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Abstract

The famous theorem by Chomsky and Schützenberger (CST) says that every
context-free language L over an alphabet Σ is representable as h(D∩R), where
D is a Dyck language over a set Ω of brackets, R is a local language and h is
an alphabetic homomorphism that erases unboundedly many symbols. Berstel
found that the number of erasures can be linearly limited if the grammar is in
Greibach normal form; Berstel and Boasson (and later, independently, Okhotin)
proved a non-erasing variant of CST for grammars in Double Greibach Normal
Form. In all these CST statements, however, the size of the Dyck alphabet Ω
depends on the grammar size for L. In the Stanley variant of the CST, |Ω| only
depends on |Σ| and not on the grammar, but the homomorphism erases many
more symbols than in the other versions of CST; also, the regular language R is
strictly locally testable but not local. We prove a new version of CST which com-
bines both features of being non-erasing and of using a grammar-independent
alphabet. In our construction, |Ω| is polynomial in |Σ|, namely O(|Σ|46), and
the regular language R is strictly locally testable. Using a recent generalization
of Medvedev’s homomorphic characterization of regular languages, we prove
that the degree in the polynomial dependence of |Ω| on |Σ| may be reduced to
just 2 in the case of linear grammars in Double Greibach Normal Form.

1. Introduction

In formal language theory, the idea of homomorphic characterization of a
language family refers to the definition of all and only the languages in that
family, starting from languages of simpler families and applying an alphabetic
transformation. Such idea has been applied to many different language families,
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from the regular to the recursively enumerable ones, and also to non-textual
languages, such as the two-dimensional picture languages [3]. Our focus here is
on context-free (CF ) languages, but a short reference to the earlier homomorphic
characterization of regular languages, known as Medvedev theorem [4] (also
in [5]), is useful to set the ground. The regular language family coincides with
the family obtained by applying an alphabetic letter-to-letter homomorphism
to the simpler family at that time named definite events and presently known
as local, and also referred to as strictly locally testable languages of width 2,
shortened to 2-SLT (e.g., [6]).

Then, Chomsky and Schützenberger [7] stated the theorem, referred to
as CST, saying that the CF family coincides with the family obtained by the
following two steps. First, we intersect a Dyck language D over an alphabet
consisting of brackets, and a 2-SLT language R. Second, we apply to the result
an alphabetic homomorphism h, in formula h(D∩R), which maps some brackets
to terminal letters and erases some others. Therefore, a word w ∈ D ∩ R may
be longer than its image h(w).

The original proof of CST considers a grammar in Chomsky Normal Form
(CNF) and uses a Dyck alphabet made by a distinct pair of brackets for each
grammar rule, which makes the Dyck alphabet typically much larger than the
terminal alphabet and dependent on the grammar size.

In the almost contemporary variant by Stanley [8] (also in Ginsburg [9]), the
Dyck alphabet is grammar-independent: it consists of the terminal alphabet, a
marked copy thereof, and four extra letters, two of them used as delimiters (i.e.,
brackets), the other two as unary codes. In this variant, the homomorphism has
to erase many more symbols than in the original version of CST. The regular
language is not 2-SLT, but it is immediate to prove that it is strictly locally
testable, by using a width parameter greater than two, depending linearly on
the number of grammar rules.

Then Berstel [10] (his Exercise 3.8) found that fewer symbols than in the
original CST need to be erased by the homomorphism, if the grammar is in
Greibach Normal Form. In that case, there exists a constant k > 0 such that,
for every word w ∈ D ∩ R, the ratio of the lengths of w and h(w) does not
exceed k. Later, Berstel and Boasson [11], and independently Okhotin [12],
proved a non-erasing variant of CST by using grammars in Double Greibach
Normal Form, DGNF (see e.g. [13]).

In the statements [10], [11] and [12], however, the Dyck alphabet depends on
the grammar size. Most formal language books include statements and proofs
of CST essentially similar to the early ones.

To sum up, we may classify the existing versions of CST with respect to two
primary parameters: the property of being erasing versus nonerasing, and the
grammar-dependence versus grammar-independence of the Dyck alphabet, as
shown in the following table:
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Dyck Alphabet

Homomorphism grammar-dependent grammar-independent
erasing Chomsky and

Schützenberger [7],
Stanley [8]

Berstel [10]
nonerasing Berstel and Boasson [11],

Okhotin [12]

This paper fills the empty case of the table. It presents a new non-erasing
version of CST that uses a Dyck alphabet polynomially dependent on the ter-
minal alphabet size and independent from the grammar size. Besides the two
parameters of the table, a third aspect may be considered: whether the regular
language is strictly locally testable or not and, in the former case, whether its
width is two or greater. Actually, this aspect is correlated with the alphabet
choice, because, if the alphabet is grammar-independent, the grammar com-
plexity, which cannot be encoded inside the Dyck alphabet, must affect the size
of the regular language, in particular its SLT width. We show that the width
parameter is logarithmically related to grammar complexity, both in the erasing
and the non-erasing cases.

In our previous communication [1] we proved by means of standard construc-
tions for pushdown automata, grammars and sequential transductions (without
any optimization effort) that the Dyck alphabet needed by our version of CST
is polynomially related to the original alphabet. However, we could not give a
precise upper bound. Here we develop some new grammar transformations (in
particular a new normal form that we call quotiented) and analyze their com-
plexity, to obtain a precise, but still pessimistic, upper bound on the exponent
of the polynomial dependence between the two alphabets. As a side result, we
improve the known transformation from CNF to the generalized DGNF [14, 15])
in the relevant case here, namely when the two parameters of the DGNF are
equal, i.e., when the terminal prefix and suffix of every production right-hand
side have the same length.

The Dyck alphabet we use, though independent from the grammar size, is
much larger than the original alphabet. At the end, we show that a substantial
reduction of alphabet size is easy in the case of the linear grammars in DGNF.
For that we exploit the recent extension [16] of Medvedev homomorphic charac-
terization of regular languages, which reduces the alphabet size at the expense
of the SLT width.

The enduring popularity of CST can be ascribed to the elegant combina-
tion of two structural aspects of CF languages, namely the free well-nesting of
brackets, and a simple finite-state control on the adjacency of brackets. Taking
inspiration from CST, many homomorphic characterizations for other language
families have been proposed. A commented historical bibliography is in [2]; we
mention one example, the case of the slender CF languages [17].

Paper organization: Sect. 2 lists the basic definitions, recalls some relevant
CST formulations, and proves a trade-off between the Dyck alphabet size and
the regular language size. Sect. 3 proves CST using a grammar-independent
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alphabet and a non-erasing homomorphism; it first introduces and studies the
size of the grammar normal forms needed, then it develops the main proof, and
at last presents an example. Sect. 4 states the Dyck alphabet size for CF gram-
mars in the general case, and shows that a much smaller Dyck alphabet suffices
for the linear CF grammars in DGNF. The conclusion mentions directions for
further research.

2. Preliminaries and basic properties

For brevity, we omit most classical definitions (for which we refer primarily
to [18] and [10]) and just list our notation. Let Σ denote a finite terminal
alphabet and ε the empty word. For a word x, |x| denotes the length of x; the
i-th letter of x is x(i), 1 ≤ i ≤ |x|, i.e., x = x(1)x(2) . . . x(|x|). For every integer
r > 0, the language Σ<r is defined as {x ∈ Σ∗ | |x| < r}, and similarly for Σ≤r

and Σr. Notice that |Σ<r| ∈ O(|Σ|r). The reversal of a word x is denoted by
xR = x(|x|) . . . x(2)x(1). The right quotient of a language L ⊆ Σ∗ by a word
w ∈ Σ∗ is denoted by L/w = {x | xw ∈ L}.

