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Abstract

The goal of this work is to employ a semi-analytical framework to investigate

key features associated with the transport behavior of an inert solute in non-

Gaussian random fields. We focus our analysis on the transport dynamics of a

solute plume through a porous medium characterized by spatially heterogeneous

non-Gaussian log-conductivity fields, Y . We rest on a stochastic Lagrangian

framework to provide semi-analytical formulations to evaluate the statistical mo-

ments and cumulative distribution function (CDF) of solute concentration. The

heterogeneous structure of the log-conductivity field is modeled as a Generalized

Sub-Gaussian process. This model has been shown to capture non-Gaussian and

scale-dependent features displayed by several variables, including key parame-

ters of porous media. Our results suggest that the effects of non-Gaussianity in

Y on solute concentration statistics are more pronounced at locations near the

solute source zone and at early times. The impact of the analyzed non-Gaussian

nature of the field of Y is also significant at the lower tails of the distribution.

We also explore conditions under which when the concentration CDF in Gen-

eralized Sub-Gaussian Y fields can be approximated by the widely used beta

distribution. Furthermore, the methodology used in this work is an alternative

to the commonly used numerical Monte Carlo method and can be employed as a
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benchmark tool in computational stochastic mass transport problems in porous

media.

Keywords: Flow and Transport in Porous Media, Uncertainty Quantification,

Semi-Analytical Methods, Random Flows, Probabilistic Risk Analysis, Solute

Transport, Environmental Fluid Mechanics

2010 MSC: 00-01, 99-00

1. Introduction

Capturing the effects of spatial heterogeneity on transport of dissolved chem-

icals in porous media is key to a variety of Earth science and engineering scenar-

ios including, e.g., effective allocation of subsurface water and energy resources,

reservoir engineering, environmental risk assessment for contaminated ground-5

water bodies, or safety assessment of hazardous waste facilities. Spatial and

temporal patterns of a solute plume migrating across a porous material are

essentially driven by two elements: (a) the interplay between advective and

diffusive mass fluxes and (b) the spatial disorder of the porous medium. At a

continuum scale, the latter can be described through the spatial heterogeneity of10

properties/attributes that characterize the medium. Amongst these, hydraulic

conductivity is recognized to display spatial heterogeneity over a multitude of

scales. The ensuing spatial heterogeneity of fluid flow leads to solute transport

being associated with anomalous dispersion features. The latter are related to

a non-linear temporal evolution of solute particle displacement distribution as15

well as heavy-tailed first-passage time distributions [1, 2]. Medium properties

are typically characterized in a stochastic context due to our inability to fully

capture the details of their spatial variability [3]. Hence, state variables such as

solute fluxes and concentrations are also interpreted as random quantities.

Space-time evolution of concentration mean and variance in porous media20

characterized by a heterogeneous distribution of hydraulic conductivity have

been subject to extensive studies, e.g., [4, 5, 6, 7, 3, 8]. Analytical investiga-

tions are generally relying on perturbation theory and consider the (natural)
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logarithm of conductivity to form a multi-Gaussian random field [9, 7, 10]. The

appraisal of the full probability distribution of concentration at a given point25

in space and time has also been subject of investigation. Based on the results

obtained from turbulent flow studies [11, 12], numerical analyses performed

on synthetic random conductivity fields [13, 14, 15, 16, 17] suggest that a beta-

distribution could be adopted as a model to describe the probability distribution

of concentrations in a spatially heterogeneous flow field. Alternative approaches30

yielding the full probability density function of concentrations are also reported

[18, 19, 20, 21, 22, 23]. The coupled effects of natural heterogeneity and engi-

neered devices (i.e. sampling volume and solute injection source zones) were also

semi-analytically quantified on the concentration probability density function,

PDF, in two and three dimensional flows [22]. Most of these works rely on the35

assumption that the log-conductivity field can be described through a Gaussian

distribution. Studies have shown that non-Gaussian features could have an im-

pact on hydraulic connectivity and therefore solute dispersion [24, 25, 26]. In

this framework, a key element which we address in this study (and has not yet

been completely explored) is the significance that documented scale-dependence40

and non-Gaussian features of the probability distribution of log-conductivity can

have on the characterization of the uncertainty associated with solute concen-

trations.

