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Abstract 

Time series analysis and novelty detection are effective and promising methods for 

data-driven structural health monitoring (SHM) based on the statistical pattern recognition 

paradigm. However, processing substantially large volumes of vibration measurements may 

represent a serious limitation, especially for long-term SHM programs of large-scale civil 

structures. Moreover, shortcomings like the choice of an appropriate time series model in an 

automatic manner, the determination of optimal orders of the identified model and the 

classification of random high-dimensional features for damage detection, can strongly affect 

the performance of these approaches. This study is intended to propose statistical pattern 

recognition methods regarding time series modeling for feature extraction and novelty 

detection in feature classification in the presence of big data. These methods include an 

automatic model identification algorithm, an improved order determination approach and a 

hybrid distance-based novelty detection through a combination of Partition-based Kullback-

Leibler divergence and Mahalanobis-squared distance. Experimental datasets relevant to a 
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cable-stayed bridge are considered to validate the effectiveness of the proposed methods. 

Results demonstrate that: the AutoRegressive-AutoRegressive with eXogenous input (AR-

ARX) model turns out to be the most suitable representation for feature extraction; the orders 

of this model are efficiently and automatically determined; the proposed novelty detection 

approach is highly successful in detecting damage, even in case of large volumes of random 

high-dimensional features. 

Keywords: Structural health monitoring; early damage detection; statistical pattern 

recognition; time series modeling; novelty detection; big data. 

1. Introduction 

Damage is an adverse change in a structure, which may threaten its integrity and 

safety. It may consist of cracks in concrete structures, loose bolts, broken welds and corrosion 

in steel connections, all of which may lead to stresses and displacements exceeding 

thresholds, inappropriate vibrations, local failure and even collapse. In order to avoid life and 

economic losses, structural health monitoring (SHM) is strongly needed for civil structures as 

it can increase the structural safety and performance, reduce the maintenance costs and 

prevent irreparable damage [1, 2]. Based on the assessment of the structural health or 

detection of any possible damage, SHM strategies can be classified into four levels: early 

damage detection (level 1), damage localization (level 2), damage quantification (level 3), and 

damage evaluation (level 4) [1]. The first level attempts to discern whether a damage exists in 

the structure, whereas the second and third levels are respectively intended to 

identify/estimate the location and severity of an already existing damage. Finally, the fourth 

level aims to predict the remaining service life and to provide a risk assessment for the 

structure [1]. As the level increases, the knowledge about damage and the complexity of the 

adopted methods increase as well. It thus looks essential to implement an early damage 
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detection method to avoid as much as possible damage occurrence, particularly in the case of 

large-scale structures and infrastructures [3]. In the context of SHM, this process can be 

carried out in short-term or long-term monitoring scenarios [4]. 

Damage diagnosis can be carried out by either model-driven or data-driven methods 

[1]. The main premise behind the first approach is the use of an elaborate and accurate 

analytical or numerical model of the structure. Due to discrepancies between the real structure 

and its digital twin, model updating turns out to be a mandatory task [5-11]. Although the 

model-driven approaches are often successful in damage diagnosis [12-20], some limitations 

and difficulties such as the requirement of a highly detailed model, the mandatory 

implementation of model updating, the transformation of raw vibration measurements into 

frequency or modal domains, make the data-driven techniques a more feasible option. Most of 

the data-driven SHM methods have adopted statistical pattern recognition paradigms within a 

framework combining feature extraction and statistical decision-making [2, 21-28]. Since 

such methods depend directly on measured data, some issues regarding sensor types, sensor 

placements and networks should be accounted for properly [10, 29]. Feature extraction is 

defined as a process of modeling measurements of the structural response (e.g. in terms of 

accelerations, displacements or strains) in the time-domain and extracting meaningful 

information, known as damage-sensitive features, by means of advanced signal processing 

techniques [30]. Time series analysis is a statistical tool for modeling raw time series data, 

with a high capability to analyze long sequences of data [31]. Feature extraction by time 

series analysis consists of fitting an appropriate time series model to the vibration data, and 

then extracting model coefficients and residuals as damage-sensitive features [32]. 

Considering stationary and linear time series, different representations can be adopted to 

extract the aforementioned features: Autoregressive (AR) [21, 26, 33], Autoregressive with 

eXogenous input (ARX) [34], Autoregressive Moving Average (ARMA) [24, 31], 
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Autoregressive Moving Average with eXogenous input (ARMAX) [35], and Autoregressive-

Autoregressive with eXogenous input (AR-ARX) [23] ones. 

Despite the reliability of such time series models for feature extraction, some 

challenging issues still look unsolved. A major problem is related to the analysis of 

substantially large volumes of time-domain responses. There is no doubt that data-driven 

SHM has entered the era of Big Data [31, 36, 37]; the great challenge is that the procedure of 

feature extraction via time-invariant linear models in such a case is time-consuming, 

cumbersome, and computationaly inefficient. A second important challenge is concerned with 

the model accuracy, which directly depends on the correct selection of the model orders. This 

is important because an improper choice of the order may lead to insensitivity to damage [26, 

38, 39]; on the other hand, overfitting must be always prevented during order determination 

[40]. Another issue is the identification of a suitable model for high-dimensional vibration 

responses acquired under unknown ambient excitations. As a wide range of time series 

representations is available, the selection of the most appropriate model can be challenging 

when the excitation source is unknown or unmeasurable. Finally, it may not be effective and 

efficient to use customarily adopted graphical tools for model identification, particularly in 

the case of big data [41]. 

Statistical decision-making for feature classification is associated with the 

implementation of machine learning algorithms, which are generally categorized into 

supervised or unsupervised classes. The supervised learning class needs to handle features 

relevant to both undamaged and damaged conditions to train a statistical model; the 

unsupervised learning class uses instead only features of the undamaged state to learn the 

proper model. Despite the applicability of supervised learning to SHM, particularly to locate 

and quantify damage [42], the obvious benefit of unsupervised learning is that one does not 

need information related to the structure in any damaged condition. In this regard, one of the 
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most efficient unsupervised learning methods is novelty detection [43]. Although novelty 

detection methods may provide some limitations in detecting damage type and damage 

prognosis [44], they are widely used in SHM applications. In general, a novelty detection 

strategy for SHM is subdivided into a baseline (training) phase and an inspection (monitoring) 

phase. During the baseline stage, the damage-sensitive features extracted from the responses 

of the structure under known conditions are used as training datasets, to learn the baseline 

model. In the subsequent inspection stage, the same features (testing datasets) are extracted 

from the responses of the structure in the current unknown conditions, to compare them with 

the baseline ones for decision-making. Within this approach, any deviation of the features 

from those related to the baseline state is indicative of damage occurrence [21, 43].  

Distance-based novelty detection methods are powerful statistical similarity measures 

that utilize well-defined distance metrics for feature classification [21, 23, 26, 33, 34, 43]. 