For finite alphabets ∆,Γ, an alphabetic homomorphism is a mapping h :
∆ → Γ∗; if, for some d ∈ ∆, h(d) = ε, then h is called erasing, while it is called
strict or letter-to-letter if, for every d ∈ ∆, h(d) is in Γ.

Given a nondeterministic finite automaton (NFA) A, the language recognized
by A is denoted by L(A). The size of a regular language R = L(A), size(R), is
the number of states of a minimal NFA that recognizes the language.

A context-free (CF) grammar is a 4-tuple G = (Σ, N, P, S) where N is the
nonterminal alphabet, P ⊆ N × (Σ ∪ N)∗ is the rule set, and S ∈ N is the
axiom. Since we only deal with context-free grammars and languages, we often
drop the word “context-free”. For simplicity, in this paper we define the size
of G to be the number |N | of the nonterminals of G. The language generated
by G starting from a nonterminal X ∈ N is L(G,X); we shorten L(G,S) into
L(G). A word in L(G) is also called a sentence.

A grammar is linear if the right side of each rule contains at most one
nonterminal symbol.

A grammar is in Chomsky normal form (CNF) if the right side of each rule
is in Σ or in NN .

A grammar G = (Σ, N, P, S) is in Double Greibach normal form (DGNF)
if the right side of each rule is in Σ or in ΣN∗Σ. It is in cubic DGNF if it is
in DGNF and there are at most three nonterminals in the right side of every
rule. A generalization of DGNF is the (m,n)-GNF (see, e.g., [14, 15]) where
the right-hand side of each rule is in ΣmN∗Σn or in Σ<m+n, for m,n ≥ 1.

The family SLT of strictly locally testable languages [19] is next defined,
dealing only with ε-free languages. For every word w ∈ Σ+, for all k ≥ 2,
let ik(w) and tk(w) denote the prefix and, resp., the suffix of w of length k if
|w| ≥ k, or w itself if |w| < k. For k ≥ |w|, let fk(w) denote the set of factors
of w of length k. Extend ik, tk, fk to languages as usual.

4



Definition 1. Let k ≥ 2. A language L is k-strictly locally testable (k-SLT ), if
there exist finite sets W ⊆ Σ∪Σ2∪· · ·∪Σk−1, Ik−1, Tk−1 ⊆ Σk−1, and Fk ⊆ Σk

such that for every x ∈ Σ+, x ∈ L if, and only if,

x ∈ W ∨
(
ik−1(x) ∈ Ik−1 ∧ tk−1(x) ∈ Tk−1 ∧ fk(x) ⊆ Fk

)
.

A language is strictly locally testable (SLT) if it is k-SLT for some k, called its
width.

Value k = 2 yields the well-known family of local languages. The SLT family is
strictly included in the family of regular languages and forms a hierarchy with
respect to the width. The size of a k-SLT language over Σ is in O(|Σ|k).

2.1. Past statements of CST

The following notation for Dyck alphabets and languages is from [12]. For
any finite set X , the Dyck alphabet is the set, denoted by ΩX , of brackets labeled
with elements of X :

ΩX = { [x | x ∈ X} ∪ { ]x | x ∈ X} .

The Dyck language DX ⊂ Ω∗
X is generated by the following grammar:

S → [x S ]x for each x ∈ X, S → SS, S → ε (1)

The notation ΩX for the Dyck alphabet should not be confused with the asymp-
totic lower bound notation Ω, which is also used later in the paper.

Let k = |X |. Clearly, each Dyck language DX is isomorphic to D{1,...,k}.
For brevity we write Ωk and Dk instead of Ω{1,...,k} and D{1,...,k}, respectively.

Since it is obviously impossible for an odd-length sentence to be the image
of a Dyck sentence under a letter-to-letter homomorphism, the CST variant by
Okhotin (Th. 3 in [12]) modifies the Dyck language by adding neutral symbols
to its alphabet, and we do the same here.

Definition 2. Let q, l ≥ 1. We denote by Ωq,l an alphabet containing q pairs
of brackets and l distinct symbols, called neutral [12]. The Dyck language with
neutral symbols over alphabet Ωq,l, denoted by Dq,l, is the language generated
by the grammar in Eq. (1), enriched with the rules S → c, for each neutral
symbol c in Ωq,l.

We need two of the known statements of CST, the non-erasing version by
Berstel and Boasson [11], which we present following Okhotin [12], and the fixed
alphabet version by Stanley [8]: they are respectively reproduced as Th. 1 and
Th. 3.

Moreover, we prove in Th. 2 a simple statement about the exact number
of brackets needed in Okhotin’s construction and a slight generalization of his
theorem, which will be useful in later proofs.

Theorem 1. (Th. 1 of Okhotin [12]) A language L ⊆
(
Σ2

)∗
is context-free

if, and only if, there exist an integer k > 0, a regular language R ⊆ Ω∗
k and a

letter-to-letter homomorphism h : Ωk → Σ such that L = h (Dk ∩R).
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Following Okhotin’s Lemma 1 [12], since L ⊆
(
Σ2

)∗
, we can assume that a

grammar for L is in even-DGNF, that is the grammar form such that the right
side of each rule is in ΣN∗Σ.

Theorem 2. (Derived from the proof of Th. 1 of [12])

1. Let L ⊆
(
Σ2

)∗
be the language defined by a grammar G = (Σ, N, P, S) in

even-DGNF, and let k = |P |2 + |P |. Then, there exist a regular language
R ⊆ Ω∗

k and a letter-to-letter homomorphism h : Ωk → Σ such that L =
h (Dk ∩R).

2. Let G = (Σ, N, P, S) be an even-DGNF grammar and let q = |P |2 + |N | ·
|P |. Then, there exists a letter-to-letter homomorphism h : Ωq → Σ such
that, for all X ∈ N , there is a regular language RX satisfying the equality
L(G,X) = h (Dq ∩RX).

Proof. To prove part (1), we revisit the proof in [12]. We assume that L is
generated by a CNF grammar and we convert it into an even-DGNF grammar
G = (Σ, N, P, S). Each rule has thus the form A → bC1 . . . Cnd, where one can
further assume that nonterminals C1, . . . , Cn are pairwise distinct. The leftmost
terminal b and the rightmost terminal d in this rule is replaced, respectively,
by an open or a closed bracket. Each bracket is labeled with a pair of rules of
P of the form 〈X → ξ1Aξ2, A → bC1 . . . Cnd〉, the first component being the
“previous” rule X → ξ1Aξ2 (where, as assumed, ξ1ξ2 have no occurrence of A),
and the second one the “current” rule A → bC1 . . . Cnd itself. The idea is to
represent the derivation step X =⇒ ξ1Aξ2 =⇒ ξ1bC1 . . . Cndξ2.

Since there is no rule deriving the axiom of the grammar, we need also a
distinguished label, which can just be the axiom itself, in the first component
of the leftmost open bracket, e.g., the label of the first opening bracket can be
a pair of the form 〈S, S → aB1 . . . Bnc〉.

Therefore, the value k of the Dyck alphabet Ωk is at most |P |2 + |P |, i.e., in
O
(
|P |2

)
.

