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Abstract

Classification of high-dimensional spectroscopic data is a common task
in analytical chemistry. Well-established procedures like support vector
machines (SVMs) and partial least squares discriminant analysis (PLS-
DA) are the most common methods for tackling this supervised learning
problem. Nonetheless, interpretation of these models remains sometimes
difficult, and solutions based on wavelength selection are often preferred
as they lead to clearer chemometrics interpretation. Unfortunately, for
some delicate applications like food authenticity, mislabeled and adulter-
ated spectra occur both in the calibration and/or validation sets, with
dramatic effects on the model development, its prediction accuracy and
robustness. Motivated by these issues, we propose to employ a robust
model-based method for jointly performing variable selection and label
noise detection. We demonstrate the effectiveness of our proposal in deal-
ing with three agri-food spectroscopic studies, where several forms of per-
turbations are considered. Our approach succeeds in diminishing problem
complexity, identifying anomalous spectra and attaining competitive pre-
dictive accuracy considering a very low number of selected wavelengths.

Keywords: Variable Selection; Robust classification; Label noise; Outlier detec-
tion; Near infrared spectroscopy; Mid infrared spectroscopy; Agri-food

1 Introduction

Near-infrared (NIR) and mid-infrared (MIR) spectroscopy have nowadays be-
come a standard analytical practice in countless fields, being fast and non-
invasive techiniques for promptly characterizing samples of interest [33, 41]. By
acquiring a large number of absorbance values in a spectral range, NIR and MIR
analyses provide compositional information for the products under study, with
the final aim of being employed by chemometricians in developing multivariate
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models. Generally, variables in the so-obtained feature space appear in the or-
der of thousands, undermining the usage of standard low-dimensional techniques
[44]. To this extent, variable selection methods play a pivotal role in determin-
ing a relevant subset of wavelengths onto which perform any subsequent analysis
[6, 5]. Indeed, the detection of the most informative segments in a spectral re-
gion offer numerous advantages. Firstly, it reduces problem complexity, leading
to faster and more interpretable models. Secondly, loss on predictive power is
avoided by excluding the contribution of irrelevant and redundant noisy areas.
Thirdly, cost impact for future data collection and processing will be reduced.
Fourthly, robustness properties are conveyed into the estimation, for which the
signal to noise ratio, as a by-product of the spectral selection, is automatically
improved. Lastly, and most importantly, spectral interpretation is facilitated,
whence chemometricians may uncover previously unknown properties and dif-
ferences among the considered samples [21]. For all the aforementioned reasons,
chemometrics literature has always been greatly benefited by variable selection
methodologies, and recent examples include the successful determination of soil
properties [42], yeast and oil concentration levels in beer and corn [45], yeast
fermentation process using Raman spectroscopy [23], holocellulose and lignin
content in multispecies hardwoods [27] and identification of adulterated Sanqi
powder [12].

Conceptually, a variable selection method requires a) the definition of a rele-
vance measure and b) the choice of an algorithm to perform the search. Standard
procedures used in chemometrics, such as Competitive adaptive reweighted sam-
pling [26], uninformative variable elimination [11], Monte Carlo-uninformative
variable elimination [7], successive projections algorithm [1] and genetic algo-
rithms [25] fall within this quite general paradigm. Despite the well-established
effectiveness of the above-mentioned methods, all their data-dependent steps
rely on the implicit assumption that samples are not affected by contamina-
tion. That is, the employed relevance measures are not robust against noisy
observations, so much so that, when adulterations occur, the reliability of the
entire output may be jeopardized. Thankfully, spectroscopic data are most of-
ten recorded in controlled experiments. Nevertheless, there exists some delicate
applications, such as sample authenticity in agri-food, in which the raw mate-
rial itself may be spoiled and/or adulterated [36]. Therefore, robust variable
selection methods resistant to outliers and potential label noise are desirable.
Particularly, the latter type of noise is seldom studied in analytical chemistry
when developing a classification model, implicitly neglecting the circumstances
in which such a situation may appear. Spectra with low interclass and high
intraclass variability, inadequacy of low-cost automatic labeling systems and/or
inexperienced personnel, label inconsistency when multiple experts are tasked
to classify the same sample, information loss and data-entry errors are only
some of the causes that are likely to lead to mislabeling.

