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THE GENERALIZED LIFTING PROPERTY OF BRUHAT INTERVALS

FABRIZIO CASELLI# AND PAOLO SENTINELLI ∗

Abstract. In [E. Tsukerman and L. Williams, Bruhat Interval Polytopes, Advances in
Mathematics, 285 (2015), 766-810] it is shown that every Bruhat interval of the symmetric
group satisfies the so-called generalized lifting property. In this paper we show that a Coxeter
group satisfies this property if and only if it is finite and simply-laced.

1. Introduction

The Kostant-Toda lattice is an integrable Hamiltonian system which has been recently
studied in detail by Kodama and Williams in [12]; in this paper particular attention is devoted
to the asymptotic behaviour of the flow corresponding to an initial point associated with (a
given point in) a cell R+

u,v of the totally non negative flag variety, where [u, v] is a Bruhat
interval in the symmetric group Sn. When considering a natural multivariable generalisation
of this problem, called the full Kostant-Toda hierarchy, they also proved that the moment
polytope associated to the flow with initial point corresponding to R+

u,v is what they called
a Bruhat interval polytope as it can be described as the convex hull in Rn of permutation
vectors (w(1), . . . , w(n)) as w varies in the given Bruhat interval.

In [13] Tsukerman and Williams studied some combinatorial aspects of a Bruhat interval
polytope and in particular they found a dimension formula and proved that every face of a
Bruhat interval polytope is itself a Bruhat interval polytope. The key result that they used in
this study is what they called the generalized lifting property which generalizes the (standard)
lifting property for symmetric groups and was surprisingly remained unnoticed so far. This
generalized lifting property asserts that for every u < v in the symmetric group and any
“minimal” reflection (i.e. a transposition) t such that u < ut and v > vt, we have uC ut 6 v
and u 6 vtC v, where the symbol C denotes the covering relation in Bruhat order. The main
fact about this property is that such minimal reflection always exists. The (standard) lifting
property of a Bruhat interval is a classical feature of the theory of a Coxeter group (W,S): it
says that if [u, v] is a closed Bruhat interval in W and s ∈ S are such that v > vs and u < us
then u C us 6 v and u 6 vs C v, although it does not ensure that such simple reflection s
exists. This property is well-known and is a basic tool in the combinatorics and geometry of
Coxeter groups (see, e.g., [11, Chapter 5], [2, Chapter 2], [8]) and has also found important
applications in the combinatorics of Kazhdan-Lusztig polynomials (see, e.g., [3, 6]).

The main target of this paper is to understand which Coxeter groups satisfy such generalized
lifting property; our final result is that a Coxeter group satisfies this property if and only
if it is finite and simply-laced. The proof uses in an essential way results of Dyer on the
Bruhat graph of a Coxeter group and a geometric representation of an affine Coxeter groups
as a group generated by affine reflections in a vector space. The proof makes no use of the
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2 FABRIZIO CASELLI AND PAOLO SENTINELLI

classification of special families of Coxeter groups except maybe in the observation that an
infinite simply-laced Coxeter groups always contains a parabolic subgroup isomorphic to an
affine Weyl group.

The paper is organized as follows. In §2 we establish the notation, we introduce all the
preliminary results in the theory of reflection and Coxeter groups that are needed, and we
show some general results which link the generalized lifting property to the presentation of a
Coxeter group as a reflection group. In §3 we study some properties of finite simply-laced
Coxeter groups which are needed in the proof of the generalized lifting property fro such
groups. In §4 we consider affine Weyl groups and we prove some further basic facts that will
allow us to complete the proof of our main result in §5.

2. Notation and preliminaries
{notation}

We begin by establishing some notation. N is the set of non-negative integers and, if n ∈ N,
[n] := {1, 2, ..., n}; in particular [0] = ∅. We denote by |X| the cardinality of a set X.

Next we recall some basic results in the theory of Coxeter groups and reflection groups
which will be useful in the sequel. The reader can consult the fundamental books [2, 4, 11] as
comprehensive sources for this theory and in particular for the undefined notation, results
stated without proof, and for further details.