These methods rely upon statistical distances that measure the (dis)similarity between two 

sets of features (either univariate or multivariate), respectively relevant to the undamaged and 

damaged conditions. However, such methods do not prove effective and efficient when large 

volumes of random high-dimensional features are handled. In fact, the use of high-

dimensional features, such as the residuals of time series models, may also have an adverse 

impact on the performance of novelty detection and machine learning algorithms [31, 45], and 

lead to serious limitations at the stage of decision-making due to complex implementation, 

high computational costs, and huge data storage requirements [37]. Therefore, feature 

classification must be dealt with by a robust and reliable novelty detection method. 

To deal with all the above-mentioned issues, the focus of this article is on innovative 

methods based on the statistical pattern recognition paradigm, for feature extraction via time 

series modeling and feature classification by a distance-based novelty detection approach. An 

automatic, non-graphical algorithm termed Autoregressive Moving Average selection 
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(ARMAsel) is first presented, to choose the most suitable time-invariant model compatible 

with the measured vibration responses. This algorithm is able to provide an automatic model 

identification strategy and addresses the limitations of graphical tools, needing specific user 

expertise and being computationally expensive for big datasets. An improved, efficient order 

determination method is proposed to determine the optimal orders of the time series model to 

be identified. This method, which improves one authors’ recently proposed technique [26], 

guarantees the accuracy of time series modeling, avoiding overfitting within a cost-efficient 

approach. A distance-based hybrid novelty detection method is finally proposed to detect 

damage by handling large volumes of random high-dimensional feature samples. This 

methodology is based on the combination of a univariate statistical measure called partition-

based Kullback-Leibler divergence (PKLD) and the Mahalanobis-squared distance (MSD), 

which provides a multivariate statistical distance measure. This method proves efficient to 

deal with the high-dimensional features characteristic of the periodic monitoring of structures 

and early damage detection.  

A series of experimental datasets related to a cable-stayed bridge, taken as a 

benchmark available in the literature [46], is exploited to verify the effectiveness and 

performance of the proposed methods. Results show that the proposed automatic model 

identification and improved order determination techniques are effective and efficient for 

response modeling and feature extraction. Additionally, the proposed PKLD-MSD method is 

shown to be able to detect damage from the random high-dimensional feature samples 

provided by the two aforementioned techniques. 

The remainder of this paper is organized as follows. Section 2 briefly discusses the 

vibration response modeling by time series analysis. Section 3 introduces the proposed order 

determination approach. A description of the new novelty detection methodology is then 

given in Section 4. The results, in terms of feature extraction and early damage detection for 
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the cable-stayed bridge, are gathered in Section 5. Finally, Section 6 draws the main 

conclusions of this work. 

2. Time series analysis 

Time series analysis is a statistical method that can analyze data sequences for the 

purposes of model identification, parameter estimation, model validation and prediction [40]. 

Statistical time series methods for feature extraction in vibration-based applications can be 

classified as either non-parametric or parametric. The former class is based on non-

parameterized representations of the structural responses, such as auto power spectral density 

and auto-covariance function; the advantages of this approach are its simplicity and 

computational efficiency. The latter class relies instead upon parameterized representations of 

the same responses, such as polynomial model classes, which offers a superior performance in 

terms of damage detection [32]. 

The process of feature extraction by the polynomial model classes is usually obtained 

with coefficient-based or residual-based algorithms [26]. The first approach relies on the 

estimation of the model coefficients in the baseline and inspection phases, adopting series 

orders that are generally set in the initial undamaged state. The second approach is instead 

based on the extraction of model residuals in the two SHM phases, on the basis of model 

orders and coefficients both set in the initial state. The main idea behind the residual-based 

feature extraction approach is that the model used in the healthy state is no longer able to 

accurately predict the response in the damaged state, due to the changes in the structural 

properties [26, 33]. The major benefit of the residual-based feature extraction approach is that 

order determination and parameter estimation do not have to be carried out again in the 

inspection phase [32]. 



8 

 

In the following, the polynomial model classes adopted in this study are first 

discussed, and then the offered automatic model identification procedure via statistical criteria 

is discussed. 

2.1. Polynomial model classes 

Polynomial model classes provide parametric time series representations, such as the 

AR, ARX, ARMA, ARMAX and AR-ARX ones [47]. These models can provide input-output 

or output-only representations: in the first case, both the excitations (input) and the responses 

(output) of the structure are considered available; in the second case, only the structural 

responses need to be modelled, since the excitations may be either unknown or unmeasurable 

[32]. Generally, parametric time series representations consist of input, output and error 

terms, which are respectively represented by eXogenous (X), Autoregressive (AR), and 

Moving Average (MA) polynomials. A combination of all of them leads to the ARMAX 

model, which reads: 

 
 (1) 

where x(t) and y(t) denote the input and output data at time t; p, r, and q respectively represent 

the orders of the output, input and error terms; the vectors Θ=[θ1…θp], Φ=[φ1… φr] and 

Ψ=[ψ1… ψq] are the model coefficients; e(t) is the residual at time t, namely the difference 

between the measured and the predicted outputs. Eq. (1) refers to a single-input single-output 

system, and provides a relationship between the input loading and each sensed output of the 

structure; by combining similar representations for all the system outputs, a multi-output 

formulation is obtained. All the polynomial classes mentioned above can be obtained by 

neglecting some terms of the ARMAX model in Eq. (1): the ARX model is given by q=0; the 

ARMA model is given by r=0; finally, the AR model is given by r=q=0. 
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Besides these representations, one can adopt a two-stage model class named AR-

ARX, which is a combination of the AR and ARX ones. Although the formulation of the AR-

ARX model is similar to the ARMA one, it entirely conforms to an AR process [47]. To build 

the AR-ARX model, an AR representation is first fitted to the vibration response of the 

structure; next, the residuals are used as input data for a further ARX model. For the structural 

response y(t), the AR model is formulated as follows: 

(2) 

The ARX model is then built upon e(t) as input, according to: 

(3) 

where: �̅�	and	𝑟"	denote the orders of the output and input terms of the ARX model; 𝚯&=[�̅�!… �̅�"̅] 

and 𝚽&=[𝜑+!…𝜑+$̅] are the vectors of the relevant model coefficients; ε(t) represents the model 

residual at time t. According to Ljung’s suggestion [47], the sum of ARX orders has to be 

smaller than the AR order, that is �̅� + �̅� ≤ 𝑝. Since the AR-ARX model is an enhancement of 

the AR one to also allow for the error term (necessary in case of ambient vibrations [23, 24]), 

the aforementioned constraint arises to avoid overfitting in the second stage of the AR-ARX 

modeling. 

Even if ARMA and AR-ARX models look similar, they differ in how they model 

time series data: with ARMA models, two types of polynomials are adopted for the AR 

(output) and MA (error) terms, while one only is needed to model the output term. 

Accordingly, it is clear that the AR-ARX model represents an extension of the AR 

representation.  
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2.2. Automatic model identification 

Even though there exists a broad range of time series representations, all of which may 

be applicable for the modeling based on collected data, some are not suitable for feature 

extraction from vibration-based measurements due to their complexity, possible overfitting, 

and lack of efficiency. 