Motivated by the preceding arguments, the present article illustrates the
capabilities of a robust variable selection method, recently introduced in the
literature [9], in performing high-dimensional classification in presence of label
noise and outliers within a chemometrics context. Three successful applications
to agri-food spectroscopic datasets will be analyzed and discussed. Specifi-
cally, the first part of the paper will briefly introduce the methodology and
the datasets employed in the study. In the second part, model results will
be presented, in comparison with state-of-the-art chemometric strategies. The
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manuscript concludes with a discussion, highlighting how the advantages of the
proposed method could positively impact classification of samples from spectro-
scopic data.

2 Material and methods

2.1 Robust variable selection: the stepwise REDDA ap-
proach

The methodology described in the present Section falls within the model-based
family of classifiers, coupled with a novel variable selection procedure resistant to
outliers and label noise. The main concepts underlying the method are hereafter
reported.

Classification, also known as discriminant analysis, identifies the task of
constructing a decision rule to assign an unlabeled sample to one of G known
classes. For doing so, a complete set of N learning observations (i.e., the training
set)

(x, l) =
{

(x1, l1) , . . . , (xN , lN ) ; xn ∈ RP , ln = {ln1, . . . , lnG}′ ∈ {0, 1}G; n = 1, . . . , N
}

(1)
is at our disposal; where xn denotes a P -dimensional continuous predictor and
ln is its associated class label, such that lng = 1 if observation n belongs to group

g and 0 otherwise with, clearly,
∑G

g=1 lng = 1 ∀n ∈ {1, . . . , N}. Specifically, in
a spectroscopic dataset, P represents the total number of spectral variables in
which the absorbance value is recorded for example. Model-based classifiers
require some probabilistic assumptions in terms of the data-generating mecha-
nism: we assume that the prior probability of class g is τg > 0,

∑G
g=1 τg = 1.

The g-th class-conditional densities are independent P -dimensional Gaussian,
with mean vector µg ∈ RP and covariance matrix Σg ∈ PD(P ): xn|lng = 1 ∼
NP (µg,Σg). The joint density of (xn, ln) is therefore given by:

p(xn, ln;θ) = p(ln; τ )p(xn|ln;µg,Σg) =

G∏
g=1

[
τgφ(xn;µg,Σg)

]lng
(2)

where φ(·;µg,Σg) denotes the multivariate normal density and θ represents the
collection of parameters to be estimated, θ = {τ1, . . . , τG,µ1, . . . ,µG,Σ1, . . . ,ΣG}.
Once the model has been fitted to the training set, test units ym, m = 1, . . . ,M ,
are assigned to the g-th class via the maximum a posteriori (MAP) rule:

arg max
g∈{1,...,G}

τ̂gφ
(
ym; µ̂g, Σ̂g

)
∑G

j=1 τ̂jφ
(
ym; µ̂j , Σ̂j

) . (3)

This formulation identifies a quite generic supervised classification device, and
its effectiveness in defining decision rules for spectroscopic datasets has been
reported in [43], [13], [40], [31] and [22], among others. For a general account
on probabilistic model-based discriminant analysis and clustering methods in
chemometrics, the reader is referred to the excellent review in [4].

Among the many specifications developed from the probabilistic structure in
(2), the one considered here is the so called Eigenvalue Decomposition Discrimi-
nant Analysis (EDDA) [3]. EDDA defines a family of constrained models, where
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different assumptions about the covariance matrices are imposed by considering
the following eigenvalue decomposition:

