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In each day of their life, patients affected by type 1 diabetes (T1D) must face the task of
maintaining the blood glucose concentration, also called glycemia, within a safe range. T1D is2

a metabolic disorder characterized by a total insulin deficiency and, if not properly managed, it
would result in chronic hyperglycemia, thus increasing the risk of severe long-term complications.4

Insulin is a hormone allowing utilization of glucose by body tissues and suppression of liver
glucose production, and its shortage must be compensated with exogenous administration. The6

external insulin supply allows to avoid hyperglycemia, but, on the other hand, it can cause
hypoglycemia if the amount of needed insulin is overestimated. Hypoglycemia is associated8

with short-term complications, which in severe cases can result in coma or death. In order to
properly estimate the needed quantity of insulin, T1D patients normally rely on the conventional10

therapy, which is designed and continually updated by the physician, and consists of basal insulin
(needed during fasting periods) and insulin boluses (needed to compensate the glucose rise due12

to meals).

Insulin can be delivered by injections or infusions. The latter is less invasive and requires a14

subcutaneous insulin pump, which continuously releases micro-boluses in the interstitial tissues
of the patient and can be programmed with a patient-specific conventional therapy. Subcutaneous16

glucose sensing is also possible by continuous glucose monitor (CGM) devices, which are able
to read the interstitial glucose concentration and inform the patient about glycemia levels and18

trends. The availability of subcutaneous insulin pumps and CGM has allowed the realization of
the sensor augmented pump (SAP) therapy, which assists the patient in maintaining the glucose20

concentration within a safe range. However, with SAP, the patient still needs to decide how
much insulin has to be infused by the pump on the basis of the CGM readings. The automation22

of the insulin infusion management can be reached with the artificial pancreas (AP), a system
aimed at closed-loop glucose control.24
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The design of an AP dates from the seventies, when the first experiments were conducted
with highly invasive intravenous systems [1]. In the following years, the AP systems have become2

progressively less invasive and portable and, thanks to the recent technological developments,
the newer AP systems have become wearable and usable in free-living conditions. Since the4

subcutaneous route for a fully automatic blood glucose control was shown to be feasible [1],
[2], the AP architecture includes a subcutaneous insulin pump for insulin delivery (actuator), a6

CGM for glucose sensing (sensor), and a standalone device aimed at the execution of the control
algorithm (controller) [3]. This architecture, which relies on wireless connections among all the8

components, is the result of several clinical studies that were supported by the Juvenile Diabetes
Research Foundation, the European Commission, and the National Institutes of Health [4]–[15].10

The core of the AP is the control algorithm, which is in charge to estimate the proper
quantity of insulin to infuse in the subcutaneous tissues during fasting, meal, and postprandial12

periods. Starting from 2008, several clinical trials have been performed by relying on a model
predictive control (MPC) algorithm [16]–[20] in a hospital setting [21]–[26]. Subsequently, an14

improved MPC algorithm [27] based on the achieved clinical results has been adapted for
outpatient studies [28]. The aim was to move the AP to free-living conditions for long periods16

and, in 2014, an AP system equipped with the MPC algorithm [27] has been used in the first
randomized crossover outpatient clinical trial [15]. The AP was used for eight weeks during18

evening and night periods, paving the way for an extension study, completed in 2015, where the
AP was continually used 24 hours per day for one month [29]. The results showed that MPC, of20

which a brief dissertation is presented in Sidebar 1, is a promising and feasible approach for AP.
However, since different patients are characterized by different glucose-insulin dynamics, the22

control algorithm must be designed with robustness properties in order to make the closed-
loop glucose control reliable and safe for each patient without compromising the desirable24

performance. Different dynamics are caused by the inter-subject variability, which reflects the
different biological characteristics of each patient. Since an MPC algorithm determines the control26

actions on the basis of a model included in a cost function, patient-individualized glucose-insulin
models are expected to further improve the glucose control performance. So far, the MPC used28

in the most recent clinical trials was synthesized on the basis of an average linear model [27].
The choice of using a linear model to describe the complex nonlinear glucose-insulin dynamics30

of diabetic patients is driven by the feasibility of the MPC implementation on a portable AP
system [3], which is characterized by limited battery life and computational power. A similar32

approach, in which a compact model approximating the dynamics of the process under control
was exploited to design the control law, was adopted in [30], in the context of type 2 diabetes. In34

this article, three customization techniques are considered to synthesize customized MPC based
on patient-tailored linear models. The final aim is to show through closed-loop simulations that36
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customized MPC based on linear glucose-insulin models are able to improve the glucose control
performance without losing the implementation feasibility on a portable AP device. The in silico2

results are presented and, in order to quantify the benefits of the customized MPC, a statistical
comparison on the outcome metrics is performed vs. the non-customized MPC.4

Glucose-insulin models

The availability of a model describing the patient glucose-insulin dynamics is mandatory to6

synthesize an effective MPC. Indeed, one of the main ingredients needed for an MPC algorithm
is a model describing the dynamics of the process under control (see Sidebar 1). In the context8

of AP, the reliability of the model glucose predictions are directly correlated to the efficacy of
the controller, which commands the pump with the proper insulin to be infused as micro-boluses.10

A model able to predict the patient glycemia would be able to adjust the controller behavior
in order to maintain the blood glucose concentration within the euglycemic range, which spans12

from 70 to 180 mg/dl, thus minimizing the risk of possible hyper- and hypoglycemia. However,
methods used to directly measure the individual parameters of a T1D patient are invasive and14

expensive, making the identification of individualized glucose-insulin models a challenging task.

UVA/Padova simulator16

Several research groups have developed glucose-insulin models [31]–[33]. Of particular
interest is the model developed by the Universities of Virginia and Padova (UVA/Padova) [34],18

which was included in the first simulator accepted by the Food and Drug Administration as a
substitute to animal trials for pre-clinical testing of insulin therapies for T1D patients. The model20

included in the simulator is able to simulate the glucose-insulin dynamics of a specific person,
and belongs to the class of compartmental models, of which a brief introduction is presented in22

Sidebar 2. The structure of the UVA/Padova simulator model is depicted in Figure 1. Different
dynamics for different persons are simulated thanks to the availability of various sets of key24

metabolic parameters that describe the inter-subject variability of a generic population of T1D
patients. Each set of parameters represents a “virtual subject” and has been identified from a26

large non-diabetic subject database where each subject underwent a triple tracer meal protocol
that provided quasi-model-independent estimates of glucose and insulin fluxes [32]. The model28

was subsequently adapted to T1D by incorporating a model of subcutaneous insulin absorption
and was shown to reliably describe the T1D literature data; three “virtual populations”, children,30

adolescnts and adults, each composed of 100 subjects, were included in the simulator [34].
The UVA/Padova model has been then refined by improving the hypoglycemia glucose kinetics,32

by adding glucagon kinetics and secretion, and by refining the virtual subjects included in the
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simulator [35] (see Figure 2). The clinical validity of the model was assessed on T1D data [36]
and the circadian variability of insulin sensitivity and meal absorption parameters have been also2

included in the most recent version of the simulator [37], [38].