Incidentally, an example of a Dyck sentence corresponding to a derivation
is shown in Sect. 3.2.2, Eq. (21), while Eq. (22) illustrates the definition of
homomorphism h.

Part (2) can be proved, by applying, for every X ∈ N , the preceding proof
to the grammar, denoted by GX = (Σ, N, P,X), which is obtained from G by
selecting X as the axiom. It follows that there exist an integer k = |P |2+ |P |, a
letter-to-letter homomorphism hX : Ωk → Σ, and a regular language RX ⊆ Ω+

k ,
such that L(G,X) = hX(Dk ∩ RX). The Dyck alphabet of L(G,X) is thus
composed of |P |2 + |P | pairs of brackets; however, for every X , each language
L(G,X) is defined by essentially the same grammar, except for the axiom X .
Therefore, the Dyck language for L(G,X), is defined by the same set of |P |2
bracket pairs, each labeled with a pair of productions of P , already defined for
the Dyck set of L(G); and by |P | bracket pairs whose first component is labeled
X .
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We can now define the Dyck alphabet Ωq as the union of all the above Dyck
alphabets; therefore, the total number of bracket pairs is q = |P |2 + |N | · |P |.
Notice the language RX differs from RY , for X 6= Y , only in that it must start
and end with a bracket whose label has as first component X rather than Y .
At last, it is immediate to define one letter-to-letter homomorphism h which is
valid for the CST of each language L(G,X). ✷

Furthermore, the regular language R produced in Okhotin’s proof is a 2-SLT
language: R simply checks that every pair of adjacent brackets corresponds to
the correct consecutive application of two rules in a leftmost derivation, and
that the leftmost (open) bracket and the rightmost (closed) bracket are labeled
with the axiom.

Next we state Stanley’s CST, as presented in [9], and add an immediate
consequence.

Theorem 3. (derived from Th. 3.7.1 of Ginsburg [9]) Given an alphabet Σ,
there exist a Dyck alphabet Ω and an alphabetic erasing homomorphism h :
Ω∗ → Σ∗ which satisfy the following properties:

1. for each language L ⊆ Σ∗, L is context-free if, and only if, there exists a
regular language R ⊆ Ω∗ such that L = h(D ∩R);

2. if L = L(G), with G = (Σ, N, P, S) in CNF, then there exists a constant
k with k ∈ O(|P |) such that R is a k-SLT language.

Proof. We only need to prove item (2), which is not considered in [9]. The
Dyck alphabet in [9] is Ω = Σ ∪ Σ′ ∪ {c, c′, d, d′}, where Σ′ is a primed copy of
Σ; thus |Ω| = 2|Σ|+ 4. Homomorphism h erases any letter in {c, c′, d, d′} ∪ Σ′

and maps the other letters on the corresponding terminal letter. Ginsburg lists
a right-linear grammar for R that has rules of the following types:

X → aa′, if X → a ∈ P

X → aa′d′c′id′B, if X → a ∈ P and i is the label of a rule E → AB

E → dcidA, if i is the label of a rule E → AB

(2)

Notice that dcid and d′c′id′, 1 < i < |P |, represent the integer i, i.e., a grammar
rule label, as a unary code. Clearly, any sentence generated by the right-linear
grammar satisfies a locally testable constraint, namely that any two adjacent
codes are compatible with the above rules. Since the code length is at most
|P |+ 2, a sliding window of width 2|P |+ 2 suffices to test the constraint. ✷

A new straightforward improvement on Stanley theorem can be obtained
using a binary code instead of a unary one, to represent grammar rule labels in
base two. This allows for a sliding window of size logarithmic in the number of
productions.

Corollary 1. Under the assumptions in Th. 3, there exists a constant k, with
k ∈ O(log |P |), such that R is a k-SLT language.
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Proof. A sketch of the proof suffices. Suppose that the original grammar has
n > 0 rules, and let h = ⌈log(n)⌉, where log is the base 2 logarithm, and assume
that symbols 0, 1 are not in Σ. Given i, 0 ≤ i ≤ n, let JiK2 be the representation
of number i in base two using h bits, which is a word over alphabet {0, 1}.
Modify grammar (2) for the regular language R as follows: replace every rule
of the form X → aa′d′c′id′B with X → aa′d′JiK2d

′B, and replace every rule of
the form E → dcidA with E → dJiKR2 dA, where JiKR2 is the mirror image of JiK2.
By taking k = 2h+ 2 it is immediate to see that the regular language defined
by this grammar is k-SLT. ✷

Encoding grammar rules by positional numbers is also the key idea applied in
Sect. 3, but, since the homomorphism is not allowed to erase such numbers, a
much more sophisticated representation will be needed.

2.2. Trade-off between Dyck alphabet and regular language sizes

It is worth contrasting the two versions of CST reproduced as Th. 1 and
Cor. 1: the former uses a larger Dyck alphabet and a simpler regular language,
while the latter has a smaller Dyck alphabet and a more complex regular lan-
guage. With a little thought, it is possible to formulate a precise relation of
general validity between the Dyck alphabet size, the complexity of the regular
language, and the number of nonterminal symbols of the CF grammar.

We recall the language family {M (m)}, m > 0, defined for each m as the
language:

M (m) = (ab)∗ ∪ (aab)∗ ∪ · · · ∪ (anb)∗

By a classical result of Gruska [20], every CF grammar generating M (m) must
have at least m nonterminal symbols. Although M (m) is regular, it is easy to
transform it into a non-regular CF language L(m) having the same property,
e.g., L(m) = {wwR | w ∈ M (m)}. It is obvious that every grammar for L(m)

needs at least m nonterminal symbols.
The following proposition gives a lower bound on the size of the Dyck al-

phabet and on the size of the minimal NFA accepting R.

Proposition 1. For every finite alphabet Σ with |Σ| > 1, for every m > 0 there
exists a language L ⊆ Σ∗ such that every context-free grammar for L has at least
m nonterminals and, for every homomorphic characterization as L = h (D ∩R)
(with D,R ⊆ Ω∗ for some Dyck alphabet Ω), the following relation holds:

|Ω| · size2(R) ≥ m.

Proof. It suffices to outline the proof. For every m > 0, let Ω(m), h(m) :
Ω(m) → Σ, R(m) be, respectively, a Dyck alphabet, a homomorphism and a
regular language such that: L(m) = h(m)

(
D(m) ∩R(m)

)
, where L(m) is a CF

language whose grammar requires at least m nonterminal symbols.
First, we construct a grammar G for language D(m) ∩ R(m) by means of the
classical construction in [21] (Th. 8.1), which assumes that each right part of
a rule in the grammar is either a terminal character or a nonterminal word. A
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straightforward grammar in this form for the Dyck language D(m) has exactly∣∣Ω(m)
∣∣ + 1 nonterminals. Then, the number of nonterminals of grammar G is

at most
∣∣Ω(m)

∣∣ · size2(R). At last, by a straightforward transformation of G,

we obtain a grammar G(m) defining language h(L(G)) = L(m) and having the
same number of nonterminals as G. ✷

It is worth observing that, if a CST characterization of L is such that the
alphabet size |Ω| depends on the alphabet size |Σ| but does not depend on
the number m of nonterminals, then it follows that a minimal NFA for the
regular language R must have a number of states dependent on the number of
nonterminals, i.e., R must reflect the size of a grammar for L. In this case,
a simple asymptotic lower bound on the number of states of a NFA for R is
clearly Ω(

√
m), i.e., the square root of the number of nonterminals of a minimal

grammar for L. Obviously, in general this lower bound may be too small and
size(R) may actually be quite larger: for instance, in the case of Th. 3, the
regular language R has an NFA recognizer with O(m2) states.