Σg = λgDgAgD
′

g (4)

where Dg is an orthogonal matrix of eigenvectors, determining groups orienta-
tion, Ag is a diagonal matrix such that |Ag| = 1, accounting for groups shape,
and λg = |Σg|1/p is a scalar that controls the associated volume. By impos-
ing some of the quantities in (4) to be equal across groups, the problem of
over-parametrized modeling is mitigated. REDDA [8], a robust model-based
classifier, was introduced to extend the EDDA framework to handle label noise
and outliers. REDDA is based on the maximization of a trimmed mixture log-
likelihood [32], where a trimming level γ assures that the most unlikely bNγc
data points under the postulated model are discarded, ultimately robustifying
parameter estimates. Nonetheless, despite the parsimonious structure induced
by the eigen-decomposition in (4), for analytical spectroscopic applications the
number of variables can be much greater than the number of observations, so
much so that the REDDA model may still suffer from the curse of dimension-
ality [2], jeopardizing its performance in high-dimensional spaces. To overcome
this limitation, a recent contribution in the literature proposes to include a
variable selection step within the REDDA framework [9]: the core methodology
employed in the present paper. Under the reasonable assumption that only a
portion of the spectral region is relevant for class discrimination, the procedure
robustly identifies a subset of wavenumbers onto which building a (robust) de-
cision rule. The attained output is a method that performs high-dimensional
classification with variable selection, safeguarding it from potential label noise
and outliers, identifying such anomalous samples as a by-product of the learning
process.

The devised stepwise algorithm works as follows: we start from the empty
set and, at each iteration, the inclusion of an extra variable into the model is
evaluated, based on its robustly assessed discriminating power. In a similar fash-
ion, the removal of an existing variable from the model is also considered. The
procedure iterates between variable addition and removal until two consecutive
steps have been rejected, then it stops. In details, at each iteration we partition
the learning observations xn, n = 1, . . . , N , into three parts xn = (xc

n, x
p
n,x

o
n),

where:

• xc
n indicates the set of variables currently included in the model

• xpn the variable proposed for inclusion

• xo
n the remaining variables.

The intent here is to determine whether xpn shall be included (excluded) into
(from) the relevant subset. To do so, we recast the problem as a model selection
task, comparing the following two competing models:

• Grouping (MGR): p(xn|ln) = p(xc
n, x

p
n,x

o
n|ln) = p(xc

n, x
p
n|ln)p(xo

n|xpn,xc
n)

• No Grouping (MNG): p(xn|ln) = p(xc
n, x

p
n,x

o
n|ln) = p(xc

n|ln)p(xpn|xr
n ⊆

xc
n)p(xo

n|xpn,xc
n)
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Figure 1: Graphical Representation of the Grouping and the No Grouping mod-
els

where xr
n denotes a subset of the currently included variables xc

n. As ilustrated
in Figure 1,MGR assumes that xpn provides extra grouping information beyond
that provided by xc

n; whereas MNG specifies that xpn is conditionally indepen-
dent of the group membership given xr

n. We consider xr
n in the conditional

distribution because xpn might be related to only a subset of the grouping vari-
ables xc

n [29]. According to the general model-based structure described at the
beginning of the Section, we assume p(xc

n, x
p
n|ln) and p(xc

n|ln) to be normal den-
sities with constrained covariances, while p(xo

n|xpn,xc
n) is only considered to be

the same for both grouping and no grouping specification. Exploiting standard
results for multivariate normal theory, (see, for example, Theorem 3.2.4 in [28])
p(xpn|xr

n ⊆ xc
n) defines a normal linear regression model. More specifically, the

involved models are of the form:

MGR : (xc
n, x

p
n) , ln ∼

G∏
g=1

[
τ cpg N (xn;µcp

g ,Σ
cp
g )
]lng

MNG : xc
n, ln ∼

G∏
g=1

[
τ cgN (xn;µc

g,Σ
c
g)
]lng

, xpn|xr
n ∼ N

(
α+ β

′
xr
n, σ

2
)
.

A standard way to perform model comparison is via the Bayes Factor (BGR,NG)
[24], evaluating the plausibility of the Grouping model with respect to the No
Grouping one. In the stepwise REDDA approach, a robust proxy to BGR,NG

is employed to select which specification to prefer. Following [35], twice the
logarithm of BGR,NG is approximated with

2 log (BGR,NG) ≈ TBIC(GR)− TBIC(NG) (5)

where the trimmed BIC (TBIC), firstly introduced in [32], acts as a robust
version of the Bayesian Information Criterion [38] employed in the approxima-
tion in (5). Particularly, for the Grouping and the No Grouping specification
outlined above, the TBICs respectively read:
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TBIC(GR) = 2

N∑
n=1

ζ(xc
n, x

p
n)

