn.org.

https://www.mbdyn.org

Performance of implicit A-stable time integration methods. . . 265

and dispersion properties of these methods are discussed in Sect. 4. These methods are then
applied to solve of some benchmark multibody dynamics problems in Sect. 5. By compar-
ing the numerical results, several general conclusions on the implementation and selection
of time integration methods are finally summarized in Sect. 6.

2 Formulation

Initial-value problems in MBDyn are formulated as a set of implicit first-order DAEs, whose
general form is

r (y, ẏ, t) = 0, y(t0) = y0 (1)

where y collects the differential and algebraic variables, and the overdot indicates the deriva-
tive with respect to time t . The initial condition y0 is given, and ẏ0 needs to be solved from
r(y0, ẏ0, t0) = 0. For a detailed problem description, the reader should refer to [24].

Problems associated with constrained dynamics, as discussed later in Sect. 5, are for-
mulated as Index-3 DAEs, by directly enforcing the holonomic kinematic constraints on
the position level through algebraic relations between the coordinates of the problem using
Lagrange multipliers. No elaborated scaling strategy is used, except for scaling the Jaco-
bian matrix contribution by the inverse of �tb0, the coefficient that multiplies the derivative
of the state at the current time step in implicit numerical schemes, as proposed in [7]. No
hidden constraints, e.g., on the velocity level, are considered.

2.1 Linear multi-step methods

The linear multi-step methods can be expressed as

yk =
r∑

j=1

αjyk−j + �t

r∑

j=0

βj ẏk−j (2)

where yk and ẏk represent the numerical solution at time tk , �t = tk − tk−1 is the time
step size, αj and βj are control parameters of the method. Considering the conditions of
second-order accuracy, A-stability, and tunable algorithmic dissipation, the optimal parame-
ters of the linear two-, three-, and four-step methods, referred to as LMS2, LMS3 and LMS4,
can be found in [36]. They are controlled by a single parameter ρ∞ ∈ [0,1], to adjust the
degree of algorithmic dissipation. The algorithmic dissipation becomes stronger as ρ∞ de-
creases. When ρ∞ = 0, they reduce to a second-order BDF. In [24], the parameters of LMS2
used in variable-time-step cases were given, while so far LMS3 and LMS4 were previously
formulated only for fixed time steps. The initialization of the integration procedure of the
multi-step methods, is performed employing the trapezoidal rule for the first few steps

yk = yk−1 + �t

2

(
ẏk + ẏk−1

)
(3)

which is A-stable and second-order accurate.

266 H. Zhang et al.

2.2 Equivalent single-step methods

The single-step method proposed in [36], which can be used as an equivalent alternative of
the linear multi-step method, has the form

yk = yk−1 + �t((1 − γ0)ẏ
r−1
k−1 + γ0ẏ

r−1
k) (4a)

(1 − γ1)ẏ
r−1
k−1 + γ1ẏ

r−1
k = (1 − γ2)ẏ

r−2
k−1 + γ2ẏ

r−2
k (4b)

(1 − γ3)ẏ
r−2
k−1 + γ3ẏ

r−2
k = (1 − γ4)ẏ

r−3
k−1 + γ4ẏ

r−3
k (4c)

. . . (4d)

(1 − γ2r−3)ẏ
1
k−1 + γ2r−3ẏ

1
k = (1 − γ2r−2)ẏk−1 + γ2r−2ẏk (4e)

where ẏ
j

k (j = 1,2, . . . , r − 1) are auxiliary variables, and γi are control parameters. At the
beginning, ẏ1

0 = ẏ2
0 = · · · = ẏr−1

k = ẏ0 is used. The parameters of the single-step methods
equivalent to LMS2, LMS3 and LMS4, referred to as SS2, SS3 and SS4, respectively, were
also given in [36]. SS3 and SS4 have complex parameters, so the auxiliary variables they
produce may be complex numbers, but the state variables are real, as demonstrated in [36].

2.3 Explicit first-stage, singly diagonally-implicit Runge–Kutta (ESDIRK) methods

The stiffly-accurate s-stage ESDIRK is represented using Butcher’s tableau [10], as

0 0 0 0 . . . 0 0
c2 a21 γ 0 . . . 0 0

c3 a31 a32 γ
. . . 0 0

...
...

...
. . .

. . .
...

...

cs−1 as−1,1 as−1,2 as−1,3 . . . γ 0
1 b1 b2 b3 . . . bs−1 γ

b1 b2 b3 . . . bs−1 γ

where γ , aij , ci , bi are control parameters. Considering the implicit first-order equation (1),
the intermediate stages are formulated as

yk−1+ci
= yk−1 + �t

⎛

⎝
i−1∑

j=1

aij ẏk−1+cj
+ γ ẏk−1+ci

⎞

⎠ (5)

i = 2,3,4, . . . , s − 1

The last stage is

yk = yk−1 + �t

⎛

⎝
s−1∑

j=1

bj ẏk−1+cj
+ γ ẏk

⎞

⎠ (6)

where c1 = 0 and cs = 1. The computation of each stage can be implemented in sequence.
Except for the explicit first stage, every other stage uses an implicit single-step or multi-step
formula. They share the same effective stiffness matrix for linear analysis and the same form

Performance of implicit A-stable time integration methods. . . 267

of Jacobian matrix in nonlinear iterations. In the procedure, the state variables at the time
points are given, but those at the intermediate stages are not output. Therefore, the multi-
stage methods are essentially single-step schemes, which only use the information from the
last step to update the current one.

The two-sub-step ρ∞-Bathe method [26], which can be seen as a 3-stage ESDIRK with
second-order accuracy, A-stability and tunable algorithmic dissipation, is presented. Its pa-
rameters are

γ =

⎧
⎪⎪⎨

⎪⎪⎩

2 − √
2(1 + ρ∞)

2(1 − ρ∞)
, ρ∞ ∈ [0,1)

1

4
, ρ∞ = 1

(7)

b1 = −4γ 2 − 6γ + 1

4γ
, b2 = 1 − 2γ

4γ

The multi-sub-step methods MSSTC(n) and MSSTH(n), as (n+1)-stage ESDIRKs pro-
posed in [35], are also employed. MSSTC(n) is designed to have second-order accuracy,
A-stability, tunable algorithmic dissipation, preserving low-frequency dynamics as much as
possible. It employs the trapezoidal rule from the second to the nth stage, and a general
formula in the last one. The optimal parameters of MSSTC(3,4,5) were given in [35].

MSSTH(n) is designed to have nth-order accuracy, A-stability, and tunable algorithmic
dissipation. However, since only linear analysis was considered in [35], its parameters are
modified here to satisfy the overall-order and stage-order conditions for Runge–Kutta meth-
ods [10, 16, 21], without changing the linear characteristics. The design of the modified
MSSTH(3,4,5) considers the following conditions:

– Each stage, from the second-one, has at least second-order accuracy;
– The overall accuracy is nth-order, and on this basis, the local truncation error is mini-

mized;
– A-stability and tunable algorithmic dissipation for linear analysis.

Under the premise of A-stability, MSSTH(n) is designed to achieve the highest possible
accuracy for a given ρ∞. The details of the parameter selection are shown in the Appendix.

Besides, several stiffly-accurate ESDIRKs developed in [21], including the third-order 4-
stage ESDIRK3(2)4L[2]SA, the third-order 5-stage ESDIRK3(2)5L[2]SA, and the fourth-
order 6-stage ESDIRK4(3)6L[2]SA2, are also employed. These methods are designed to
be L-stable (ρ∞ = 0), and their internal stages are also designed to be L-stable whenever
possible. Their parameters can be found in [21].

3 Implementation

The detailed problem description, solution phases and implementation structure of MB-
Dyn were presented in [24]. Time integrators are defined in the class ImplicitStep-
Integrator. The multi-step, single-step, and multi-stage integrators are constructed us-
ing the template classes tplStepNIntegrator, tplSingleStepIntegrator and
tplStageNIntegrator, respectively. They provide an Advance() method to per-
form a complete step. For multi-stage integrators, the operations of all stages are encapsu-
lated in the method Advance(), so the solutions in the internal stages are hidden.

268 H. Zhang et al.

With the initial condition at t0, the multi-step and single-step integrators sequentially
calculate the state variables at t1, t2, t3, · · · , tk , · · · , and the ESDIRKs need to solve the
results at t0+c2 , t0+c3 , · · · , t0+cs−1 , t1, t1+c2 , t1+c3 , · · · , t1+cs−1 , t2, · · · , tk , · · · in turn. Note
that the explicit first stage of ESDIRKs does not require any calculation. All methods show
a very similar structure at each time point; the difference lies in the parameters and the
number of previous time points used. The single-step methods, must additionally solve and
store the auxiliary variables. Therefore, the implementation at a certain discrete time point,
tN , which is used to represent all time points, including those at the end of each step tk and
the internal time points of the ESDIRKs, is explained uniformly in this section. For multi-
step and single-step methods, the information at tN−1, tN−2, · · · , used at the current time
point tN are the states of previous steps. For ESDIRKs, the information of tN−1, tN−2, · · · ,
are the states of the previously solved time points, which can be the last step and last stages.