3. New homomorphic characterization

The section starts with the grammar normal forms to be later used in the
proof of the CST, and examines their descriptive complexity, with the aim of
obtaining at least an estimation of the size of the Dyck alphabet (which in [1]
was just proved to be polynomial in the terminal alphabet size). Then the
section continues with the main theorem and its proof, and terminates with an
example illustrating the central idea of the proof.

3.1. Preliminaries on grammar normal forms

We revisit the classic construction of DGNF starting from a CNF grammar,
to establish a numerical relation between the size of the two grammars. Then
we introduce a new normal form, called quotiented, and combine it with the
DGNF form.

The following lemma supplements a well-known result about DGNF (e.g., [22])
with an explicit upper bound, which is lacking in the literature, on the size of
the equivalent DGNF grammar in terms of the original CNF grammar size.

Lemma 1. Given a CNF grammar G = (∆, N, P, S), over a finite alphabet ∆,

there exists an equivalent grammar G̃ = (∆, Ñ , P̃ , S̃) in cubic DGNF (thesis

of Theor. 3.4 of [22]). Grammar G̃ is such that
∣∣∣Ñ

∣∣∣ ∈ O
(
|∆| · |N |2

)
and∣∣∣P̃

∣∣∣ ∈ O
(
|∆|6 · |N |8

)
.

Proof. Starting from the construction of G̃ in [22], we estimate its size. The
construction involves four steps, but we only need the first three, since the
last step computes a quadratic form not needed here. Leftmost and rightmost
derivations are respectively denoted by ⇒L and ⇒R. We compute the sizes as
we proceed.
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Step 1 defines Ñ as the union of N and the finite set H next defined.

∀a ∈ ∆, X ∈ N, let L(a,X) =
{
m ∈ N∗ | X ∗⇒L α ⇒ am where α ∈ N∗

}
;

∀a ∈ ∆, X ∈ N, let R(X, a) =
{
m ∈ N∗ | X ∗⇒R α ⇒ ma where α ∈ N∗

}
;

L = {L(a,X) | a ∈ ∆, X ∈ N} hence |L| ≤ |∆| · |N |;
R = {R(X, a) | a ∈ ∆, X ∈ N} hence |R| ≤ |∆| · |N |;

hence |L ∪ R| ≤ 2|∆| · |N |;
H = closure of L ∪R under the right and left quotients by a letter of N ;

it follows that |H| ≤ 4|∆| · |N |2.
Therefore, it holds: ∣∣∣Ñ

∣∣∣ ∈ O
(
|∆| · |N |2

)
. (3)

Then Step 2 and Step 3 construct a cubic DNGF grammar G̃, over the
terminal alphabet ∆ and the nonterminal alphabet Ñ , i.e., the rules P̃ are in Ñ×
∆Ñ≤3∆. A rough and quick calculation, obtained from Eq. (3) supposing that
all nonterminals can be combined in all ways, yields the (pessimistic) estimation:

∣∣∣P̃
∣∣∣ ∈ O

(
|∆|2

∣∣∣Ñ
∣∣∣
4
)

= O
(
|∆|2 · |∆|4|N |8

)
= O

(
|∆|6 · |N |8

)
.

✷

We now want to generalize Lm. 1 to an (m,m)-GNF, for values of m larger
than 3, since this form is convenient for proving our CST. Unfortunately, the
grammar transformation algorithms known to us are not adequate here (as next
explained), and we have to introduce a new normal form for grammars, called
quotiented and then to prove an intermediate lemma.

We observe that, exploiting known results on GNF (see, e.g., [14, 15]), it
is fairly obvious that every CNF grammar can be transformed into an (m,n)-
GNF whose size is polynomially related to the size of the original grammar.
For instance, the very simple construction provided in [14] shows that, if G =
(Σ, N, P, S) is in CNF, then an equivalent (m,n)-GNF grammar can be built
such that the nonterminal alphabet is in O(|N |2) and the number of rules is
in O

(
|Σ|m+n+2 · |N |2m+2n+4

)
. Unfortunately, although the latter relation is

polynomial in the size of the grammar, both terms, featuring the base |Σ| or
the base |N |, exhibit an undesirable exponential dependence on m+ n.

In contrast, anticipating our Lm. 2, under the assumption m = n, i.e.,
for (m,m)-GNF grammars, we obtain that the number of rules is in |Σ|O(m) ·
O(|N |8), i.e., the term with base |Σ| has still an exponential dependence in the
value m, but the the term with base |N | has instead a polynomial dependence.

While for the term with base |Σ| the preceding exponential dependence of the
number of rules in the value m remains, the exponential dependence disappears
for the term with base |N |, more precisely, the number of rules is in |Σ|O(m) ·
O(|N |8).

We define the new normal form.
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Definition 3. A grammar G = (Σ, N, P, S) is quotiented of order r ≥ 1 if
the axiom S does not occur in any right-hand side and the set P of rules is
partitioned in two sets, Pq, Pr, such that:

Pq ⊆ {S} ×N · Σ<r and Pr ⊆ (N − {S})× (N ∪ Σr)∗ .

The two sets include, respectively, the rules for the axiom, and the rules for
the other nonterminals.

If G is quotiented of order r, then it is said to be, for the same order r :

quotiented CNF (Q-CNF ), if Pr ⊆
(
N ×N2

)
∪ (N × {Σr ∪ ε});

quotiented DGNF (Q-DGNF ), if Pr ⊆ (N × ΣrN∗Σr) ∪ (N × {Σr ∪ ε}).

Example 1. We show three equivalent quotiented forms with r = 3.

Pr Pq

quotiented X → aaaXbbbX | ε, Y → abbY | abb
Q-CNF X → X1X2, X1 → X3X, X2 → X4X | ε

X3 → aaa, X4 → bbb S → Xaa | Y b

Y → X5Y | abb, X5 → abb

Q-DGNF X → a3XZXb3 | a3b3 | ǫ, Z → b3a3

Y → abbY abb | abb | ε

For a quotiented grammar, if the rule S → Xw, where X ∈ N and w ∈ Σ<r,
is in P , then the language generated starting from X is included in L(G)/w,
which is the right quotient of L(G) by w.

The next lemma studies the complexity of the Q-CNF and Q-DGNF normal
forms. Since its proof operates on an alphabet made by tuples of letters, we
need the following definition.

Definition 4 (Tuple alphabet and homomorphism). For an alphabet Σ,
let ∆r = {〈a1, . . . , ar〉 | a1, . . . , ar ∈ Σ} for all r ≥ 2. An element of the alphabet
∆r is called an r-tuple or simply a tuple.
The tuple homomorphism πr : ∆r → Σ+ is defined by

πr (〈a1, . . . , ar〉) = a1 . . . ar, for a1, . . . , ar ∈ Σ.

The inverse morphism π−1
r transforms a language included in (Σr)

+
into a

language of r-tuples; it will be applied for constructing an (r, r)-GNF grammar.
Historical remark. In our earlier paper [1] we already proved that, for every

CNF grammar, there exists an equivalent Q-CNF grammar G′. The proof
applied standard transformations back and forth from grammars to pushdown
automata, and a suitable finite-state transduction. That approach has two
drawbacks: first, the resulting complexity of the grammar, although polynomial
in |N | · |Σ|r, is very high and difficult to compute with precision. Second,
the overly general constructions employed in that proof barred any significant
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improvement in the complexity. To overcame such limitations, we present a new
direct construction of the Q-CNF and of the Q-DGNF grammars, which allows
us to prove the better (but still very pessimistic) upper bounds of Eq. (4), (5)
and (6), and may open the way for further improvements.