G∑
g=1

lng log
(
τ̂ cpg φ(xc

n, x
p
n; µ̂cp

g , Σ̂
cp

g )
)

︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xc

n,x
p
n,ln)

+

− vcplog(N∗)

(6)

TBIC(NG) = 2

N∑
n=1

ι(xc
n, x

p
n)

G∑
g=1

lng log
(
τ̂ cgφ(xc

n; µ̂c
g, Σ̂

c

g)
)

︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xc

n,ln)

−vclog(N∗)+

+2

N∑
n=1

ι(xc
n, x

p
n) log

[
φ

(
xpn; α̂+ β̂

′

xr
n, σ̂

2

)]
︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xp

n|xr
n⊆xc

n)

−vplog(N∗).

(7)

The quantities vcp and vc are penalty terms, namely the number of parameters
for a REDDA model estimated on the set of variables xc

n, x
p
n and xc

n, respec-
tively; while vp accounts for the number of parameters in the linear regression
of xpn on xr

n. The terms ζ(·) and ι(·) are 0-1 indicator functions, identifying the
subset of observations that have null weight in the trimmed likelihood under
MGR and MNG, with N∗ =

∑N
n=1 ζ(xn) =

∑N
n=1 ι(xn). That is, potential

outlying and mislabeled observations do not influence the selection procedure,
since only N∗ = dN(1 − γ)e samples are accounted for parameters estimation,
with γ denoting the impartial trimming level. The set of parameters

{
α, β, σ2

}
are related to the linear regression component, and are robustly estimated via
maximum likelihood on the untrimmed samples.

In the addition stage, the xpn variable with highest positive difference in (5)
(if any) is the one selected for inclusion. In the removal stage, xpn takes the role of
the variable to be dropped, and the one displaying highest positive difference in
(5) (if any) is excluded from the set of currently included variables xc

n. When nei-
ther addition nor removal move is performed, the procedure terminates. In this
way, the number of relevant variables necessary to build the classification rule is
automatically inferred, and it needs not be a priori specified. The routines for
the stepwise REDDA approach have been written in R language [34]: the source
code is openly available at https://github.com/AndreaCappozzo/varselTBIC.

2.2 Spectroscopic datasets in agri-food

The stepwise REDDA approach is applied to the analysis of three different multi-
class data sets. The first one is a 4-class problem where the observations are
mid-infrared spectra of modified starches. The second one is a 5-class problem
encompassing visible and near infrared reflectance spectra of homogenized meat
samples. The last dataset is a 2-class problem, concerning the discrimination be-
tween Ligurian and Non-Ligurian olive oil through mid-infrared measurements.
For the considered datasets, employed instrumentation and sample collection
procedures are thoroughly described in [18], [30] and [20]; thus, only a succinct
explanation will be hereafter reported. All these challenging situations represent
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Figure 2: Mid-infrared spectra of four starches classes. Starches dataset.

typical high-dimensional classification tasks often encountered in spectroscopy:
a variable selection procedure resistant to label noise and outliers can poten-
tially be beneficial in this regard. As a last worthy note, we mention that the
subsequent analyses are directly performed on the raw spectra, without any
pretreatment applied to the samples originally provided.

Starches data set

The first dataset comes from the chemometric challenge organized during the
‘Chimiométrie 2005’ conference [17]. The learning scenario encompasses N =
215 training and M = 43 test MIR spectra of starches of G = 4 different classes.
For each sample, a total of P = 2901 absorbance measurements are recorded.
A subset of training observations is displayed in Figure 2. The participants of
the competition were tasked to discriminate as accurately as possible the four
different classes, defining a classification rule from the training set. In addition,
outlier detection needed to be performed, as four intentionally corrupted spectra
were manually placed in the test set: a graphical representation is depicted in
Figure 3. For a thorough description on how these modifications were obtained,
the interested reader is referred to [17]. In addition, we slightly complicate the
learning framework even further including less than 2% of label noise in the
training set: the last four samples of the third class are wrongly labeled as
coming from the fourth one.