At the discrete time point tN , the state variables yN and ẏN are obtained by solving

r
(
yN, ẏN, tN

) = 0 (8a)

yN = f
(
yN−1,yN−2, . . . , ẏN, ẏN−1, ẏN−2, . . . , ẏ

1
N−1, ẏ

2
N−1, . . . , ẏ

r
N−1

)
(8b)

Here Eq. (8b) represents the integration scheme. It is Eq. (2) for multi-step integrators, and
Eq. (5) or Eq. (6) for the ESDIRKs. For single-step methods, it needs to be reorganized from
Eqs. (4a)–(4e). SS2 uses

yN = yN−1 + �t

(
γ0γ2

γ1
ẏN + γ0(1 − γ2)

γ1
ẏN−1 + γ1 − γ0

γ1
ẏ1

N−1

)
(9)

SS3 uses

yN = yN−1 (10)

+ �t

(
γ0γ2γ4

γ1γ3
ẏN + γ0γ2(1 − γ4)

γ1γ3
ẏN−1 + γ0(γ3 − γ2)

γ1γ3
ẏ1

N−1 + γ1 − γ0

γ1
ẏ2

k−1

)

SS4 uses

yN = yN−1 (11)

+ �t

(
γ0γ2γ4γ6

γ1γ3γ5
ẏN + γ0γ2γ4(1 − γ6)

γ1γ3γ5
ẏN−1+

γ0γ2(γ5 − γ4)

γ1γ3γ5
ẏ1

N−1 + γ0(γ3 − γ2)

γ1γ3
ẏ2

k−1 + γ1 − γ0

γ1
ẏ3

k−1

)

3.1 Prediction

A predictor-corrector approach [24] is used to solve Eqs. (8a)–(8b) in MBDyn. Prediction
and correction are two separate, independent, and consecutive phases. The objective of the
prediction phase is to determine a tentative value for the solution to start the correction. Here
ẏ

(0)
N is used to represent the predicted value, and then y

(0)
N can be obtained directly by the

integration scheme. The scheme for prediction has minimal effect on the accuracy of the
solutions, but it may affect the number of iterations required, as shown in Sect. 5. The closer
the predicted value is to the final solution, the fewer iterations are required. Consequently,
the criterion for choosing the prediction scheme here is that it should not employ extra

Performance of implicit A-stable time integration methods. . . 269

information that was not used in the integration scheme, and that it should have similar
accuracy order to the integration scheme.

For the multi-step integrators, ẏ
(0)
N is predicted by a second-order scheme, as

ẏ
(0)
N = 1

tN − tN−1
(m0yN−1 + m1yN−2) + n0ẏN−1 + n1ẏN−2 (12)

Its local truncation error is defined as

σ = ẏ(tN) − n0ẏ(tN−1) − n1ẏ(tN−2) − 1

tN − tN−1
(m0y(tN−1) + m1y(tN−2)) (13)

Expanding the right-hand side at tN by Taylor’s theorem and letting the local truncation error
satisfy σ = O((tN − tN−1)

3), i.e., second-order accuracy, yields

α = tN − tN−1

tN−1 − tN−2

m0 = −6α2(1 + α), m1 = −m0 (14)

n0 = (1 + α)(1 + 3α), n1 = α(2 + 3α)

For the single-step integrators, the integration schemes use only the states of the last step.
So to make them truly single-step, the constant prediction is used, as

ẏ
(0)
N = ẏN−1 (15)

For the ESDIRKs, if tN is in the second-stage, using only the states of the last time point,
the constant prediction in Eq. (15) is employed. If tN is in the third to (s − 1)th stage,
since the integration scheme in these stages are all second-order accurate, the second-order
prediction in Eq. (12) is used. Note that in these cases tN is the current time and tN−1 is
the time of the last stage, so tN − tN−1 in Eq. (12) is not the time step size �t . The accu-
racy of the last stage has the same order as the overall accuracy, so the second-order ρ∞-
Bathe method, MSSTC(3,4,5), as well as the third-order MSSTH(3), ESDIRK3(2)4L[2]SA
and ESDIRK3(2)5L[2]SA still use second-order prediction in the last stage, but for the last
stage of the fourth-order MSSTH(4), ESDIRK4(3)6L[2]SA2 and the fifth-order MSSTH(5),
a fourth-order prediction scheme is employed, as

ẏ
(0)
N = 1

tN − tN−1

(
m0yN−1 + m1yN−2 + m2yN−3

)
(16)

+ n0ẏN−1 + n1ẏN−2 + n2ẏN−3

The parameters are determined by making it fourth-order accurate, as

α1 = tN − tN−1

tN−1 − tN−2
, α2 = tN − tN−1

tN−2 − tN−3
(17a)

m0 = −2α2
1(1 + α1)

(α1 + α2)3

(
5α3

1α
2
2 + 8α3

1α2 + 10α2
1α

3
2+ (17b)

3α3
1 + 25α2

1α
2
2 + 13α2

1α2 + 20α1α
3
2 + 20α1α

2
2 + 10α3

2

)

m1 = 2(1 + α1)

α1

(
5α3

1α
2
2 + 8α3

1α2 + 3α3
1 − 5α2

1α
3
2+ (17c)

270 H. Zhang et al.

α2
1α

2
2 + 4α2

1α2 − 7α1α
3
2 − α1α

2
2 − 2α3

2

)

m2 = −m0 − m1 (17d)

n0 = (1 + α1)

(α1 + α2)2

(
5α3

1α
2
2 + 8α3

1α2 + 3α3
1 + 11α2

1α
2
2 (17e)

+10α2
1α2 + α2

1 + 7α1α
2
2 + 2α1α2 + α2

2

)

n1 = 1

α1

(
5α3

1α
2
2 + 8α3

1α2 + 3α3
1 + 12α2

1α
2
2+ (17f)

12α2
1α2 + 2α2

1 + 9α1α
2
2 + 4α1α2 + 2α2

2

)

n2 = α3
2(1 + α1)

α1(α1 + α2)2

(
2α1 + 2α2 + 7α1α2 + 5α2

1α2 + 4α2
1

)
(17g)

In terms of rotations, the orientation and angular velocity of each node used for spatial
modelling in MBDyn are stored in the orientation matrix R, and vector ω, respectively. To
predict the orientation at tN , the Cayley–Gibbs–Rodriguez (CGR) orientation parameters are
assumed to be zero at the last point tN−1, namely gk−1 ≡ 0, and those of the other previous
steps, if needed, are extracted from the respective orientation matrices relative to that at time
tN−1, namely gN−j = g(RN−j RT

N−1), j ≥ 2. This procedure resembles typical approaches
to Lie group integration (e.g., [14]), and was inspired by the spatial interpolation of finite
rotations on 1D domains, originally formulated for geometrically exact beam analysis.

The CGR parameter derivatives are evaluated accordingly: ġN−1 ≡ ωN−1, since
gN−1 ≡ 0, and ġN−j = G−1

N−jωN−j , j ≥ 2, where the matrix G(g) expresses the trans-
formation from the rotation parameter derivatives to the angular velocity, ω = Gġ. For the
detailed expressions of g(R) and G(g) please refer to [24].

The single-step integrators must additionally prepare the auxiliary variables ġ
p

N−1 (1 ≤
p ≤ r − 1), but they do not have the corresponding CGR parameters g

p

N−1. To simplify the
computation, the approximation g

p

N−1 ≈ gN−1 ≡ 0 is used, such that ġ
p

N−1 ≡ ω
p

N−1. After
obtaining the final solutions at tN−1, ω

p

N−1 are updated according to the integration scheme.
From Eqs. (4a)–(4e), SS2 uses

ω1
N−1 = 1 − γ2

γ1
ωN−2 + γ2

γ1
ωN−1 − 1 − γ1

γ1
ω1

N−2 (18)

SS3 uses

ω1
N−1 = 1 − γ4

γ3
ωN−2 + γ4

γ3
ωN−1 − 1 − γ3

γ3
ω1

N−2 (19a)

ω2
N−1 = 1 − γ2

γ1
ω1

N−2 + γ2

γ1
ω1

N−1 − 1 − γ1

γ1
ω2

N−2 (19b)

SS4 uses

ω1
N−1 = 1 − γ6

γ5
ωN−2 + γ6

γ5
ωN−1 − 1 − γ5

γ5
ω1

N−2 (20a)

ω2
N−1 = 1 − γ4

γ3
ω1

N−2 + γ4

γ3
ω1

N−1 − 1 − γ3

γ3
ω2

N−2 (20b)

ω3
N−1 = 1 − γ2

γ1
ω2

N−2 + γ2

γ1
ω2

N−1 − 1 − γ1

γ1
ω3

N−2 (20c)

Performance of implicit A-stable time integration methods. . . 271

Certainly, other derivatives involved in ẏN−1 must be updated in the same way before com-
puting at tN . The auxiliary variables of SS3 and SS4 may be complex numbers, so their
real and imaginary parts are computed and stored separately. Due to the approximation of
rotations, these single-step integrators are no longer exactly equivalent to the correspond-
ing multi-step methods, but their solutions in numerical experiments are still very close, as
shown in Sect. 5. This indicates that the approximation does not cause any obvious reduction
in accuracy.