Lemma 2. For every grammar G = (Σ, N, P, S) in CNF, for every r ≥ 1, there
exist an equivalent Q-CNF grammar G′ = (Σ, N ′, P ′, S′) and an equivalent Q-
DGNF grammar G′′ = (Σ, N ′′, P ′′, S′′), both of order r, such that:

|N ′| ∈ O(|N | · |Σ|2r) (4)

|P ′| ∈ O(|P | · |Σ|3r); (5)

|P ′′| ∈ O
(
|Σ|6r · |N ′|8

)
= O

(
|Σ|22r · |N |8

)
. (6)

Proof. Construction of G′. Let ⊣ be a new symbol not in Σ. The set N ′ of
nonterminal symbols is composed of S′, and of the set of 3-tuples:

N × Σ<r × Σ<r ∪ N × Σ<r × Σ<r ⊣ .

The tuples have the following intuitive meaning: a nonterminal of N ′ of the
form 〈A, u, w〉 generates a word that entirely stays inside a word of L(G)/w,
while a nonterminal of the form 〈A, u, w ⊣〉 generates a word that protrudes
into a suffix w ∈ Σ<r.

Thus, |N ′| is in O(|N | · |Σ<r|2), i.e., since |Σ<r| ∈ O(|Σ|r), it holds:

|N ′| ∈ O(|N | · |Σ|2r) (7)

The grammar rules are next defined. First, for every w ∈ Σ<r, the rule
S′ → 〈S, ǫ, w ⊣〉w is in P ′ if L(G)/w 6= ∅.
Second, the remaining rules of P ′ are defined, for all A,B,C ∈ N \ {S}, for all
a ∈ Σ, for all t, u, v, w ∈ Σ<r, by the following clauses:

〈S, ǫ, w ⊣〉 → 〈A, ε, t〉〈B, t, w ⊣〉 if S → AB ∈ P

〈A, u, v〉 → 〈B, u, t〉〈C, t, v〉 if A → BC ∈ P

〈A, u, w ⊣〉 → 〈B, u, t〉〈C, t, w ⊣〉 if A → BC ∈ P

〈A, ε, w ⊣〉 → ε

〈A, u, ε〉 → ua if A → a ∈ P and |ua| = r (8)

〈A, u, ua 〉 → ε if A → a ∈ P and |ua| < r (9)

We assume that any rule containing unreachable and undefined nonterminals is
removed from P ′.

For all A ∈ N , for all x, y ∈ (Σr)∗, for all t, u, v ∈ Σ<r, and for z such that
uz ∈ Σ<r, we claim that grammar G′ has the derivation

S′ =⇒ 〈S, ǫ, w ⊣〉w ∗
=⇒ x 〈A, u, v〉 vyw ∗

=⇒ xuz vyw (10)

if, and only if, grammar G has the derivation

S
∗

=⇒G xuAy w
∗

=⇒G xu z v y w (11)
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x ∈ (Σr)
∗

u

z

v

y ∈ (Σr)
∗

w ∈ Σ<r

A

S

x ∈ (Σr)
∗

u

z

v

y ∈ (Σr)
∗

w ∈ Σ<r

〈A, u, v〉

〈S, ǫ, w ⊣〉

S′

Figure 1: Scheme of the original grammar derivation (top) and the corresponding quotiented
grammar derivation (bottom), respectively described in Eq. (11) and Eq. (10) of the proof of
Lm. 2.

The two derivations are schematized in Fig. 1.
Notice that the empty rules (9) check that the presence of a letter a is

appropriate in a specific position of the word. Since all the terminal letters are
generated by rules of type (8), every sentence of G′ has a length multiple of r.
At last, the sizes of N ′ and P ′, respectively in (4) and (5), immediately follow
from the form of the nonterminals and of the rules.

Construction of G′′. To prove part (6) of the thesis, we apply Lm. 1 by first

modifying G′ into an intermediate grammar, denoted Ĝ = (∆, N̂ , P̂ , Ŝ), on the
tuple alphabet ∆ = ∆1 ∪∆2 · · · ∪∆r, as follows.

The nonterminal alphabet N̂ is composed of N ′ and of a new nonterminal
Xw for each rule of G′ of the form S → Xw.
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The rule set P̂ is obtained from P ′ by the following steps:

1. Each rule of G′ of the form S → Xw is replaced in P̂ by two rules

S → XXw and Xw → π−1
|w|(w)

(in other words, w is replaced by the corresponding tuple symbol π−1
|w|(w)

in ∆|w|).

2. Each rule of G′ of the form A → x, where x ∈ Σr, is replaced by the rule
A → π−1

r (x).

3. Every other rule of P ′ is in P̂ ; no other rule is in P̂ .

The resulting grammar Ĝ is in CNF. The nonterminal alphabet size is |N̂ | ∈
O (|N ′|+ |Σ|r), which is in O

(
|N | · |Σ|2r

)
. The rule set has cardinality |P̂ | ∈

O (|P ′|).
Then, we apply Lm. 1 to Ĝ, obtaining a DGNF grammar, denoted G̃, with a

number of rules
∣∣∣P̃

∣∣∣ ∈ O
(
|∆|6 · |N̂ |8

)
, which is O

(
|Σ|6r · |N ′|8

)
. Since, by (7),

|N ′| is in O(|N | · |Σ|2r), it immediately follows that:

|N ′| ∈ O
(
|Σ|22r · |N |8

)
. (12)

At last, it is immediate to transform grammar G̃ back into a Q-DGNF grammar
G′′ of order r over the alphabet Σ, with the same number of rules as G̃. ✷

Digression: a useful construction of the (m,m)-GNF of a CNF grammar G.
Incidentally, a bonus of Lm. 2 is the direct construction of an (m,m)-GNF
grammar, whose size may in general be smaller than the size produced by the
standard constructions of an (m,n)-GNF grammar (e.g., the one of [14]), in the
special but relevant case when m = n. We compare the size of the (m,m)-GNF
grammar obtained through the two approaches:

Case m = n of [14] Construction of Lm. 2

O
(
|Σ|2m+2 · |N |4m+4

)
O
(
|Σ|22m · |N |8

)

For a fixed alphabet Σ and a fixed value m ≥ 2, when considering larger and
larger grammars G, the size of our equivalent (m,m)-GNF grammar will even-
tually be smaller than the size in [14].

3.2. Main result and proof

We are going to prove that, given any terminal alphabet Σ, there exist a Dyck
alphabet Ωq,l, with l = |Σ| neutral symbols and the number q of brackets being
polynomial in Σ, and a letter-to-letter homomorphism from the Dyck alphabet
to Σ, such that every CF language L over Σ has a CST characterization in terms
of the Dyck language Dq,l. We stress that the Dyck alphabet size only depends
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on the size of the terminal alphabet; an upper bound on the dependence is
formulated later as Corollary 4.

Moreover, the regular language used in CST can be chosen to be strictly
locally testable.

Theorem 4. For every finite alphabet Σ, there exist a number q > 0 polynomial
in |Σ| and a letter-to-letter homomorphism ρ : Ωq,|Σ| → Σ, such that, for every

context-free language L ⊆ Σ∗, there exists a regular language T ⊆
(
Ωq,|Σ|

)∗
satisfying L = ρ

(
Dq,|Σ| ∩ T

)
.