The main motivation underlying our work is related to the mounting ev-

idences that probability distributions and associated statistical moments of a45

variety of geophysical and environmental variables (as well as their spatial in-

crements) display distinctive scale-dependent features. Typical manifestations

of scaling behavior we consider here are those displayed by the increments of

a given variable, Y . These include (a) evidences that characteristic features of

the probability distributions of the increments of Y vary with the separation50

distance (or lag) between pairs of points at which such increments are eval-

uated [27], and (b) the documented Extended Self-Similarity (ESS) displayed

in several cases by q-order structure functions associated with such increments

[28, 29, 30]. Observations indicate that (a) increment distributions appear to
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be symmetric, with peaks that become higher and tails that become heavier as55

the lag decreases, and (b) the shape of the increment distribution tends to tran-

sition towards Gaussian as lag increases. Environmental variables displaying

such a behavior, and directly related to our study, include log-hydraulic con-

ductivity and permeability [31, 32, 33, 30, 34, 35, 36, 27], log-air permeability

[37], electrical resistivity [38, 39], vadose zone hydraulic properties [40], neutron60

porosity [41], sediment transport [42], and micro-scale geochemical data related

to surface topography of calcite crystals [43].

Riva et al. [41, 44] introduced a modeling framework based on a General-

ized Sub-Gaussian (GSG) process that embeds the above empirical documen-

tations of statistical scaling. In essence, the GSG model allows representing65

jointly, within a unique framework, all of the above-documented scaling mani-

festations (as described for probability distributions and/or structure functions)

of a quantity and its two-point incremental values through the action of a (spa-

tially uncorrelated) subordinator on an otherwise spatially correlated Gaussian

random field. To date, this modeling strategy has been successfully applied70

to the interpretation of main features displayed by key parameters of porous

media, including log-permeability and porosity [41, 27, 43], whose spatial het-

erogeneity is typical of natural subsurface settings. It has also been employed

in preliminary analytical and numerical studies of flow and transport in porous

media whose log-conductivity is characterized through a GSG model [45, 46].75

In the present contribution, we aim at examining key elements of the un-

certainty related to concentration fields evolving through log-conductivity fields

displaying scaling features described by the GSG model. Through the use of a

semi-analytical framework, we show how such non-Gaussian features control the

mean, standard deviation and cumulative distribution function, CDF, of resi-80

dent concentration at various downstream locations from a source where solute

is injected in the system. Given the environmental relevance of extreme values,

we emphasize the way such non-Gaussian features impact the tailing behavior

of concentration distributions. In addition to being an alternative computa-

tional method in itself, the proposed approach is well-suited for benchmarking85
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purposes. Although the focus of our study lies on mass transfer, the method of

analysis is directly applicable to problems in heat transfer in randomly hetero-

geneous porous media.

2. Problem Formulation

We study transport of an inert solute in a steady-state flow field taking90

place across a two-dimensional (2D) porous medium in the absence of sources

and sinks and far from boundaries, so that boundary effects are negligible. The

system is characterized by a spatially heterogeneous (locally isotropic) hydraulic

conductivity K(x) and uniform porosity ϕ, x = (x1, x2)
T corresponding to a

Cartesian coordinate system. As a result of the spatial variability of K, the flow95

field is also spatially heterogeneous. Steady-state flow is governed by

∇ · q(x) = 0, (1)

q(x) denoting Darcy flux. The spatially heterogeneous K-field of the medium

can be mapped onto the divergence free flow field through Darcy’s law

q(x) = −K(x)∇h(x), (2)

where h(x) corresponds to the hydraulic head. Velocity v(x) is given by q(x)/ϕ.

Given the physical setup, the flow field is uniform-in-the-mean along the lon-100

gitudinal, x1, direction with mean velocity ⟨v(x)⟩ = (V1, 0)
T . Here the angled

brackets denotes ensemble expectation and V1 = KGJ /ϕ with KG representing

the geometric mean of the conductivity field, and J = −∂⟨h(x)⟩/∂x1.

An inert solute is instantaneously released into the flow domain over a rectan-

gular injection area So = ℓ1×ℓ2 where ℓi is the size of source zone along the ith-105

direction. The resident concentration c(x, t) satisfies the advection-dispersion

equation
∂c(x, t)

∂t
+ v(x) · ∇c(x, t) = D∇2c(x, t), (3)
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where D denotes the local-scale dispersion coefficient, taken here as a constant.