The selection of the most appropriate time series model can be carried out on the basis 

of engineering aspects, related to the acquisition and availability of input data, kind of 

structural system, excitation source and test devices. When both the input (excitation) and 

output (structural response) data are available, the problem at hand is defined as input-output; 

otherwise, in case of unavailability of the input data (for ambient excitation sources), the 

problem is classified as output-only. The ARX and ARMAX models are well suited for the 

input-output problem; in contrast, AR, AR-ARX and ARMA models are preferred in case of 

the output-only problem. It should be noted that the unmeasurable ambient excitations affect 

the error term in the model in such a way that a change of their amplitude leads to a change of 

the coefficients of the error interpolation [23, 24]. Under such circumstances, it is therefore 

necessary to allow for a representation such as the ARMA and AR-ARX ones, resting on a 

purposely defined equation for the error term.  

From a statistical aspect, a common graphical tool for model identification is 

represented by the Box-Jenkins methodology, which is suitable to choose a polynomial model 

among AR, MA, and ARMA via the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) [40]. If the ACF tails off with an exponential decay or a 

damped sine wave and the PACF becomes zero after a lag, the time series conforms to an AR 

process. Therefore, the time series representations compatible with this process are the AR, 

ARX and AR-ARX ones. On the contrary, if the PACF tails off with an exponential decay or 

a damped sine wave and the ACF cuts off after a lag, an MA process is at hand. In this case, 
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the error term modeling only is required. The MA representation alone is therefore not useful 

for response modeling and feature extraction because, unlike the AR term, it does not depend 

on structural parameters. Finally, if both the ACF and the PACF tail off with an exponential 

decay or a damped sine wave, time series data conforms to an ARMA process [40]. In this 

case, the modeling of time series data needs to allocate polynomial representations for both 

the output and the error terms. 

Despite the described simplicity of the Box-Jenkins methodology, it may become 

time-consuming for the selection of a proper model in case of high-dimensional time 

sequences and large datasets. Since the approach relies strongly on the full inspection of time 

series data, the decision about the kind of representation to select depends on user inference 

and expertise [41]. Alternatively, one can exploit numerical methods that are mainly intended 

to automatically choose the most appropriate time series representation via statistical criteria. 

The method presented in this work and belonging to this latter category, is equivalent to the 

Box-Jenkins methodology: the selection of one out of the AR, MA, and ARMA 

representations is carried out through finite sample criteria, based on the ARMAsel algorithm 

[48]. With this algorithm, the automatic model identification is based on the identification of 

AR, MA and ARMA models, and then on the selection of the overall best according to the 

procedure detailed in what follows. 

Given a n-dimensional time series dataset (that may be constituted by acceleration 

measurements), the ARMAsel algorithm estimates the AR(p) models, p=1,2,…,n/2 being the 

order of the AR representation, and selects the best one via the Combined Information 

Criterion (CIC), which reads: 
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(4) 

where 𝜎!" is the variance of the model residuals. The best AR model is the one featuring the 

smallest CIC value; CIC represents a trade-off between the finite sample estimator for the 

Kullback-Leibler information and the optimal asymptotic penalty function [48]. In Eq. (4), the 

penalty factor used for the second term and equal to 3, is adopted to reduce the probability of 

underfitting and overfitting [49]. For the estimation of MA(q) models, with order 

q=1,2,…,n/5, the Generalized Information Criterion (GIC) is used in the following form: 

(5) 

where the same penalty factor adopted for CIC is adopted. Finally, the estimation of 

ARMA(p*,p*-1) models, of order p*=2,3,…,n/10, is obtained via the GIC in the following 

form: 

(6) 

For both the MA and ARMA representations, the best model is the one that minimizes the 

GIC value. 

The prediction error (PE) for each model of the three classes is next computed, and 

the model class leading to the smallest PE value is finally chosen. For the AR model, PE is 

given by: 

 (7) 

( )2
i=0i=0

11 11 iCIC ln max 1, 31 1 i1
1 i

ì ü+ï ï+ -= s + -í ý+ -ï ï-
+ -î þ

åÕ
p p

e
n

n
n

( )2 3GIC ln= s +e
q
n

( ) ( )*
2

3 2 1
GIC ln

-
= s +e

p
n

( ) 2

i=0

11
1 i
11
1 i

æ ö+ç ÷+ -= s ç ÷
ç ÷-

+ -è ø

Õ
p

e
nPE p

n



13 

 

while for the MA and ARMA models, PE reads: 

 

 (8) 

where a is the number of coefficients to be estimated. It is to note that, if a is smaller than 

n/10, there is no difference between the values of PE provided by Eqs. (7) and (8). To reduce 

the computational costs of this identification and model selection task, according to [48] it 

looks appropriate to upper bound the order of each model by 1000, rather than using the limits 

n/2, n/5 and n/10 mentioned before. 

3. An efficient order determination method 

Besides the importance of the initial data analysis and model identification, an 

imperative issue is the determination of sufficient and optimal orders of the polynomial 

models. From a statistical viewpoint, such orders should enable to provide uncorrelated 

(independent) residuals [40], thought of as a primary criterion to assess the accuracy of the 

identified model. In this section, an improvement of the iterative-only order determination 

approach of [26], hereafter defined as the original technique, is proposed aiming to develop an 

efficient model order determination. The main strength of the new method is represented by 

its computational efficiency in the case of so-called Big Data. Although both the original and 

improved techniques are based upon the residual analysis through the Ljung-Box Q-test 

(LBQ) [40], the newly proposed method will be shown to be faster and more effective. In 

other words, both methods attain the same results, but the improved approach needs shorter 

time intervals than the original technique. 
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The residual analysis via the LBQ test can be carried out by evaluating the test 

statistics, to be compared with a critical value (c-value) under an assigned significance level 

α. The statistical hypothesis test assesses the correlation among model residuals through:  

 
 (9) 

where n denotes, as before, the number of samples; ρz is the sample ACF at lag z; K represents 

the number of lags. The test decision can be either based on the null or an alternative 

hypothesis linked to a specific level α; under the null hypothesis, if QLB turns out to be smaller 

than the c-value the model residuals are considered uncorrelated.  

The main limitation of the iterative order determination method proposed in [26] is its 

computational inefficiency to attain QLB<c-value for high-dimensional time series data. 

Overfitting, which occurs when the attained model contains redundant coefficients, must be 

avoided otherwise undesirable forecasts can be obtained, see [40]. Overfitting is thus also 

coped with in the proposed improved method. 