Meat data set

The second dataset reports the NIR spectra of 231 homogenized meat samples,
recorded from 400 − 2498 nm at intervals of 2 nm, accounting for a total of
P = 1050 spectral variables. Spectra belong to five different meat types, with
32 beef, 55 chicken, 34 lamb, 55 pork, and 55 turkey. We randomly partition
the recorded spectra into calibration and test sets: the former is composed by
16 beef, 28 chicken, 17 lamb, 28 pork and 28 turkey (the resulting training set
is displayed in Figure 4), while the latter contains the same proportion of these
five meat types with four additional spectra manually adulterated as follows:
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Figure 3: The 4 adulterated spectra manually placed in the test set by the
‘Chimiométrie 2005’ contest organizers, before and after modification. Starches
dataset.
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Figure 4: Visible and near infrared spectra of five homogenized meat types.
Meat dataset.
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• a shifted version of a pork spectrum, achieved by removing the first 15
data points and appending the last 15 group-mean absorbance values at
the end of it;

• a noisy version of a pork spectrum, generated by adding Gaussian white
noise to the original one;

• a modified version of a turkey spectrum, obtained by abnormally increas-
ing the absorbance value in a single specific wavelength to simulate a spike;

• a pork spectrum with an added slope, produced by multiplying the original
spectrum by a positive constant.

These modifications mimic the ones considered in the “Chimiométrie 2005”
chemometric contest for the starches dataset, described in the previous Section,
and agree with those reported in [14] within a novelty detection framework.

Olive Oil data set

The last dataset examines MIR olive oil spectra based on Fourier-transform
(FTIR) measurements, with a learning scenario encompassing training and test
sets of sizes respectively equal to N = 280 and M = 630. The aim here is
to identify whether or not samples originate from the Italian coastal region of
Liguria. In doing so, two nested subsets of wavelengths are considered in the
analysis: the first one comprises the spectral zones from 3000 to 2400 cm−1

and from 2250 to 700 cm−1 (P = 1117 recorded features), while the second
one covers the entire 4000 − 700 cm−1 spectral range (P = 1712). The two
resulting training sets are respectively displayed in the top and bottom pan-
els of Figure 5, where red lines denote Ligurian olive oil spectra. Specifically,
only the former subset was previously studied [20, 15]; since the absorption of
atmospheric carbon dioxide was registered in the frequency range 2400 − 2250
cm−1, whereas the end of the spectrum seemed to contain mainly noise and was
thus removed too. The reason for confronting with both scenarios is twofold.
On the one hand, we aim at evaluating how the presence of additional noisy
variables, in an already high dimensional problem, impacts the performance of
our and competing methods. On the other hand, we are interested in assess-
ing whether a knowledge-based selection, a common practice in chemometrics
studies [37, 10, 46], is still unavoidable even when algorithmic procedures could
take over such manual approach.

3 Results and discussion

Most classification problems in chemometrics cannot be solved by directly apply-
ing model-based classifiers, since N � P : the agri-food applications considered
in this paper make no exception. To overcome this issue, we make use of the
stepwise REDDA method previously introduced to provide a natural solution
for dealing with contaminated high-dimensional data, and, as we will see, to
identify adulterated spectra in the different scenarios.
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Training Set (frequency range 3000 − 2400 +  2250 − 700 cm−1)
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Figure 5: Mid-infrared spectra of Ligurian and Non Ligurian olive oil, spectral
zones 3000− 2400 cm−1 + 2250− 700 cm−1 (top panel) and 4000− 700 cm−1

(bottom panel). Olive Oil dataset.
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Starches dataset

For the starches dataset, we run the stepwise REDDA with γ = 0.03. That is,
the method is protected against potential contaminated spectra in the training
set, as only 100d1−γe% of the samples is employed for model fitting, leaving the
least likely 100γ% unmodeled. Such robustification effectively takes care of the
label noise placed in the calibration set, preventing it to spoil the wavelength
selection. The procedure, out of P = 2901, selects a total of only six relevant
spectral variables: 1728 cm−1, 1682 cm−1, 1555 cm−1, 1502 cm−1, 997 cm−1

