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Abstract— This paper deals with the design of sliding mode
based droop control strategies for parallel-connected inverters
in railway vehicles. Indeed, the presence of auxiliary devices,
which can be connected and disconnected at any time instant,
makes the introduction of parallel modules an efficient solution.
Among the possible techniques, droop control represents an
efficient and easy-to-implement approach. However, each inverter
is affected by load variations, nonlinearities and unavoidable
modelling uncertainties, thus making the use of sliding mode
controllers perfectly adequate for this kind of application. More
specifically, relying on a sliding surface designed on the basis of
a voltage-current droop characteristic, two second order sliding
mode (SOSM) control algorithms, belonging to the class of
Super-Twisting and Suboptimal SOSM control, are proposed.

I. INTRODUCTION

Nowadays, railway vehicles are considered by far the most
efficient means of transportation from the point of view of
energy consumption and therefore this is a strategic sector
in the transportation industry [1], [2]. The need to decrease
energy consumption in order to be sustainable and more
profitable in the future has paved the way for new control
methods and architectures for trains. These methods differ on
the basis of certain factors: some of them are operator based,
which require upgrade in the vehicle technology, while other
techniques are control based [3]. For example, in order to
reduce energy, an operator can deploy more valuable rolling
stock by using more energy efficient engines or streamlining.
Also, the operator may work to better match the capacities of
the trains with the demand and deploy measures concerning
heating, cooling, lightning and other auxiliary services.

As for auxiliary devices, they are typically supplied by
inverters located inside the train carriages and a widely spread
configuration relies on a centralized control architecture.
However, this scheme has the problem to be not very efficient
in the low power range and the Voltage Source Converters
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(VSCs) can be often expensive and bulky. Then, a valid
alternative is that of using a decentralized architecture with
parallel-connected inverters, each one of them is capable to
manage a fraction of the full power [4], [5]. The parallel
connection of inverters has indeed the main advantages
of modularity and flexibility, allowing disconnection of
some units on the basis of the required power level. As
a consequence this architecture is more efficient in case of
low power range and implies lower volume, weight and costs.

In the literature the so-called droop control is considered
an effective decentralized strategy to cope with this type of
systems [6]–[8]. More specifically, the parallel architecture is
typical of islanded microgrids where power converters have
to satisfy power requirements while fulfilling voltage stability
and frequency constraints. The scope of droop control is to
make multi-inverters share loads according to their power
rating. In [9], for instance, the inverter output characteristic
is changed relying on a virtual impedence control and active
and reactive power-voltage droop functions are employed.
Further improvements are introduced in [4] and then in
[10], where voltage-current droop control under synchronous
reference frame is proposed, with advantages in terms of
computational burden and decoupling of voltages and currents.
Typically, Proportional-Integral (PI) controllers are adopted to
regulate the system, while other solutions, always applied for
microgrids case studies, are related to consensus algorithms
or optimal control strategies, as reported in [11]–[13].

Since the presence of VSCs can produce undesired har-
monics and the presence of coupling effects and modelling
uncertainties is unavoidable, robust control strategies are
essential for this type of applications. Among the possibilities,
Sliding Mode Control (SMC) is a powerful solution, which
perfectly fits the control problem to solve [14]. Relying on
a discontinuous control action, generated on the basis of
the so-called sliding variable typically related to the required
performance of the plant, interesting robustness features of the
controlled system can be achieved. If on one hand the main
drawback is the so-called chattering phenomenon, on the other
hand Higher-Order Sliding Mode (HOSM) controllers are a
valid solution to alleviate it by confining the discontinuity of
the control law into the derivative of the real control input
[15]–[18]. In this paper, inspired by [10], a sliding variable,
which relies on a voltage-current droop characteristic, is
designed in order to enable the current sharing objective, and
two second-order SMCs of Super-Twisting and Suboptimal
type are introduced to solve the problem at hand.
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Fig. 1. Single-line diagram of three parallel-connected inverters

The paper is organized as follows. After some preliminaries
on the train structure and the operative mode in Section II, the
model is introduced in Section III. The proposed algorithms
are presented in Section IV, while simulations, carried out
on a realistic setup, are illustrated in Section V. In Section
VI some conclusions are gathered.