The proof involves several transformations of alphabets, grammars and lan-
guages, and relies on the constructions and lemmas presented in Sect. 3.1. To
improve readability, we have divided the proof into two parts. First, we formu-
late in Th. 5 a case less general than Th. 4, which excludes odd-length sentences
from the language, yet it already involves the essential ideas and difficulties. A
step of the proof requires some arithmetic analysis, to construct the coding that
represents the Dyck brackets, using fixed length codes ove a smaller alphabet.
In the proof, such analysis has been encapsulated into Proposition 2.

Second, in Sect. 3.3 we introduce into the Dyck language the neutral symbols
that are needed for handling odd-length sentences, and we easily conclude the
proof of Th. 4.

3.2.1. The case of even length

The next theorem applies to languages of even-length words. Starting from
the original CNF grammar G, we convert it to a Q-DGNF grammar of order
m (as in Lm. 2). We deal with each of the axiomatic rules S → Xw at a time,
by considering the subgrammar having X for axiom, which is in (m,m)-DGNF
and defines the language L(G,X).

We apply the inverse tuple homomorphism π−1
m (Def. 4), thus condensing all

terminal factors of length m occurring in each rule into one symbol of ∆m. The
result is an almost identical grammar, here called G̃, over the tuple alphabet
∆m rather than Σ. Since G̃ is an even-DGNF and satisfies the hypothesis of
Th. 2, there exists a non-erasing CST characterization of the tuple language
generated by G̃. The corresponding Dyck alphabet Ωk has however a size k

dependent on the size of G̃, hence also on the size of G.
Now, the crucial idea comes into play. We represent each one of the k open

brackets in Ωk with an m-digit integer, represented in a base j ≥ 2, such that
only m depends on the size of G: we show in Proposition 2 that, if m is at least
logarithmic in the size of the grammar, then there exists a suitable value of j,
independent from the grammar, such that the open brackets are represented by
codes of length m.

To make room for such codes, we transform back each m-tuple symbol of
grammar G̃ into a word of length m (using the homomorphism πm), obtaining
again an (m,m)-GNF grammar, over a new Dyck alphabet Ωq. In such alphabet
each symbol is a 4-tuple composed of:

- a symbol specifying whether the bracket is open/closed;
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- the letter of Σ that is represented by the symbol;

- the letter of Σ that is represented by the matching closed bracket;

- a digit of the code in base j.

Notice that a closed bracket ω′ ∈ Ωk is encoded as the reversal of the code that
represents the matching open bracket ω; in this way, the string of the m open
brackets encoding ω is matched exactly by the m closed brackets encoding ω′.
The size of the terminal alphabet of G̃ does not depend on the size of G and is
polynomially related with the size of Σ.

We then define a regular language to check whether two codes may or may
not be adjacent. Another letter-to-letter homomorphism (denoted by ρ) is then
used to map each 4-tuple into a letter of Σ, so that we obtain a CST character-
ization of L(G,X) of the intended type.

Next, we have to deal with the axiomatic rule S → Xw of the Q-DGNF
grammar. Since by hypothesis the value |w| < m is an even number, it is
immediate to obtain word w as the homomorphic image of a Dyck language
over another alphabet that does not depend on the size of the original grammar
G. It is a simple matter to combine this new part with the preceding CST
characterization of L(G,X), thus obtaining the CST characterization of each
language L(G,X)w. At last, it suffices to unite the CST characterizations for
each word w and for each nonterminal X such that a rule S → Xw is present
in the original Q-DGNF grammar.

Theorem 5. For every finite alphabet Σ, there exist a number n > 0, polyno-
mial in |Σ|, and a letter-to-letter homomorphism ρ such that for every context-
free language L ⊆

(
Σ2

)∗
there exists a regular language T ⊆ Ω+

n , such that
L = ρ (Dn ∩ T ), where Dn is the Dyck language over the Dyck alphabet Ωn.

Proof. Let L ⊆
(
Σ2

)∗
be a CF language. Let m ≥ 2 be an even number. L

can be generated by a grammar G = (Σ, N, P, S) in Q-DGNF of order m, as in
Lm. 2.

Let w ∈ Σ<m and let X ∈ N be such that S → Xw is in P . We deal with
the language L(G,X) first. The language π−1

m (L(G,X)) can be considered as

the language generated by a grammar, called G̃, in DGNF over the alphabet
∆m, where the rules are obtained from those of G as follows:

- ignore all rules whose left-hand side is a nonterminal unreachable from X ;

- replace in the right-hand part of every other rule of G, every occurrence
of every word x ∈ Σm with the tuple symbol π−1

m (x).

The language L(G̃) over the tuple alphabet can be characterized using Th. 2,

part 2, as h (Dq ∩RX), where q = |P̃ |2+|N |·|P̃ | is the size of the Dyck alphabet,
h : Ωq → ∆m is the letter-to-letter homomorphism of Th. 1, and Dq, RX ⊆ Ωq

∗

are respectively a Dyck language and a regular language (which is dependent
on X).

16



The reason for choosing the slightly more general version in part 2 of Th. 2, is
that we later need to extend the CST characterization from a single language
L(G,X), to the union of all languages L(G,X) for X ∈ N , i.e., to L.

Hence, L(G,X) = πm(L(G̃)) and

L(G,X) = πm (h (Dq ∩RX)) . (13)

Formula (13) is already a CST characterization for L(G,X), but the value q is

in O
(
|P̃ |2

)
, and |P̃ | ∈ O (|P |); hence q still depends on grammar G.

Positional encoding of brackets. Each element ω ∈ Ωq is identified by an integer
number ι, with 1 ≤ ι ≤ q. We want to represent each of the q values ι using
at most m digits in a base j: It is enough to satisfy the inequality logj q ≤ m.

Denoting with log the base 2 logarithm, this requires that j satisfies log q
log j ≤ m,

i.e., j and m satisfy the inequality

log j ≥ log q

m
. (14)

If (14) is satisfied, every open bracket ω ∈ Ωq can be encoded in base j by a
(distinct) string with m digits, to be denoted in the following as JωKj . The closed
parenthesis ω′ matching ω has no encoding of its own, but it is just represented

by the reversal of the encoding of ω, i.e.,
(
JωKj

)R

; we will see that no confusion

can arise.
Although an arbitrarily large value of j would satisfy (14), we prefer to

choose a value as small as possible. Let p be the number of nonterminals of a
CNF grammar defining L. By Lm. 2, in the worst case |P | ∈ O

(
|Σ|22m · p8

)
.

Since q ∈ O(|P |2), it follows that q ∈ O(|Σ|44m · p16).
We can abstract the expression for value q as O (σmν), for suitable values

σ = |Σ|44, ν = p16. The next proposition shows the correct numerical relation
that eliminates the dependence of j from m and from the number of rules of the
grammar.

Proposition 2. Given numbers σ,m, ν > 0, if m is in Ω(log ν), then there
exists j ∈ O(σ) such that every symbol in a set of cardinality 1 < q < σmν can
be represented in base j by a distinct string of m digits.

Proof. We have:

q1/m < σν1/m

log q1/m < log
(
σν

1

m

)

log q
m < log σ + log ν

m , and if m > log(ν)
log q
m < log σ + 1 = log (2σ).

