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Abstract 

Improved understanding of the effects of variability in 

electrophysiological activity within the human heart is key 

to understanding and predicting cardiovascular response 

to disease and treatments. Previous studies have 

considered either regional variation in action potentials or 

inter-subject variability within a single region of the atria. 

In this study, we hypothesize that the regional differences 

in morphology derive not only from variation in 

dependence on individual conductances, but also from the 

relationship between multiple conductances.  

Using the Monte-Carlo Sampling Method and the 

Maleckar cellular model for electrophysiology, we created 

an in-silico population of models. Each conductance was 

varied +/- 100% from the standard model. The population 

was divided into regional groups based on biomarkers.  

Results showed regional variation in the dependence on 

relationships between conductances. In the right atrial 

appendage the value of gK1 was found to be only twice as 

influential as the relationship between gK1 and gKur on 

the APD90 biomarker. Other relationships that had a 

significant impact included gTo-gKur; gKr-gK1; gNaK-

gNaCa and gKur-gNaK for various regions. R2 values for 

first order linear regression models showed significant 

relationships were left out in the analysis. This was 

significantly improved in the second order R2 values.  

 

1. Introduction 

Variability in cellular electrophysiology is an important 

consideration when modelling and understanding the 

behaviour of the heart. Despite this, the cellular models 

used to date typically only consider the average 

experimental recordings from populations, ignoring 

variability due to its complexity. Some studies have 

introduced the use of a population of models to introduce 

cellular variability [1][6][7], whereas other studies introduce 

regional variability without including cellular variability [2-

5]. This study aims to present the effects of combining 

regional and cellular variability and the importance of 

considering both when modelling the atrial response to 

stimulus.  

Several studies have been undertaken in an attempt to 

characterise the action potential (AP) morphology of 

various atrial regions in both humans and canines [1][2][4][7], 

however due to the limitations in collecting this data, a 

complete regional classification of the human atria AP 

morphology does not currently exist. As a result, 

supplementing available human based data with that of 

canine observations is standard practice [4][5].  

In this study we create a regionally based population of 

models using the Maleckar model and a combination of 

human and canine based AP morphology data to calibrate 

the regional populations with varying conductance 

densities. The experimentally calibrated regional 

populations are used to analyse the individual contribution 

of ionic currents and the contributions of specific 

combinations of currents.  

By calibrating the regional populations using AP 

morphology and specified biomarkers, each population 

consists of an unbias combination of conductance values. 

Observing the resulting population dynamics enables a 

regional based evaluation of the significance of each ionic 

conductance and relationships between different ionic 

currents.  

 

2. Methodology  

2.1. Population of Models 

A total of 9 conductances were varied with +/- 100% 

from the original maximum value given in the Maleckar 

model [8]. These were the ultra rapid, rapid, slow, transient 

outward and inward rectifier potassium currents (IKur, IKr, 

IKs, ITo and IK1 respectively), the fast sodium current (INa), 

the L-type calcium current (ICaL), the sodium/potassium 

pump (INaK) and the sodium calcium exchanger (INaCa).   

A population of models was created using the Maleckar 

model for the action potential of an atrial cell. After 

preconditioning, each subject was stimulated at 1Hz, 

45pA/pF with a stimulation duration of 1.0ms. 
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Using the Monte Carlo Sampling Method, a population 

of 13,689 stable subjects was created, of which 1,146 

subjects fell within the acceptable range for all biomarkers 

for at least one atrial region. Unstable subjects were 

removed from the population.  

 

2.2. Regional classification  

    The atria were divided into 7 regions: The left and right 

atria (LA and RA) and their associated appendages (LAA 

and RAA); the pectinate muscles (PM); the crista 

terminalis and Bachmanns Bundle (CTBB) and the atrio-

ventricular rings (AVR). Using a combination of 

previously published work [1][3-5][7], each region was 

assigned a mean and standard deviation for the 5 

biomarkers: resting membrane potential (RMP), action 

potential amplitude (APA), action potential at 20% 

repolarisation (APD20), 50% repolarisation (APD50), and 

90% repolarisation (APD90). Due to the lack of 

experimental data for various regions of the human heart, 

this was combined with the available data for the canine 

heart, scaled based on comparative regions.  

   The biomarkers for each region are shown in Table 1. 

Using the population of models, regional datasets were 

populated using two standard deviations from the target 

mean for each of the five biomarkers. The final regional 

population sizes are shown in Table 1.  