II. TRAIN ARCHITECTURE

In this section, for the readers’ convenience, the architecture
of a parallel multi-inverters system is illustrated.

Let us denote as `i, i = 1, . . . , n the auxiliary loads, fed
by parallel voltage source converters indicated as VSCi. The
parallel configuration allows one to achieve more flexibility
in order to add or remove elements from time to time. Figure
1 illustrates in detail the schematic single-line diagram of a
system composed, for the sake of simplicity, of three parallel-
connected inverters. The basic element of each inverter
subsystem is given by a direct current (dc) voltage source
VDCi. The latter is interfaced with the rest of the grid through
three components: the VSC, a filter and a capacitor. Typically
the VSC is a pulse with modulation (PWM) converter, which
transforms the dc to alternate current (ac). On the other hand,
the resistive-inductive filter RtLt extracts the fundamental
frequency of the VSC output voltage. The capacitor Ct
determines instead the output voltage of the ith subsystem
indicated with v

[i]
Ct

, as well as the corresponding output
current, namely ı

[i]
o . Each subsystems is then connected to

a local three-phase parallel resistive-inductive R[i]L[i] load,
and, apart from the last one, they are connected each other
through a resistive-inductive R[i]

l L
[i]
l line impedance.

III. PROBLEM FORMULATION

In this section, the model of the train parallel-inverters is
described and the control problem is introduced.

A. Train inverters model

Consider now Figure 1 where three parallel-connected
inverters are illustrated. Applying the Kirchhoff’s voltage and
current laws, in the so-called abc-frame, the model is
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where ı
[i]
t , ı

[i], ı
[i]
l , v

[i]
t , v

[i]
Ct

are 3 × 1 column vectors (one
entry for each phase) representing the VSC output current,
the load current, the line current, the VSC output voltage
and the capacitor voltage, respectively. The inverter output
current of interest is instead given by

ı[i]o = ı
[i]
t − ı

[i]
Ct
. (2)

Note that the dependence of all the variables on time t is
omitted, for the sake of simplicity.

In order to achieve a state model of system (1) in a
suitable form for control design, each three-phase variable s ∈{
ı
[i]
t , ı

[i]
l , ı

[i], v
[i]
t , v

[i]
Ct

}
can be transferred to the synchronous

rotating dq-frame, with S ∈
{
I
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t , I

[i]
l , I

[i], V
[i]
t , V

[i]
Ct

}
being

the dq variables, by using the Clarke’s and Park’s transfor-
mations. Hence, the so-called state-space model of (1)–(2),
extended to n parallel-connected inverters, is
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where i = 1, . . . , n, with w[n+1] = 0 and x[0] = 0,
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while the matrices are
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It can be observed that, while matrices A, B, C1, C2 and M
are independent of the ith VSC, matrices F [i], H [i], E[i] and
G[i] depend on the parameters of the ith load and on those
of the line between the ith and (i+ 1)th inverter (li\(i+1)).
Furthermore, the vector d[i] can be considered as a disturbance
term for which the following assumption holds.

Assumption 1: All the state variables are measurable and
the current loads d[i] are unknown and bounded, of class C
and Lipshitz continuous. �

As for the R[i]L[i] load, having in mind the field imple-
mentation of the proposal, it is typically expressed in terms of
apparent power and power factor, namely cosφ. Alternatively,
it is directly indicated in terms of active (P [i]) and reactive
(Q[i]) powers, given by
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Since the voltage V
[i]
Ctq

has to be forced to zero in order
to stabilize the system at the rated frequency with zero
phase delay, active and reactive powers can be decoupled
and expressed only as functions of V [i]

Ctd
. Finally, having in

mind a reactive-inductive load, it can be expressed as

R[i] =
P [i](V
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Ctd

)2

(P [i])2 + (Q[i])2
(8)
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Q[i](V
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Ctd