Let (W,S) be a Coxeter system. If v, w ∈ W we define `(v, w) := `(w)− `(v), where `(z) is
the length of the element z ∈ W with respect to S. We let

DL(w) := {s ∈ S|`(sw) < `(w)},
DR(w) := {s ∈ S|`(ws) < `(w)}.

The parabolic subgroup WJ ⊆ W is the subgroup with J ⊆ S as generator set. In particular
WS = W and W∅ = {e}.

We consider on W the Bruhat order 6 (see, e.g., [2, Chapter 2] or [11, Chapter 5]). With
[u, v] is denoted an interval in W , i.e., if v, w ∈ W ,

[v, w] := {z ∈ W |v 6 z 6 w}.
The relation v C w means that u < v and `(u, v) = 1.

We recall the following fundamental property of the Bruhat order, known as the lifting
property (see [2, Proposition 2.2.7]):

{sollevamento}
Proposition 2.1. Let v, w ∈ W be such that v < w and s ∈ DR(w) \DR(v). Then v 6 ws
and vs 6 w.

A Coxeter system (W,S) is called simply-laced if m(s, r) 6 3 for every s, r ∈ S, m being its
Coxeter matrix.

The set T = {wsw−1|s ∈ S,w ∈ W} is the set of reflections of a Coxeter system (W,S).
For a Coxeter group W we let, for any u, v ∈ W ,

D(u) := {t ∈ T |ut < u},
A(u) := {t ∈ T |u < ut},

AD(u, v) := A(u) ∩D(v).

A finite reflection group is a finite subgroup of GL(V ), where V is a finite dimensional real
vector space, which is generated by reflections, i.e. elements of order 2 that fix a hyperplane
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pointwise. Let W be a finite reflection group and T be the set of all reflections in W . For
each reflection t ∈ T we denote by Ht the hyperplane fixed by t and call this the reflecting
hyperplane associated to the reflection t. Moreover, for every reflection t ∈ T one can choose
a non-zero vector αt ∈ V such that

• t(αt) = −αt for all t ∈ T ;
• the set Φ = {±αt : t ∈ T} is invariant under the action of W .

The set Φ is called the set of roots and we assume without lack of generality that Φ spans V .
The connected components of the complement of the union of all reflecting hyperplanes are
called chambers and we recall that the action of W on the set of chambers is simply transitive.
If we fix a chamber C0 (that will be called fundamental chamber) we let H+

t be the halfspace
determined by Ht which contains C0 and we let

Φ+ = Φ+(C0) =
⋃
t∈T

{±αt} ∩H+
t .

Then there exists a unique set of roots ∆ ⊂ Φ+, called base, such that
• ∆ is a linear basis of V ;
• every root in Φ+ can be expressed as a linear combination with non-negative coefficients
of the elements in ∆.

Changing αt with −αt if necessary we can assume that Φ+ = {αt, t ∈ T}. If we let S ⊂ T be
the indexing set of ∆, i.e.

∆ = {αs : s ∈ S}
we have that (W,S) is a finite Coxeter system whose set of reflections is exactly T , and every
finite Coxeter system arises in this way as a finite reflection group. In the sequel we will always
assume that a finite Coxeter group comes equipped with the structure of a finite reflection
group as above.

The set of reflections T is partially ordered by letting, for all r, t ∈ T , r ≺ t if αt − αr is
still a linear combination of the roots αs, s ∈ S, with non-negative coefficients.

The length function of an element w ∈ W and the set D(w) have the following geometric
interpretation which will be fundamental in our study. The length of an element w ∈ W
equals the number of reflecting hyperplanes which separate the fundamental chamber C0 from
the chamber Cw := w−1(C0). A direct consequence is that the set D(w) equals the set of
reflections t ∈ T such that the associated reflecting hyperplane separates Cw from C0, and in
particular we have

(1) {lunghezzaw} `(w) = |D(w)|.
{remarkAD}

Remark 2.2. An immediate consequence of (1) is that, if `(u) < `(v) and in particular if
u < v, then |AD(u, v)| > `(u, v) > 0, since |AD(u, v)| = `(u, v) + |D(u) \D(v)|. In particular,
if |AD(u, v)| = 1 we have `(u, v) = 1.