Analytical solutions for the advection-dispersion equation (3) under uniform

flow conditions, i.e. constant v, and different coordinate systems are available

in the literature [e.g., 47, 48, and references therein]. In this work, we account

for the effects of the spatial random fluctuations of v on the stochastic character-

ization of c. The initial condition, corresponding to an instantaneous injection

of the solute, is taken as

c(x, 0) =

Co if x ∈ So

0 if x /∈ So,

(4)

where Co is the initial concentration of the injected solute mass, which is taken

as constant.

3. Methods110

3.1. Random space function model

Let Y (x) denote the log-conductivity field, i.e. Y (x) = lnK(x). We pattern

Y (x) through the Generalized Sub-Gaussian (GSG) model [41, 44], i.e.,

Y (x) = U(x)G(x). (5)

Here, G(x) represents a Gaussian random field whilst U(x) is a subordinator

that is independent of G(x). As shown in Riva et al. [41, 44], U(x) consists115

of statistically independent identically distributed positive random variables at

all points of the domain. For this work, we take G(x) as a statistically ho-

mogeneous and isotropic Gaussian random field characterized by an isotropic

exponential covariance function (other choices being compatible with the GSG

model), namely σ2
G exp[−r/IG], with variance σ2

G and integral scale IG, and120

r = |x− x′| denoting the lag-distance. The variance and integral scale of Y (x)

are given respectively by σ2
Y = ⟨U2⟩σ2

G and IY = IG/η , with η = ⟨U2⟩ / ⟨U⟩2,

while the (isotropic) covariance of Y (x) is defined as
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CY (r) = ⟨U⟩2σ2
Ge

−r/IG , for r > 0. (6)

Note that whereas for G(x) the variance and covariance coincide at r = 0, the

sub-Gaussian field Y (x) exhibits a nugget effect. The reader is referred to Riva125

et al. [41] for additional details. The spectral representation Eq. (6) is

ĈY (k) = ⟨U⟩2σ2
GI

2
G

1

(1 + k2η2I2Y )
3/2

, (7)

or equivalently

ĈY (k) = ησ2
Y I

2
Y

1

(1 + k2η2I2Y )
3/2

, (8)

where k is the wave number vector. When η = 1, Eq. (8) reduces to the

spectral representation of a multi-Gaussian log-conductivity field characterized

by an exponential covariance function [3].130

Under the assumptions listed in this work (i.e., 2D uniform-in-the-mean

flow and negligible boundary effects), for low-to-mild levels of heterogeneity

(i.e. σ2
Y ≲ 1), the first-order solution of the Fourier transform of the velocity

covariance function is given by [49, 50]

v̂ij(k) = V 2
1

[
δ1i −

kik1
k2

] [
δ1j −

kjk1
k2

]
ĈY (k), for i, j = 1, 2 (9)

where δij is the Kronecker delta.135

3.2. Uncertainty quantification of the concentration field

3.2.1. Low-order moments

In order to evaluate the statistics of solute concentration in a heterogeneous

Y (x) field, we cast our work within a Lagrangian framework [50, 7]. The in-

jection area So = ℓ1 × ℓ2 can be considered as a collection of solute particles,140

each traveling along a specific pathline across the heterogeneous system. The

trajectory evaluated at time t for the particle released at location a = (a1, a2)
T ,

denoted by X(t;a), is a function of the random spatial structure of the Y -field.

As a consequence, solute pathlines are also random. Making use of the La-
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grangian framework, solute concentration c(x, t) in Eq. (3) can be expressed145

as

c(x, t) = Co

∫
So

δ[x−X(t;a)]da, (10)

where δ is the Dirac’s delta function.