Having obtained the required gN−j , ġN−j (j ≥ 1) and g
p

N−1 (1 ≤ p ≤ r − 1), the CGR

parameters and their derivatives at time tN , g
(0)
N and ġ

(0)
N , are predicted using the previously

illustrated schemes. Then, the predicted orientation matrix and angular velocity are com-
puted as R� = R(g

(0)
N), R(0)

N = R�RN−1 and G� = G(g
(0)
N), ω(0) = G�ġ

(0)
N .

Of course, the relative rotation between the involved time steps is assumed limited to
avoid the indeterminacies and singularities inherent in all three-parameter parameterizations,
specifically those related to the CGR parameters (the magnitude of the relative rotations
must be significantly smaller than π). Such an assumption is considered acceptable when
the time step of the integration is dictated by accuracy requirements.

3.2 Correction

After the prediction phase, by a Newton-like iteration method, yN and ẏN are corrected
according to

[
∂yN

∂ẏN

ry

(
y

(l)
N , ẏ

(l)
N , tN

)
+ rẏ

(
y

(l)
N , ẏ

(l)
N , tN

)]
�ẏ (21a)

= −r
(
y

(l)
N , ẏ

(l)
N , tN

)

ẏ
(l+1)
N = ẏ

(l)
N + �ẏ (21b)

y
(l+1)
N = y

(l)
N + ∂yN

∂ẏN

�ẏ (21c)

where ry and rẏ are the partial derivatives of r with respect to y and ẏ, respec-
tively; ∂yN/∂ẏN = β0�t for the multi-step integrators, ∂yN/∂ẏN = γ0γ2�t/γ1 for SS2,
∂yN/∂ẏN = γ0γ2γ4�t/(γ1γ3) for SS3, ∂yN/∂ẏN = γ0γ2γ4γ6�t/(γ1γ3γ5) for SS4, and
∂yN/∂ẏN = γ�t for the ESDIRKs; l denotes the number of iterations, and l = 0 at the
initial.

In the correction phase, at each iteration, g
(l)
N and ġ

(l)
N are obtained through Eqs.

(21a)–(21c). The orientation is recast as R(l)
N = R�R(0)

N with R� = R(g
(l)
N). The angular

velocity is expressed as ω
(l)
N = G�ġ

(l)
N + R�ω

(0)
N with G� = G(g

(l)
N).

The final solution at tN is obtained when the prescribed convergence condition is satis-
fied. Then the procedure moves on to the solution for the next time point.

3.3 Generalization and extension

All previously described methods, which are summarized in Fig. 1, are available in MB-
Dyn’s public source code repository.2 Other time integration schemes can be easily added
using the provided class templates.

2https://public.gitlab.polimi.it/DAER/mbdyn, in the “integrators” development branch, to be merged soon
with the main development branch.

https://public.gitlab.polimi.it/DAER/mbdyn

272 H. Zhang et al.

Fig. 1 Inheritance tree of the StepNIntegrator class, generated using Doxygen

To define a new integrator that belongs to the families of linear multi-step, equivalent
single-step, or multi-stage methods, one simply needs to derive a new class from the cor-
responding template class, define the number of steps or stages (an integer template value),
and overload the virtual methods that provide the coefficients for the prediction of state and
derivative.

The implementation of these methods in MBDyn granted the possibility to evaluate their
performance when applied to non-trivial, general-purpose multibody system dynamics prob-
lems. Some examples taken from the literature are investigated in Sect. 5.

4 Linear analysis

The dissipation and dispersion accuracy as well as the degree of algorithmic dissipation
of the employed methods are compared in this section considering the single degree-of-
freedom problem ẍ +ω2x = 0, an undamped oscillator. The numerical solution of the prob-
lem at time tk can be expressed as

xk = e−ξωtk (c1 cos(ωdtk) + c2 sin(ωdtk)) , ωd = ω

√
1 − ξ

2
(22)

where c1 and c2 are constants determined by the initial conditions, and ω and ξ are the nu-
merical natural frequency and damping ratio, respectively. Here ξ and (T −T)/T = ω/ω−1
are known as the amplitude decay ratio and period elongation ratio, respectively. They are

Performance of implicit A-stable time integration methods. . . 273

Fig. 2 Percentage amplitude decay of the methods with tunable algorithmic dissipation

typically used to measure the dissipation and dispersion accuracy in the low-frequency do-
main. They can be obtained from the characteristic roots of the method, as in [37]. Besides,
the spectral radius of the method is used to measure the degree of algorithmic dissipation.

Figures 2, 3 and 4 summarize the percentage amplitude decay (AD(%)), percentage pe-
riod elongation (PE(%)) and spectral radius (ρ) of methods with tunable algorithmic dissipa-
tion, respectively. Considering the intrinsic spectral equivalence of the single-step methods
and the corresponding multi-step methods, only the results of the multi-step methods are
shown. Figures 5, 6 and 7 show AD(%), PE(%) and ρ of the higher-order ESDIRKs with
ρ∞ = 0.0. Because the s-stage ESDIRKs perform s − 1 implicit stages per step, to compare
the results under similar computational cost, the abscissa is set as �t/(nT) in the figures,
where n = 1 for the multi-step methods, and n = s − 1 for the s-stage ESDIRKs.

The employed methods all have A-stability and can provide algorithmic dissipation.
Among them, LMS2, LMS3, LMS4, Bathe, MSSTC(3,4,5) are second-order accurate, and
other ESDIRKs have higher-order accuracy. From the comparison, one can observe that the
second-order methods, especially LMS3, LMS4, MSSTC(3,4,5), are really superior in pre-
serving the frequency content. They show very small numerical damping ratios and spectral
radii very close to 1 when �t/(nT) ≤ 0.1.

As the number of steps or stages used increases, both dissipation and dispersion accuracy
improve for second-order methods, so LMS4 and MSSTC(5) have better accuracy, and can
retain more frequency content. As ρ∞ grows, these second-order methods also show higher

274 H. Zhang et al.

Fig. 3 Percentage period elongation of the methods with tunable algorithmic dissipation

accuracy, and when ρ∞ = 1.0, they all have the same characteristics as the trapezoidal rule.
Compared to the multi-step methods, the second-order multi-stage ones show better filtering
ability for high-frequency content, since their spectral radii drop to ρ∞ faster and earlier.

Compared to the second-order methods, the higher-order ESDIRKs exhibit higher disper-
sion accuracy, which gives them some accuracy advantage in transient simulations. On the
other hand, the excessive algorithmic dissipation of MSSTH(3,4,5) and ESDIRK3(2)4L-
[2]SA dissipates most of the frequency content in long-term simulations. With ρ∞ = 0.0,
MSSTH(5), ESDIRK3(2)5L[2]SA and ESDIRK4(3)6L[2]SA2 show very small period elon-
gation for �t/(nT) ≤ 0.05, whereas MSSTH(4) exhibits period shortening. MSSTH(3) with
ρ∞ = 0.0 has spectral characteristics almost identical to those of ESDIRK3(2)4L[2]SA.
Even though MSSTH(3,4,5) have tunable algorithmic dissipation, their accuracy cannot be
improved when ρ∞ increases, and when ρ∞ = 1.0 they exhibit unexpected algorithmic dis-
sipation at intermediate frequencies. For these reasons, a small ρ∞, like 0.0, is recommended
for MSSTH(3,4,5) to improve stability of the algorithm.

From the linear analysis, it appears that the second-order methods are very effective
in preserving the amplitude, while the higher-order methods have better phase accuracy.
Among second-order methods, the use of more steps or stages or a larger ρ∞ helps to
improve the dissipation and dispersion accuracy. Multi-step methods can retain more fre-
quency content than multi-stage ones with the same ρ∞. Except for ESDIRK4(3)6L[2]SA2

Performance of implicit A-stable time integration methods. . . 275

Fig. 4 Spectral radius of the methods with tunable algorithmic dissipation

Fig. 5 Percentage amplitude
decay of the higher-order
methods with ρ∞ = 0.0

and ESDIRK3(2)5L[2]SA, the employed other higher-order methods show excessive algo-
rithmic dissipation in the low-frequency domain.

276 H. Zhang et al.

Fig. 6 Percentage period
elongation of the higher-order
methods with ρ∞ = 0.0

Fig. 7 Spectral radius of the
higher-order methods with
ρ∞ = 0.0

5 Numerical experiments

The performance of the previously discussed integrators is illustrated in this Section by
solving some benchmark problems in MBDyn.3 Two values of ρ∞, 0.0 and 0.6, are used
for second-order methods, and ρ∞ = 0.0 is used in MSSTH(3,4,5). In all examples, the
integrators use the same �t/n to predict the results under comparable computational cost.
The results of the second-order integrators with ρ∞ = 0.0, the second-order integrators with
ρ∞ = 0.6, and the higher-order integrators, are presented separately. Table 1 lists the line
and symbol of different integrators used in the result figures in this Section. The accuracy
and stability of the numerical results as well as the calculation efficiency of the methods, are
discussed.