Hence, the condition log j ≥ log q
m can be satisfied, when m is in Ω(log ν), by

choosing j such that log j ≥ log (2σ), i.e., j ≥ 2σ. Thus, it suffices to choose a
suitable j in O(σ). �

17



From Proposition 2 it follows that each one of the q open brackets in Ωq can be
encoded with a distinct string composed of m digits in base j ≥ 2, with

j ∈ O
(
|Σ|44

)
when m ∈ Ω

(
log p16

)
= Ω(log p). (15)

The Dyck alphabet Ωn. Given the values j,m computed above, let n = j · |Σ|2,
hence n ∈ O

(
|Σ|46

)
, and define the new Dyck alphabet Ωn, to be isomorphic

to the set:
{‘[’ , ‘]’ } × Σ× Σ× {0, . . . , j − 1} (16)

Let the matching open/closed elements ζ, ζ′ in Ωn be:

ζ = 〈‘[’, a, b, o〉 matching ζ′ = 〈‘]’, b, a, o〉 (17)

Note that in ζ and ζ′ the second and third components are interchanged and
component o is in 0, . . . , j − 1.
We sum up the structure and information contained in the Dyck alphabet Ωn.
Each matching open and closed bracket, ζ and ζ′, is represented by a 4-tuple
carrying the following information:

- whether the element is an open or closed bracket;

- the letter of Σ to which ζ will be mapped by homomorphism ρ;

- the letter of Σ to which ζ′ will be mapped by homomorphism ρ;

- a digit i in the given base j. In any two matching elements ζ, ζ′, the digit
i is the same.

Let Dn be the Dyck language over Ωn.

Definition and properties of homomorphism τ . We define a new homomorphism
τ : Ωq → Ω+

n such that the image of Dq by τ is a subset of the Dyck language
Dn, i.e., τ(Dq) ⊂ Dn. Such subset τ(Dq) is next obtained by means of the
regular language τ(RX ), as τ(Dq) = Dn ∩ τ(RX).
To define τ , we first need the partial mapping, called combinator :

⊗ : (Σ1)
+ × (Σ2)

+ × (Σ3)
+ × (Σ4)

+ → (Σ1 × Σ2 × Σ3 × Σ4)
+

where each Σi is a finite alphabet; the mapping combines four words of identical
length into one word of the same length over the alphabet of 4-tuples. More
precisely, the combinator ⊗ is defined for all l ≥ 1, xi ∈ (Σi)

l and 1 ≤ i ≤ 4 as:

⊗ (x1, x2, x3, x4) = 〈x1(1), x2(1), x3(1), x4(1)〉 . . . 〈x1(l), x2(l), x3(l), x4(l)〉 .

For instance, let x1 = ab, x2 = cd, x3 = ef, x4 = ca; then ⊗ (x1, x2, x3, x4) =
〈a, c, e, c〉 〈b, d, f, a〉.
Recall now the letter-to-letter homomorphism h : Ωq → ∆m, defined in the CST

characterization of Eq. (13). Since L(G̃) is a subset of (∆m∆m)∗, the image
h(ω) of a bracket ω ∈ Ωq is in ∆m.
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The definition of τ is :

τ(ω) = ⊗
(
‘[’

m
, πm (h(ω)) , (πm (h(ω′)))

R
, JωKj

)

τ(ω′) = ⊗
(
‘]’

m
, πm (h(ω′)) , (πm (h(ω)))

R
,
(
JωKj

)R
)

(18)

All four arguments of ⊗ are words of length m, therefore the combinator ⊗
returns a word of length m over the alphabet of 4-tuples.
For instance, if h(ω) = 〈a1, . . . , am〉 ∈ ∆m, h(ω′) = 〈bm, . . . , b1〉 ∈ ∆m, and

JωKj = o1o2 . . . om, with o1, . . . , om ∈ {0, . . . , j−1}, then
(
JωKj

)R

= omom−1 . . . o1

and:

τ(ω) = 〈‘[’, a1, b1, o1〉 〈‘[’, a2, b2, o2〉 . . . . . . 〈‘[’, am, bm, om〉
τ(ω′) = 〈‘]’, bm, am, om〉 . . . . . . 〈‘]’, b2, a2, o2〉 〈‘]’, b1, a1, o1〉

An example of a complete definition of τ is given in Sec. 3.2.2, Eq. 23.

Claim 1. The following two facts hold:

a) Let ω, ω′ ∈ Ωq be a matching pair. Then τ(ω) = ζ1 . . . ζm and τ(ω′) =
ζ′m . . . ζ′1, where for all i the pairs ζi, ζ

′
i are matching in Ωn.

b) τ(Dq) ⊆ Dn.

Proof. Part a). The fact that ζi, ζ
′
i match according to formula (17), follows

immediately from the definition of τ .
Part b). Since, for every w ∈ Ω+

q , τ(w) preserves the parenthetization of w, if
w ∈ Dq, then τ(w) ∈ Dn. �

We show that the mapping τ is one-to-one:

Claim 2. For all w,w′ ∈ (Ωq)
+, if τ(w) = τ(w′), then w = w′.

Proof. Let ω1, ω2 ∈ Ωq; if ω1 6= ω2, then Jω1Kj 6= Jω2Kj by definition of J. . .Kj .
Therefore the inequality τ(ω1) 6= τ(ω2) holds, because at least one position
differs. �

Definition and properties of the homomorphism ρ used in CST. We now de-
fine a letter-to-letter homomorphism ρ : Ωn → Σ, in order to prove later that
ρ (Dn ∩ τ(RX)) is exactly L(G,X).
The homomorphism ρ, which does not depend on the grammar G but only on
Ωn, is simply defined as the projection on the second component of each 4-tuple:
ρ (〈x1, x2, x3, x4〉) = x2 (where x2 ∈ Σ).

Claim 3. For all w ∈ (Ωq)
+, the equality ρ(τ(w)) = πm(h(w)) holds, where τ

is defined in Eq. (18) and h in Eq. (13).

Proof. By the definitions of τ and ρ, for every χ ∈ Ωq the equality ρ (τ(χ)) =
πm(h(χ)) holds. �
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Claim 4. τ−1(Dn) ⊆ Dq.

Proof. Although τ−1 is not defined for every word in Dn, mapping τ is defined
so that, if a word w 6∈ Dq, then τ(w) 6∈ Dn; hence if τ(w) ∈ Dn, then also
w ∈ Dq.�

CST characterization of L(G,X). To complete this part of the proof, it is
enough to prove the following identity

ρ (Dn ∩ τ(RX)) = πm (h (Dq ∩RX)) (19)

since L(G,X) = πm (h (Dq ∩RX)).
By Claim 3, τ(Dq) ∩ τ(RX) = τ(Dq ∩RX); hence, by Claim 1, part (b),

ρ (τ(Dq ∩RX)) = ρ (τ(Dq) ∩ τ(RX)) ⊆ ρ (Dn ∩ τ(RX)) .

The inclusion
πm (h (Dq ∩RX)) ⊆ ρ (τ(Dq ∩RX))

then follows: if z ∈ πm(h (Dq ∩RX)), then there exists a word w ∈ Dq ∩ RX

such that πm(h(w)) = z, hence z = ρ(τ(w)) by Claim 3. Since w ∈ Dq ∩ RX ,
then τ(w) ∈ τ(Dq ∩RX), hence

z ∈ ρ (τ(Dq ∩RX)) ⊆ ρ (Dn ∩ τ(RX)) .