We recall that the mean particle displacement is given by ⟨X(t;a)⟩ = a +

⟨v(x)⟩t and, considering a first-order (in σ2
Y ) approximation theory, the advec-

tive and diffusive displacements can be assumed to be statistically independent150

[7]. We further note that, as travel time progresses (i.e., considering large travel

distances in terms of IY ) trajectory fluctuations, X′(t;a) = X(t;a)− ⟨X(t;a)⟩,

tend to become Gaussian (by virtue of the central limit theorem). Introducing

the one-particle, Xii(t) = ⟨(X ′
i(t;a))

2⟩, and the two-particles Zii(t;a− b) =

⟨X ′
i(t;a)X

′
i(t;b)⟩ trajectory covariance functions, Fiori and Dagan [7] show that,155

if the injection zone is small compared to the characteristic length scale of het-

erogeneity (i.e., ℓi < IY and Zii(t;a− b) ∼= Zii(t; 0)), the mean, ⟨c(x, t)⟩, and

variance, σ2
c (x, t), of c(x, t) can be evaluated as

⟨c(x, t)⟩ = Co

2∏
i=1

1

2

{
erf

[
xi − Vit+ ℓi/2√

2Xii(t)

]
− erf

[
xi − Vit− ℓi/2√

2Xii(t)

]}
, (11)

σ2
c (x, t) = C2

o

2∏
i=1

∫ ℓi/2

−ℓi/2

Θ(xi; ai)dai − ⟨c(x, t)⟩2, (12)

where the function Θ(xi; ai) is defined as160

Θ(xi; ai) =
erf[A(t; ai)]− erf[B(t; ai)]

2
√

2πXii(t)
e
− (xi−ai−Vit)

2

2Xii(t) (13)

with
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A(t; ai) =
ℓi + (xi − Vit)(1− ρii(t) + aiρii(t))√

2Xii(t)(1− ρii(t)2)
(14)

B(t; ai) =
−ℓi + (xi − Vit)(1− ρii(t) + aiρii(t))√

2Xii(t)(1− ρii(t)2)
. (15)

Here ρii(t) = Zii(t; 0)/Xii(t). Semi-analytical expressions for Xii and Zii are

provided in the Appendix (see Eqs. (A.2) and (A.6)) as functions of the Fourier

transform of the velocity covariance function v̂ij(k) defined by Eq. (9).

3.2.2. Cumulative distribution function165

Next we compute the cumulative distribution function (CDF) of c(x, t) fol-

lowing the framework developed in de Barros and Fiori [22]. The methodology

relies on evaluating the concentration in a moving coordinate system, ξ, set

along the trajectory of the solute plume’s centroid, χ(t;ao) where ao is the

centroid’s position at initial time. Then ξ = x − χ(t;ao) and Eq. (10) can be170

written as

c(ξ, t) = Co

∫
So

δ[ξ −W(t;a,ao)]da, (16)

where W(t;a,ao) = X(t;a) − χ(t;ao) is the separation distance at time t be-

tween the trajectories of solute particles released at a and ao. Computing the

concentration in terms of W in lieu of X allows filtering out the uncertainty of

the trajectory of the solute plume centroid [13, 22]. At first-order in σ2
Y , mean175

and variance of W can be computed as [13]

⟨W(t;a,ao)⟩ = a− ao

Wij(t;a,ao) = Xij(t) + 2Dt− 2Zij(t;a− ao) + Zij(t; 0), (17)

where Xij and Zij are given by Eqs. (A.2) and (A.6), respectively. Since, we

have assumed that the injection zone is small compared to the characteristic

length scale of heterogeneity (see also the previous Section 3.2.1), Eq. (17)
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reduces to [22]180

⟨W(t;a,ao)⟩ ≈ 0

Wij(t;a,ao) ≈ Xij(t) + 2Dt− Zij(t; 0). (18)

From Eq. (16) one can evaluate the statistical moments of c(ξ, t). It has been

shown that the variance of c(ξ, t) vanishes for a finite Péclet and small injection

zones (see, e.g., [13]). Therefore, ⟨c(ξ, t)⟩ ≈ c(ξ, t) and Eq. (16) reduces to

c(ξ, t) = Co

∫
So

pW (ξ; t,a)da, (19)

where pW is the probability density function, PDF, of W. Making use of Eq.

(18) and assuming W to be normally distributed (see also the previous subsec-185

tion 3.2.1) yields

c(ξ, t) = Co

2∏
i=1

1

2

{
erf

[
ξi + ℓi/2√
2Wii(t)

]
− erf

[
ξi − ℓi/2√
2Wii(t)

]}
. (20)

The approach described above has been also used to quantify the mixing of

solutes in natural porous media displaying a uni-modal covariance function [51]

and in hierarchical and multi-scale sedimentary architecture [52].