Taking the above-mentioned limitations and shortcomings into consideration, the 

improved iterative method for the model order determination consists of non-iterative and 

iterative phases, as shown in Fig. 1. The non-iterative first stage of the method is intended to 

set the initial model orders (namely, p0, r0, and q0) by one of the well-known statistical 

criteria, such as the Akaike Information Criterion (AIC), the corrected AIC (AICc), or the 

Bayesian Information Criterion (BIC). While the AIC often tends to give rise to overfitting, 

the AICc and BIC enhance the procedure by adding rigorous penalty terms. The AICc is also 

known to properly behave for small samples, whereas the BIC is better suited for large data 

sequences [40]. Due to the superiority of BIC over the other mentioned criteria, it is adopted 

in this non-iterative stage. Given an n-dimensional time series data and a model made by a 
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coefficients (namely a=p+r+q for ARMAX, a=p+q for ARMA, a=p+r for ARX, and a=p for 

AR), the BIC is given by [40]: 

(10) 

where Lmax represents the maximum value of the likelihood estimate of the model. The model 

order determination via the BIC (and similarly with other information criterion techniques) 

begins with computing (10) with a trial for the sample orders (e.g. 100); the initial orders are 

those that provide the smallest BIC values. If the model residuals obtained according with 

these orders (p0, r0, and q0) satisfy the LBQ test (QLB<c-value), they are selected as the optimal 

model orders; otherwise, the iterative stage of the algorithm is started to progressively 

increase them by setting pi=p0+i, rj=r0+j, and qk=q0+k, where i,j,k=1,2,…, until when QLB 

becomes smaller than the c-value. Meanwhile, overfitting is evaluated through the R-squared 

(R2) and the adjusted R-squared (Adj-R2) statistics [50]. If y=[y(1) y(2) … y(n)] is the response 

vector and e=[e(1) e(2) … e(n)] is the residual vector of the time series model with the 

mentioned a coefficients to tune, the R-squared is given by: 

(11) 

where 𝑦% denotes the mean value of 𝑦. R2 always varies from zero to one, so that values close 

to one suggest a good fit to the series data. However, it does not necessarily imply that the 

time series model is appropriate, since an increasing model order never leads to a reduction of 

R2. As under such circumstances the occurrence of overfitting is rather common, the adjusted 

R-squared is also considered according to:
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(12) 

We recall that variables a and n in the previous equations respectively denote the total number 

of coefficients of the selected model and the number of time series samples. 

Similarly to R2, the adjusted R-squared usually varies in the range of zero to one, but it 

may also provide negative values. In general, Adj-R2 does not always increase by increasing 

the model order: if unnecessary terms are added to the model, the value of the adjusted R-

squared statistics often decrease. As a result, an adjusted R-squared value close to 1 (i.e. Adj-

R2≈1) is indicative of a good fit. Overfitting is avoided if the value of Adj-R2 is positive and 

slightly smaller than R2, see [50]; if instead R2 and Adj-R2 are far different or Adj-R2 becomes 

negative, it is suggested to modify the model class and select a more parsimonious time series 

representation [50]. 
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Fig. 1. Schematic representation of the improved order determination method: (a) the non-iterative 

algorithm, (b) the iterative algorithm 

4. An innovative distance-based novelty detection methodology 

The proposed distance-based novelty detection PKLD-MSD is a hybrid methodology 

for feature classification. As stated earlier, it is based on the combination of the univariate 

statistical PKLD measure and of the multivariate MSD. First, the PKLD works on two sets 

(vectors) of high-dimensional residual samples to provide a scalar distance quantity; 

therefore, it is adopted as a data dimensionality reduction. By considering all the residual 

datasets at all sensor locations and for all the measurements of the structural states in the 

baseline and inspection phases, one can obtain the training and testing sets for feature 

classification. Finally, these sets are fed to the MSD, in an effort to detect early damage. The 

whole procedure is detailed in the following. 
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pi = p0+1, p0+2, … 

rj = r0+1, r0+2, … 

qk = q0+1, q0+2, … 
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Select arbitrary sample orders (e.g. 100) 

and compute all BIC values. The initial 

orders have the smallest BIC quantities. 
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4.1. Partition-based Kullback-Leibler divergence method 

Distance methods are powerful statistical tools to measure the (dis)similarity between 

two sets of samples. If the samples of interest are time series, it can be difficult to introduce a 

robust statistical distance method for measuring the (dis)similarity of such samples, since time 

series are essentially high-dimensional data that lead to a major obstacle to decision-making 

[51]. To overcome this limitation in the process of novelty detection, the PKLD method is 

adopted and it gives the following advantages. First, PKLD measures the (dis)similarity of 

random high-dimensional time series datasets; working on two sets of samples, it provides a 

scalar distance measure. This value is obtained through a data-partitioning algorithm, which 

subdivides the random sequences into independent partitions which are next exploited in 

place of the original random sets to compute their (dis)similarity. Second, PKLD is capable of 

computing the (dis)similarity of both correlated and uncorrelated random sets. This property 

makes it suitable for measuring the distance between the residual samples extracted from the 

time series. In fact, while the extracted residuals in the baseline phase are uncorrelated, in the 

inspection phase the already fitted model leads to residual samples that can be either 

correlated or not [39]. Third, there are no limitations to the dimension of samples, which can 

also have different sizes. 

Assume that Ex=[εx(1) εx(2) … εx(m)] and Ey=[εy(1) εy(2) … εy(n)] are m and n-

dimensional random vectors (as said, with m and n either equal or different), like e.g. the 

ARX residuals of the AR-ARX models in two different structural states. Henceforth, Ex and 

Ey are called the reference and current datasets, for which PKLD has to provide the distance 

or divergence of Ey from Ex. The partitioning process of these datasets relies on the maximum 

entropy approach [33]. To this aim, the samples of Ey are arranged in ascending order in such 

a way that it begins with	𝜀𝑦minand ends with	𝜀𝑦max. The arranged vector Ey is then split into c 

partitions, named H1,H2,…,Hc, in the following form: 
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  (13) 

Here σ denotes the number of samples in each partition of the current set, and is empirically 

given by σ=√𝑛 [33]; in such a case, the total number of partitions is c=n/σ. It is important to 

mention that σ and c must be positive integers; for positive non-integer values, one next needs 

to round them off to the nearest integer. 

The PKLD equation then reads: 

 (14) 

where: ν denotes the number of samples of Ex that fall into the range of values of each 

partition of Ey; νc is the number of samples in the last partition of Ex. 

4.2. Definition of the training and testing datasets 

The main objective of PKLD is to set the multivariate training and testing datasets 

from large volumes of random high-dimensional features, that are the residuals of the time 

series model, to next fed the MSD technique. Accordingly, one initially learns a statistical 

model via the MSD by the training data, and then makes a decision about the current state of 

the structure for the early detection of damage using the testing data. Training and testing 

datasets are obtained by computing the distance between the residual sets relevant to the 

baseline and inspection phases through the PKLD: Fig. 2 shows the flowchart to obtain such 

training and testing datasets. 