)2

ω0

[
(P [i])2 + (Q[i])2

] . (9)

B. The current sharing control problem

We are now in a position to introduce the current sharing
control problem. Having in mind the train application, where
loads can be dropped or added at any time instant depending

on different needs, the objective is to continuously share the
load among all the inverters. Assuming that the quadrature
component V [i]

Ctq
is steered to zero, we can formulate the

following definition of “direct current load sharing” [11].
Definition 1: Direct current load sharing is achieved if the

overall direct component of the load current is equally shared
among the inverters, i.e.,

Iod = 1nI
∗
od I∗od =

1

n
1>n Id ∈ R (10)

where Iod, Id ∈ Rn are the inverters’ output and load currents,
while 1n ∈ Rn is the vector containing all ones. �
Hence, the control problem to solve is the following one.

Control Problem 1: Given system (3)–(5), design a control
law such that V [i]

Ctq
and V [i]

Ctd
are regulated in a neighborhood

of zero and V ∗Ctd, respectively, thus enabling current sharing
in spite of connection and disconnection of unknown bounded
loads.

IV. THE PROPOSED SLIDING MODE BASED
DROOP CONTROL STRATEGIES

In this section, the previous control problem is solved by
introducing sliding mode based droop control algorithms.
Inspired by [10], the so-called sliding variable is designed
as a voltage-current droop function. Before introducing the
controllers, the following assumption is also required.

Assumption 2: The voltage reference V ∗Ctd is of class C2

and with first time derivative Lipschitz continuous, while,
V ∗Ctq = 0. �

A. Design of the sliding manifold

Considering system (3) separately for the direct and
quadrature component, and assuming to have small line
impedence, relying on the Thévenin’s theorem, it is possible
to verify that in steady-state among parallel branches it holds

I
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tν

I
[i+1]
tν

=
R

[i+1]
vν

R
[i]
vν

, i = 1, . . . , n− 1 (11)

where R[i]
vν , ν ∈ {d, q} are the so-called virtual resistances

of the inverters. Considering the references V ∗Ctd and V ∗Ctq
equal for each inverter, the relationship (11) can be written
also in terms of active and reactive powers. Hence, one can
write the following droop strategy

I
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td = I∗t0d − 1

R
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vd

(
V
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− V ∗Ctd

)
I
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tq = I∗t0q − 1
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vq

(
V
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Ctq
− V ∗Ctq

) (12)

where I [i]∗tν are the direct and quadrature current references
while I∗t0ν are the nominal values. Analyzing the droop
relationships in (12), the direct component is responsible
to adapt the value of the current reference relying on the
droop characteristics, while the quadrature component plays
the important role to maintain the frequency at the rated value.
Furthermore, each inverter can be regulated without requiring
information from the others.

Since the input of the ith inverter is given by the voltages
V

[i]
td , V

[i]
tq and the droop characteristics determine the current



references, the sliding variables σ[i] =
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Relying on system (3) and computing the first time derivative
of (13), the corresponding relative degree (i.e., the minimum
order of the time derivative σ(r)[i] where the control input
explicitly appears) is equal to 1. Hence, a first order sliding
mode naturally applies. However, the main drawback of
sliding mode control is the so-called chattering phenomenon.
Among the possible solutions, HOSM control algorithms are
the most successful techniques. In the following two different
approaches are discussed, that is the Super-Twisting Sliding
Mode (STSM) algorithm and the Suboptimal Second-Order
Sliding Mode (SSOSM) control.

B. STSM control algorithm

One of the main features of STSM control is that it can
be applied only to relative degree-one system. By virtue of
the choice of the sliding variables (13), the considered first
order system becomes
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are uncertain and bounded function such that the following
assumption holds.