3The input files for MBDyn are publicly available in the examples folder of the software distribution, https://
public.gitlab.polimi.it/DAER/mbdyn.

https://public.gitlab.polimi.it/DAER/mbdyn
https://public.gitlab.polimi.it/DAER/mbdyn

Performance of implicit A-stable time integration methods. . . 277

Table 1 Line and symbol of different methods used in the figures in Sect. 5

Fig. 8 Andrew’s squeezer
mechanism (adapted from [29])

5.1 Andrew’s squeezer mechanism

Problem description Andrew’s squeezer mechanism [29], as shown in Fig. 8, is a planar
system composed of seven rigid links. The coordinates of noteworthy points in the local
reference frame, the mass, and the moment of inertia of each part are listed in Table 2.
The origin of each local reference frame is placed in the first point with the name of each
link. For links with only two points, the local x-axis is along the line connecting the points.
For the link E-B-D, the local y-axis is aligned with E-B , pointing towards B . The co-
ordinates of the center of mass (xC, yC) are described in the local reference frame, and
the rotational inertia Iz of each body is expressed about its centre of mass. In the global
reference frame Oxy, the coordinates of points A, B , C are (−0.06934 m,−0.00227 m),
(−0.03635 m,0.03273 m) and (0.01400 m,0.07200 m), respectively. The point D is con-
nected to the point C by a spring, whose stiffness characteristic is k = 4530 N/m and
whose natural length is l0 = 0.07785 m. The link O-F is driven with a constant torque
T = 0.033 N · m, starting from an initial angle β0 = −0.0620 rad. Gravity is not considered.

Numerical results This example is used to check how the methods employed can preserve
the mechanical energy of the system. The total energy balance equation of the system can
be expressed as

�E = E − E0 − T (β − β0) (23)

since the torque T is constant, where E collects the kinetic and potential energy of the
system. Without physical damping, �E should be zero throughout the simulation. With
�t/n = 10−4 s, Figs. 9 and 10 show, respectively, the angular velocity ω of bar O-F , and

278 H. Zhang et al.

Table 2 Coordinates of the points in the local reference system, mass and inertia properties of the links

Link Point x (m) y (m) xC (m) yC (m) Mass (kg) Iz (kg · m2)

O-F O 0.0 0.0 0.00092 0.0 0.04325 2.194 × 10−6

F 0.007 0.0

E-F E 0.0 0.0 0.01650 0.0 0.00365 4.410 × 10−7

F 0.028 0.0

H -E H 0.0 0.0 0.00579 0.0 0.00706 5.667 × 10−7

E 0.02 0.0

G-E G 0.0 0.0 0.00579 0.0 0.00706 5.667 × 10−7

E 0.02 0.0

A-G A 0.0 0.0 0.02308 0.00916 0.07050 1.169 × 10−5

G 0.04 0.0

A-H A 0.0 0.0 0.01228 −0.00449 0.05498 1.912 × 10−5

H 0.04 0.0

E-B-D E 0.0 0.0 0.01043 0.01626 0.02373 5.255 × 10−6

B 0.0 0.035

D 0.02 0.017

�E as obtained from the numerical solutions within the [0,0.05] s interval. Figures 11 and
12 show the same results but with a smaller step size �t/n = 10−5 s. The results given by
the second-order methods with ρ∞ = 0.0 and 0.6, as well as the higher-order methods with
ρ∞ = 0.0, are presented separately. The reference solutions in Figs. 9 and 11 are obtained
by LMS4 with ρ∞ = 0.6 and �t = 10−6 s.

From Fig. 9, with �t/n = 10−4 s, the results computed using MSSTH(5) with ρ∞ = 0.0
depart from the reference solution after about 0.01 s, and those obtained using MSSTH(3,4)
with ρ∞ = 0.0, ESDIRK3(2)4L[2]SA, and Bathe with ρ∞ = 0.6 show observable differ-
ences. From Fig. 10, in this case, the results of �E given by MSSTC(5) with ρ∞ = 0.0,
MSSTH(3,4) with ρ∞ = 0.0, and ESDIRK3(2)4L[2]SA, show an increasing trend, indicat-
ing that their results are likely to become unstable over time. LMS2 and SS2 with ρ∞ = 0.6,
LMS3, SS3, LMS4, SS4, MSSTC(3) and MSSTC(5) with ρ∞ = 0.6, can mostly preserve
energy, although with oscillations, while LMS2 and SS2 with ρ∞ = 0.0, Bathe, MSSTC(4)
and the remaining higher-order integrators show an obvious drop in energy.

With �t/n = 10−5 s, Fig. 11 shows that all methods can predict accurate results of
ω. However, from Fig. 12, it is clear that the energy instability, i.e. �E > 0 [5], is still
observed for some higher-order integrators, including MSSTH(3,4) with ρ∞ = 0.0, ES-
DIRK3(2)4L[2]SA, ESDIRK4(3)6L[2]SA2. MSSTH(5) with ρ∞ = 0.0 exhibits obvious en-
ergy drop. The second-order integrators perform well with the smaller step size.

From this example we can conclude that most of the higher-order integrators employed
have worse stability in this type of problem, and are really not recommended for energy-
conserving purpose. Among the second-order integrators, the linear analysis in Sect. 4 illus-
trates that they can preserve more modes as the number of steps or stages used increases,
but the multi-stage methods do not follow this rule here. This is because they use the trape-
zoidal rule from the second to the nth stage, and the non-dissipative trapezoidal rule is likely
to give unreliable or unstable results for nonlinear problems [33]. Therefore, the multi-step

Performance of implicit A-stable time integration methods. . . 279

Fig. 9 Angular velocity ω of bar O-F within [0,0.05] s using �t/n = 10−4 s (a) Second-order methods
with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order methods with ρ∞ = 0.0

and single-step integrators, especially LMS3, SS3, LMS4 and SS4 with a large ρ∞, such as
0.6, are better candidates in terms of energy conservation for general problems.

5.2 Flexible four-bar mechanism

Problem description Some of the benchmark problems for flexible mechanisms proposed
in [4] are solved. Figure 13 shows the configuration of a flexible four-bar mechanism. Bars
A-B , B-C, C-D and the ground are connected through revolute joints. The initial angles
between them are all 90 deg. The bars’ lengths are L1 = L3 = 0.12 m and L2 = 0.24 m.
The rotation axis of the revolute joint at point C is rotated by +5 deg about the y direction,
to simulate an assembly defect that would lock the mechanism if the bars were rigid. The
inertia and stiffness properties of the bars are listed in Table 3. Each bar is modeled in
MBDyn using 5 three-node beam elements [15]. The angular velocity of the bar A-B at
point A with respect to the frame is prescribed as = 0.6 rad/s during the simulation.

Numerical results The simulation was run in the interval [−2T ,12 s], where T = 2π/

performs about three complete cycles of the bar A-B . With �t/n = 4×10−3 s, Figs. 14 and
15 respectively show the rotation angle θ and the angular velocity ω1 about the x axis at the
tip of bar B-C at point C within [0,12] s. Figure 16 plots the results of ω1 with a smaller
step size �t = 1 × 10−3 s.

280 H. Zhang et al.

Fig. 10 Energy balance �E within [0,0.05] s using �t/n = 10−4 s (a) Second-order methods with
ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order methods with ρ∞ = 0.0

Table 3 Inertia and stiffness
properties of bars A-B , B-C and
C-D

Bar A-B Bar B-C Bar C-D

Mass per unit span m (kg/m) 1.9968 0.4992 1.9968

Moments of inertia per
unit span J1 (mg · m)

85.1968 5.3248 85.1968

Moments of inertia per
unit span J2 (mg · m)

42.5984 2.6624 42.5984

Moments of inertia per
unit span J3 (mg · m)

42.5984 2.6624 42.5984

Axial stiffness EA (MN) 52.9920 13.2480 52.9920

Shearing stiffness GAY (MN) 16.8803 4.2201 16.8803

Shearing stiffness GAZ (MN) 16.8803 4.2201 16.8803

Torsional stiffness GJ (N · m2) 733.488 45.843 733.488

Bending stiffness EJY (N · m2) 1130.50 70.656 1130.50

Bending stiffness EJZ (N · m2) 1130.50 70.656 1130.50

From Fig. 14 it is seen that the rotation angles θ computed by the methods used agree
very well with each other. However, as shown in Figs. 15 and 16, since the angular velocity
changes rapidly at certain moments, high-frequency oscillations can be observed, and the

Performance of implicit A-stable time integration methods. . . 281

Fig. 11 Angular velocity ω of bar O-F within [0,0.05] s using �t/n = 10−5 s (a) Second-order methods
with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order methods with ρ∞ = 0.0

observable differences in the integrators employed are how fast they filter the oscillations.
As shown in Figs. 15 and 16, the oscillations become more pronounced with a smaller time
step size or a larger ρ∞. LMS4 and SS4 with ρ∞ = 0.6 and �t = 1 × 10−3 s exhibit the
most significant oscillations. This example shows the importance of algorithmic dissipation
for problems containing high-frequency pollution, which often appears in the solutions of
velocities, accelerations and forces. For such problems, Bathe and the higher-order integra-
tors, which have strong algorithmic dissipation from linear analysis in Sect. 4, with ρ∞ = 0.0
and a suitable �t , not too small, are recommended.