Nonlinear time-variant model4

The complete state-space representation of the nonlinear time-variant compartmental model
depicted in Figure 1 is6



ẋ1(t) = −kgri · x1(t) + d(t) ,
ẋ2(t) = kgri · x1(t)− kempt(x1(t) + x2(t)) · x2(t) ,
ẋ3(t) = −kabsx3(t) + kempt(x1(t) + x2(t)) · x2(t) ,
ẋ4(t) = EGP (t) +Ra(t)− Uii(t)− E(t)− k1 · x4(t) + k2 · x5(t) ,
ẋ5(t) = −Uid(t) + k1 · x4(t)− k2 · x5(t) ,
ẋ6(t) = −(m2 +m4) · x6(t) +m1 · x10(t) + ka1 · x11(t) + ka2 · x12(t) ,

ẋ7(t) = −p2U · x7(t) + p2U ·
(
x6(t)

VI

− Ib

)
,

ẋ8(t) = −ki · x8(t) + ki ·
x6(t)

VI

,

ẋ9(t) = −ki · x9(t) + ki · x8(t) ,
ẋ10(t) = −(m1 +m3(t)) · x10(t) +m2 · x6(t) ,
ẋ11(t) = −(kd + ka1) · x11(t) + i(t) ,
ẋ12(t) = kd · x11(t)− ka2 · x12(t) ,
ẋ13(t) = −ksc · x13(t) + ksc · x4(t) ,
ẋ14(t) = −nG · x14(t) + SRH(t) ,
ẋ15(t) = −kH · x15(t) + kH ·max {x14(t)−Hb, 0} ,
ẋ16(t) = ṠRs

H(t) ,

(1)

where the meaning of all the states xi(t), i = 1, . . . , 16 are shown in Table 1. This model is
included in the UVA/Padova simulator, and is characterized by the set of parameters listed in8

Table 2. Each set of parameter defines a virtual subject, and a set of virtual subjects defines
a virtual population (Figure 2). The considered inputs are i(t) and d(t), which represent the10

exogenous subcutaneous insulin infusion and the meal intake, respectively. The measurable output
is the subcutaneous glucose concentration, which is calculated by dividing the glucose contained12

in the subcutaneous glucose compartment x13 by the compartment volume VG. For more details
about this model, the numerical values of the constant parameters, and the definition of the14

time-varying parameters, the reader is invited to refer to [34], [35] and references therein.
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Linearized average model

The UVA/Padova model is highly nonlinear and time-variant, and its incorporation in an2

MPC algorithm is computationally demanding, making the implementation on a portable AP
device [3] practically unfeasible. Moreover, the key metabolic parameters associated with the4

nonlinear glucose-insulin dynamics of an individual are unknown, thus preventing the direct use
of the UVA/Padova model for synthesizing an MPC suitable for clinical purposes.6

Since the virtual population is thought to statistically represent the inter-subject variability
of a generic population of T1D patients, an average time-invariant model representing the average8

dynamics of a diabetic patient can be computed by substituting all the time-varying parameters
with their average values, and then by averaging all the available sets of key metabolic parameters10

(see Table 2). The average parameters are imposed in the model (1), which is subsequently
linearized around a fictitious basal equilibrium corresponding to the basal glucose Gb, a steady12

state condition reached during fasting periods by infusing only basal insulin ib [20]. Thus, by
imposing i(t) = ib(t) and d(t) = 0, the model reaches the fasting steady state equilibrium and14

is subsequently linearized to obtain a linear model defined as{
x(k + 1) = Ax(k) +Bu(k) +Md(k) ,
y(k) = Cx(k) ,

(2)

where u(k) (pmol/ts) and d(k) (mg/ts) are two model inputs, which are associated with the16

variation of the subcutaneous insulin infusion with respect to the basal insulin, and with the
meal intake, respectively; whereas y(k) (mg/dl) is the model output, which is the variation of18

the subcutaneous glucose concentration with respect to the fasting basal glucose Gb. Model (2) is
written in state-space form, and is characterized by the state matrix A, a square matrix containing20

information about the relationships among all the model states. Several simulations have shown
that the states x14(t), x15(t), and x16(t) of (1), which are associated with the glucagon system of22

Figure 1, can be neglected in the linear model without affecting the MPC control performance.
Thus, A ∈ Rn×n, with n = 13 denoting the total number of states of the linear model. Since the24

MPC algorithm running on the controller device is characterized by a sampling time ts, model
(2) is represented in discrete-time form. The average linearized model (2) can be considered26

to synthesize a non-individualized MPC with average glucose-insulin dynamics. This control
approach, of which a detailed description can be found in [20], [27], has been utilized in several28

clinical trials performed in both adults [13], [15], [26], [28] and children [39].

Customized linear models30

A non-individualized MPC based on an average model can be substantially penalized by
the inter-subject variability affecting T1D patients. The latter can be handled with some forms32
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of models customization, thus defining models usable to synthesize MPC able to improve the
glucose control performance. In this Section, three model customization techniques are presented,2

in particular two of them aim to identify individualized models able to reproduce patient-specific
glucose-insulin dynamics. All the customized models presented in this section are characterized4

by the same inputs and output of the linearized average model (2).

CR-based models6

The model customization approach described in [40] is based on subdividing the entire
virtual population in subgroups. Each group is defined by considering the Insulin-To-Carbo Ratio8

(CR) parameter of each virtual subject. CR is a parameter that is part of the conventional therapy
of the patient, and represents the nominal quantity of insulin bolus needed to compensate a meal10

through the relationship

iCR
B (k) =

dg(k)

CR(k)
, (3)

where iCR
B (k) (U) is the nominal insulin bolus that must be infused to compensate the estimated12

quantity of carbohydrates (CHO) included in the meal dg(k) (g), and where CR(k) (g/U) is
the CR value at time k, retrieved by considering the daily patient CR pattern. The subdivision14

presented in [40] defines four subgroups of the adult virtual population of the UVA/Padova
simulator, each of which is composed of patients having low, medium-low, medium-high, and16

high insulin sensitivity (IS), respectively. The subgroups are defined as
1st Group : CR ≤ 12 28 patients, low IS ,
2nd Group : 12 < CR ≤ 15 21 patients, medium-low IS ,
3rd Group : 15 < CR ≤ 19 21 patients, medium-high IS ,
4th Group : CR > 19 30 patients, high IS ,

(4)

with CR representing the average value of the daily CR pattern, and where 12, 15, and 1918

are the integer approximations of the 25-th, 50-th, and 75-th percentiles associated with the
CR distribution of the adult virtual population (see Figure 3). For each subgroup, an average20

model is computed and then linearized around the basal equilibrium, thus obtaining four linear
models having the form of (2), which can be used to synthesize an MPC. The customization22

consists in synthesizing the MPC by selecting the most appropriate model for a generic patient
by considering his/her CR value, which is used to determine to which group the patient belongs.24

Nonparametric models26

The CR-based customization approach defines a set of models that can be used to
synthesize a customized MPC based on the patient estimated insulin sensitivity. However,28
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further improvements are expected in closed-loop glucose control with MPC based on patient-
tailored models that incorporate patient-specific glucose-insulin dynamics. The nonparametric2