Assumption 3: There exist positive constants F [i]
1ν , F

[i]
2ν and

G1νmin, G1νmax, with ν ∈ {d, q}, such that

|f [i]1ν | ≤ F
[i]
1ν (17)∣∣∣∣∣df [i]1ν

dt

∣∣∣∣∣ ≤ F [i]
2ν (18)

−G1νmax ≤gν ≤ −G1νmin < 0 , (19)

with f [i]1ν and gν being the direct and quadrature components
of (15) and (16), respectively. �
The STSM control is instead given by

V
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ν |
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(20)

where α[i]
1ν and α[i]

2ν are positive constants chosen in order to
dominate the uncertain terms affecting the system. Note that
the control input directly fed into the plant is continuous, thus
enabling a chattering alleviation property of the algorithm.

C. SSOSM control algorithm

Another possibility to solve the control problem at hand
is the so-called SSOSM control algorithm. In this case, in
order to achieve similar chattering alleviation property as for
the STSM control, an artificially increment of the relative
degree is operated. More specifically, introducing auxiliary
variables z[i](j+1)ν = σ

(j)[i]
ν , j = 0, 1, the so-called second-

order auxiliary system results

ż
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where f [i]2ν =
df

[i]
1ν

dt and gν as in (16), which are bounded by
virtue of Assumption 3. The so-called SSOSM control law
is given by

µ[i]
ν = γ[i]α
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z
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(23)
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,

4F
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where zmax are the extremal values of z[i]1ν , computed using
a peak detector as discussed for instance in [18].

D. Convergence argumentation

Referring to [14, Chapter 2], and taking into account the
features of the considered parallel multi-inverters system, one
can prove that STSM and SSOSM controllers make the sliding
variables, σ[i]

ν , converge to zero in a finite time. On the other
hand, the controlled voltages converge in a neighborhood
of their reference values, which depends on the parameters
of lines and loads, and on the selected virtual resistances.
Furthermore, we also refer to [14] for providing some rules to
practitioners interested in implementing the proposed sliding
mode approaches.

V. CASE STUDY

In this section the proposed HOSM control strategies are
assessed on realistic simulator implemented in MATLAB–Sim
Power Systems with data provided by Alstom for a train with
4 inverters and 7 loads.

A. Settings and scenario

The electric parameters of the system and the involved
powers are reported in Table I. All the loads can be connected
and disconnected by means of a dedicated switch and each
VSC is fed by 600V not-reversible voltage source. All the
inverters are reasonably assumed to be equal. This assumption
is not restrictive and, suitably tuning the control parameters,
the proposal is valid even in case of heterogeneous subsystems.
Inverters 1, 3 and 4 can be directly connected to their
single loads `1, `3 and `4, while inverter 2 can supply four
loads `2j , j = 1, 2, 3, 4 connected each other through three
lines denoted as l2j\(j+1)

. The first module is denoted as
“master” inverter and is connected to the grid when the



TABLE I
INVERTERS, LINES AND LOADS PARAMETERS

i = 1, . . . , 4

VSCi

VDCi
600V

Rt 1mΩ
Lt 210 µH
Ct 2.4mF
ω0 50Hz

l1\2
R

[2]
l 7.5mΩ

L
[2]
l 12.6mH

`1
R[1] 1.45Ω

L[1] 3.1mH

l21\2
R

[3]
l1 7.1mΩ

L
[3]
l1 12mH

`21
R

[2]
1 1.79Ω

L
[2]
1 4mH

l22\3
R

[3]
l2 7.5mΩ

L
[3]
l2 12.6mH

`22
R

[2]
2 1.03Ω

L
[2]
2 2mH

l23\4
R

[3]
l3 4.9mΩ

L
[3]
l3 8.2mH

`23
R

[2]
3 1.25Ω

L
[2]
3 2.7mH

l24\5
R

[3]
l 7.9mΩ

L
[3]
l 13.2mH

`24
R

[2]
4 1.25Ω

L
[2]
4 2.7mH

l3\4
R

[4]
l 7.5mΩ

L
[4]
l 12.6mH

`3
R[3] 1.86Ω

L[3] 4.1mH

`4
R[4] 1.48Ω

L[4] 3.2mH

TABLE II
SCENARIO: INVERTERS INITIALIZATION PHASE (GRAY), INVERTERS/LOADS POWER ON (LIGHT GRAY) AND POWER OFF (DARK GRAY) INTERVALS

t [s]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Inverter 1
Inverter 2
Inverter 3
Inverter 4