5.3 Lateral buckling of a thin beam

Problem description Figure 17 shows the configuration of a beam actuated by a crank-link
mechanism. The beam is clamped at one end; the other end is connected to the link by a
spherical joint. To simulate an initial imperfection, the plane of the crank-link mechanism
is offset from the plane of the beam by d = 0.1 mm in the y direction. The end of the beam
and the spherical joint are rigidly connected. The link, crank, and ground are connected via
revolute joints. The lengths are L = 1 m, Ll = 0.25 m and Lc = 0.05 m. The inertia and
stiffness properties of the crank, link and beam are listed in Table 4. The beam is meshed
with 5 three-node beam elements, and both the link and the crank are modelled with 1 three-

282 H. Zhang et al.

Fig. 12 Energy balance �E within [0,0.05] s using �t/n = 10−5 s (a) Second-order methods with
ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order methods with ρ∞ = 0.0

Fig. 13 Flexible four-bar
mechanism (adapted from [4])

node beam element each. The rotation angle of the crank is prescribed as

φ =

⎧
⎪⎨

⎪⎩

π

2

(
1 − cos

πt

T

)
, t ≤ T

π, t > T

(24)

where T = 0.4 s.

Numerical results The simulation was run in the interval [0,0.8] s using �t/n = 10−3 s.
The rotation angle θ and angular velocity ω1 about the x axis, and the shear force F3 along
the z axis at the mid-span of the beam are summarized in Figs. 18, 19 and 20, respectively.
Driven by the crank-link mechanism, the beam buckled laterally rather quickly, before the

Performance of implicit A-stable time integration methods. . . 283

Fig. 14 Rotation angle θ about the x axis at the tip of bar B-C at point C within [0,12] s using
�t/n = 4 × 10−3 s (a) Second-order methods with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6;
(c) Higher-order methods with ρ∞ = 0.0

crank reached the uppermost position, and then began to oscillate rapidly. In this case, the
higher-order MSSTH(5) with ρ∞ = 0.0, and ESDIRK3(3)5L[2]SA failed to complete the
simulation.

As shown in Figs. 18–20, the solutions of the employed methods almost overlap in
the [0,0.4] s interval. However, in the subsequent free oscillations, the solutions ob-
tained with a few methods, including LMS2 and SS2 with ρ∞ = 0.0, MSSTH(3,4), ES-
DIRK3(2)4L[2]SA, exhibit a significant amplitude decay and phase shift compared to the
solutions obtained with the remaining methods. These schemes cannot reflect the partici-
pation of high-frequency contributions in the response, because of their strong algorithmic
dissipation. The results are consistent with the comparisons in Sect. 4. LMS2 and SS2 with
ρ∞ = 0.0 and most of the higher-order schemes have larger algorithmic dissipation than the
other schemes. Therefore, when the contribution of high-frequencies needs to be considered
in the solution, the second-order methods, especially LMS3, SS3, LMS4, SS4 with a large
ρ∞, such as 0.6, are recommended.

5.4 Rotating shaft

Problem description Figure 21 shows the configuration of a rotating shaft. Its end R is
connected to the ground by a revolute joint, whereas the other end T is connected to the

284 H. Zhang et al.

Fig. 15 Angular velocity ω1 about the x axis at the tip of bar B-C at point C within [0,12] s using
�t/n = 4 × 10−3 s (a) Second-order methods with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6;
(c) Higher-order methods with ρ∞ = 0.0

ground by a cylindrical joint that allows rotation about and displacement along the shaft’s
axis. A rigid disk is attached to the shaft at the mid-span; its center of mass is offset from
the reference axis of the shaft by d = 0.05 m in the z direction, thus inertially unbalancing
the system. The shaft length is L = 6 m; its other properties are listed in Table 5. It is
modelled with 16 three-node beam elements. The disk has mass md = 70.573 kg, radius
rd = 0.24 m, and thickness td = 0.05 m. Its inertial tensor with respect to the center of mass
is diag(2.0325,1.0163,1.0163) g · m2. The angular velocity of the revolute joint at the point
R is prescribed as

 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
A1ω

(
1 − cos

πt

T1

)
, 0 ≤ t ≤ T1

A1ω, T1 < t ≤ T2

A1ω + 1

2
(A2 − A1)ω

(
1 − cos

π(t − T2)

T3 − T2

)
, T2 < t ≤ T3

A2ω, t > T3

(25)

Performance of implicit A-stable time integration methods. . . 285

Fig. 16 Angular velocity ω1 about the x axis at the tip of bar B-C at point C within [0,12] s using
�t/n = 1 × 10−3 s (a) Second-order methods with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6;
(c) Higher-order methods with ρ∞ = 0.0

Fig. 17 Crank actuated beam
(adapted from [4])

where A1 = 0.8, A2 = 1.2, T1 = 0.5 s, T2 = 1 s, T3 = 1.25 s, ω = 60 rad/s, i.e., it gently
grows to an amplitude slightly below ω, pauses there for some time, and then gently grows
again above ω, which corresponds roughly to a characteristic frequency of the system.

Numerical results The simulation was run in the interval [−1,2.5] s using �t/n = 10−3 s.
Figures 22, 23 and 24 show, respectively, the displacement u3, velocity v3 and acceleration
a3 along the z axis at the shaft’s mid-span within [0,2.5] s. In this case, LMS4 with ρ∞ = 0.6
failed to complete the solution. Excellent agreement can be observed between the results

286 H. Zhang et al.

Table 4 Inertia and stiffness
properties of the crank, link and
beam

Beam Link Crank

Mass per unit span m (kg/m) 2.68 1.212 4.85

Moments of inertia per
unit span J1 (mg · m)

2255.33 87.30 1396.6

Moments of inertia per
unit span J2 (mg · m)

2233 43.65 698.3

Moments of inertia per
unit span J3 (mg · m)

22.33 43.65 698.3

Axial stiffness EA (MN) 73 33.02 132.1

Shearing stiffness GAY (MN) 5.025 10.81 43.22

Shearing stiffness GAZ (MN) 23.40 10.81 43.22

Torsional stiffness GJ (N · m2) 877.2 914.5 14630

Bending stiffness EJY (N · m2) 60830 1189 19020

Bending stiffness EJZ (N · m2) 608.3 1189 19020

Table 5 Inertia and stiffness
properties of the shaft Shaft

Mass per unit span m (kg/m) 11.64

Moments of inertia per
unit span J1 (mg · m)

26.34

Moments of inertia per
unit span J2 (mg · m)

13.17

Moments of inertia per
unit span J3 (mg · m)

13.17

Axial stiffness EA (MN) 313.4

Shearing stiffness GAY (MN) 60.5

Shearing stiffness GAZ (MN) 60.5

Torsional stiffness GJ (N · m2) 272.7

Bending stiffness EJY (N · m2) 354.5

Bending stiffness EJZ (N · m2) 354.5

computed by the other employed methods, since the time step is sufficient to accurately
describe the participating modes regardless of the algorithmic dissipation.

Convergence Based on this example, the convergence rates of the employed methods are
investigated. Figures 25, 26 and 27 plot the relative errors of u3, v3 and a3 versus �t/n of
the employed methods. The relative error RE is defined as

RE(x) =
√√√√

∑N

j=1(x(tj) − xj)2

∑N

j=1 x(tj)2
(26)

where N is the number of total steps, x(tj) and xj denote the exact and numerical solutions
at time tj , respectively. Since no exact solution can be obtained analytically for problems
like this, it is replaced by the reference solution obtained using ESDIRK4(3)6L[2]SA2 with
a very small step size, �t = 10−5 s.

As can be seen, the second-order methods all exhibit a second-order convergence rate for
displacement, velocity, and acceleration. The multi-step and equivalent single-step schemes

Performance of implicit A-stable time integration methods. . . 287

Fig. 18 Rotation angle θ about the x axis at the beam’s mid-span within [0,0.8] s using �t/n = 10−3 s
(a) Second-order methods with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order meth-
ods with ρ∞ = 0.0

have very similar relative errors. Accuracy improves with increasing number of steps or
stages or with a large ρ∞. LMS2 and SS2 with ρ∞ = 0.0 show larger errors than the other
schemes. These conclusions are consistent with the analysis in Sect. 4.

Among the higher-order methods, the third-order MSSTH(3) and ESDIRK3(2)4L-
[2]SA show a third-order convergence rate, and the third-order ESDIRK3(3)5L[2]SA
shows a convergence rate exceeding the third-order. The fourth-order MSSTH(4) and
ESDIRK4(3)6L[2]SA2 show a convergence rate of about fourth-order when �t/n is close
to 0.001 s, but when �t/n becomes smaller, their orders of convergence rate decrease, espe-
cially in a3. We think that this is because the reference solution, obtained using a very small
step size, includes the contribution of a very large frequency range that contains many high
frequencies not included in the numerical results. The treatment of these high-frequencies
brings additional errors, which become more significant in the accelerations and in the cases
where the error of the integrator in the frequency domain that it can retain is already quite
small, such as the higher-order integrators with a small step size.

However, the fifth-order MSSTH(5) was never able to reach the fifth-order convergence
rate. Regarding the reason, we think it may be related to the smoothness of the problem itself.
Since the accuracy order is obtained from the Taylor expansion results, the higher-order

288 H. Zhang et al.

Fig. 19 Angular velocity ω1 about the x axis at the beam’s mid-span within [0,0.8] s using �t/n = 10−3 s
(a) Second-order methods with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order meth-
ods with ρ∞ = 0.0

methods have higher requirements on the smoothness of the problems. If the smoothness
does not meet the requirements, the order reduction may occur.