(NP) approach described in [41] belongs to the class of black-box identification and can be used
to identify patient-specific glucose-insulin models by relying on historical insulin administrations4

and meal intakes (inputs), and CGM measurements (output). Given a set of historical input-output
data associated with a specific patient, the NP approach identifies a one-step ahead predictor6

that is subsequently converted in a state space model obtained through a minimal realization of
a given dimension. The identification process is performed through a kernel-based regression in8

which the stable spline kernel introduced in [42] is considered. The final result is the identification
of a linear time-invariant model having the form10

y(t) =

pl∑
k=1

qu(k)u(t− k) +

pl∑
k=1

qd(k)d(t− k) +

pl∑
k=0

w(k)e(t− k) , (5)

where e(k) is a white Gaussian noise signal representing the uncertainties affecting the model
and where the Z-transforms of qu(k), qd(k), and w(k) are given by12

Qu(z) =

pl∑
k=1

g1(k)z
−k

1−
pl∑

k=1

f(k)z−k
, Qd(z) =

pl∑
k=1

g2(k)z
−k

1−
pl∑

k=1

f(k)z−k
, W (z) =

1

1−
pl∑

k=1

f(k)z−k
,

(6)
with pl denoting a tunable parameter. The quantities g1, g2, and f represent the impulse responses
related to insulin, meals, and to the Gaussian noise, and are identified through the kernel-based14

regression process. Thus, the individualized MPC is synthesized by relying on the following
state-space augmented model achieved through minimal realization:16 {

xNP (k + 1) = ANPxNP (k) +BNPu(k) +MNPd(k) +WNPxe(k) ,
y(k) = CNPxNP (k) +WNPye(k) ,

(7)

where xNP is a vector of maximum dimension pl containing the internal states, ANP , BNP , CNP ,
MNP are matrices of proper dimensions, WNPx is a column vector (with maximum dimension18

pl), and WNPy is a scalar value.

Constrained optimization models20

The NP approach identifies linear models with an unknown internal structure, since it is
a black-box identification technique. Indeed, there is no control on the achievable number of22

internal states, which can be only limited to pl, a parameter that however must be set “large
enough” to capture the essential dynamics of the patient. Having a linear model with a large24

number of internal states could be an issue for the MPC algorithm implementation, which must
reside on a standalone device with limited computational power and memory. In order to identify26
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a linear model having a fixed parametric structure, the grey-box identification approach based on
the constrained optimization (CO) process described in [41] is considered. By considering the2

linearization of the UVA/Padova model (1) around the basal equilibrium point, the parametric
model structure4 {

xCO(k + 1) = ACOxCO(k) +BCOu(k) +MCOd(k) ,
y(k) = CCOxCO(k) ,

(8)

having the same form of (2) is postulated, where xCO is a vector containing the n = 13 model
states, and where the matrices ACO ∈ Rn×n, BCO ∈ Rn×1, CCO ∈ R1×n, and MCO ∈ Rn×1 are6

identified through the solution of the constrained optimization problem described in [41]. The
identification is performed by relying on historical input-output data associated with the patient.8

Unlike with the NP approach, the CGM subcutaneous glucose measurements (output data)
need to be pre-filtered prior to be considered for identification. The pre-filtering is used to reduce
the noise component affecting the CGM measurements, which could significantly reduce the
identifiability of the patient glucose-insulin dynamics. The pre-filtering process can be performed
with several techniques. A simple technique considers the moving average filter

yMA(k) =

NMA−1∑
j=0

CGM(k − j)

NMA

,

where yMA (mg/dl) is the pre-filtered output data used in the identification process, CGM(k) is
the measured subcutaneous glucose by the CGM at time k, and NMA is the considered moving10

average length. Pre-filtering techniques that are more specific for CGM measurements can also
be considered, like the retrofitting process described in [43]. Despite the need of pre-filtering,12

a substantial advantage of the CO approach with respect to the NP is represented by the fixed
parametric structure of the identified model, which results in a fixed implementation complexity14

of the MPC algorithm for any patient. Moreover, it has been shown that the CO approach is
able to capture the glucose-insulin dynamics of the patient by relying on shorter identification16

data-sets [41], which are more easily realizable in a real life scenario, where the patient would
be enrolled in a clinical study to produce historical input-output data for identification purposes.18

Closed-loop glucose control

The presented identification approaches aim to identify individualized glucose-insulin20

models to be included in the MPC algorithm, thus defining an individualized control law for the
AP system. Preliminary closed-loop results were obtained in silico through customized MPC with22

CR-based models [40], and through individualized MPC based on nonparametric [44] models.
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In this article, these closed-loop results are refined and compared with the results achieved in
closed-loop through the individualized MPC based on the CO models.2

A schematic AP representation is depicted in Figure 4. The MPC algorithm is the core
of the AP, and is in charge to properly command the insulin pump on the basis of CGM4

subcutaneous glucose readings. Of particular interest are the meals, which are considered as
substantial disturbances affecting the glucose concentration and are handled through the meal6

announcement, a feedforward action controlled by the patient [20]. The MPC algorithm can
also use information contained in the conventional therapy, which is adapted to the patient and8

continually updated by the physician.

Conventional Therapy10

Diabetic patients can rely on the conventional therapy, which is adapted by the physician
to the patient and is composed of the basal insulin, which is the insulin needed to maintain the
patient glycemia to a target during fasting periods, and the insulin bolus, which is the insulin
needed to compensate the increase in glycemia due to a meal. The insulin suggested by the
conventional therapy is defined as

i(k) = iB(k) + iUb (k) ,

where iB(k) (U) is the insulin bolus associated with the meal taken at time k, and iUb (k) (U) is
the patient basal insulin, usually represented as a piecewise constant function. The insulin bolus12

iB is strictly correlated to the amount of CHO that the patient assumes with the meal, and can
be represented as insulin spikes that are significantly higher with respect to basal. The insulin14

bolus calculation is defined as

iB(k) = iCR
B (k) +

BG(k)− yCF

CF (k)
− ihIOB(k) , (9)

where the CR-based insulin bolus iCR
B (k) defined in (3) is refined with the addition of two16

terms. The first term uses one of the parameters included in the conventional therapy, the
correction factor (CF), to adjust the insulin bolus on the basis of the difference between the18

blood glucose (BG) and a target glucose concentration yCF (mg/dl). BG is usually measured
through a fingerstick device, which measures the blood glucose concentration in a drop of blood.20

The second term reduces the insulin bolus on the basis of the insulin on board (IOB) ihIOB(k)

(U), which is the estimated residual insulin that has still effect. IOB is estimated through insulin22

9



decay curves [45]
ihIOB(k) = 100 ·

(
1− kh

a

fh
IOB(k)

kh
den

)
,

fh
IOB(k) =

a3
a1 · (a1 − a2)

e

−a1 · k
kh
a − 1

− a3
a2 · (a1 − a2)

e

−a2 · k
kh
a − 1

 ,
(10)

where all the constants are properly chosen on the basis of the time of decay h. The time course2

of the insulin decay curves for different values of decay is depicted in Figure 5. In the case of
adult patients, the decay curve having h = 4 hours is usually considered to estimate the IOB.4

MPC algorithm definition

One of the aspects that makes the design of an AP system challenging is the presence of6

unavoidable delays and inaccuracies in both subcutaneous glucose sensing and insulin delivery.
Coping with these issues is particularly difficult when a system disturbance like a meal occurs8

and triggers a rapid glucose rise that is substantially faster with respect to the time needed
in particular for insulin absorption. In presence of inherent delays, any attempt to speedup10

the responsiveness of the closed-loop system may result in an unstable system behavior and
oscillations. A good controller should consider a relatively slow response, however, a too slow12

control law could not be able to properly attenuate the postprandial glucose peaks. Thus, the AP
system must be designed with a controller able to deal with a trade-off between slow and fast14

regulation [5]. A slow regulation must be considered during quasi-steady state conditions, like
overnight, whereas a fast regulation is useful during postprandial periods, where timely insulin16

infusions are needed.