 

 

2.3. Statistical Analysis  

Through the use of regression analysis the contribution 

of each of the 9 varied conductance densities are presented. 

Regression analysis was also used to identify the 

relationships between multiple conductance densities and 

their effect on each of the biomarkers previously identified.  

By calculating the R-squared (R2) coefficient of 

determination, the ability for the first order and second 

order regression analysis to capture the behaviour of the 

population was assessed. The ANOVA test was used to 

determine the statistical significance of each conductance 

in relation to the biomarkers, with a p-value of 0.025 or 

below determining statistical significance.  

Boxplots including confidence intervals are used to 

identify statistical differences in ionic conductance and 

biomarker between atrial regions, as well as verifying that 

the population distribution for each region is consistent 

with the previous experimental data by remaining within 

one standard deviation of the calibrated mean.  

 

3. Results and Discussion 

3.1. Regional population distributions 

Figure 1A. shows the mean regional action potential as 

defined by the mean biomarkers in Table 1. This can be 

compared with Figure 1B which shows the calculated 

mean action potential for each regional population. The 

regional characteristics observed through the population of 

models is comparable with the expected population 

characteristics used for calibration.  

The unfiltered population consisted of uniform variation 

in each of the 9 maximum conductances. The overall 

population, consisting of all action potentials that were 

included in at least one of the atrial regions, did not show 

a uniform distribution for the maximum conductances. The 

distribution for each conductance is shown in Figure 2.  

The total population showed great variation in each of 

the 9 maximum conductances. Figure 3a-3c show the 

regional distribution of the conductances gKur, gK1 and 

gCaL. Other conductances, such as gKr, gKs, gTo and 

gNaCa showed insignificant regional differences.  

CTBB has notably the largest range of values, with the 

distribution showing that gK1 typically exceeds the value 

AVR RA RAA LA LAA CTBB PM

APD90 280 +/- 28.6 336 +/- 30.8 318 +/- 21.9 300 +/- 33.7 288 +/- 21.9 330 +/- 64.0 296 +/- 19.2

APD50 58 +/- 21.4 106 +/- 36.8 139 +/- 36.0 85 +/- 16.7 126 +/- 12.8 185 +/- 32.0 115 +/- 16.5

APD20 7 +/- 6.6 7 +/- 6.6 7 +/- 6.6 7 +/- 6.6 7 +/- 6.6 7 +/- 6.6 7 +/- 6.6

APA 115 +/- 21.4 105 +/- 13.4 116 +/- 19.2 102 +/- 3.9 120 +/- 19.2 122 +/- 19.2 119 +/- 16.5

RMP -71 +/- 1.4 -73 +/- 12.0 -76 +/- 6.6 -73 +/- 5.4 -71 +/- 6.6 -75 +/- 1.9 -73 +/- 12.0

Final  Population Size 328 570 404 201 264 218 293

Table 1 Showing the mean and standard deviation of each region used for regional classification in the population of models. Regional 

values for the biomarkers taken from previously published experimental data. The table also shows the final regional population sizes. 

Figure 1 The mean action potential for regional populations. A. 

shows the mean action potential as calibrated by the experimental 

data, and B. shows the mean action potential of each regional 

population. 
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set in the Maleckar model. The AVR population shows the 

opposite for the gK1 conductance, with a significantly 

smaller range of values and the majority of the population 

consisting of values below that set in the Maleckar model.  

Figure 3d-3f show the variability in the biomarkers 

APD50, APD90 and APA respectively. The blue ‘X’ 

shows the regional mean used for calibration and the green 

and blue circles show represent the upper and lower 

boundaries for one standard deviation in each region. 

Despite slight variation between calibrated mean and 

observed population mean, for the majority of regions, the 

population represents the experimental data well. The 

largest deviation can be seen in the CTBB region, whereby 

the distribution of both the APD50 and APD90 of the 

population are significantly lower than the experimental 

data.  

 

3.2. Linear regression 

 Overall results from the linear regression showed results 

consistent with previous studies [1][4][7], whereby the most 

significant conductance for APD90 was gK1, with a large 

negative coefficient across all regions. This was further 

reflected in the second order linear regression.  