From the relative errors, ESDIRK3(3)5L[2]SA and ESDIRK4(3)6L[2]SA2 are more ac-
curate than other methods. The design of MSSTH(3,4,5) considers the minimization of the
local truncation error, but these methods do not perform as expected. It indicates that a small
local truncation error does not necessarily mean higher accuracy. The amplitude and period
accuracy, as shown in Figs. 5–6, can better represent the accuracy of an integrator. There-
fore, for high-accuracy purpose, ESDIRK3(3)5L[2]SA and ESDIRK4(3)6L[2]SA2 are more
recommended.

5.5 Average number of iterations

Since the same �t/n is used in the examples, the number of steps or sub-steps required for
all methods is the same. However, as discussed in Sect. 2, the scheme used for prediction
also plays an important role in computational efficiency. Therefore, the average number of
iterations required for each step/sub-step in all examples solved in this section is listed in
Fig. 28, to illustrate the cost of the employed methods. Two time step sizes are considered
here for each example.

Performance of implicit A-stable time integration methods. . . 289

Fig. 20 Shear force F3 at the beam’s mid-span within [0,0.8] s using �t/n = 10−3 s (a) Second-order
methods with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order methods with ρ∞ = 0.0

Fig. 21 Rotating shaft with
unbalanced disk (adapted from
[4])

As shown in Fig. 28, the average number of iterations decreases with a smaller step size
in all cases. The number of iterations spent by each integrator does not differ significantly.
However, it can be observed that each single-step method always requires more iterations
than the corresponding multi-step method. As discussed in Sect. 3, single-step methods
use constant prediction, while multi-step methods use an explicit second-order scheme for

290 H. Zhang et al.

Fig. 22 Displacement u3 at the shaft’s mid-span within [0,2.5] s using �t/n = 10−3 s (a) Second-order
methods with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order methods with ρ∞ = 0.0

prediction. Therefore, this observation supports the conclusion that the use of an explicit
second-order prediction scheme in these second-order methods helps to improve computa-
tional efficiency.

Besides, also the higher-order methods require more iterations than the remaining
second-order methods in most cases. This may also be explained by the consideration that
the accuracy of the prediction scheme is not close enough to that of the time integration
scheme. The second-order multi-step and multi-stage methods usually require the least num-
ber of iterations of all methods. The data from Fig. 28 seem to support the consideration that
a suitable prediction scheme, which must be explicit and have accuracy close to that of the
integration scheme, is helpful in saving computational costs.

6 Conclusions

In this work, the performance of several representative implicit, A-stable time integration
methods is discussed in view of their application to multibody system dynamics. The em-
ployed methods include linear two-, three-, and four-step methods, referred to as LMS2,
LMS3, LMS4, their equivalent single-step methods, indicated as SS2, SS3, SS4, and several
explicit first-stage, singly diagonally-implicit Runge–Kutta methods (ESDIRKs), indicated
as Bathe, MSSTC(3,4,5), MSSTH(3,4,5), ESDIRK3(2)4L[2]SA, ESDIRK3(3)5L[2]SA,

Performance of implicit A-stable time integration methods. . . 291

Fig. 23 Velocity v3 at the shaft’s mid-span within [0,2.5] s using �t/n = 10−3 s (a) Second-order methods
with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order methods with ρ∞ = 0.0

and ESDIRK4(3)6L[2]SA2. These methods have been developed in [21, 35, 36], but the
parameters of MSSTH(3,4,5) are modified here to satisfy the overall and stage order con-
ditions. The formulations of the employed methods, and their implementation in the free
general-purpose multibody solver MBDyn are presented.

In terms of properties, the linear multi-step, single-step, Bathe and MSSTC(3,4,5) meth-
ods have second-order accuracy and tunable algorithmic dissipation, whereas the other ES-
DIRKs can achieve higher-order accuracy. Several general conclusions can be drawn from
the linear analysis and numerical experiments:

– with a suitable step size, all employed methods can predict accurate solutions.
– LMS3, SS3, LMS4 and SS4 with a large ρ∞, such as 0.6, show robust stability and good

energy-conserving properties, making them suitable for long-term simulations and other
cases where a large range of modes must be preserved, but these methods are not as good
as others at filtering out high-frequency oscillations.

– LMS2 and SS2 with ρ∞ = 0.0 (namely the second-order Backward Difference Formula)
as well as most of the employed higher-order methods show a strong algorithmic dissi-
pation even in the low-frequency range, so that their solutions are more likely to exhibit
obvious amplitude decay and consequently a loss of accuracy at the large time steps.

– Bathe and the higher-order integrators with ρ∞ = 0.0 can filter out high-frequency dy-
namics faster, so they are more useful for problems with high-frequency pollution.

292 H. Zhang et al.

Fig. 24 Acceleration a3 at the shaft’s mid-span within [0,2.5] s using �t/n = 10−3 s (a) Second-order
methods with ρ∞ = 0.0; (b) Second-order methods with ρ∞ = 0.6; (c) Higher-order methods with ρ∞ = 0.0

– among the employed methods, ESDIRK3(3)5L[2]SA and ESDIRK4(3)6L[2]SA2 have an
obvious accuracy advantage over the other when the time step size is small enough to cor-
rectly integrate the participating dynamics, so they are recommended for high-accuracy
purposes.

– the prediction scheme affects the number of iterations and thus the computational effi-
ciency. It should be explicit, preferably if its order of accuracy is close to that of the time
integration scheme.

Appendix: Modified parameters of MSSTH(3,4,5)

Following the approach in [21], the local truncation error of an ESDIRK can be expressed
as

σ =
∞∑

i=1

(�t)i

ai∑

j=1

σ
(i)
j F

(i)
j (27)

where F
(i)
j are elementary differentials, ai = {1,1,2,3,9,20} for i = {1,2,3,4,5,6}. The

method is said to be pth-order accurate if σ = O(�tp+1), which requires that σ
(i)
j = 0 for

Performance of implicit A-stable time integration methods. . . 293

Fig. 25 Convergence rates of
displacement u3 at the shaft’s
mid-span for: (a) second-order
methods; (b) higher-order
methods (the value of ρ∞ is
placed in brackets in the legend)

all j = 1,2, . . . , ai and i = 1,2, . . . , p. The error of a pth-order method can be measured by

||σ (p+1)||2 =
√√√√

ap+1∑

j=1

(σ
(p+1)

j)2 (28)

Here we use A = aij , b = bi , c = ci , C = diag(c), e = [1,1,1, . . . ,1]T, and define

q(k) = ACk−1e − 1

k
Cke,Q(k) = diag(q(k)) (29)

the overall order conditions for up to sixth-order are expressed in Table 6. If q(1) = q(2) =
· · · = q(�) = 0, the stage order of an ESDIRk is �. According to the definition, one can check
that MSSTC(n) has an overall order 2 and stage order 2.

MSSTH(n) is designed to provide high accuracy, so the conditions of stage order 2,
overall order n, and a ||σ (n+1)||2 as small as possible are imposed. For MSSTH(3), q(1) =

294 H. Zhang et al.

Fig. 26 Convergence rates of
velocity v3 at the shaft’s
mid-span for: (a) second-order
methods; (b) higher-order
methods (the value of ρ∞ is
placed in brackets in the legend)

q(2) = 0, and ||σ (1)||2 = ||σ (2)||2 = ||σ (3)||2 = 0 yield

c2 = 2γ (30a)

a21 = γ (30b)

a32 = c3(c3 − 2γ)

4γ
(30c)

a31 = c3 − γ − a32 (30d)

b2 = 3c3 + 6γ − 6c3γ − 2

12γ (c3 − 2γ)
(30e)

b3 = 6γ 2 − 6γ + 1

3c3(c3 − 2γ)
(30f)

b1 = 1 − γ − b2 − b3 (30g)

Performance of implicit A-stable time integration methods. . . 295

Fig. 27 Convergence rates of
acceleration a3 at the shaft’s
mid-span for: (a) second-order
methods; (b) higher-order
methods (the value of ρ∞ is
placed in brackets in the legend)

leaving two free parameters γ and c3. For a given ρ∞, γ has been determined in [35] to offer
the prescribed degree of algorithmic dissipation, as listed in Table 7, and c3 can be obtained
by minimizing ||σ (4)|| as

c3 = 24γ 2 − 20γ + 3

24γ 2 − 24γ + 4
(31)

For MSSTH(4), the order conditions q(1) = q(2) = 0, and ||σ (1)||2 = ||σ (2)||2 = ||σ (3)||2 =
||σ (4)||2 = 0 give

c2 = 2γ (32a)

a21 = γ (32b)

a32 = c3(c3 − 2γ)

4γ
(32c)

a31 = c3 − γ − a32 (32d)