An MPC for AP is a model-based control approach that uses a model to predict the patient18

glucose-insulin dynamics. The subcutaneous insulin pump is properly commanded with insulin
infusions based on the predicted patient glycemia within a predefined prediction horizon. As20

shown in Figure 4, the MPC algorithm is enriched with information contained in the patient’s
conventional therapy and with the meal announcement, which is a feedforward action activated22

by the patient at meal times. Meal announcement is used to “inform” the controller that the
glycemia is expected to rise rapidly due to a meal, thus requiring prompt insulin delivery. This24

information is provided to the controller by the glucose prediction computed through the built-in
linear model having the form of (2), (7), or (8), which is triggered by the meal announced in the26

meal input d. The presence of a feedforward action makes the AP system not fully automated.
However, meal announcement must be considered as additional knowledge that is available to28

the patient and that should be exploited to improve the postprandial glucose control. In case of
missing meal announcement, in spite of an unavoidable worsening of the control performance,30

10



the AP must remain able to operate safely.

Closed-loop scheme2

The AP closed-loop scheme is shown in Figure 6, where the blue blocks represent the
MPC and the patient, yellow blocks represent the hardware, and the green block represents the4

conventional therapy used to compute the nominal insulin boluses through formula (9), which
is used in the meal announcement. This scheme is defined on top of the conventional therapy6

in the sense that the MPC is in charge to suggest insulin variations with respect to that therapy.
Indeed, during fasting periods, the MPC suggests insulin variations with respect to the patient8

basal insulin ib. On the other hand, when a meal is announced, the controller receives information
about the nominal insulin bolus iB, and is in charge to eventually modify this value based on10

the estimated state of the patient.

Controller cost function and calibration12

The MPC insulin suggestions are driven by the quadratic cost function

J(x̂(k|k), u(·), k) =
N−1∑
i=0

(
q(y(k + i)− ysp(k + i) +Gb(k + i))2 + (u(k + i)− u0(k + i))2

)
+ ||x(k +N)||2P ,

(11)

such that
x(k) = x̂(k|k) ,
y(k) = Cx̂(k|k) ,
x(k + i+ 1) = Ax(k + i) +Bu(k + i) +Md(k + i) ,
y(k + i+ 1) = Cx(k + i+ 1) ,
u0(k + i) = i(k + i)− ib(k + i) ,

where x̂(k|k) is the state estimated through the Kalman filter described in [27] at time k, u0
14

is the variation of the insulin suggested by the conventional therapy with respect to the basal
insulin ib, ysp (mg/dl) is the desired glucose set-point, N is the prediction horizon, q > 0 is a16

tunable parameter, and P is the unique nonnegative solution of the discrete time Riccati equation
(S5). The matrices A, B, C, and M , define the linear glucose-insulin model used to predict the18

patient glycemia within the horizon N . Any linear model having the form (2) can be included
in the cost function or, alternatively, the identified models (7) or (8) can be considered, thus20

defining an individualized controller.

The cost to be minimized includes the glucose set-point and the conventional therapy in22

the terms ysp and u0, respectively. The insulin suggestion is calculated by computing the optimal

11



tradeoff between the glucose error with respect to the set-point and the insulin variations with
respect to the conventional therapy. The tradeoff is defined through the parameter q. Higher2

q values are associated with a higher cost to the glucose variations, thus resulting in a more
aggressive controller that strives for maintaining the glycemia to the set-point. On the other4

hand, lower q values are associated with a higher cost to the insulin variations with respect to
the conventional therapy, resulting in a more conservative controller.6

The q value must be set on the basis of the estimated insulin sensitivity of the patient.
Patients that are more insulin-sensitive require a more conservative controller, whereas patients8

characterized by elevated insulin resistance require more aggressive insulin administrations.
The tuning of q is handled through a calibration procedure that is performed in simulation10

by considering a trial and error approach driven by the performance index

Jq(q) =
√

X2
CV GA + Y 2

CV GA + kC
1 ·
(
log10(q)− kC

2

)2
, (12)

where XCV GA and YCV GA are the coordinates achieved in simulation in the control variability
grid analysis (CVGA) defined in [20], [46], and kC

1 and kC
2 are tunable parameters. The CVGA

coordinates are obtained by simulating a predefined calibration scenario and the process is
repeated until the minimum cost Jq is found. The flow chart representing the calibration procedure
is shown in Figure 7. A linear model for control synthesis is used to synthesize the MPC that
is used to simulate the closed-loop control on a model for control testing. At the end of each
simulation, the performance index (12) is evaluated and the process is repeated until the decrease
of the performance index becomes negligible, thus resulting in the calibrated q value

q̂ = min{max{argminq {Jq(q)} , ql}, qh} ,

where ql and qh are minimum and maximum safety thresholds, respectively.12

In case of individualized models, the model for control testing is the same model used
for control synthesis. This procedure is feasible in a real scenario, where the identified model
would be used for the trial and error approach, and the real patient would be equipped with
the controller including the resulting calibrated q̂. In case of MPC based on non-individualized
models, the calibration procedure is repeated for each virtual subject, which is characterized by
the model (1), considered as the model for control testing. The regression model

q̂(BW,CR) = er1·BW+r2·CR+rint

is then used to adapt the q value to each patient on the basis of his/her CR and body weight
(BW). As described in [27], the parameters r1, r2, and rint were obtained by relying on 10014

calibrated q̂ associated with the entire adult virtual population of the UVA/Padova simulator.

12



Simulation results

The MPC considered in simulation is entirely defined in [27]. MPC is equipped with2

properly defined insulin constraints and is driven by the cost function (11). In order to have an
estimation of the MPC behavior in a real scenario, the simulations were performed on the 1004

non-linear time-variant adult virtual subjects of the UVA/Padova simulator [35]. Furthermore, in
order to test the controller safety and robustness, the insulin sensitivity of each virtual subject6

was randomly varied by a ±25 % factor and the controller was blind to these variations.

The simulation scenario is shown in Figure 8 and includes five meals, of which the first8

is compensated in open-loop (through the conventional therapy), while the remaining meals are
compensated through the MPC. The simulation scenario starts at 6:00 and lasts 34 hours, and10

the loop is closed at 8:00. Note that the loop is closed within the postprandial period of the
open-loop compensated meal, increasing the variability associated with the closed-loop starting12

conditions. Meal amounts are 50 g CHO for the first breakfast, 60 g CHO for the second one,
60 for the two lunches, and 80 g CHO for the dinner. Postprandial periods are defined as 4-hour14

time intervals starting from each meal time. Night period starts at 23:00 and lasts eight hours.