and 995 cm−1. The last two wavenumbers correspond to spectral distributions
of amylose and amilopectin, which are known to be present in different ratios
for the different starch classes. The other wavenumbers on the list correspond
to very low levels of absorbance in the spectra which makes molecular interpre-
tation difficult. Figure 6 displays the generalized pairs plot [16] for the selected
variables. Such graphical tool encompasses different plot types depending on
the paired combinations of categorical and/or quantitative variables, general-
izing the standard scatterplot, depicted only in the lower triangular matrix.
Graphs above the main diagonal report contours of 2D density estimates, where
it stands out that the most difficult task resides in separating starch classes 1
and 2, as was already pointed out in [17]. Right and bottom margins respec-
tively include side-by-side boxplots and faceted-density plots, useful in revealing
patterns when dealing with one categorical and one continuous variable. Lastly,
univariate plots are displayed in the main diagonal, namely density plots and a
bar chart illustrating samples proportion.

A REDDA model with γ = 0.03 is employed to classify the test samples,
using as predictors the spectral frequencies retained by the stepwise variable se-
lector. A Support Vector Machine with Gaussian radial kernel (SVM) was also
considered, as it was shown to be the best performing classifier for this specific
dataset [18, 17]. In addition, we replicate the second best solution proposed by
one of the ‘Chimiométrie 2005’ contest participants: an ensemble method was
constructed by combining ROC, PLS and SVM predictions via majority vote
on a subset of variables, previously determined by a PLS model. Classification
accuracy for the three competing methods, learned on both the original train-
ing set and on the one containing label noise, are reported in Table 1. Our

Table 1: Number of correctly predicted test samples and associated misclas-
sification error for different methods, starches dataset. The test set without
outliers has a total sample size of M = 39. Results with superscript ∗ were
originally reported in [17].

Stepwise SVM ROC+PLS+SVM
REDDA radial kernel

Training set with label noise
# correctly predicted 32 31 31
% correctly predicted 82.1 79.5 79.5

Training set without label noise
# correctly predicted 32 37∗ 33
% correctly predicted 82.1 94.9∗ 84.6

11
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Figure 6: Generalized pairs plot of the spectral frequencies selected by the
stepwise REDDA method. Starches dataset, training set.
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robust model-based classifier attains the same predictive power when trained
on either dataset: this is due to the γ level of trimming, that correctly identifies
the adulterated spectra as to be label noise and thus safeguarding parameters
from estimation bias. On the other hand, the performance of the kernel and
ensemble methods are negatively impacted by the presence of the 4 mislabeled
samples. Our proposal maintains intact predictive power, further providing a
great reduction in model complexity and results interpretation, being the final
procedure only based on p = 6 wavenumbers. The tremendous decrease in data
dimension, together with the ability of successfully dealing and identifying label
noise are two most desirable aspects in chemometrics. Overall, the selection
of only six frequencies seems sufficient to well-capture the heterogeneity in the
starches population.

We mentioned at the beginning of the previous Section that 4 adulterated
spectra were manually placed in the test set (see Figure 3). While the perfor-
mance of the different methods has been evaluated on the clean units only to
assure fairness in the comparison, our methodology can be further employed to
perform outlier detection considering the estimated marginal density for each
test unit ym:

p̂(ym,F̂ ; τ̂ , µ̂F̂ , Σ̂F̂ ) =

G∑
g=1

τ̂gφ
(
ym,F̂ ; µ̂g,F̂ , Σ̂g,F̂

)
(8)

where F̂ denotes the relevant variables identified by the stepwise REDDA ap-
proach. The 3 spectra with lowest value of (8) are actually outliers. The only
neglected anomaly is the one that was contaminated with a spike on a single
wavelength, not identified as relevant by the feature selection method. Conse-
quently, its marginal density in (8) is not altered by the manual modification. All
things considered, our approach is able to effectively identify 3 out of 4 outliers
and to greatly decrease problem complexity, whilst still maintain competitive
predictive power when compared with state-of-the-art classifiers.