We will be interested also in the action of reflections on halfspaces determined by the
reflecting hyperplanes. It is clear that for any reflection t we have t(Hr) = Hrt where rt := trt
and therefore we have that either t(H+

r ) = H+
rt or t(H

+
r ) = H−rt .

The following result is crucial in our work.
{crucialprop}

Proposition 2.3. Let r, t ∈ T . The following are equivalent
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(1) t(H+
r ) = H−rt ;

(2) r ∈ D(t);
(3) for some u ∈ W we have r ∈ D(u) if and only if rt ∈ A(ut).
(4) for every v ∈ W we have r ∈ D(v) if and only if rt ∈ A(vt).

Proof. (1) implies (2). Since Cr ⊂ H−r we have Crt = t(Cr) ⊂ H+
rt . Therefore rt ∈ A(rt) i.e.

t > rt. Since the map w 7→ w−1 is an automorphism of W as a poset, we also have t > tr i.e.
r ∈ D(t).

(2) implies (3). Letting u = t we clearly have r ∈ D(u) and rt ∈ A(e).
(3) implies (1). We have either Cu ∈ H−r and Cut ∈ H+

rt or Cu ∈ H+
r and Cut ∈ H−rt . As

Cut = t(Cu) it follows that t(H−r ) = H+
rt .

(1) implies (4). Let v ∈ W . We have r ∈ D(v) if and only if Cv ∈ H−r and rt ∈ A(vt) if and
only if Cvt = t(Cv) ∈ H+

rt and since t(H−r ) = H+
rt the two conditions are equivalent.

(4) implies (2) Take v = t and the result follows. �
{commrefl}

Corollary 2.4. Let r, t ∈ T , r 6= t, be such that rt = tr. Then r ∈ A(t).

Proof. By contradiction, if r ∈ D(t), we have t(H+
r ) = H−r , by Proposition 2.3. This implies

Ht ⊆ Hr and so Hr = Ht; moreover r(αt) is still an eigenvector for t of eigenvalue −1, since r
and t commute. Therefore r(αt) = cαt and since r is reflection we necessarily have c = −1
and hence r = t. �

If t ∈ T , we have the following partition of the set T :

T = {t} t (D(t) \ {t}) t A(t),

and an involution T → T defined as the conjugation by t, i.e.

rt := trt,

for all r ∈ T .
{lemmainvarianza}

Lemma 2.5. The sets {t}, D(t) \ {t} and A(t) are invariant under conjugation by t, for all
t ∈ T .

Proof. Clearly {t} is invariant. Let r ∈ D(t) \ {t}, i.e. e < rt < t or, equivalently e < tr =
(rt)−1 < t, since the inversion is an automorphism of the poset (W,6); then e < rtt = tr < t.
It follows that A(t) is invariant too. �

The following theorem generalizes, in the symmetric group, the lifting property stated in
Proposition 2.1; this result will be extended to the case of finite simply-laced Coxeter groups
and this is the main motivation of the paper.

Theorem 2.6. [13, Theorem 3.3] Let [u, v], u < v, be a Bruhat interval in the symmetric{GLPsymmetric}
group An and t be a minimal element in AD(u, v) with respect to ≺. Then u C ut 6 v and
u 6 vt C v.

We end this section recalling some known facts about the R-polynomials; see [2, Chapter
5], [11, Chapter 7] and the references there for more information. We just recall here that for
any Coxeter group W there exists a unique family of polynomials {Ru,v}u,v∈W ⊆ Z[q] such
that, for all u, v ∈ W :

(1) Ru,v = 0 if u 
 v;
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(2) Rv,v = 1;
(3) if u < v and s ∈ DR(v) then

(2){ricorsioneRpolinomi} Ru,v =

{
Rus,vs, if s ∈ DR(u),
qRus,vs + (q − 1)Ru,vs, otherwise.

These polynomials are called R-polynomials. In the hypothesis of Theorem 2.6, the simple
reflection in the recursion (2) can be replaced by any minimal reflection in AD(u, v).

Proposition 2.7. [13, Proposition 5.3] Let [u, v], u < v, be a Bruhat interval in the symmetric {propRsimm}
group An and t be a minimal element in AD(u, v). Then

Ru,v = qRut,vt + (q − 1)Ru,vt.