The glucose control performance is evaluated through standard indices in evaluating AP16

clinical trials [47]. The considered metrics are the following: average glucose (A), glucose
standard deviation (SD), glucose coefficient of variation (CV), time in target or percentage18

of time spent within 70-180 mg/dl (Tt), time in tight target or percentage of time spent within
70-140 mg/dl (Ttt), time above target or percentage of time spent above 180 mg/dl (Ta), time20

below target or percentage of time spent below 70 mg/dl (Tb), number of hypo-treatments (#ht),
and number of patients with at least one hypo-treatment (# patients with ht). A hypo-treatment22

consists of 16 g CHO that are administered in case the patient glycemia falls below 65 mg/dl. This
process is automatically performed in the simulation environment with a constraint that imposes24

a time gap of at least 30 minutes between two consecutive hypo-treatments. In addition, insulin
metrics are also included in terms of daily insulin needs (measured in insulin units U), and daily26

insulin needs normalized by the patient weight (U/kg).

Table 3 shows the outcome indices achieved through the linearized non-individualized
MPC (L-MPC), through the customized MPC based on the CR-based models (CR-MPC), and
through the individualized MPCs synthesized by considering the nonparametric models (NP-
MPC), and the models identified through constrained optimization (CO-MPC). Both NP-MPC
and CO-MPC were synthesized based on individualized models identified from historical input-
output data generated in silico by following the identification scenarios described in [41]. Each
index is evaluated during the overall scenario (O), during the night (N), and within the closed-
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loop postprandial periods (PP). Non-normal data are shown as median (25-th percentile, 75-th
percentile), whereas normal data are shown as mean (standard deviation). Given that all the
Tb percentiles of Table 3 are equal to zero, in order to perform a quantitative comparison,
Table 4 shows the Tb indices in terms of mean (standard deviation). Statistical comparisons are
performed between L-MPC and the customized MPCs with the following significance levels:

p-value (p) significance level =


† p < 0.05 ,
†† p < 0.01 ,
† † † p < 0.001 ,

where p is evaluated with the paired t-test for normally distributed data and with the Wilcoxon
signed-rank test otherwise. The test of normality is performed through the Lilliefors test.2

From now on, for easy reading, CR-MPC, NP-MPC, and CO-MPC will be referred as
individualized MPCs.4

The individualized MPCs significantly reduced the average glucose. The reduction is more
noticeable with NP-MPC and CO-MPC, which are synthesized on patient-individualized glucose-6

insulin models. Although the achieved time in target is numerically similar with all the considered
controllers, the individualized MPCs significantly increased the time in tight target and reduced8

the time above target without increasing the time below target. The reduction of hyperglycemia
was also significant with the exception of CO-MPC, which used a significantly lower amount10

of insulin with respect to the other controllers and encountered only two hypo-treatments in
only one patient within the entire adult virtual population. Thus, it is possible to conclude that12

the individualized MPCs are able to maintain more steady the glucose concentration without
significantly increasing the risk of hyper- or hypoglycemia.14

Glucose control is particularly challenging within the postprandial periods, where the rapid
increase of glucose induced by a meal must be promptly compensated by taking into account16

the risk of induced postprandial hypoglycemia. As shown in Figure 9, the postprandial glucose
compensation is slightly improved with CR-MPC with respect to L-MPC since the glucose peaks18

are lower and the glucose decrease is faster. However, both these controllers are characterized by
a conservative behavior at the end of each postprandial period, where the glycemia decrease is20

systematically slowed down before reaching the glucose set-point (120 mg/dl). This conservative
compensation was introduced to minimize the risk of postprandial hypoglycemia, which is caused22

by insulin overestimation for meal compensation and would require a hypo-treatment to restore
the proper glucose concentration. Thanks to the availability of patient-individualized models, this24

behavior is no longer noticeable in NP-MPC and CO-MPC, which can rely on more effective
glucose predictions. Thus, both the controllers based on patient-individualized models are able to26

compensate faster the postprandial glycemia and to reach the glucose set-point without slowing
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down the glycemia decrease for safety purposes. In particular, CO-MPC is able to quickly
compensate the postprandial glycemia without creating glucose undershoots before reaching the2

set-point. This behavior is evident in Figure 9, where the shadowed region representing the
glucose variability of CO-MPC is narrower with respect to NP-MPC.4

The faster glucose compensation of NP-MPC and CO-MPC significantly increases the
postprandial SD and CV, as shown in Table 3, consequently increasing the same indices in6

the overall scenario. However, as shown in the CVGA of Figure 10, this does not translate
into a worsening of the overall control performance. Each point in the CVGA represents the8

combination of the minimum and the maximum glycemia reached by each patient during a
simulation. A point is present for each patient for each one of the four considered MPCs, thus10

resulting in 400 points. Although the number of points in the A region is reduced with NP-MPC
and CO-MPC, their scatter plots are within the A and B regions, denoting that the overall glucose12

control performance is not compromised. Moreover, CO-MPC results in 96 points included in
the A and B regions and no points in the D region, thus achieving the best performance in terms14

of CVGA.

Conclusion16

Although the continuous efforts devoted to the AP development in the last decades,
nowadays an AP system is not yet available in the market. One of the major issues regards18

the inter-subject variability affecting T1D patients, which makes the definition of a single
controller suitable for any patient practically impossible. Moreover, a state of the art non-invasive20

and portable AP system is composed of subcutaneous hardware components, and the control
algorithm must be properly designed to reside on a standalone device with limited battery life22

and computational power. These characteristics make the design of a safe and effective AP
system even more challenging due to the inherent delays affecting the subcutaneous insulin24

delivery route, and due to the tradeoff between control performance and computational power
expenditure.26

Thanks to its capability of dealing with inherent delays of the process under control, the
MPC is one of the most promising control approaches in the context of AP. However, the28

achievable control performance is strictly related to the prediction capabilities of the model
included in the controller, which in general can be highly nonlinear. The currently used MPC in30

clinical experiments relies on a linear average glucose-insulin model designed to represent the
average dynamics of a subject with diabetes. This non-individualized MPC is not designed to32

cope with patient-specific dynamics, but is designed to be non-computationally demanding and
robust enough to result in a safe and effective control law.34
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The introduction of patient-tailored glucose-insulin linear models opens the way for
designing individualized MPCs capable of significantly improving the achievable glucose2

control performance and enhancing the AP system safety and efficacy without increasing the
computational complexity of the control algorithm. The closed-loop simulations have shown that4

the individualized MPCs are able to cope with the inter-subject variability, and are particularly
effective within the postprandial periods, where the patient glycemia is substantially perturbed6

and the controller needs to react promptly to compensate the glucose rise without inducing
postprandial hypoglycemia.8