Let us assume that the structure in the baseline phase features nL normal or undamaged 

states, denoted with	𝑆&& , 𝑆&' , … , 𝑆&(under different potential operational and/or environmental 
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conditions. For each state, the vibration responses are measured during nT tests at nS sensor 

locations. Furthermore, let 𝑆'& , 𝑆'' , … , 𝑆') 	denote the nU current structural conditions in the 

inspection phase, assuming to handle the same number of test measurements and sensor 

locations. To obtain the training data, a distance matrix is computed via PKLD between each 

normal condition and itself and also all the other undamaged states, using the residual sets 

relevant to all the test measurements and sensor locations. As an example, 	𝐃($
)*& ∈ ℝ*+×*(*,

denotes the matrix for the state	𝑆#!, which is obtained by computing the distances between	𝑆#! 

and 	𝑆#!… 𝑆&(; the same matrix can be obtained for the other undamaged states. Once the 

PKLD matrices for all the conditions in the baseline phase have been obtained, the training 

data 𝐃($ ∈ ℝ*+×*,- are built by combining these matrices, allowing that nTr=nL×nL×nT. 

In order to build the testing data for each structural state of the inspection phase, the 

same procedure is repeated by computing the distances between the current state and all the 

normal conditions in the baseline period. Since each normal condition is characterized by its 

own model orders and coefficients, which are used to extract the residuals of the current state 

on the basis of the adopted residual-based feature extraction algorithm, the PKLD is 

computed for each residual dataset of the current state obtained from each normal condition. 

For example, 𝐃𝑇𝑒
).& ∈ ℝ*+×*(*(*, refers to the matrix for the current state	𝑆'&, which is obtained

by computing the distances between the residual datasets of	𝑆'& and the normal conditions 

𝑆#!… 𝑆#". For all the unknown structural conditions in the inspection phase, one can obtain a 

distance matrix as	𝐃(, ∈ ℝ*+×*,/ based on the combination of all PKLD matrices of these 

states, where nTe=nU×nL×nL×nT. 
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Fig. 2. Schematic representation of data handling to obtain the training and testing datasets 

4.3. Mahalanobis-squared distance method 

The MSD is a powerful statistical distance metric, that aims to measure the 

(dis)similarity between two multivariate datasets. The provided measure does not depend on 

the scale of samples, and performs the similarity computation on the basis of the correlation 

between variables. Considering the training dataset DTr, one can learn an unsupervised 

learning model, which consists of the mean vector 𝐝7($ ∈ ℝ*+	and covariance matrix 𝚺($ ∈

ℝ*+	×*+	  of the training data. The MSD computes the distance of each column vector of the 

testing data dTe∈ℝ#!	 from the trained model as follows: 

(15) 

where nTe denotes the number of testing samples. The fundamental principle behind the MSD 

method can be stated as follows: if the feature vector is obtained from a damaged structure, 

the testing dataset dTe(l) deviates from the mean of the normal conditions; if the feature vector 
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comes from an undamaged structure, it turns out to be close to the mean of the normal 

conditions [43]. 

The estimation of a threshold limit for novelty detection is a crucial task, to 

distinguish a damaged state from a normal condition. A common approach to estimate this 

limit is by computing a reference value based on the training dataset collected for the normal 

conditions. The methodology to estimate such threshold value relies on a scalar value from 

DTr obtained via the MSD method. On this basis, each column vector of the training data 

(dTr∈ℝ#!	) is handled in Eq. (14) on place of dTe. By computing all the MSD quantities, the 

threshold for novelty detection is defined as the 95% of the largest MSD value from the 

training data. 

5. Application to a cable-style bridge 

A series of experimental datasets for a full-scale benchmark structure is here 

employed to validate the accuracy and performance of the proposed methods. The structure is 

the cable-stayed Tianjin-Yonghe Bridge, shown in Fig. 3. This is one of the earliest cable-

stayed bridges constructed in Mainland China; it consists of a main span of 260m and two 

side spans of 25.15m and 99.85m. The bridge is 510m long and 11m wide, and it includes a 

9m wide roadway and two 1m wide sidetracks for pedestrians. The concrete towers, 

connected by two transverse beams, are 60.5m tall. Additional details on the bridge and on the 

installed sensor network can be found in [46]. 
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Fig. 3. The Tianjin-Yonghe Bridge: (a) general view and (b) main dimensions and sensor locations. 

Adapted from [46] 

The bridge was opened to the traffic on December 1987. After 19 years of operation, 

in 2005 some serious cracks were detected at the bottom of a girder segment over the mid-

span; furthermore, some stay cables, particularly near the anchors, turned out to be severely 

corroded. With a sophisticated SHM system designed by the Center of SMC at Harbin 

Institute of Technology, the bridge started to be monitored in 2007 after a major rehabilitation 

program to replace the damaged girder segment and all the stay cables. In August 2008, new 

damage patterns were found in the girders during an inspection of the bridge. Based on the 

description of the second part of this benchmark problem, the damage practically consisted of 

a separation of the main girder, close to the location S1 (see Fig. 3), from the auxiliary piers 

and led to the loss of vertical support. This separation reduced the stiffness of the adjacent 

girder, with a significant effect of the external loading, particularly of the traffic load. Heavy 

traffic loading might therefore cause severe damage during the short-time period of 
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monitoring [52]. For this bridge, acceleration time histories were recorded from January to 

August 2008 by 14 single-axis accelerometers, deployed as shown in Fig. 3(b), under 

operational (traffic loads) and environmental (temperature and wind) variable conditions. The 

measured data include 24 datasets of 1 hour, with a sampling frequency of 100Hz; each 

dataset thus consists of 360,000 samples.  

The acceleration datasets from 13 sensors (nS=13), measured with the accelerometers 

1-9 and 11-14 of Fig. 3 on January 1, January 17, February 3, March 19, March 30, April 19, 

May 5, May 18, and July 31 are here handled to assess the accuracy and reliability of the 

proposed approach. The vibration datasets recorded on May 31, June 7, and June 16 are not 

used due to the poor excitation conditions, see [53]. Moreover, the vibration data gathered at 

sensor 10 are not accounted for, owing to meaningless measurements already highlighted 

elsewhere. As described in [46, 53], the first 8 sets/days (January 1 - May 18) of 

measurements are representative of the undamaged conditions, while the last set/day of 

measurements (July 31) refers to the damaged state of the structure. 

Table 1. Undamaged and damaged states for the Tianjin-Yonghe Bridge 

Day no. Date State Description 

1 January 1 Healthy 

Baseline phase 

2 January 17 Healthy 

3 February 3 Healthy 

4 March 19 Healthy 

5 March 30 Healthy 

6 April 19 Healthy 

7 May 5 Healthy 

8 May 18 Healthy 
Inspection phase 

9 July 31 Damaged 
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Table 1 lists the undamaged and damaged conditions used in this study. For the 

procedure of feature classification, the first seven days are considered in the baseline phase; 

hence, nL=7. Days eight and nine are instead considered belonging to the inspection phase. In 

accordance with a common procedure in machine learning, the training data consist of 87.5% 

of the normal conditions (Days 1-7) while the testing data consist of 12.5% of the remaining 

undamaged state (Day 8) and of the information on the damaged state (Day 9). The 

acceleration responses relevant to all test measurements of Day 8 are then exploited as 

validation data. The total response datasets thus consist of 1,010,880,000 data samples, 

coming from 3,600,000 acceleration time histories measured with the 13 sensors over 24 

hours. Such extremely large numbers are given to highlight that the long-term SHM program 

for the Tianjin-Yonghe Bridge faces the problem of Big Data.  