296 H. Zhang et al.

Fig. 28 Average number of iterations required in each step/sub-step S/N of the integrators in all examples
(S is the total number of iterations, and N is the total number of steps/sub-steps)

a42 = c4(c4 − 2γ)η1

4γ η2
(32e)

a43 = c2
4 − 4a42γ − 2c4γ

2c3
(32f)

a41 = c4 − γ − a42 − a43 (32g)

b2 = −12(c3c4 − c3 − c4 + 1)γ + 4c3 + 4c4 − 6c3c4 − 3

24γ (c3 − 2γ)(c4 − 2γ)
(32h)

b3 = 24(c4 − 1)γ 2 + 4(5 − 6c4)γ + 4c4 − 3

12c3(c4 − c3)(c3 − 2γ)
(32i)

b4 = −24(c3 − 1)γ 2 + 4(5 − 6c3)γ + 4c3 − 3

12c4(c4 − c3)(c4 − 2γ)
(32j)

b1 = 1 − γ − b2 − b3 − b4 (32k)

with

η1 = 48(1 − c4)γ
3 + 8(3c2

3 − 6c3 + 9c4 − 5)γ 2 (33a)

+ 6(−4c2
3 + 6c3 − 4c4 + 1)γ + 4c2

3 − 5c3 + 2c4

η2 = 48(1 − c3)γ
3 + 8(3c2

3 + 3c3 − 5)γ 2 (33b)

+ 6(−4c2
3 + 2c3 + 1)γ + 4c2

3 − 3c3

Performance of implicit A-stable time integration methods. . . 297

Table 6 Order condition expressed using q(k) for an ESDIRK

σ
(i)
j

Expression σ
(i)
j

Expression

σ
(1)
1 bTe − 1 σ

(2)
1 bTCe − 1

2

σ
(3)
1

1

2
bTC2e − 1

6
σ

(3)
2 bTq(2) + σ

(3)
1

σ
(4)
1

1

6
bTC3e − 1

24
σ

(4)
2 bTCq(2) + 3σ

(4)
1

σ
(4)
3

1

2
bTq(3) + σ

(4)
1 σ

(4)
4 bTAq(2) + σ

(4)
3

σ
(5)
1

1

24
bTC4e − 1

120
σ

(5)
2

1

2
bTC2q(2) + 6σ

(5)
1

σ
(5)
3

1

2
bT

(
Q(2) + C2

)
q(2) + 3σ

(5)
1 σ

(5)
4

1

2
bTCq(3) + 4σ

(5)
1

σ
(5)
5

1

6
bTq(4) + σ

(5)
1 σ

(5)
6 bTCAq(2) + σ

(5)
4

σ
(5)
7 bTACq(2) + 3σ

(5)
5 σ

(5)
8

1

2
bTAq(3) + σ

(5)
5

σ
(5)
9 bTA2q(2) + σ

(5)
8 σ

(6)
1

1

120
bTC5e − 1

720

σ
(6)
2

1

6
bTC3q(2) + 10σ

(6)
1 σ

(6)
3

1

2
bTC

(
Q(2) + C2

)
q(2) + 15σ

(6)
1

σ
(6)
4

1

4
bTC2q(3) + 10σ

(6)
1 σ

(6)
5

1

2
bT

(
Q(3) + 1

3
C3

)
q(2) + σ

(6)
4

σ
(6)
6

1

6
bTCq(4) + 5σ

(6)
1 σ

(6)
7

1

24
bTq(5) + σ

(6)
1

σ
(6)
8

1

2
bTC2Aq(2) + σ

(6)
4 σ

(6)
9 bTQ(2)Aq(2) + 1

2
bTQ(2)q(3) + 1

6
bTC3q(2) + σ

(6)
8

σ
(6)
10 bTCACq(2) + 3σ

(6)
6 σ

(6)
11

1

2
bTAC2q(2) + 6σ

(6)
7

σ
(6)
12

1

2
bTA

(
Q(2) + C2

)
q(2) + 3σ

(6)
7 σ

(6)
13

1

2
bTCAq(3) + σ

(6)
6

σ
(6)
14

1

2
bTACq(3) + 4σ

(6)
7 σ

(6)
15

1

6
bTAq(4) + σ

(6)
7

σ
(6)
16 bTCA2q(2) + σ

(6)
13 σ

(6)
17 bTACAq(2) + σ

(6)
14

σ
(6)
18 bTA2Cq(2) + 3σ

(6)
15 σ

(6)
19

1

2
bTA2q(3) + σ

(6)
15

σ
(6)
20 bTA3q(2) + σ

(6)
19

Then γ has been given to offer the tunable algorithmic dissipation, and c3, c4 are obtained
by minimizing ||σ (5)||2 for several fixed ρ∞, as listed in Table 7.

For MSSTH(5), the order conditions impose

c2 = 2γ (34a)

a21 = γ (34b)

a32 = c3(c3 − 2γ)

4γ
(34c)

a31 = c3 − γ − a32 (34d)

298 H. Zhang et al.

a42 = − c4(c4 − 2γ)η1

4γ (c3 − 2γ)η2
(34e)

a43 = c2
4 − 4a42γ − 2c4γ

2c3
(34f)

a41 = c4 − γ − a42 − a43 (34g)

c5 = η3

η4
(34h)

a53 = c5(c5 − c3)(c5 − 2γ)η5

c3(c4 − c3)(c3 − 2γ)η6
(34i)

a54 = c5(c5 − c3)(c5 − c4)(c5 − 2γ)η7

c4(c4 − c3)(c4 − 2γ)η6
(34j)

a52 = c2
5 − 2a53c3 − 2a54c4 − 2c5γ

4γ
(34k)

a51 = c5 − γ − a52 − a53 − a54 (34l)

b3 = − η8

60c3(c4 − c3)(c5 − c3)(c3 − 2γ)
(34m)

b4 = η9

60c4(c4 − c3)(c5 − c4)(c4 − 2γ)
(34n)

b5 = − η10

60c5(c5 − c3)(c5 − c4)(c5 − 2γ)
(34o)

b2 = 1 − 2γ − 2b3c3 − 2b4c4 − 2b5c5

4γ
(34p)

b1 = 1 − γ − b2 − b3 − b4 − b5 (34q)

with

η1 = 240(1 − c4)γ
4 + 40(3c2

3 − 6c3 + 12c4 − 7)γ 3 (35a)

+ 20(−9c2
3 + 13c3 − 12c4 + 4)γ 2

+ (60c2
3 − 70c3 + 40c4 − 6)γ − 5c2

3 + 5c3 − 2c4

η2 = 120(1 − c3)γ
3 + 20(9c3 − 7)γ 2 (35b)

+ 20(2 − 3c3)γ + 5c3 − 3

η3 = −720γ 5 + (360c3 + 848)γ 4 (35c)

+ (−336c3 − 368)γ 3 + (120c3 + 64)γ 2

+ (−18c3 − 4)γ + c3

η4 = −480γ 5 + (240c3 + 600)γ 4 (35d)

+ (−240c3 − 288)γ 3 + (96c3 + 56)γ 2

Performance of implicit A-stable time integration methods. . . 299

Table 7 Parameters used in the modified MSSTH(n) for several fixed ρ∞
ρ∞ MSSTH(3): γ MSSTH(4): γ MSSTH(4): c3

0.0 0.1804253064293983299659629 0.5728160624821350133117903 0.5590985754229417305152542

0.1 0.1786194582046580769940647 0.5483666449758298755412511 0.6002938888698324121975147

0.2 0.1769458066182237054864146 0.5263864568423862744239727 0.6385228144891605953328610

0.3 0.1753855158428457572394876 0.5063301189707819505159136 0.6752454071331807752264900

0.4 0.1739236078771971283352116 0.4877974748123480863704060 0.7116626313535582440037008

0.5 0.1725479614220893076481644 0.4704805776216768320452388 0.7489373901316857945701066

0.6 0.1712486185906910429732619 0.4541307850365287057670116 0.7884370115210036155119526

0.7 0.1700172917724764587443786 0.4385361899021925080610629 0.8321495959968309360981758

0.8 0.1688470046791676892894429 0.4235037660671788772859259 0.8836585039419085905336449

0.9 0.1677318257568867765350262 0.4088418661206993376389107 0.9508833135343227253337252

1.0 0.1666666666666666666666667 0.3943375672974065437870195 1.0534803411702867301702400

ρ∞ MSSTH(4): c4 MSSTH(5): γ MSSTH(5): c4

0.0 0.7414011664833654036144139 0.2780538411364499307154574 0.9673258605571696255864822

0.1 0.7584129875780372120885886 0.2741413060318684813410073 0.9085500184865173967097007

0.2 0.7731436659604612460228168 0.2704598867745817702967770 0.8510912674088796370241994

0.3 0.7860312064122737529814344 0.2669780439256505544243225 0.7951780419709296721109126

0.4 0.7972514819203143643377985 0.2636702317116055294121679 0.7409689864721386021173544

0.5 0.8067140747427041791439706 0.2605154166070549059952555 0.6885609787040850582329199

0.6 0.8139662529419134928687640 0.2574960298566747463056004 0.6379972790560722861741283

0.7 0.8179301032006714988753515 0.2545972081701334821524085 0.5892756783804685705163706

0.8 0.8162478946500242305006623 0.2518062311838496492022443 0.5423562209596147765111596

0.9 0.8036295352568830763217989 0.2491120965296297062874231 0.4971683414199104533715001

1.0 0.7689305362617052663765094 0.2465051931428201559270974 0.4536172576687555468843982

+ (−16c3 − 4)γ + c3

η5 = 120(−c2
4 + 2c4 − c3 − c5 + c3c5)γ

3 (35e)