Meat dataset

The stepwise REDDA procedure is applied to the meat dataset: the aim here
is to discriminate the five meat types as well as to identify the 4 anomalous
spectra, manually placed in the validation set. The obtained classification on
the genuine test samples (without considering the 4 adulterated ones) is re-
ported in Table 2, achieving a misclassification error of 6.14%. A remarkably
good performance is exhibited by our proposal, in agreement with results ob-
tained by most advanced methods, whose performances are reported in Table
2: the interested reader is referred to [31, 19, 39] for the associated classifica-
tion studies. Our methodology, out of P = 1050, selects a total of six relevant
wavelengths: 636 nm, 704 nm, 870 nm, 1076 nm, 668 nm and 674 nm. Such
wavelengths span a spectral region related to proteins. A generalized pairs plot
is reported in Figure 7, where we observe how the spectral variables selected
by our method indeed reveal distinctive patterns among the meat types, even
though the poultry classes, namely chicken and turkey, are still difficult to dis-
tinguish one another. Similarly to what done in the previous subsection for the
starches dataset, the marginal density defined in (8) can be used to assess the
presence of outlying units in the test set: the 4 samples with lowest value of (8)
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636 nm 704 nm 870 nm 1076 nm 668 nm 674 nm Meat type

636 nm
704 nm

870 nm
1076 nm

668 nm
674 nm

M
eat type

Meat type Beef Chicken Lamb Pork Turkey

Figure 7: Generalized pairs plot of the spectral frequencies selected by the
stepwise REDDA method. Meat dataset, training set.
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Table 2: Number of correctly predicted test samples and associated classifica-
tion accuracy for different methods, meat dataset. Results with superscript ∗,
superscript † and superscript ‡ were respectively reported in [31], [19] and [39].

Stepwise Murphy et al Gutierrez et al PLS-DA
REDDA [31] [19] [39]

# correctly predicted 107 107∗ - -
% correctly predicted 93.9 93.9∗ 87.4† 94‡

are precisely the manually adulterated ones. For the meat dataset, exceeding
the already good results shown in the starches analysis, outliers detection is
thoroughly accomplished by means of the proposed approach.

Olive Oil dataset

Table 3: Number of correctly predicted test samples and associated classifica-
tion accuracy for different methods on the two subsets of wavelengths, olive oil
dataset. The test set has a total sample size of M = 630.

Stepwise SVM PLS-DA
REDDA radial kernel

Frequencies 3000− 2400 + 2250− 700 cm−1

# correctly predicted 507 459 509
% correctly predicted 80.5 72.9 80.8

Frequencies 4000− 700 cm−1

# correctly predicted 505 428 503
% correctly predicted 80.2 67.9 79.8

Two distinct analyses, depending whether the reduced or the full spectral range
(see Figure 5) is employed for model fitting, are accomplished for the olive oil
dataset. Classification accuracy for both scenarios is reported in Table 3, for
which stepwise REDDA, partial least squares discriminant analysis (PLS-DA)
and SVM classifiers have been considered. Results displayed in the table high-
light some peculiarities that are worth examining. In the first place, PLS-DA
and SVM are negatively impacted by the roughly 600 more features in the full
spectra case, where particularly the kernel method shows a considerable reduc-
tion in terms of predictive power. Contrarily, stepwise REDDA does not seem
to be affected by the original size of the feature space, showcasing essentially un-
changed classification accuracy for both spectra ranges. With reference to it, the
wavenumbers selected by the procedure amount to frequencies 704 cm−1, 1279
cm−1 and 1726 cm−1 when a-priori knowledge-based selection is accomplished;
and to 1447 cm−1, 1726 cm−1, 3366 cm−1, 3576 cm−1 and 3996 cm−1 in the
full range scenario. In the first experiment, the relevant wavelengths correspond
respectively to the C −H bending of the group, to C − C and C − O bending
situations, and to the streching of the carbonyl groups; while 3366 cm−1, 3576
cm−1 in the second study are associated with O−H bond contributions. In both
situations, there is a consistent reduction in terms of problem dimension, cor-
respondingly moving from 1117 and 1712 to 3 and 5 retained features. Figures
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704 cm−1 1277 cm−1 1726 cm−1 Olive oil

704 cm
−1

1277 cm
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Olive Oil Ligurian Non Ligurian

Figure 8: Generalized pairs plot of the spectral frequencies selected by the
stepwise REDDA method. Reduced olive oil dataset (frequencies 3000 − 2400
+ 2250− 700 cm−1), training set.
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−1
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−1
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−1
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−1
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Olive Oil Ligurian Non Ligurian

Figure 9: Generalized pairs plot of the spectral frequencies selected by the
stepwise REDDA method. Full olive oil dataset (frequencies 4000− 700 cm−1),
training set.