The proposed individualization approaches are not thought to deal with intra-subject
variability (which represents the variability characterizing a specific patient over time), and future10

investigation both in silico and in vivo will need to take this variability into account. However,
in order to achieve preliminary clinical results on the safety and feasibility of the proposed12

identification approaches, future works will consider the identification of individualized glucose-
insulin models from clinical data of patients with T1D. Clinical studies will have to be designed14

to achieve sufficiently perturbed clinical data aimed at models identification. Indeed, as described
in [41], one of the major issues associated with models individualization is the glucose-insulin16

dynamics identifiability. The CO approach is preferable with respect to the NP, since it identifies
linear compartmental models having a fixed structure, and requires a shorter identification data-18

set that would be more easily realizable in a real scenario. Thus, individualized MPCs usable in
clinical trials will be synthesized, having the potential of further improving the clinical results20

and making a significant step towards in the design of an AP device suitable for the market.
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TABLE 1. State variables associated with the state space system (1)

State Meaning Unit
x1 Stomach first compartment mg
x2 Stomach second compartment mg
x3 Intestine mg
x4 Plasma glucose & insulin-independent tissues mg/kg
x5 Insulin-dependent tissues mg/kg
x6 Plasma insulin pmol/kg
x7 Insulin action pmol/l
x8 Delay compartment for insulin action on glucose production pmol/l
x9 Insulin action on glucose production pmol/l
x10 Insulin in the liver pmol/kg
x11 First compartment of subcutaneous insulin pmol/kg
x12 Second compartment of subcutaneous insulin pmol/kg
x13 Subcutaneous glucose mg/kg
x14 Plasma glucagon ng/dl
x15 Glucagon action ng/dl
x16 Delayed static glucagon secretion ng/dl/min
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TABLE 2. Inputs, output, and key metabolic parameters associated with the state space system
(1)

Symbol Meaning Unit

Model inputs i(t) Exogenous insulin infusion rate pmol/kg/min
d(t) Ingested meal mg/min

Model output
x13(t)

VG

Subcutaneous glucose concentration mg/dl

Constant
parameters

kgri, kabs
k1, k2, ka1, ka2
m1, m2, m4, p2U
ki, kd, ksc, kH , nG

Rate parameters min-1

VI Distribution volume of insulin l/kg
VG Distribution volume of glucose dl/kg
Ib Model basal insulin pmol/l
Hb Model basal glucagon ng/dl

Time-varying
parameters

kempt(t) Gastric emptying coefficient min-1

Ra(t) Glucose rate of appearance mg/kg/min
EGP (t) Endogenous glucose production mg/kg/min
E(t) Renal excretion mg/kg/min
Uii(t) Insulin independent utilization mg/kg/min
Uid(t) Insulin dependent utilization mg/kg/min
m3(t) Linear degradation coefficient min-1

SRH(t) Glucagon secretion ng/dl/min
SRs

H(t) Delayed static glucagon secretion ng/dl
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TABLE 3. Closed-loop performance indices achieved by L-MPC, CR-MPC, NP-MPC, and CO-
MPC in the simulation scenario of Figure 8. O is the overall scenario, N is night, and PP are
closed-loop postprandial periods.

O N PP

A (mg/dl)

L-MPC 144.85 (126.81, 158.88) 121.75 (113.90, 127.70) 155.83 (29.85)
CR-MPC 144.10 (126.47, 155.66)†† 122.07 (113.98, 127.78)†† 154.13 (26.76)††

NP-MPC 133.34 (118.73, 145.23)††† 114.57 (108.30, 119.36)††† 144.88 (26.17)†††

CO-MPC 136.95 (123.97, 148.12)††† 116.03 (110.73, 122.56)††† 152.24 (26.01)†

SD (mg/dl)

L-MPC 21.41 (17.18, 27.45) 6.68 (4.35, 10.47) 19.95 (15.95, 25.13)
CR-MPC 21.50 (16.63, 26.77)††† 6.25 (3.99, 9.04)††† 19.72 (15.79, 24.69)
NP-MPC 22.11 (17.96, 27.46) 5.04 (3.09, 7.24)††† 21.41 (18.52, 25.91)†††

CO-MPC 22.66 (18.85, 29.01)†† 5.50 (3.74, 8.06)†† 22.35 (18.54, 26.93)†††

CV (mg/dl)

L-MPC 0.16 (0.13, 0.19) 0.06 (0.04, 0.08) 0.13 (0.05)
CR-MPC 0.16 (0.13, 0.18)†† 0.05 (0.03, 0.08)† 0.13 (0.05)
NP-MPC 0.17 (0.14, 0.21)††† 0.04 (0.03, 0.06)†† 0.16 (0.05)†††

CO-MPC 0.17 (0.14, 0.20)††† 0.05 (0.03, 0.07)† 0.16 (0.05)†††

Tt (%)

L-MPC 95.18 (75.66, 100.00) 100.00 (100.00, 100.00) 90.57 (57.86, 100.00)
CR-MPC 95.65 (81.23, 100.00)† 100.00 (100.00, 100.00) 91.72 (66.61, 100.00)†

NP-MPC 97.37 (87.95, 100.00)††† 100.00 (100.00, 100.00) 95.16 (78.96, 100.00)†††

CO-MPC 95.24 (82.25, 100.00) 100.00 (100.00, 100.00) 90.47 (69.11, 100.00)

Ttt (%)

L-MPC 46.17 (24.98) 100.00 (87.89, 100.00) 16.93 (6.61, 66.82)
CR-MPC 48.70 (24.41)† 100.00 (91.23, 100.00)† 26.51 (8.39, 66.77)†

NP-MPC 65.17 (21.07)††† 100.00 (100.00, 100.00)††† 45.83 (22.81, 70.42)†††

CO-MPC 59.36 (23.68)††† 100.00 (100.00, 100.00)† 35.26 (15.36, 62.34)††

Ta (%)

L-MPC 4.35 (0.00, 24.34) 0.00 (0.00, 0.00) 8.02 (0.00, 42.14)
CR-MPC 3.67 (0.00, 18.77)† 0.00 (0.00, 0.00) 6.41 (0.00, 33.13)†

NP-MPC 1.67 (0.00, 12.05)††† 0.00 (0.00, 0.00) 3.33 (0.00, 20.05)†††

CO-MPC 4.35 (0.00, 17.75) 0.00 (0.00, 0.00) 8.70 (0.00, 30.89)

Tb (%)

L-MPC 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
CR-MPC 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
NP-MPC 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
CO-MPC 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

#ht

L-MPC 9 0 9
CR-MPC 18 0 18
NP-MPC 18 0 15
CO-MPC 2 0 2

# patients
with ht

L-MPC 4 0 4
CR-MPC 4 0 4
NP-MPC 5 0 5
CO-MPC 1 0 1

Daily insulin
needs (U)

L-MPC 47.35 (39.15, 59.08) 9.35 (8.06, 10.92) 46.29 (35.39, 53.52)
CR-MPC 49.75 (39.50, 62.90)††† 9.68 (7.99, 10.91) 48.49 (36.28, 59.36)††

NP-MPC 51.18 (41.10, 63.55)†† 10.09 (8.46, 12.10)††† 44.39 (36.01, 56.77)
CO-MPC 42.70 (36.63, 51.70)††† 9.35 (8.01, 11.24) 36.52 (31.07, 45.74)†††

Daily insulin
needs per kg

(U/kg)

L-MPC 0.69 (0.59, 0.86) 0.14 (0.12, 0.17) 0.65 (0.53, 0.83)
CR-MPC 0.76 (0.60, 0.92)††† 0.14 (0.12, 0.17) 0.70 (0.54, 0.85)†††

NP-MPC 0.76 (0.61, 0.95)†† 0.14 (0.12, 0.18)††† 0.67 (0.52, 0.86)
CO-MPC 0.62 (0.52, 0.76)††† 0.14 (0.11, 0.17) 0.53 (0.44, 0.69)†††
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TABLE 4. Mean and standard deviation of the time below target achieved in closed-loop by
L-MPC, CR-MPC, NP-MPC, and CO-MPC in the simulation scenario of Figure 8. O is the
overall scenario, N is night, and PP are closed-loop postprandial periods.