As shown in [13, Section 5], if t ∈ AD(u, v) is any reflection such that u C ut 6 v and
u 6 vt C v, the result of the proposition could be not true.

3. Finite simply-laced Coxeter groups
{fsl}

A subgroup W ′ of W generated by a subset of T is called a reflection subgroup. The study
of reflection subgroups goes back at least to Borel and de Siebenthal [5] and Dynkin [7] (see
also [10, §2] and the references cited there). We need in particular the following known result.

{reflsubgr}
Proposition 3.1. Let (W,S) be a Coxeter group and W ′ a reflection subgroup and let
S ′ = {t ∈ W ′ ∩ T : D(t) ∩W ′ = {t}}. Then (W ′, S ′) is itself a Coxeter system with Bruhat
order induced by the Bruhat order of (W,S) and with set of reflection T ′ = T ∩W ′. If W is
finite and simply-laced then W ′ is also finite and simply-laced.

It follows that if r, t are distinct reflections in a finite simply-laced Coxeter group then
either rt = tr or rtr = trt. More can be said about the orbits (by right multiplication) of a
reflection subgroup by looking at the so-called Bruhat graph. The Bruhat graph of a Coxeter
system (W,S) is the directed graph ΩW,S with vertex set W and edge set

{(ut, u) : u ∈ W, t ∈ D(u)}.
We make the convention to draw an arrow from xt to x and to label it by the reflection t to
indicate a directed edge (xt, x). If A is any subset of W we denote by ΩW,S(A) the directed
subgraph of ΩW,S induced on A. The main result that is needed in this paper on the Bruhat
graph is the following (see [9, Theorem 1.4]).

{bruhatgraph}
Theorem 3.2. Let (W,S) be a Coxeter group and (W ′, S ′) be a reflection subgroup. Then

(1) ΩW ′,S′ = ΩW,S(W ′);
(2) for all x ∈ W there exists x0 ∈ xW ′ such that the map W ′ → xW ′ given by w 7→ x0w

induces an isomorphism of directed graphs between ΩW ′,S′ and ΩW,S(xW ′) that preserve
the labels of the edges.

The following is a very special application of Theorem 3.2.
{rtrtr}

Proposition 3.3. Let (W,S) be a finite simply-laced Coxeter group and r, t ∈ T with r ∈
D(t) \ {t}. Then the reflection subgroup W ′ = 〈r, t〉 has type A2, it has Coxeter generators
r, rt and in particular αt = αr + αrt.
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Figure 1. Example of induced Bruhat graph.
fig:standard

If x ∈ W then ΩW,S(xW ′) is shown in Figure 1, where x can be any element in {x0, x1, x2, x3, x4, x5},
and where the labeling of the edges is independent of the choice of x. In particular we have
that D(x) ∩W ′ is one of the following sets:

∅, {r}, {rt}, {r, t}, {rt, t}, {r, rt, t}.

Proof. This result follows directly from Theorem 3.2. The reflections r, t generate a finite
simply-laced Coxeter group W ′ of rank 2, i.e. either of type A1 × A1 or of type A2. Since
r ∈ D(t) we deduce that r and t do not commute by Corollary 2.4 and so W ′ has type A2.
The reflections in W ′ are r, t, rt and since r ∈ D(t) we deduce that the Coxeter generators of
W ′ are r and rt, by Theorem 3.1. The last part of the statement is merely an illustration of
Theorem 3.2 in this case. �

{3.5}
Corollary 3.4. Let r, t ∈ T , r ∈ D(t) \ {t}. Then r ≺ t.

Proof. By Proposition 3.3 we have αt = αr + αrt and the result follows. �
{3.6}

Theorem 3.5. Let W be finite and simply-laced. Let u, v ∈ W be such that AD(u, v) 6= ∅, t
be a minimal reflection in AD(u, v) and r ∈ D(t) \ {t}; then

r ∈ A(u)⇔ r ∈ A(v)⇔ rt ∈ D(v)⇔ rt ∈ D(u).

Proof. By Lemma 2.5, Corollary 3.4 and the minimality of t we clearly have that r ∈ A(u)
implies r ∈ A(v) and that rt ∈ D(v) implies rt ∈ D(u).