8 and 9 display the pairs plots associated to such subsets of relevant variables,
in which it is apparent that this discrimination task is harder than the pre-
vious ones, with classes separation much less discernible. While, as expected,
no wavelength was selected in the range 2400 − 2250, known to be contami-
nated by atmospheric carbon dioxide, three (3366 cm−1, 3576 cm−1 and 3996
cm−1) out of the five variables deemed to be relevant in the full scenario were
manually discarded while defining the knowledge-based reduced dataset [20].
This unexpected result should not come as a surprise: indeed, by inspecting
both the bottom panel in Figure 5 and the pairs plot in Figure 9, it is evi-
dent that wavelengths greater than 3000 cm−1 do possess some discriminating
power. Thereupon, we argue that manual based spectral range election shall be
performed with care, as some valuable information may be inadvertently lost.

4 Conclusion

The aim of the paper has been to showcase the benefits of a robust variable
selection method for classification in chemometrics. Specifically, motivated by
three agri-food applications, we have investigated the effect that contamination
produces in standard tools for spectroscopic analysis, and how the proposed
methodology can cope with it. Identifying noise as a factor that makes class dis-
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crimination more challenging, we have confronted label noise (starches dataset),
attribute noise (meat dataset) and noisy variables (olive oil dataset). Excellent
results have been obtained in all three scenarios, wherein our robust feature se-
lection has attained a reduction in problem complexity and accurate detection
of mislabeled and/or adulterated spectra, whilst maintaining competitive pre-
dictive power. In addition, we have demonstrated that our method is directly
applicable to raw spectra, without needing any preprocessing step.

Mislabeling is an issue oftentimes overlooked in analytical chemistry: a
method that accomplishes variable selection, eliminating the need of manual ap-
proaches, while automatically protecting against potential contamination seems
particularly desirable. Furthermore, the uncovering of the most discrimina-
tive frequencies or wavenumbers both facilitates chemometrics interpretation
and generates drastic cost reduction. As a consequence, laser diodes can be
employed to record only targeted wavenumbers, without the need to acquire,
process and store the whole spectra.

In conclusion, based on our findings, we believe that the proposed procedure
could be well-accepted by the chemometric community, while additional analy-
ses may further validate its applicability in the spectroscopic field.
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[1] M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama,
H. C. Chame, and V. Visani. The successive projections algorithm for
variable selection in spectroscopic multicomponent analysis. Chemometrics
and Intelligent Laboratory Systems, 57(2):65–73, 2001.

[2] R. Bellman. Dynamic Programming. Rand Corporation research study.
Princeton University Press, 1957.

[3] H. Bensmail and G. Celeux. Regularized Gaussian Discriminant Analysis
through Eigenvalue Decomposition. Journal of the American Statistical
Association, 91(436):1743–1748, dec 1996.

[4] C. Bouveyron. Probabilistic model-based discriminant analysis and cluster-
ing methods in chemometrics. Journal of Chemometrics, 27(12):433–446,
dec 2013.

[5] J. M. Brenchley, U. Hörchner, and J. H. Kalivas. Wavelength Selection
Characterization for NIR Spectra. Applied Spectroscopy, 51(5):689–699,
may 1997.

[6] P. J. Brown. Wavelength selection in multicomponent near-infrared cali-
bration. Journal of Chemometrics, 6(3):151–161, may 1992.

18



[7] W. Cai, Y. Li, and X. Shao. A variable selection method based on unin-
formative variable elimination for multivariate calibration of near-infrared
spectra. Chemometrics and Intelligent Laboratory Systems, 90(2):188–194,
feb 2008.

[8] A. Cappozzo, F. Greselin, and T. B. Murphy. A robust approach to model-
based classification based on trimming and constraints. Advances in Data
Analysis and Classification, 14(2):327–354, jun 2020.

[9] A. Cappozzo, F. Greselin, and T. B. Murphy. Robust variable selection for
model-based learning in presence of adulteration. jul 2020.
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