Finally the concentration CDF, PC(c
∗;x, t) ≡ Prob[c(x, t) ≤ c∗], can be190

obtained by switching the coordinate system from ξ to x. That implies that PC

depends on the PDF of χ, i.e. pχ. The latter, for small plume sizes, has been

shown to be Gaussian and characterized by mean equal to ⟨v(x)⟩t and variance

approximately equal to Zii(t; 0) [13, 53, 22, 51]. Then, following Mood et al.

[54], PC(c
∗;x, t) is evaluated as195

PC(c
∗;x, t) =

∫
DC

pχ(χ; t)dχ. (21)

The integration domain DC corresponds to the area of the χi (for i = 1, 2)

space such that c(χ, t) ≤ c∗, therefore DC in Eq. (21) is determined by using

Eq. (20). Evaluation of Eq. (21) constitutes the key step within a probabilistic
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environmental risk assessment framework, since it allows to quantify the prob-

ability that a contaminant concentration is below a threshold, c∗, fixed, e.g., by200

government or by environmental national/international agencies.

4. Results and Discussion

For the purpose of illustration, we quantify solute concentration uncertainty

in GSG fields by considering that the subordinator U(x) in Eq. (5) is log-

normally distributed at every point x with zero mean and variance (2 − α)2,205

i.e. η = exp[(2 − α)2] in Eqs. (7) and (8). When α → 2, η = 1 and the

log-conductivity field becomes Gaussian. As α decreases, the PDF of Y (x) de-

viates from Gaussianity, exhibiting long tails and sharp peaks. In the following,

we analyze the impact of the non-Gaussian nature of Y (x) by varying α while

maintaining a constant value for the variance, σ2
Y , and integral scale, IY , of210

Y (x).

Figure 1 depicts the temporal behavior of the one-particle trajectory covari-

ance function for three values of α (decreasing from 2 to 1.2) and for a fixed

Péclet number, defined as Pe = V1IY /D. Here we set Pe = 103, this condition

being characteristic of an advective dominated transport. Results are displayed215

along the longitudinal (Figure 1.a) and transverse (Figure 1.b) directions. The

results of Xii are compared with those obtained from the literature for Gaussian

[50] and non-Gaussian [45] random flow fields under purely advective conditions,

i.e., Pe → ∞. As shown in Figure 1, our results are in good agreement with

those previously reported [50, 45]. A similar comparison is performed in Figure220

2 for the two-particle trajectory covariance function.

Figure 1.a shows that the longitudinal solute spreading decreases as the Y -

field departs from a Gaussian behavior. This feature is linked to the spatial

structure of the GSG fields of Y . We start by noticing that all of the results

embedded in Figure 1 are related to ensembles of Y -fields characterized by the225

same variance and integral scale. However, due to the shape of CY , the corre-

lation of Y (x) at small lags (local correlation) decreases with α (whereas the
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opposite occurs at large lags). Therefore, following the displacement of a parti-

cle along the mean flow direction, at a given time, the solute particle will have

experienced (within each realization of the ensemble) a larger variability of Y -230

values at a low value of α (i.e., as the Y -field deviates from the Gaussian one)

as compared to the heterogeneity experienced by a particle at larger α values

(approaching the Gaussian case). As such, and recalling that σ2
Y is constant

within each ensemble, the variability of the longitudinal displacement across

the ensemble decreases as α decreases, as quantified by Figure 1.a. Otherwise,235

the transverse solute spreading decreases with α only for small travel distances,

otherwise the situation is reversed (see Figure 1.b). Again, this feature is due to

the structure of the GSG fields. For small values of α, in each realization of the

ensemble, particles deviate more from the mean flow direction with respect to

what observed for large α values (which are characterized by a larger level of lo-240

cal correlation, i.e., they are locally more homogeneous), resulting in larger X22

in the former than in the latter case. This result is consistent with the findings

of Riva and Willmann [55] who analyzed the impact of the variogram structure

(using exponential, spherical and Gaussian spatial correlation models) on the

moments of transport observables in Gaussian Y fields under mean uniform and245

radial flow conditions by means of numerical Monte Carlo simulations. These

authors show (see fig. 12a in [55]) that the Gaussian variogram model displays

the largest values of X22 at very small distances from the release point. Other-

wise, the use of the exponential variogram (which is associated with the Y -field

characterized by the smallest local correlation among those analyzed) results in250

the largest values of X22. The results depicted in Figure 2 for the two-particle

trajectory covariance function are consistent with such findings. When α → 2,

the computed values of Zii match those obtained by Fiori and Dagan [7] for a

multi-Gaussian Y field.