5.1. Automatic model identification 

As the ambient excitations on the bridge were unmeasurable and unknown, the input 

data (i.e. the excitation loads) are not available. As explained in Section 2.1, the ARMA or 

AR-ARX representations can then be adopted to model the vibration responses under the 

ambient excitation sources. From a statistical perspective, the main difference between these 

two models lies in the fact that AR-ARX is consistent with the AR process, whereas ARMA 

conforms to both the AR and MA processes [40, 47]. It should be also noted that, according to 

Eqs. (2) and (3), the eXogenous term of the AR-ARX model is represented by the residuals of 

the AR representation obtained from the first stage. Hence, the AR-ARX representation does 

not conflict with the unknown information concerning the real input data. 

Using the ARMAsel-based automatic model identification approach, the best AR, 

MA, and ARMA models are obtained with the statistical criteria detailed in Eqs. (4)-(6). The 

PE values relevant to these three representations are next computed according to Eqs. (7) and 
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(8), to choose the most appropriate model. Fig. 4 and Fig. 5 show exemplary results of 

automatic model identification at some sensor locations, on Days 1 and 9. It can be clearly 

observed that the PE values for the best AR representation are smaller than those related to 

the MA and ARMA models. This outcome confirms that the acceleration responses conform 

to an AR process. As the AR-ARX model is an extension of the AR representation, to account 

for the AR residuals with a further ARX model, it can be concluded that it is more suitable 

than an ARMA model. The same conclusion can be attained with all the other measurements 

obtained with the sensors during the baseline phase. 

Fig. 4. Automatic model identification by the ARMAsel algorithm on Day 1: (a) Sensor 2, (b) Sensor 

6, (c) Sensor 8, (d) Sensor 12 
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Fig. 5. Automatic model identification by the ARMAsel algorithm on Day 9: (a) Sensor 2, (b) Sensor 

6, (c) Sensor 8, (d) Sensor 12 

 
Fig. 6. Comparison between the computational costs of ARMAsel and Box-Jenkins methodologies 

Fig. 6 shows a comparison of the computing time required by the automatic model 

identification method and by the graphical Box-Jenkins methodology, the latter based on 

plotting both the ACF and PACF. For this comparative analysis, the acceleration response of 

Sensor 8 at 3:00 PM of Day 1 is used and decomposed into nine datasets consisting of 6000, 
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10000, 18000, 30000, 60000, 120000, 180000, 240000, and 360000 samples. Results are 

obtained with a personal computer featuring an Intel™ Core i7-3770 @ 3.90 GHz CPU, and 

with 16GB of RAM; the MATLAB default function “tic-toc” was used to measure the 

analysis time. Keeping aside the discussed requirements and limitations of the Box-Jenkins 

methodology, through plots in Fig. 6 it can be observed that this graphical methodology is 

more efficient for small datasets (the first two ones in the inset), while the proposed automatic 

approach based on the ARMAsel algorithm becomes highly superior when the dimensionality 

of the data sequence increases.  

5.2. AR-ARX modeling 

As detailed in Section 2, the AR-ARX modeling involves three steps related to the 

determination of the AR and ARX orders	𝑝,	�̅�, and	�̅�, to the estimation of the model 

coefficients 𝚯, 𝚯& , and 𝚽& , and to the extraction of the AR and ARX residuals. The first two 

steps are implemented by handling the normal conditions in the baseline phase, and are based 

on the 24-h acceleration datasets of Days 1-7. The order of the AR model at each sensor 

location is set through the proposed order determination method, with an initial order p0 

obtained by the BIC method in a non-iterative form. If such order does not satisfy the LBQ 

test, it is then increased in the iterative stage. To check the uncorrelatedness of model 

residuals, Fig. 7 provides the LBQ test statistics relevant to residual analysis of the AR 

models in all test measurements. In these graphs, the dashed horizontal line represents the c-

value handled in the LBQ test under a 5% significance limit, which amounts to 31.4. As can 

be seen, all the test statistics fall below the c-value, implying the uncorrelatedness of the AR 

model residuals. Table 2 gathers the corresponding values of the R-squared and adjusted R-

squared statistics, used to investigate the possible occurrence of overfitting with the identified 

AR-ARX orders. The values of R2 and Adj-R2 in Table 2 are all close to one, with the Adj-R2 
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values smaller than the R2 ones: according to the discussion in Section 3, overfitting has not 

occurred. Hence, the proposed order determination method turns out to be efficient and 

capable to determine the series orders, leading to uncorrelated residuals without incurring into 

the overfitting problem. 

 
Fig. 7. Residual analysis via the LBQ test statistics under the 24-h vibration measurements on (a) Day 

1, (b) Day 3, (c) Day 5, and (d) Day 7 

To assess the benefits of the order determination method over the original one, which 

was suggested in [26],  Fig. 8 and Fig. 9 give the evolution of the LBQ test statistics and the 

computing time needed for setting the minimum and maximum AR orders on Day 1, 

respectively concerning Sensors 9 and 7 (i.e. pmin=59 and pmax=174). The results show that the 

improved and original methods are both able to set the proper order of the AR model and to 

extract uncorrelated residuals, so that QLB<c-value. In Fig. 8(a) and Fig. 9(a), the iterative 

process begins at iteration 1, whereas the improved method first computes the initial orders by 

the BIC method and checks the correlation of the model residuals. The initial AR orders are 
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set in this latter case as 20 and 83, and are denoted in Fig. 9(b) and Fig. 9(b) with the vertical 

dashed lines. Since these values do not satisfy the LBQ test, they are next increased by the 

iterative algorithm. Although the improved method consists of the two stages (i.e. the non-

iterative and iterative algorithms) and assesses the uncorrelatedness of the model residuals 

and also overfitting, it results to be less computational demanding than the original iterative-

only technique. Therefore, it can be concluded that the improved method provides a more 

cost-efficient order determination algorithm compared to the original technique, especially 

when attacking the Big Data problem.  

Table 2. Evaluation of the overfitting problem for the AR orders at 3:00 PM on Days 1, 3, 5, and 7 

Sensor 
no. 

Day no. 

1 3 5 7 

R2 Adj-R2 R2 Adj-R2 R2 Adj-R2 R2 Adj-R2 

1 0.9205 0.9069 0.9051 0.8942 0.9175 0.8962 0.9375 0.9111 

2 0.9329 0.9195 0.8967 0.8798 0.9019 0.8801 0.9080 0.8962 

3 0.9132 0.8944 0.9040 0.8933 0.9043 0.8884 0.9409 0.9236 

4 0.9277 0.9012 0.9363 0.9120 0.9219 0.9044 0.8949 0.8814 

5 0.8827 0.8747 0.9060 0.8938 0.9112 0.8929 0.9179 0.8822 

6 0.9153 0.9002 0.9239 0.9071 0.9024 0.8990 0.9092 0.8931 

7 0.9222 0.9063 0.8937 0.8761 0.9422 0.9269 0.8770 0.8689 

8 0.9003 0.8899 0.9074 0.8870 0.8967 0.8800 0.9112 0.8843 

9 0.9318 0.9133 0.9221 0.8959 0.9044 0.8845 0.8639 0.8511 

11 0.9041 0.8879 0.9114 0.8971 0.8930 0.8782 0.8948 0.8756 

12 0.9292 0.9124 0.9216 0.8975 0.9006 0.8888 0.8892 0.8735 

13 0.9012 0.8937 0.8800 0.8949 0.9063 0.8944 0.9120 0.8884 

14 0.9223 0.9085 0.8768 0.8702 0.9267 0.9025 0.9037 0.8821 
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To obtain the orders of ARX representation associated with the second stage of the 

AR-ARX model, account is taken of the constraint �̅� + �̅� ≤ 𝑝 suggested in [47]. As any 

selection of ARX orders compliant with this condition is plausible, an efficient way to set 

them is to use one of the information criteria [54].  