`1
`21
`22
`23
`24
`3
`4

TABLE III
CONTROL PARAMETERS

i = 1, . . . , 4; ν ∈ {d, q}
V ∗Ctd 326.6V

V ∗Ctq 0V

R[i]
vν 80× 10−3 Ω

STSM
α

[i]
1ν 1
α

[i]
2d 670.5
α

[i]
2q 1

SSOSM
γ[i] 1
α

[i]
3d 670.5
α

[i]
3q 1

corresponding capacitor voltage V [1]
Ct

reaches a stable value
around 400V (initialization phase). All the other inverters are
then connected shifted in time of 1 s. After 3.5 s, all inverters
are turned on. At the time instant 5 s inverter 1 is turned
off and activated after 1 s. Finally, from the time instant 8 s
the loads are inserted according to the sequence reported in
Table II. As for the controllers, the virtual resistances and
gains are reported in Table III. The total simulation lasts 20 s
with sampling time equal to 5 µs.

B. Results

When the loads start to connect (8 s), the condition of
“direct current load sharing” is enabled. Figure 2 shows the
evolution of the output powers (P [i]

o ) of the inverters (left)
and the three-phase voltages (right) only on the 1st capacitor
(v[1]Ct ), as an example. The latter appears a smooth three-phase
sinusoidal signal and at time 8 s the connection of load `1
does not affect the voltages, thus assessing the robustness of
the proposals in front of units connection and disconnection.

(a) STSM

(b) SSOSM

Fig. 2. Powers (left) from the inverters (i = 1, . . . , 4), and three-phase
voltages (right) on the 1st capacitor (v[1]Ct

) when the proposed sliding mode
controllers are used. (a) STSM. (b) SSOSM

C. Comparison

To further assess the proposals, they are compared with
droop-control having Proportion-Integral regulation of the
inverter currents (DC [10]) and with a First-Order Sliding
Mode (FOSM) control. For a quantitative comparison the
Total Harmonic Distortion (THD) of the load voltages, and
the root-mean-square values of the dc-link voltages (VDCrms)
are computed. For these indices, then the average among
all the loads and inverters (namely m(·)) is achieved and



Fig. 3. Total Harmonic Distortion (THD) of the load voltage (top) when
`22 is connected, and the dc-link voltage VDC2 (bottom)

TABLE IV
PERFORMANCE INDICES

m(THD) [%] m(VDCrms) [V]

DC [10] 2.032 599.26
FOSM 2.036 599.06
STSM 4.47 599.09

SSOSM 2.046 599.01

reported in Table IV. As for the THD, the performance is
similar for all the controllers apart from that of STSM. This
aspect can be noticed, for instance, in Figure 3 (top) for load
`22. Indeed, in our tests, STSM is more sensitive to load
variations, presenting greater voltage distortions than those
visible when using the other methods. During the interval
when the load is supplied, the best performance over time
is instead guaranteed by the SSOSM algorithm, which is
always below the maximum allowed threshold (5%). As for
the rms-values of the dc-link voltages, although they are
similar for all the algorithms, in Figure 3 (bottom) the DC
solution (black lines) is visibly more sensitive to connection
and disconnection of inverters and loads (see, e.g., after the
time instant 8 s).

VI. CONCLUSIONS

In this paper sliding mode based droop control strategies
have been proposed for parallel-connected inverters in railway
vehicles. The model of the system, which is coupled due
to the presence of line impedances among the inverters, has
been formulated. A STSM control and a SSOSM one have
been designed and discussed. Finally, realistic simulation
results, based on real data, have been illustrated and a
comparative study with PI-based DC and FOSM control
has been performed. Future works will attempt to introduce
an adaptation mechanism to cope with eventually unknown
bounds of the uncertain terms affecting the system.
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