Next, we compute the spatial distribution of the mean, ⟨c(x, t)⟩, and stan-255

dard deviation, σc(x, t), of c(x, t) at two dimensionless times, i.e., tV1/IY = 5

and 20, and for three values of α (Figures 3 and 4). Results are reported for

Pe = 102 and 103. These Pe numbers represent typical values observed in real
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aquifers. For example, a value of Pe =380 has been inferred from concentra-

tion data monitored at the Cape Cod (Massachusetts, USA) experimental site260

[56, 51]. We observe that the highest peak values for ⟨c(x, t)⟩ are related to

the lowest values of α (Figure 3.a). This result is a reflection of the reduced

spreading observed when the Y -field departs from the Gaussian behavior. Con-

centration uncertainty, as quantifies by its standard deviation (see Figure 4), is

also higher for small α values, as compared to the results for the Gaussian field265

(i.e. α → 2). As the log-conductivity field departs from Gaussianity (main-

taining a constant variance and integral scale), each realization of the ensemble

appears to be formed by larger zones displaying similar conductivity values

and hot-spots of low/high conductivity values. This characteristic enhances the

ensemble variability (i.e., large values of σC) and leads to a decreased solute270

spreading. As expected, the difference between statistics of c(x, t) obtained

with diverse α values decreases as the travel time increases and as Pe decreases

(see also Figure 3.b). We point out that the effect of α on the concentration

breakthrough curve (BTC) in a single realization of the permeability field has

been investigated in the past [46, 57]. In general, the authors observed that275

decreasing the value of α yields (i) a delayed first time of arrival of the solute

and (b) an increasing degree of asymmetry (and heavier tails) of the BTC.

The spatial distribution of the coefficient of variation of c(x, t), defined as

CVc = σc/⟨c⟩, is depicted in Figure 5. Results are shown for different Pe and two

dimensionless times and α values. In accordance to the results shown in Figures280

3 and 4, CVc decreases as α increases and as Pe decreases. The minimum value

of CVc is observed at the average plume displacement, i.e. at x1/(tV1) = 1.

Concentration CDFs, PC(c
∗;x, t), are illustrated for the following cases: (i)

position x/IY = (1, 0)T and dimensionless time 1 and (ii) x/IY = (10, 0)T and

dimensionless time 10 for Pe = 103 (Figure 6.a) and Pe = 102 (Figure 6.b). Both285

cases corresponds to x1/(tV1) = 1, i.e. PC is evaluated along the average plume

displacement. Close inspection of Figure 6 reveals that the impact of α on PC

decreases as the travel distance increases. On the other hand, we observe marked

differences at the low-concentration tail of the CDFs (as shown in the insets of
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Figure 6) for all values of Pe and travel times explored. In particular, for low c∗,290

PC increases with α for short travel distances from the source (a result which is

in agreement with the numerical simulations of Libera et al. [46]), this behavior

being otherwise reversed (compare values of PC for different α at dimensionless

times 1 and 10). This aspect is of particular relevance within a probabilistic

risk (health or environmental) assessment framework, where c∗ coincides with295

a maximum contaminant level for human or environmental health. To further

elucidate this element, Figure 7 depicts the probability of concentration exceed-

ing the normalized threshold c∗ = 10−3, i.e., 1-PC(c
∗), versus α evaluated along

the average plume displacement at various (dimensionless) times for the two

values of Pe considered. At early times, the probability of exceeding the target300

threshold increases as the Y -field deviates from the Gaussian behavior. The

opposite is seen to occur at late times. Figure 8 provides a three-dimensional

view of the dependence of exceedance probability on dimensionless time and α

for the two distinct Péclet numbers analyzed. These results evidence that rep-

resenting log-conductivity through a GSG model can have a marked influence305

on the assessment of the probability that concentration levels exceed a given

threshold at locations downstream of a source of contamination. This element

has also implications to the assessment of risk under uncertainty, as considering

a Gaussian model for the log-conductivity field clearly underestimates risk for

distances close to the solute source zone (see Figures 7). Our results show that310

the sensitivity to α of the probability of exceedance is strongest at early times

and short distances from the source.