Fig. 8.  Evolution of the LBQ test statistics and computational time to determine the AR order of the 

acceleration response of Sensor 9 at 5:00 PM on Day 1: (a) original iterative-only technique presented 

in [26], and (b) improved method 

Fig. 9. Evolution of the LBQ test statistics and computational time to determine the AR order of the 

acceleration response of Sensor 7 at 11:00 AM on Day 1: (a) original iterative-only technique 

presented in [26], and (b) improved method 
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Setting	�̅� = �̅� and using the BIC method for the optimization of order selection, one 

can inspect the effects of the ARX orders by progressively increasing them up to �̅� = �̅� =p/2. 

Fig. 10 gathers the dependence of the BIC amount on the ARX orders and the finally selected 

values �̅� = �̅�, for Sensor 8 at 8:00 PM on Days 1, 3, 5, and 7.  

Fig. 10. Effect of the ARX orders �̅� = �̅� on the BIC value (see Eq. 9) for Sensor 8 at 8:00 PM on (a) 

Day 1, (b) Day 3, (c) Day 5, and (d) Day 7 

5.3. Residual-based feature extraction 

Granted that the AR-ARX model turns out to be the most appropriate representation 

for the present analysis, the process of residual-based feature extraction is briefly discussed 

next. Having obtained the optimal AR orders in the baseline phase, the model coefficients are 

estimated by the least-squares technique. The residuals of the AR model for the conditions in 

the baseline and inspection phases are then extracted, to be used as the input data in the ARX 

representation. These residuals on Days 1-7 are finally extracted by adopting the obtained 

model orders �̅�	and	𝑟", and the estimated coefficients 𝚯	& = [�̅�!… �̅�"̅] and 𝚽& 	= [𝜑+!…𝜑+$̅]. The 
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extracted residual datasets are used as the damage-sensitive features in the baseline phase. As 

explained, the same orders and coefficients associated with Days 1-7 are adopted to extract 

the residual samples on Days 8 and 9; the relevant residual datasets are used as the damage-

sensitive features in the inspection phase. Since the numbers of measurements and sensor 

locations on any day are the same, each residual set for each of the structural states in the 

baseline and inspection phases (respectively Days 1-7 and Days 8-9) is a three-dimensional 

matrix containing 360,000 data points obtained from 13 sensors and 24-h measurements. For 

each of the seven individual residual datasets (matrices) for Days 1-7, the distance is 

computed via the PKLD to provide the training data DTr. These matrices and the individual 

residual datasets for Days 8-9 are then used to set the testing set DTe. 

5.4. Early damage detection 

To detect damage with the proposed PKLD-MSD methodology, it is necessary to first 

define the training and testing datasets. As explained above, by considering the 

aforementioned n=360,000 residual sequences, the number of samples σ=√𝑛 in each partition 

of the arranged set Ey is 600; the number of partitions c=n/σ therefore turns out to be 600 as 

well. In the present analysis, the reference residual vector is partitioned by means of the 

maximum entropy approach: given the c=600 partitions, Fig. 11 displays the number of 

samples in each partition of Ex for Sensor 7 at 3:00 PM on Days 1, 3, 5, and 7.  
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Fig. 11. Partitioning of the reference residual vector for Sensor 7 at 3:00 PM: (a) Day 1, (b) Day 3, (c) 

Day 5, (d) Day 7 

To compute the PKLD of the residual sets of Days 1-7, the training data read 

DTr∈ℝ13×1176 as nL=7 and nT=24. The testing matrix instead reads DTe∈ℝ13×2352 as, besides the 

values of nL and nT already reported, nU=2; out of the 2352 vectors, the first and second halves 

respectively refer to Days 8 and 9. In this regard, Fig. 12 provides an illustrative comparison 
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between the variations in the PKLD values on Days 1-7 and those of either Day 8 or 9. It can 

be seen that the values relevant to Days 1-8 are roughly in the same range; at variance, one 

can observe a clear increase in the distance quantities on Day 9. Such a difference between 

Days 1-7 and Day 9 is indicative of damage occurrence. 

(a) (b) 

  
Fig. 12. Variations in the PKLD values: (a) Days 1-7 and Day 8, (b) Days 1-7 and Day 9 

 

Fig. 13. Early damage detection by the proposed PKLD-MSD method, using information relevant to 

Days 1-7 in the baseline phase and Days 8-9 in the inspection stage: evolution of the 𝐷-) values, see 

Eq. (15) 
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However, this comparison of the PKLD values may fail to be always useful, 

particularly when Big Data have to be processed if the number of current states increases. 

Using the training and testing datasets, the MSD formula can then be adopted to provide the 

final scores for early damage detection, as shown in Fig. 13. Here, the horizontal dashed line 

stands for the threshold limit estimated through the 95% confidence interval of the MSD 

values related to the training datasets. As can be seen, the values of DMS associated to Days 1-

7 and Day 8 are again in the same range and testify that the bridge on Day 8 is still 

undamaged. Further to that, the majority of MSD quantities lies under the threshold limit, 

which implies a good detection capability on Day 8 in the inspection phase. In contrast, it can 

be observed that almost all the MSD values regarding Day 9 exceed the threshold limit, which 

implies that the state of the bridge is now damaged. Even without referring to a specific 

threshold limit, it is evident that there exist obvious differences between the MSD quantities 

for Days 1-8, and Day 9. It can be also seen that the number and percentage of false positive 

and false negative errors, and misclassification rate are limited: they respectively amount to 

55 (2.33%), 2 (0.17%), and 57 (1.61%). The proposed PKLD-MSD method thus succeeded in 

detecting early damage, even in the presence of potential environmental or loading variability. 
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Fig. 14. Early damage detection by the proposed PKLD-MSD method using information relevant to 

Days 1-6 in the baseline phase and Days 7-9 in the inspection stage: evolution of the 𝐷-) values 

In order to assess the effect on the outcomes of the number of normal conditions and 

the size of the training data, the procedures of feature extraction (via AR-ARX modeling) and 

feature classification (via the PKLD-MSD method) are repeated by accounting for Days 1-6 

as normal conditions in the baseline phase (nL=6) and Days 7-9 as the current states in the 

inspection phase (nU=3). In this case, the training and testing matrices become DTr∈ℝ13×864 

and DTe∈ℝ13×2592. Results in terms of early damage detection for this scenario are shown in 

Fig. 14, where the horizontal line still represents the threshold limit. Also, in this case, the 

MSD values for Days 1-8 are similar and most of them fall under the threshold; on the other 

hand, the majority of MSD values for Day 9 exceed the threshold. The number and percentage 

of false positive and negative errors, and the misclassification rate are now respectively equal 

to 90 (3.47%), 4 (0.46%) and 94 (2.72%). Comparing these amounts with those related to Fig. 