Let W ′ = 〈r, t〉. If r ∈ A(v), since t ∈ D(v) we necessarily have D(v) ∩W ′ = {rt, t} by
Proposition 3.3 and so rt ∈ D(v).

Similarly, if rt ∈ D(u), since t ∈ A(u) we have D(u) ∩W ′ = {rt} by Proposition 3.3 and so
r ∈ A(u). �

{3.7}
Proposition 3.6. Let W be finite and simply-laced. Let u, v ∈ W be such that AD(u, v) 6= ∅
and t be a minimal reflection in AD(u, v). If t /∈ S then there exists s ∈ S such that
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(1) s ∈ D(t);
(2) sts = tst;
(3) st is a minimal element in AD(us, vs).

Moreover we have s ∈ D(v) if and only if s ∈ D(u).

Proof. We let W ′ = 〈s, t〉 and s be any right descent of t.Then condition (1) is trivial and
condition (2) follows immediately from Proposition 3.3, applied with r = s.

If s ∈ D(v) and s ∈ A(u) we contradict the minimality of t, since s ≺ t by Corollary 3.4.
If s ∈ A(v) and s ∈ D(u) we have that D(u) ∩W ′ = {s} and D(v) ∩W ′ = {st, t}, by

Proposition 3.3. Therefore st ∈ AD(u, v) and we contradict again the minimality of t, by
Lemma 2.5 and Corollary 3.4.

The last statement of the proposition is therefore proved. In order to prove condition (3)
we can assume that either s ∈ D(v) ∩D(u) or s ∈ A(v) ∩ A(u). We assume we are in the
former case, the latter being entirely similar.

We refer to Figure 1 for the W ′-orbit of u (with r = s). Since D(u) contains s and does not
contain t we have that u = x1 and in particular st ∈ A(u) and st ∈ A(us). Since st ∈ A(u) we
also have st ∈ A(v) by the minimality of t. Therefore D(v) ∩W ′ = {s, t} and if we refer to
(another copy of) Figure 1 for the W ′-orbit of v we have v = x4, vs = x2 and so st ∈ D(vs)
concluding that st ∈ AD(us, vs).

It remains to show that st is minimal in AD(us, vs) and so we assume by contradiction
that there exists r ≺ st, r ∈ AD(us, vs). By the standard lifting property we have vsrs < v.
Now we observe that u and usrs are comparable in Bruhat order since srs is a reflection and
so to show that usrs > u it is enough to show that usrs < u does not hold. This again is a
direct consequence of the standard lifting property. Therefore we have srs ∈ AD(u, v).

Now we observe that αsrs = αr if sr = rs and αsrs = αr ± αs otherwise. In both cases we
have αsrs = αr + εαs for some ε ∈ {0,+1,−1}. Therefore

αt = αs + αst

� αs + αr

= αs + αsrs − εαs

� αsrs,

contradicting the minimality of t. The proof is complete. �

4. Affine Weyl groups
{affine}

In this section we develop some tools in the theory of affine Weyl groups that will be
needed in the study of the generalized lifting property in these groups. An affine Weyl group
Ŵ can be realized in the following way (see [11, Chapter 4] for more details). Let (W,S)
be a finite crystallographic Coxeter system acting as a finite reflection group on a vector
space V , T its set of reflections and n := |S|; a corresponding affine group is the group of
affine transformations generated by (affine) reflections t(k) through all the hyperplanes of the
form Ht(k) = {x ∈ V |φt(x) = k}, where t ∈ T , k ∈ Z and φt(x) = 0 is the equation of the
hyperplane fixed by t. We assume that the linear functions φt are chosen in such way that the
fundamental chamber C0 of (W,S) sits in the halfspace H+

t := {x : φt(x) > 0} for all t ∈ T .
We also let T̂ := {t(k) : t ∈ T, k ∈ Z} be the set of (affine) reflections of Ŵ .
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Let H := {Ht(k) | t ∈ T, k ∈ Z} and define H+
t(k)

:= {x ∈ Rn|φt(x) > k} and H−
t(k)

:= {x ∈
Rn|φt(x) < k}. The connected components of Rn \ H are called alcoves. The fundamental
alcove A0 is obtained by intersecting C0 with the intersection of halfspaces

⋂
t∈T

H−
t(1)

; it results

that
A0 = C0 ∩H−

t
(1)
0

,

where t0 is the maximum in (T,�) (see [11, Section 4.3]).
The affine Weyl group Ŵ acts simply transitively on the set of alcoves and therefore we

identify an element w ∈ Ŵ with the corresponding alcove Aw := w−1(A0).
Moreover, we associate to any pair of alcoves A,B an integer

d(A,B) := |{H ∈ H : H separates A and B}|.