Finally, we compare the results for the concentration CDF obtained from Eq

(21) with the beta distribution. Several works have shown that such a distribu-

tion can be effectively employed as a proxy to estimate uncertainty associated315

with solute resident concentration in Gaussian random fields [13, 14, 15, 53, 22].

These authors appraise the accuracy of the beta distribution model by testing it

against numerical simulations, analytical solutions and field data. Here, we an-

alyze the ability of the beta distribution to approximate the uncertainty of the

concentration in a non-Gaussian random field characterized through the GSG320
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model. The beta CDF is given by:

PC(c) =
Γ[q1 + q2]

Γ[q1]Γ[q2]

∫ c

0

wq1−1(1− w)q2−1dw, (22)

where Γ[z] is the Gamma function:

Γ[z] =

∫ ∞

0

ζz−1e−ζdζ, (23)

and

q1 =
⟨c⟩
β

; q2 =
1− ⟨c⟩
β

; β =
σ2
c

⟨c⟩(1− ⟨c⟩)− σ2
c

. (24)

Figure 9 depicts the concentration CDFs along the average plume displace-

ment at two observation times for Pe = 102 and α = 1.2 and α → 2.0. The325

results suggest that there is an overall good agreement between the CDF values

obtained by Eq. (21) and the beta distribution (22) (as parametrized by the

mean and variance of c, see equations (11) and (12)). Consistent with the results

reported in de Barros and Fiori [22], a mismatch between the beta distribution

and equation (21) is documented at early times and at the lower probability tails330

of the CDFs, where the beta distribution underestimates the probability that

the concentration is lower than a given value. By way of example, when con-

sidering the concentration CDF at tV1/IY = 1 and x/IY = (1, 0)T for α = 1.2

(see Figure 9.a), one can note that the probability that the normalized con-

centration is lower than 0.01 is approximately equal to 0.27 for the beta CDF335

whereas the CDF given by equation (21) provides an approximate value of 0.4.

On these bases, in the context of risk analysis one can view relying on the beta

distribution as a worst case scenario, as compared to estimates provided by

equation (21). For completeness, a comparison between the beta distribution

and equation (21) are also illustrated for a Gaussian random log-conductivity340

field (Figure 9.b).
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5. Conclusions

In this work we investigate the effects of non-Gaussianity in a random log-

conductivity field, Y , on the statistics of the resident concentration c associated

with a solute evolving in a randomly heterogeneous porous system. Through345

the use of a stochastic Lagrangian framework, we computed the mean, standard

deviation and cumulative probabilistic distribution, CDF, of c at a given point in

space and time for a 2D spatially heterogeneous (non-Gaussian) log-conductivity

field. The Lagrangian framework utilized in our work has been successfully

tested against field data and numerical solutions (see [13, 53, 51]). Furthermore,350

we showed that the framework is capable of recovering previously published

results for Gaussian Y fields. The effects of non-Gaussianity are incorporated

in our study upon resting on the Generalized Sub-Gaussian model introduced

by Riva et al. [41]. Our work leads to the following major conclusions:

1. The peak of the spatial distribution of the mean concentration increases355

as Y departs from Gaussianity. A similar behavior has been observed for

the maximum value of the variance and for the minimum value of the

coefficient of variation of c.

2. Differences between the statistics of c obtained within Gaussian and Gen-

eralized Sub-Gaussian Y fields decrease as travel time increases and as the360

Péclet number decreases.