O N PP

Tb (%)

L-MPC 0.17 (0.80) 0.00 (0.00) 0.33 (1.61)
CR-MPC 0.27 (1.51) 0.00 (0.00) 0.53 (3.02)
NP-MPC 0.30 (1.35) 0.00 (0.00) 0.41 (2.29)
CO-MPC 0.08 (0.56) 0.00 (0.00) 0.13 (1.06)
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Figure 1. Compartmental representation of the glucose-insulin model included in the
UVA/Padova simulator [35]. The fluxes of material are represented by the solid arrows, dashed
arrows represent control signals between compartments, while dashed lines linked to empty
circles represent the accessible compartments.
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Figure 2. A virtual population is composed of several “virtual subjects”. Each virtual subject
is characterized by a set of key metabolic parameters of the glucose-insulin model. A virtual
population is thought to span the inter-subject variability that can be encountered in a population
of patients affected by type 1 diabetes.
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Figure 3. Distribution of the average daily Insulin-To-Carbo Ratio patterns (CR) associated with
the adult virtual population of the UVA/Padova simulator. For each virtual subject, a pattern is
known and used to build the boxplot, which is composed of 100 values. As specified in (4), the
integer approximations of the 25-th, 50-th, and 75-th percentiles are equal to 12, 15, and 19,
respectively.
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Figure 4. Schematic representation of an artificial pancreas. Circled elements represent the main
components of the system, which are the continuous glucose monitor (CGM) sensor, the model
predictive control (MPC) algorithm, and the subcutaneous insulin pump. The MPC algorithm
relies on the patient conventional therapy and on the feedforward action associated with the meal
announcement.
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Figure 5. Insulin decay curves. Each curve is characterized by a time of decay of h hours,
which determines the percentage of still active insulin in function of time. The active insulin is
the insulin that has still to have an effect in the patient and is estimated through (10).
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Figure 6. Closed-loop scheme implemented in the artificial pancreas system. d = m̂ is the
estimated quantity of carbohydrates associated with the meal m, and it is considered in the
feedforward action as a disturbance to be rejected. When a meal is announced, model predictive
control (MPC) receives the estimation of the nominal insulin bolus iB through (9), which is
included in the conventional therapy (CT). ysp is the glucose set-point, y is the noisy subcutaneous
glucose measured by the continuous glucose monitor (CGM) device, and e = ysp−CGM is the
glucose error sent to the MPC. uMPC is the suggested insulin variation with respect to the basal
insulin ib, and up is the insulin that has to be infused by the pump, which infuses the quantized
insulin iq into the patient subcutaneous tissue. MPC is fed also with the estimate patient state x̂,
which is estimated through the Kalman filter described in [27]. The latter uses the system inputs
and the noisy output yl = CGM −Gb, with Gb denoting the steady state glucose concentration
during fasting periods (basal glucose).
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Figure 7. Flow chart of the calibration procedure used to tune the parameter q in the cost
function (11). The model predictive control (MPC) is synthesized with the model for control
synthesis and is used in a trial and error approach to simulate the closed-loop glucose control
on the model for control testing. The process is iterated until the decrease on the performance
index Jq defined in (12) becomes negligible.
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Figure 8. Scenario used for closed-loop (CL) simulations. The scenario starts at 6:00 and lasts
34 hours, and the loop is closed at 8:00. The first breakfast is compensated in open-loop (OL)
through the conventional therapy, while the remaining meals are compensated in CL. The night
starts at 23:00 and lasts eight hours. Meal amounts are 50 g of carbohydrates (CHO) for the
first breakfast, 80 g CHO for the dinner, and 60 g CHO for the remaining meals.
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Figure 9. Blood glucose concentration achieved by the linearized non-individualized model
predictive control (L-MPC), by the customized model predictive control synthesized with the
Insulin-To-Carbo Ratio based models (CR-MPC), and by the individualized model predictive
control synthesized by considering the nonparametric (NP-MPC), and the constrained optimiza-
tion (CO-MPC) models in the simulation scenario of Figure 8. Glucose values are shown in
terms of median (solid lines) surrounded by colored regions representing the glucose 25-th and
75-th percentiles.
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Figure 10. Control variability grid analysis [20] achieved by the linearized non-individualized
model predictive control (L-MPC, blue circles), by the customized model predictive control
synthesized with the Insulin-To-Carbo Ratio based models (CR-MPC, magenta diamonds), and
by the individualized model predictive control synthesized by considering the nonparametric
(NP-MPC, brown triangles), and the constrained optimization (CO-MPC, violet squares) models
in the simulation scenario of Figure 8. Each point represents the combination of the minimum
and maximum blood glucose (BG) reached by a virtual subject in simulation.
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Sidebar 1: Preliminaries on Model Predictive Control

In several application contexts, there is the need to perform particularly critical tasks while2

fulfilling some plant constraints. MPC is one of the most effective solutions to this problem, as
it can comply with large scale systems with many control variables and provides a systematic4

method of dealing with constraints on inputs and states. MPC constraints are explicitly taken
into account by solving an online constrained optimization problem used to determine the6

optimal inputs with respect to a predefined cost function. Typically, the optimization problem
and the control law are defined in discrete-time domain, and the major ingredients needed for8

its implementation are the model of the plant and a cost function to optimize.

Consider the discrete-time linear system10

x(k + 1) = Ax(k) +Bu(k) +Md(k) , (S1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, and d(k) ∈ Rl is a disturbance
vector at the k-th sampling time instant, A ∈ Rn×n, B ∈ Rn×m, and M ∈ Rn×l. Let N denote
the prediction horizon. Given a predicted input sequence

U(k) = [uT (k|k), uT (k + 1|k), . . . , uT (k +N − 1|k)]T ,

and a disturbance sequence

D(k) = [dT (k), dT (k + 1), . . . , dT (k +N − 1)]T ,

the time evolution of the state is generated by simulating the model (S1) forward for N sampling
time intervals with initial condition x(k|k) = x(k). Consequently,

X(k + 1) = [xT (k + 1|k), xT (k + 2|k), . . . , xT (k +N |k)]T ,

with u(k + i|k) and x(k + i|k), i ∈ N, being the input and state at time k + i predicted at time
k.12

The control input fed into the plant is generated by solving an optimization problem driven
by a pre-specified cost function to be minimized, for instance:14

J(x(k), U(·), k) =
N−1∑
i=0

‖x(k + i|k)− xref (k + i)‖2Q + ‖u(k + i|k)− uref (k + i)‖2R , (S2)

with xref (k) and uref (k) denoting the states and inputs references at time k, respectively, included
in the reference vectors16

Uref (k) = [uT
ref (k), u

T
ref (k + 1), . . . , uT

ref (k +N − 1)]T ,
Xref (k) = [xT

ref (k), x
T
ref (k + 1), . . . , xT

ref (k +N − 1)]T ,
(S3)
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and where Q and R are symmetric positive definite matrices. The goal is to find the optimal
control sequence U o(k) such that

U o(k) = argmin
U

J(x(k), U(·), k) ,

subject to the model (S1) and possibly including input and state constraints.