 For APD90 the inter-conductance relationship between 

gKur and gK1 had a coefficient of roughly 10% of the 

coefficient for gK1 alone for all regions. For AVR, PM and 

RAA the impact was greater, with the gK1-gKur 

coefficient being 21%, 32% and 51% of the respective gK1 

coefficient. This suggests that in RAA the value of gK1 is 

only twice as influential as the relationship between gK1 

and gKur on the APD90. It also shows that the inter-

conductive relationship varies greatly between regions. 

Other relationships that had a significant impact on the 

APD90 included gTo-gKur for the CTBB, PM and LAA 

regions; gKr-gK1 for CTBB and LA regions and both 

gNaK-gNaCa and gKur-gNaK for RAA and CTBB.  

 APD50 showed similar variation between regions, with 

the gKr-gK1 relationship being significant only in the LA 

and PM regions, and gKur-gNaCa being significant only in 

LAA and PM. Again, moving from first order to second 

order linear regression, the gK1 conductance changes sign 

to a large negative coefficient for AVR, CTBB, LA and 

RA indicating the existance of a significant non-linearity. 

Once again, this is counteracted through the regional 

relationship between conductances. 

 The APD20 biomarker showed similar regional 

variation, with the three largest relationships being that of 

gKur with gNaK (LAA, RA, RAA), gKur with gK1 (PM, 

RAA), and gK3 with gK1 (LA). Once again, regional 

variations are observed between various conductances.  

Tables 2 and 3 shows the associated R2 values for the 

first and second order linear regressions respectively. As 

can be observed, the second order linear regression 

typically exceeds 0.9. In contrast, the first order linear 

regression shows far lower R2 values. This suggests that 

only considering the individual relationship between 

maximum conductance and biomarker is insufficient. 

Figure 3 Boxplots showing regional variation of conductances and biomarkers compared with the values used in the standard Maleckar 

model. a. shows the gKur conductance, b. shows the gK1 conductance, c. shows the gCaL conductance, d. shows APD50, e. shows 

APD90 and f. shows APA 

Figure 2 Histograms showing the distribution of the 9 varied 

conductances for the total population. From left to right the 

histograms show the distribution of gNa, gTo, gKur, gKr, gKs, 

gK1, gCaL, gNaK and gNaCa respectively. 
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5. Conclusion 

This work shows that the action potential morphology 

is dependent not only on the value of individual maximum 

conductances, as shown in previous work, but that the 

relationship between various conductances, such as gKur 

and gK1 for the APD20 and APD90, also has a significant 

impact on the action potential. The R2 values for linear 

regression clearly show that assuming the different 

maximum conductances are independent does not 

accurately represent the relationship with the action 

potential morphology. In order to represent at least 90% of 

the dependence and behaviour of the AP morphology, 

second order linear regression is required. Additionally, 

this data shows that the dependence on the cross-

correlation of conductances varies from region to region.  

Further work is to be carried out to determine the effect 

of cell-to-cell and regional variability in the depolarization 

and repolarization of the atria through the use of a three-

dimensional model. In addition, the effect of 

pharmacological intervention on the various atrial regions 

and how this impacts the overall function of the atria would 

be interesting future work.  
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Figure 4 Scatter plots including approximate plane for cross-correlation of multiple maximum conductances with that of the biomarkers. 

a. shows the correlation with maximum conductances for APD20 for the LAA  region, b. shows the RAA region for APD50, and c. shows 

the LAA region for the RMP. 

Linear r-square AVR CTBB LA LAA PM RA RAA TOT

RMP 0.67 0.68 0.94 0.92 0.94 0.86 0.93 0.86

APA 0.93 0.93 0.57 0.94 0.95 0.9 0.95 0.91

APD20 0.71 0.75 0.8 0.72 0.76 0.72 0.72 0.69

APD50 0.75 0.52 0.76 0.53 0.62 0.82 0.78 0.82

APD90 0.65 0.71 0.81 0.52 0.44 0.41 0.27 0.51

Table 2 First order linear regression R-squared values 

Second order r-square AVR CTBB LA LAA PM RA RAA TOT

RMP 0.95 0.94 0.99 0.98 0.99 0.96 0.98 0.95

APA 0.99 0.99 0.97 0.99 0.99 0.97 0.99 0.98

APD20 0.92 0.92 0.97 0.94 0.95 0.92 0.92 0.91

APD50 0.96 0.94 0.94 0.91 0.89 0.93 0.95 0.95

APD90 0.93 0.95 0.97 0.91 0.85 0.84 0.77 0.86

Table 3 Second order linear regression R-squared values 
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