A sequence of alcoves A0, . . . ,Am is called a gallery of length m if for all i we have
d(Ai,Ai+1) = 1. One has (see [11, Theorem 4.5]):

{lunghezzaffini}
Proposition 4.1. Let w ∈ Ŵ . Then

(1) `(w) = d(A0,Aw);
(2) `(w) = the length of the shortest gallery between A0 and Aw;
(3) t(k) ∈ D(w) if and only if the hyperplane Ht(k) separates A0 from Aw.

If t ∈ T and k ∈ Z, let Str(t(k)) be the hyperstripe defined by Str(t(k)) := H+
t(k−1) ∩H−t(k+1) =

{x ∈ Rn : k − 1 < φt(x) < k + 1}.
{disuguaglianza}

Proposition 4.2. Let A,B be alcoves such that A,B 6⊂ Str(t(k)). Then

|d(A,B)− d(A, t(k)(B))| > 3.

Proof. Without loss of generality we can assume that φt(x) < k − 1 for all x ∈ A and
φt(y) > k + 1 for all y ∈ B. Let A = A0,A1, . . . ,Ad = B be a minimal gallery joining A to B
and let i be the (unique) index in [d] such that φt(x) < k for all x ∈ Ai and φt(y) > k for all
y ∈ Ai+1. Then t(k)(Ai) = Ai+1 and therefore

A = A0,A1, . . . ,Ai, t
(k)(Ai+2), . . . , t

(k)(Ad) = t(k)(B)

is a gallery joining A and t(k)(B) of length d− 1. Nevertheless this gallery is not minimal as
it crosses the hyperplane Ht(k−1) twice, as both A and t(k)(B) are contained in H−

t(k−1) while
Ai ∈ H+

t(k−1) , and the result follows. �

The following result will be used to show that in any infinite Coxeter group there is a
Bruhat interval for which the generalized lifting property does not hold.

{chamberhyperstripes}
Proposition 4.3. A chamber C cannot be covered by a finite number of hyperstripes.

Proof. Is is well-known that Rn is not a union of a finite number of hyperplanes and so the
same hold for C. So let x ∈ C such that φt(x) 6= 0 for all t ∈ T . As all φt are linear it is clear
that for every a ∈ R there exists c > 0 such that φt(cx) > a for all t ∈ T . As cx ∈ C for all
c > 0 the result follows. �
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5. The generalized lifting property
{sectionGLP}

The lifting property stated in Proposition 2.1 does not ensure that for a Bruhat interval
[u, v] there exists a simple reflection s ∈ DR(v) \DR(u) such that u C us 6 v and u 6 vs C v.
Of course, if DR(v) ⊆ DR(u), such an s does not exist; in general one can hope that there
exists a reflection t ∈ AD(u, v) for which u C ut 6 v and u 6 vt C v. This is called the
generalized lifting property (GLP) of the interval [u, v] and [13, Theorem 3.3] asserts that in
the symmetric groups An the GLP holds for every interval. Clearly, by Proposition 2.1, an
interval of the type [e, u] has the GLP, for every u > e, and, in finite groups, the same happens
for intervals of the type [u,w0], for every u < w0, where w0 denote the unique element of
maximal length.

The following example shows that this is not the case in general.
{esempioI4}

Example 5.1. Let (W,S) be a Coxeter group of rank 2 with S = {s, t} andms,t > 4 (for example
the Weyl group of type B2). Consider the elements u = s and v = sts. Then `(u, v) = 2 and
[u, v] = {s, st, ts, sts}. Therefore AD(u, v) = {sts, ststs} but `(uststs) = 4 > `(u) + 1 and
`(vsts) = 0 < `(v)− 1.

The example above shows that there is an interval in any Coxeter group which is not
simply-laced for which the GLP does not hold.