3. Non-Gaussian effects are mainly manifested at the lower tail of the CDF of

c at early times. We remark that these effects are relevant in probabilistic

risk analysis, where exceedance of low concentration thresholds can be

critical.365

4. The beta distribution model can serve as a viable approximation for the

concentration distribution in a non-Gaussian Y -field, its ability to capture

the low probability tail of the CDF being otherwise limited. In addition,

the beta distribution is fully characterized by the mean and standard
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deviation values. This implies that one can efficiently compute uncertainty370

estimates for the concentration at a given point in space and time. While

the success of the beta distribution to represent uncertainty associated

with c has been shown for Gaussian Y fields (e.g., see [15, 22]), to the best

of our knowledge, it is illustrated here for the first time for a non-Gaussian

Y field.375

The framework employed in this work can be viewed as an alternative to

the numerical Monte Carlo method commonly used to estimate the uncertainty

of a solute concentration. The approach here reported can also be used as a

benchmark tool in computational stochastic mass transport problems in porous

media. We remark that the results presented in this work are confined to small380

solute bodies (relative to the correlation length of the log-conductivity random

field), Y fields displaying low-to-mild heterogeneity, and 2D settings. A com-

parison between the system behavior in 2D and 3D settings for Gaussian flow

fields is provided by de Barros and Fiori [22]. These authors show that so-

lute concentration statistics are affected by flow dimensionality. Expanding the385

current framework to 3D settings is a topic of future work. Additional future

research works will focus on the characterization of the effects of enhanced Y

heterogeneity on the uncertainty of solute concentrations.

Appendix A. Particle trajectory covariances

Semi-analytical expressions for the one- and two-particle trajectory covari-390

ances are here included under the assumptions adopted within this work (see

Section III). The complete set of details regarding the derivations of the particle

trajectory functions are given, e.g., in [7, 3, 58].

The one particle trajectory covariance is given by

Xij(t) =
1

2π

∫ t

0

∫ t

0

∫
k

v̂ij(k)cos[k1V1(t
′ − t′′)]ek

2D|t′−t′′|dt′dt′′dk. (A.1)
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which can be further simplified with the aid of the Cauchy algorithm, i.e.395 ∫ t

0

∫ t

0
h(|τ−τ ′|)dτdτ ′ = 2

∫ t

0
(t−τ)h(τ)dτ with h representing a generic function,

as

Xij(t) =
4

π

∫ t

0

∫ ∞

0

v̂ij(k) cos[k1V1τ ]e
k2Dτdτdk. (A.2)

The two-particle trajectory covariance Zij is given by

Zij(t|a− b) =
1

2π

∫ t

0

∫ t

0

∫
k

v̂ij(k)ψ(t
′, t′′,k|a− b)dkdt′dt′′ (A.3)

with

ψ(t′, t′′,k|a− b) = eık·(a−b)e−ık·V(t′−t′′)e−k2D(t′+t′′) (A.4)

For a small injection zone, i.e. ℓi < IY (with i = 1, 2)400

lim
a→b

ψ(t′, t′′,k|a− b) = e−ık1V1(t
′−t′′)e−k2D(t′+t′′). (A.5)

Substituting Eq.(A.5) into (A.3), yields the following integral expression for a

2D uniform-in-the-mean flow

Zij(t|a−b) =
1

2π

∫ t

0

∫ t

0

∫
k

v̂ij(k) cos[k1V1(t
′−t′′)]e−k2D(t′+t′′)dkdt′dt′′. (A.6)
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Figure 1: Temporal evolution of the one-particle trajectory covariance function. Comparison
with the results reported in Dagan [50] (for multi-Gaussian log-conductivity random fields)
and Riva et al. [45]
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Figure 2: Temporal evolution of the two-particle trajectory covariance function for Pe = 1000
and various values of α. Comparison with the results reported in Fiori and Dagan [7] for a
multi-Gaussian log-conductivity random field.
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Figure 3: Mean of C versus dimensionless longitudinal mean displacement (x2/IY = 0), for
selected values of Pe and α. Results are depicted for (a) early time tV1/IY = 5 and (b) late
time tV1/IY = 20.
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Figure 8: Probability of exceedance of normalized concentration threshold c∗ = 10−3 at the
solute plume centroid position as a function of dimensionless time and α. Results are shown
for Pe = (a) 102 and (b) 103.
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Figure 9: Comparison between the concentration CDF model rendered by Eq. (21) and the
β distribution, Eq. (22). Results are illustrated for Pe = 102, (a) α = 1.2 and (b) α → 2 at
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