+ 20(9c2
4 − 15c4 + 8c3 + 7c5 − 9c3c5)γ

2

+ 10(−6c2
4 + 9c4 − 5c3 − 4c5 + 6c3c5)γ

+ 5c2
4 − 7c4 + 4c3 + 3c5 − 5c3c5

η6 = 120(c3 + c4 − c3c4 − 1)γ 2 (35f)

+ 10(12c3c4 − 10c4 − 10c3 + 9)γ

+ 15c3 + 15c4 − 20c3c4 − 12

η7 = 120(1 − c3)γ
3 + 20(9c3 − 7)γ 2 (35g)

+ 20(2 − 3c3)γ + 5c3 − 3

η8 = 120(c4 + c5 − c4c5 − 1)γ 2 (35h)

+ 10(12c4c5 − 10c5 − 10c4 + 9)γ

300 H. Zhang et al.

+ 15c4 + 15c5 − 20c4c5 − 12

η9 = 120(c3 + c5 − c3c5 − 1)γ 2 (35i)

+ 10(12c3c5 − 10c5 − 10c3 + 9)γ

+ 15c3 + 15c5 − 20c3c5 − 12

η10 = 120(c3 + c4 − c3c4 − 1)γ 2 (35j)

+ 10(12c3c4 − 10c4 − 10c3 + 9)γ

+ 15c3 + 15c4 − 20c3c4 − 12

leaving γ , c3 and c4 free. Here we assume c3 = 0.1, and then c4 is obtained by minimizing
||σ (6)||2. The values used for γ and c4 are listed in Table 7.

Acknowledgements The first and second authors acknowledge the financial support by the China Scholarship
Council.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alexander, R.: Diagonally implicit Runge–Kutta methods for stiff ODEs. SIAM J. Numer. Anal. 14(6),
1006–1021 (1977)

2. Arnold, M., Brüls, O.: Convergence of the generalized-α scheme for constrained mechanical systems.
Multibody Syst. Dyn. 18(2), 185–202 (2007)

3. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-
Algebraic Equations, vol. 61. SIAM, Philadelphia (1998)

4. Bauchau, O.A., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation
of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn.
37(1), 29–48 (2016)

5. Belytschko, T., Schoeberle, D.: On the unconditional stability of an implicit algorithm for nonlinear
structural dynamics. J. Appl. Mech. (1975). https://doi.org/10.1115/1.3423721

6. Boom, P.D., Zingg, D.W.: Optimization of high-order diagonally-implicit Runge–Kutta methods.
J. Comput. Phys. 371, 168–191 (2018)

7. Brenan, K.E., Campbell, S.L.V., Petzold, L.R.: Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. North-Holland, New York (1989)

8. Brüls, O., Arnold, M.: The generalized-α scheme as a linear multistep integrator: toward a gen-
eral mechatronic simulator. J. Comput. Nonlinear Dyn. 3(4), 041007 (2008). https://doi.org/10.1115/
1.2960475

9. Butcher, J.C.: Implicit Runge–Kutta processes. Math. Comput. 18(85), 50–64 (1964)
10. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2016)
11. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical

dissipation: the generalized-α method. J. Appl. Mech. 60, 371–375 (1993)

https://doi.org/10.1115/1.3423721
https://doi.org/10.1115/1.2960475
https://doi.org/10.1115/1.2960475

Performance of implicit A-stable time integration methods. . . 301

12. Dahlquist, G.G.: A special stability problem for linear multistep methods. BIT Numer. Math. 3(1), 27–43
(1963)

13. de Alwis, T.: Central difference formula in numerical analysis. PRIMUS, Probl. Resour. Issues Math.
Undergrad. Stud. 2(2), 165–172 (1992)

14. Faltinsen, S., Marthinsen, A., Munthe-Kaas, H.Z.: Multistep methods integrating ordinary differential
equations on manifolds. Appl. Numer. Math. 39(3), 349–365 (2001). https://doi.org/10.1016/S0168-
9274(01)00103-9

15. Ghiringhelli, G.L., Masarati, P., Mantegazza, P.: Multibody implementation of finite volume C0 beams.
AIAA J. 38(1), 131–138 (2000)

16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations, II, Stiff and Differential-Algebraic
Problems. Springer, Berlin (1991)

17. Hilber, H.M., Hughes, T.J., Taylor, R.L.: Improved numerical dissipation for time integration algorithms
in structural dynamics. Earthq. Eng. Struct. Dyn. 5(3), 283–292 (1977)

18. Hoff, C., Pahl, P.: Development of an implicit method with numerical dissipation from a generalized
single-step algorithm for structural dynamics. Comput. Methods Appl. Mech. Eng. 67(3), 367–385
(1988)

19. Houbolt, J.C.: A recurrence matrix solution for the dynamic response of elastic aircraft. J. Aeronaut. Sci.
17(9), 540–550 (1950)

20. Jansen, K.E., Whiting, C.H., Hulbert, G.M.: A generalized-α method for integrating the filtered Navier-
Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190(3–4),
305–319 (2000). https://doi.org/10.1016/S0045-7825(00)00203-6

21. Kennedy, C.A., Carpenter, M.H.: Diagonally implicit Runge–Kutta methods for stiff ODEs. Appl. Nu-
mer. Math. 146, 221–244 (2019)

22. Köbis, M., Arnold, M.: Convergence of generalized-α time integration for nonlinear systems with stiff
potential forces. Multibody Syst. Dyn. 37(1), 107–125 (2016)

23. Masarati, P., Lanz, M., Mantegazza, P.: Multistep integration of ordinary, stiff and differential-algebraic
problems for multibody dinamics applications. In: XVI Congresso Nazionale AIDAA, pp. 1–10 (2001)

24. Masarati, P., Morandini, M., Mantegazza, P.: An efficient formulation for general-purpose multi-
body/multiphysics analysis. J. Comput. Nonlinear Dyn. 9(4), 041001 (2014)

25. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94
(1959)

26. Noh, G., Bathe, K.J.: The Bathe time integration method with controllable spectral radius: the ρ∞-Bathe
method. Comput. Struct. 212, 299–310 (2019)

27. Owren, B., Simonsen, H.H.: Alternative integration methods for problems in structural dynamics. Com-
put. Methods Appl. Mech. Eng. 122(1–2), 1–10 (1995). https://doi.org/10.1016/0045-7825(94)00717-2

28. Park, K.: An improved stiffly stable method for direct integration of nonlinear structural dynamic equa-
tions. J. Appl. Mech. 42(3), 464–470 (1975)

29. Schiehlen, W., et al.: Multibody Systems Handbook, vol. 6. Springer, Berlin (1990)
30. Tamma, K.K., Har, J., Zhou, X., Shimada, M., Hoitink, A.: An overview and recent advances in vector

and scalar formalisms: space/time discretizations in computational dynamics – a unified approach. Arch.
Comput. Methods Eng. 18(2), 119–283 (2011)

31. Wilson, E.L.: A computer program for the dynamic stress analysis of underground structures. Tech. rep.,
California Univ Berkeley Structural Engineering Lab (1968)

32. Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modification of Newmark’s method. Int. J. Numer.
Methods Eng. 15(10), 1562–1566 (1980)

33. Xie, Y., Steven, G.P.: Instability, chaos, and growth and decay of energy of time-stepping schemes for
non-linear dynamic equations. Commun. Numer. Methods Eng. 10(5), 393–401 (1994)

34. Zhang, J.: A-stable two-step time integration methods with controllable numerical dissipation for struc-
tural dynamics. Int. J. Numer. Methods Eng. 121, 54–92 (2020)

35. Zhang, H., Zhang, R., Xing, Y., Masarati, P.: On the optimization of n-sub-step composite time integra-
tion methods. Nonlinear Dyn. 102(3), 1939–1962 (2020)

36. Zhang, H., Zhang, R., Masarati, P.: Improved second-order unconditionally stable schemes of lin-
ear multi-step and equivalent single-step integration methods. Comput. Mech. 67(1), 289–313 (2021).
https://doi.org/10.1007/s00466-020-01933-y

37. Zhou, X., Tamma, K.K.: Design, analysis, and synthesis of generalized single step single solve and
optimal algorithms for structural dynamics. Int. J. Numer. Methods Eng. 59(5), 597–668 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1016/S0168-9274(01)00103-9
https://doi.org/10.1016/S0168-9274(01)00103-9
https://doi.org/10.1016/S0045-7825(00)00203-6
https://doi.org/10.1016/0045-7825(94)00717-2
https://doi.org/10.1007/s00466-020-01933-y

	Performance of implicit A-stable time integration methods for multibody system dynamics
	Abstract
	Introduction
	Formulation
	Linear multi-step methods
	Equivalent single-step methods
	Explicit first-stage, singly diagonally-implicit Runge--Kutta (ESDIRK) methods

	Implementation
	Prediction
	Correction
	Generalization and extension

	Linear analysis
	Numerical experiments
	Andrew’s squeezer mechanism
	Problem description
	Numerical results

	Flexible four-bar mechanism
	Problem description
	Numerical results

	Lateral buckling of a thin beam
	Problem description
	Numerical results

	Rotating shaft
	Problem description
	Numerical results
	Convergence

	Average number of iterations

	Conclusions
	Appendix: Modified parameters of MSSTH(3,4,5)
	Acknowledgements
	Declarations
	Conflict of interest
	References