The following theorems affirm that every interval in a finite simply-laced Coxeter groups,
i.e. a direct product of Weyl groups of type An, Dn, E6, E7 and E8, has the GLP.

{theoremcovering}
Theorem 5.2 (Covering property). Let W be a finite simply-laced Coxeter system, u, v ∈ W
be such that AD(u, v) 6= ∅ and t be a minimal element in AD(u, v). Then uC ut and v B vt.

Proof. To show that uC ut we have to prove that `(u) = `(ut)− 1 and for this it is enough to
show that there exists a bijection φ : D(u)→ D(ut) \ {t}. The bijection φ is the restriction
to D(u) of the following involution on T : we let

φ(r) =

{
rt, if r ∈ A(t),
r, otherwise,

for all r ∈ T .
The map φ is a bijection on T by Lemma 2.5 and so to conclude we have to prove that if

r 6= t then

(3) {phibij} r ∈ D(u)⇔ φ(r) ∈ D(ut).

First assume r ∈ D(t), and so also rt ∈ D(t) by Lemma 2.5. By Proposition 2.3 applied to rt
we have rt ∈ D(u) if and only if r ∈ A(ut). By Theorem 3.5 we also have rt ∈ D(u) if and
only if r ∈ A(u) and therefore Eq. (3) follows in this case.

If r ∈ A(t) all the statements of Proposition 2.3 are false and in particular we have that (3)
is implied by the negation of condition (3) in Proposition 2.3.

The result for v follows similarly by observing that φ restricts to a bijection

φ : D(v) \ {t} → D(vt).

�

We note that the covering property (Theorem 5.2) does not require that u 6 v.
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{GLPfinite}
Theorem 5.3 (Generalized lifting property). Let (W,S) be a finite simply-laced Coxeter
system, u, v ∈ W , u < v and t be a minimal element in AD(u, v). Then u C ut 6 v and
u 6 vt C v.

Proof. By Theorem 5.2 we only have to show that ut 6 v and u 6 vt. We proceed by induction
on the partial order ≺ on reflections. If t is minimal in T then t ∈ S and the result follows
by Proposition 2.1. Otherwise choose s ∈ S as in Proposition 3.6. Since st ∈ D(t) we have
st ≺ t by Corollary 3.4 and we can apply our induction hypothesis to the pair (us, vs). It
follows that usst < vs and. since sts = tst by Proposition 3.6, we have uts < vs. To deduce
that ut 6 v it is enough to prove that s ∈ D(ut) if and only if s ∈ D(v). But s ∈ D(t) and
so s ∈ D(ut) if and only if st ∈ A(u) by Proposition 2.3 and hence the result follows from
Theorem 3.5. The proof of u < vt is similar.

�

The next proposition generalizes the result stated in Proposition 2.7.

Proposition 5.4. Let [u, v] be a Bruhat interval in a finite simply-laced Coxeter group and t
a minimal element in AD(u, v). Then

Ru,v = qRut,vt + (q − 1)Ru,vt.

Proof. We prove the result by induction on the rank function of (T,�). If t ∈ S the result is the
recursion (2). Otherwise, choose s ∈ S as in Proposition 3.6. Then, since s ∈ DR(v) if and only
if s ∈ DR(u), we have Ru,v = Rus,vs = qRustst,vstst+(q−1)Rus,vstst = qRuts,vts+(q−1)Rus,vts =
qRut,vt +(q−1)Ru,vt. The last equality follows from the fact that v < vs if and only if vt < vts
if and only if u < us if and only if ut < uts (for this one can still make use of Figure 1 with
the observation that vtC v and utB u). �

The following example shows that the GLP does not hold in general for infinite simply-laced
Coxeter system.

Example 5.5. Let n > 3 and consider the affine Weyl group Ãn, with set of Coxeter
generators S = {s1, s2, ..., sn} (see [2, Section 8.3] for a combinatorial description). Let
v = s1s2 · · · sn−1sns1s2 · · · sn−1 and u = s1s2...sn−1. In the combinarial description of u
and v as permutations of Z we have v = [v(1), . . . , v(n)] = [3, 4, ..., n, n + 2,−n + 1] and
u = [u(1), . . . , u(n)] = [2, 3, ..., n, 1]. Letting ti = u−1sn · · · si+1sisi+1 · · · snu for all i ∈ [n] one
can check that AD(u, v) = {t1, t2, . . . , tn}. Nevertheless, using the combinatorial interpretation
of the length function in Ãn given in [2, Section 8.3] one can conclude that none of the elements
t1, . . . , tn satisfy the covering property for [u, v] (in particular we have `(uti) > `(u) + 1 for all
i = 1, . . . , n− 1 and `(vtn) < `(v)− 1).