13, it is shown that the reduction of training duration increases the rates of false positive and 

negative, and the misclassification errors. 
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Fig. 15. Early damage detection using information relevant to Days 1-7 in the baseline phase and Days 

8-9 in the inspection stage: evolution of the 𝐷-) values obtained via (a) KSD-MSD, (b) ESD-MSD

To further assess the performance of the PKLD method, training and testing datasets 

are processed via the well-known Euclidean-square distance (ESD) and Kolmogorov-Smirnov 

distance (KSD) procedures [34]. For this comparison, Days 1-7 and Days 8-9 are respectively 

handled as the normal and current states. The results related to early damage detection via the 

KSD-MSD and ESD-MSD techniques are reported in Fig. 15: similarly to the present method 

results, the values of DMS concerning Days 1-7 and Day 8 are roughly the same and mostly 

fall under the threshold limits; values for Day 9 are instead larger than the threshold, to 

represent that the current state on this day is damaged. Although all the three novelty 

detection methods attain the same conclusion as far as early damage assessment is concerned, 

the proposed PKLD-MSD method outperforms the other techniques as testified by the smaller 

numbers of false positive and false negative errors. To quantitatively assess this issue, Table 3 
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lists the number and percentage of these errors, as well as the misclassification rate. 

Furthermore, Fig. 16 provides the receiver operating characteristic (ROC) curves and the area 

under the ROC curve (AUC) values for the three novelty detection methods; here, TPR and 

FPR respectively refer to the true positive and the false positive rates. Both the KSD-MSD 

and ESD-MSD techniques provide larger false positive, false negative and misclassification 

errors in comparison with the proposed PKLD-MSD method. This results clearly testifies a 

better performance of the newly proposed method, with an AUC value closer to one. 

Table 3. Comparison of the three novelty detection methods in terms of the false positive and false 
negative errors, and misclassification rate 

Method False positive False negative Misclassification rate 

PKLD-MSD 55 (2.33%) 2 (0.17%) 57 (1.61%) 

KSD-MSD 137 (5.82%) 26 (2.21%) 163 (4.62%) 

ESD-MSD 100 (4.25%) 49 (4.16%) 149 (4.22%) 

 

 
Fig. 16. Comparison of the performances of PKLD, KSD, and ESD for detecting damage: (a) ROC 

curves, and (b) AUC values 

All the previous results have been based on the use of all accelerometers distributed on 

the bridge. Due to the importance of the sensor network density, a comparison is carried out 

now by assessing the performance of the proposed methods using a varying number of 
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sensors, or datasets. For this comparison, the rates of false positive, false negative, and 

misclassification errors are listed in Table 4 for five difference cases: Case 1 refers to the 

handling of all the 13 sensors (i.e. the accelerometers 1-9 and 11-14); in the other cases, the 

number of accelerometers for response modeling and to provide the damage-sensitive features 

is decreased gradually. As the data in Table 4 reveal, the best performance, in terms of values 

of false positive, false negative and misclassification errors, is obtained by adopting the 

complete set of the accelerometers of Case 1. In contrast, the worst performance is given by 

Case 5, for which the vibration responses and the features of the four accelerometers at the 

midspan of the bridge have been considered to detect damage. Moreover, the rates of the three 

mentioned errors all increase by reducing the number of sensors. It is seen that, although the 

reduction in the number of sensors decreases the size of the damage-sensitive features (i.e. the 

rows of the matrices DTr and DTe), it is preferable to exploit a relatively dense sensor network 

to capture all the possible features sensitive to damage. 

Table 4. Effects of the number of sensors used for SHM on the false positive, false negative errors and 
misclassification rate. 

Case no. Sensor labels False positive False negative Misclassification 

1 1-9 & 11-14 55 (2.33%) 2 (0.17%) 57 (1.61%) 

2 1,2,5,6,9,13,14 101 (4.29%) 39 (3.31%) 140 (3.96%) 

3 1,3,5,7,9,11,13 110 (4.67%) 36 (3.06%) 146 (4.13%) 

4 5,6,7,8,9 158 (6.71%) 61 (5.18%) 219 (6.20%) 

5 4,6,8,12 184 (7.82%) 85 (7.22%) 269 (7.62%) 

6. Conclusions

In this paper, we have proposed innovative statistical pattern recognition methods 

based on time series modeling and novelty detection for early damage assessment in the 
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presence of big data to process. These methods consist of an automatic, non-graphical 

algorithm for model identification, an improved order determination approach, and a distance-

based hybrid novelty detection termed PKLD-MSD. The performance and effectiveness of the 

proposed methods have been investigated by using the experimental datasets from vibration 

measurements of the Tianjin-Yonghe bridge: for 24-h test measurements at 13 sensor 

locations on nine days, the experimental datasets to handle are characterized by substantially 

large volumes of random high-dimensional feature samples.  

The main achievements of this work can be summarized as follows. Among all the 

polynomial model classes, the AR-ARX representation has been shown to be the most 

appropriate one based on engineering and statistical aspects. Model identification by the 

ARMAsel algorithm has allowed to automatically select the best time series model without 

any user expertise required; a comparison with the graphical Box-Jenkins methodology has 

shown that the ARMAsel algorithm is more efficient and faster. The proposed improved 

approach to model order determination has been successful in obtaining optimal orders of the 

AR models, extracting uncorrelated residuals and simultaneously preventing overfitting. A 

comparison with a former iterative-only order determination technique has proved that the 

approach works faster. The method therefore stands as an appropriate and efficient tool for the 

model order determination in the presence of Big Data. 

The proposed PKLD-MSD method has been successfully adopted to detect damage in 

a cable-stayed bridge, using different training datasets and handling high-dimensional 

features. It has been reported that large training samples must be exploited to attain 

appropriate performances in terms of early damage detection. At any rate, a comparison of 

PKLD with the state-of-the-art distance measures ESD and KSD has revealed that the adopted 

method is more reliable and more performative to avoid false positive, false negative and 

misclassification errors. Finally, it has been observed that the use of a relatively dense sensor 



42 

 

network can guarantee a good performance of the proposed methods for early damage 

detection. 

Even by accounting for the reliable and accurate results obtained, some issues may be 

considered to further assess the performance and robustness of the proposed methods. Due to 

the importance of a continuous long-term SHM approach, the effectiveness in case of long-

term data will be evaluated; the sensitivity to measurement noise of the results accuracy will 

be evaluated as well. 
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