Finally, after the generation of the control input and according to the receding horizon
approach, only the first element of the optimal control sequence U o(k) is fed into the plant:

u(k) = uo(k|k) .

The optimization process is then repeated at each sampling time k.2

As previously discussed, one of the features of MPC is the presence of input and state
constraints in the optimization problem. In addition to the equality constraints representing the4

model dynamics (S1), inequality constraints on input and state variables can be introduced. While
the equality constraints are usually handled implicitly to compute predicted state trajectories as6

functions of initial conditions and input trajectories, the inequality constraints are explicitly
imposed within the optimization problem.8

The cost function defined in (S2) can be enriched with a weight associated with the state
prediction at the horizon N . This modification can be performed by considering the quadratic10

cost function

J(x(k), U(·), k) =
N−1∑
i=0

‖x(k + i|k)− xref (k + i)‖2Q + ‖u(k + i|k)− uref (k + i)‖2R

+ ‖x(k +N |k))‖2P ,

(S4)

subject to the state dynamics (S1), with P being the unique nonnegative solution of the discrete12

time Riccati equation

P (k) = Q+ ATP (k + 1)A− ATP (k + 1)B
(
R +BTP (k + 1)B

)−1
BTP (k + 1)A . (S5)

The matrix P ∈ Rn×n is the weight related to the term x(k+N |k), which represents the predicted
state at the horizon N . P takes into account the cost over an infinite horizon. By considering
the horizon N , the predicted state trajectories of the system dynamics can be written as

X(k + 1) = Ax(k) + BU(k) +MD(k) ,

where the matrices A ∈ RnN×n, B ∈ RnN×mN , andM∈ RnN×lN are obtained through algebraic
calculations based on (S1). Of note, in the general case D(k) can be known, estimated, or
unknown depending on the specific application to control. In case of unknown disturbance,
the MPC calibration achieved through Q and R parameters of (S4) must be robust enough to
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guarantee at least sub-optimal (but safe) control performance. Thus, the cost (S4) can be rewritten
as

J(x(k), U(·), k) = ‖U(k)‖2H + 2
(
xT (k)FT

x +DT (k)FT
D − UT

ref (k)R−XT
ref (k)FT

Xref

)
U(k) ,

where only the terms depending on U(k) have been maintained and where H = BTQB + R,
Fx = BTQA, FD = BTQM, and FXref

= BTQ, with Q = diag(Q, . . . , Q) ∈ RnN×nN and2

R = diag(R, . . . , R) ∈ RmN×mN .

If the optimization problem does not take into account input and state constraints, under
the assumption of non-singularity of the matrix H, the solution exists, is unique, and can be
explicitly written as

U o(k) = H−1
(
−Fxx(k)−FDD(k) +RUref (k) + FXref

Xref (k)
)

.

On the other hand, in case of constraints on input or states, the optimization problem must be4

solved online through a quadratic programming optimizer.
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Sidebar 2: Compartmental Models

Compartmental models are represented by a set of compartments that can send control2

signals to other compartments, and have the capability to contain some material that can be
exchanged with other compartments. The generic equation that describes the quantity of material4

contained in a specific compartment is

Q̇i
m(t) =

Nc∑
j=1
j 6=i

Rij −
Nc∑
j=1
j 6=i

Rji , i = 1, . . . , Nc , (S6)

where Qi
m is the quantity of material of the i-th compartment, Nc is the total number of6

compartments, Rij is the incoming flux of material from compartment j to compartment i, and
Rji is the outgoing flux from compartment i to compartment j. A set of equations of the form of8

(S6) describes the relationships among compartments, defining the whole system dynamics. The
flow rate between two compartments can be described by linear or nonlinear laws. Examples of10

nonlinear laws are [S1]

Rij(Q
j
m(t)) =

Vmax ·Qj
m(t)

k1−1

Km +Qj
m(t)k1

,

Rij(Q
j
m(t)) =

Vmax

Km +Qj
m(t)

,

Rij(Q
j
m(t)) =

 k2(1−
Qi

m(t)

k3
) Qi

m(t) < k3 ,

0 Qi
m(t) ≥ k3 ,

(S7)

where k1, k2 and k3 are constants, and Km and Vmax are rate parameters. The flux can be also12

described by a linear relationship

Rij(Q
j
m(t)) = kijQ

j
m(t) , (S8)

where kij is the rate constant associated with the incoming flux from compartment j to14

compartment i. When a compartmental model is used to represent a biological system, each
compartment usually represents a part of the body that contains a specific material. For instance,16

in a very simplified human body representation, the stomach and the blood compartments can
be defined, as shown in Figure S1. If the material is an oral drug, the first represents the drug18

concentration into the stomach and the second represents the drug concentration into the blood.
The two compartments together represent a simplified whole-body model of the drug, starting20

from the oral intake (u(t), the system input), the absorption in the bloodstream (driven by the
flux R21(Q

1
m(t))) and then, finally, the excretion (driven by the excretion rate R02(Q

2
m(t))).22

The fluxes describing the way the drug is absorbed in/or excreted from the blood compartment
can be represented by any nonlinear or linear relationship, like (S7) or (S8). In the graphical24

representation of compartmental models, the accessible compartments from outside are denoted
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with a dashed line with a bullet. The blood compartment of Figure S1 is denoted as accessible
because of the possibility to measure the drug concentration in the blood of the patient. Moreover,2

if compartment i is controlled from compartment j, this action is represented by a dashed arrow.

State-Space Representation4

Compartmental models can be described with a state-space representation where the quan-
tities of material in each compartment represent the model states. The state-space representation
of the model depicted in Figure S1 is

ẋ1(t) = −R21(x1(t)) + u(t) ,
ẋ2(t) = R21(x1(t))−R02(x2(t)) ,

y(t) =
x2(t)

V2

,

where x1(t) := Q1
m(t), x2(t) := Q2

m(t), u(t) is the system input (oral drug intake), y(t) is the
system output (drug concentration measured in the blood), and V2 is the volume of the blood6

compartment.
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Figure S1. Example of compartmental model with two compartments. The first is the stomach
compartment, whereas the second is the blood compartment. The empty arrow represents the
drug oral intake u(t) (system input), the black arrows represent the flow rates, and the dashed
line represents the samples y(t) taken from the blood compartment (system output). The drug
quantity in the stomach Q1

m(t) is transferred in the blood compartment through the flow rate
R21(Q

1
m(t)). The drug quantity in the blood compartment Q2

m(t) is finally excreted through the
excretion rate R02(Q

2
m(t)).
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