For an infinite simply-laced Coxeter system (W,S), if s ∈ S, the following proposition shows
that any interval of the type [s, u] satisfies the GLP.

Proposition 5.6. Let (W,S) be a simply-laced Coxeter system and s ∈ S. Then the GLP
holds for the interval [s, u], for every u > s.

Proof. If DR(u) 6= {s} the result follows by Proposition 2.1. Let DR(u) = {s}; then, since
(W,S) is simply-laced, we have that s1...sk−1sks is a reduced expression for u and s 6∈ DR(ussk)
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because, otherwise, sk ∈ DR(u). Then the reflection t = ssks satisfies s C st 6 u and
s 6 ut C u. �

Our last goal is to show that, in general, Bruhat intervals in infinite Coxeter groups do not
satisfy the GLP. Since every infinite simply-laced Coxeter group has a parabolic subgroup
isomorphic to an affine Weyl group it is enough to consider this class of groups.

The next lemma states that any element in an affine Weyl group is smaller in the Bruhat
order than every element of large enough length.

{lemmabruhat}
Lemma 5.7. Let (W,S) be an affine Coxeter system. Then for any u ∈ W there exists n ∈ N
such that u < v for all v ∈ W whose length satisfies `(v) > n.

Proof. Since every parabolic subgroup WJ of W is finite, we let k be the maximum length
of an element in a proper parabolic subgroup of W . If u ∈ W and s1s2...sh is a reduced
expression for u, consider the number n = h(k + 1). If v ∈ W is any element whose length
satisfies `(v) > n, then v should has a reduced expression such as v1v2v3...vh, with `(vi) > k
for all i. In particular vi is not contained in any parabolic subgroups of W and hence si < vi
for all i ∈ [h] and so u < v.

�
{GLPinfinite}

Theorem 5.8. Let (Ŵ , S) be an affine Coxeter system and Au be any alcove contained in
the chamber −C0. Then there exists v ∈ Ŵ such that u < v but the interval [u, v] does not
satisfy the covering property.

Proof. Let W and T be as in §4. The fundamental alcove is given by the inequalities
0 < φt(x) < 1 for all t ∈ T . If A = Au is an alcove in −C0, then it satisfies A ∈ H−t
for every t ∈ T ; therefore T ⊆ D(u) and {t(1) : t ∈ T} ⊆ A(u). Consider the finite set
R(u) = {t(k) ∈ T̂ : uC ut(k)}; by Proposition 4.3, we can find an alcove Av ∈ −C0 such that

Av 6⊂
⋃

t(k)∈R(u)

Str(t(k)).

Moreover, such element v can be chosen of arbitrary high length (as −C0 \
⋃

t(k)∈R(u) Str(t(k) is
unbounded), and in particular we can assume that u < v by Lemma 5.7.

Now let t(k) ∈ R(u). It is enough to show that v does not cover vt(k). We already know that
k 6= 0 by construction (since t = t(0) ∈ D(u)) and that t(1) ∈ A(v) by our previous remark. For
k 6= 0, 1 we have that the fundamental alcove A0 is not contained in the hyperstripe Str(t(k))
and so we can apply Proposition 4.2 to the pair A0 and Av. In particular we have

|`(v)− `(vt(k))| = |d(A0,Av)− d(A0, t
(k)(Av))| > 3

and the proof is complete.
�

By the theorem above, in every infinite Coxeter group there exists an interval which does
not satisfy the GLP. Therefore with Example 5.1, Theorem 5.3 and Theorem 5.8 we have
proved the following theorem.

{teoremaGLP}
Theorem 5.9. Let (W,S) be a Coxeter system. The GLP holds for every Bruhat interval
[u, v] in W if and only if (W,S) is finite and simply-laced.
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