The opposite inclusion ρ (Dn ∩ τ(RX)) ⊆ πm (h (Dq ∩RX)) also follows: if z ∈
ρ (Dn ∩ τ(RX)), then there exists w ∈ RX such that τ(w) ∈ Dn and ρ(τ(w)) =
z. By Claim 4, if τ(w) ∈ Dn, then also w ∈ Dq. Since z = πm (h(w)) by
Claim 3, it follows that z ∈ πm (h (Dq ∩RX)).
It then follows that L(G,X) = ρ (Dn ∩ τ(RX)), where τ(RX) is a regular lan-
guage depending on the grammar G, while both the homomorphism ρ and the
Dyck language Dn do not depend on grammar G, but only on Σ.

Extending the CST characterization. It remains to extend the CST characteri-

zation first to L(G,X) · w and then to L =
⋃

X∈N,w∈Σ<m

L(G,X) · w

First, we notice that the “short” word w, of even length, can be immediately
associated with a suitable Dyck set. Let σ be the set { ‘[‘ } × Σ × Σ× {0} and
let σ′ be the set { ‘]‘ }×Σ×Σ×{0}. Let Rw be the regular language composed
only of the words α ∈ (σσ′)∗ ∩Dq such that ρ(α) = w, and let TX,w = RX ·Rw.
Therefore, L(G,X) · w = ρ(Dn ∩ TX,w).

The original language L is the union of all L(G,X) ·w, for X ∈ N,w ∈ Σ<m.
Set Ωn was defined in Eq. (16), and by selecting the width m and the base j as
in Eq. (15), Ωn is large enough to encode every bracket of the Dyck alphabet
Ωq with a distinct string in (Ωn)

m
.

Hence, it is immediate to define a regular language T as the union of all
regular languages TX,w, for every Xw such that S → Xw ∈ P . Therefore,
L = ρ (Dn ∩ T ). ✷

Corollary 2. The cardinality n of the Dyck alphabet of Th. 5 is O(|Σ|46).
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Using an SLT language. We observe that the regular language τ(RX) in the
proof of Th. 5 is not strictly locally testable (Def. 1). Yet, it would be straight-
forward to modify our construction to obtain an SLT language having width in
O(log p): for that it suffices to modify homomorphism τ of Eq. (18) so that the
first bracket of each τ(ω) and the last one of τ(ω′) are made typographically
different, e.g., by using a bold font, from the remaining m− 1 brackets of τ(ω)
and of τ(ω′).
For instance, if h(ω) = 〈a1, . . . , am〉 ∈ ∆m and JωKj = o1o2 . . . om, then

τ(ω) = 〈‘(’, a1, b1, o1〉 〈‘[’, a2, b2, o2〉 . . . 〈‘[’, am, bm, om〉
and

τ(ω′) = 〈‘]’, bm, am, om〉 . . . 〈‘]’, b2, a2, o2〉〈‘)’, b1, a1, o1〉.
Therefore, we can state:

Corollary 3. In the CST characterization of Th. 5, the regular language R

may be assumed to be strictly locally testable.

3.2.2. An example

The example illustrates the crucial part of our constructions, namely the
homomorphism τ defined by Eq. (18). Consider the language and grammar

L = {a2n+4b6n | n ≥ 0}, {S → aaSb6 | a4}
This grammar, as a quotiented normal form of order 2, would be written as:

S → S/ε, S/ε → aaS/εb
6 | a4

We choose the value m = 2 for the equivalent (m,m)-GNF, and, in accordance,
the substrings of length two occurring in the language are mapped on the 2-
tuples 〈a, a〉, 〈a, b〉, 〈b, b〉, shortened as 〈aa〉, etc.
The following grammar in DGNF, though constructed by hand, takes the place
of grammar G′′ of Lm. 2:

G′′ =
{
1 : S → 〈aa〉S B 〈bb〉, 2 : S → 〈aa〉 〈aa〉, 3 : B → 〈bb〉 〈bb〉

}
. (20)

The sentence a8b12 ∈ L becomes 〈aa〉4〈bb〉6 ∈ L(G′′), with the syntax tree in
Fig. 2.
For Okhotin Th. 1 [12], this sentence is the image by homomorphism h of the
following sequence

γ = (−1 (11 (12 )12 (13 )13 )11 (13 )13 )−1 (21)

of labeled parentheses, where the numbers identify the rules and the dash (as
in [12]) means the root of the tree. The homomorphism is specified by the
table:

ω ω′ h(ω) h(ω′)

(−1 )−1 〈aa〉 〈bb〉
(11 )11 〈aa〉 〈bb〉
(12 )12 〈aa〉 〈aa〉
(13 )13 〈bb〉 〈bb〉

(22)
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1 : S

< aa > 1 : S

< aa > 2 : S

< aa >< aa >

3 : B

< bb >< bb >

< bb >

3 : B

< bb > < bb >

< bb >

Figure 2: Syntax tree of the sentence a8b12 ∈ L after its transformation to 〈aa〉4〈bb〉6 ∈ L(G′′).

Applying Proposition 2, we choose to represent each such labeled parenthesis
with a sequence of m = 2 digits, on the basis j = 2. Therefore the homomor-
phism τ resulting from Eq. (18) defines the following Dyck alphabet:

ω ω′ τ(ω) τ(ω′)

(−1 )−1 [a,b,0 [a,b,0 ]b,a,0 ]b,a,0
(11 )11 [a,b,0 [a,b,1 ]b,a,1 ]b,a,0
(12 )12 [a,a,1 [a,a,0 ]a,a,0 ]a,a,1
(13 )13 [b,b,1 [b,b,1 ]b,b,1 ]b,b,1

(23)

To finish, we show the value of τ (πm(h(γ))):

(−
1︷ ︸︸ ︷

[a,b,0 [a,b,0

(1
1︷ ︸︸ ︷

[a,b,0 [a,b,1

(1
2︷ ︸︸ ︷

[a,a,1 [a,a,0

)1
2︷ ︸︸ ︷

]a,a,0 ]a,a,1

(1
3︷ ︸︸ ︷

[b,b,1 [b,b,1

)1
3︷ ︸︸ ︷

]b,b,1 ]b,b,1
)1
1︷ ︸︸ ︷

]b,a,1 ]b,a,0

(1
3︷ ︸︸ ︷

[b,b,1 [b,b,1

)1
3︷ ︸︸ ︷

]b,b,1 ]b,b,1

)−
1︷ ︸︸ ︷

]b,a,0 ]b,a,0

(24)

Notice that the 2-SLT language of the classical CST (applied to language L) is
now replaced by an SLT language of higher width.

3.3. Homomorphic characterization for languages of words of arbitrary length

At last, we drop the restriction to even-length sentences, thus obtaining the
homomorphic characterization stated in Th. 4 that holds for any language.

As defined in Def. 2, let Ωq,l be an alphabet with q pairs of brackets and
l ≥ 1 neutral symbols, and Dq,l be the corresponding Dyck language with
neutral symbols.

In our treatment, there are exactly l = |Σ| neutral symbols that we represent
as 4-tuples of the form 〈−, a, a, 0〉 where “−” is a new symbol. Then Ωq,l =
Ωq ∪ {〈−, a, a, 0〉 | a ∈ Σ}.

Suppose that L has also words of odd length. We still can apply Lm. 2
to convert its grammar into a Q-DGNF grammar G of (even) order m. Let
x ∈ L have odd length. Since its length is not multiple of m, x is derived
from the axiom using a rule of G of the form S → Xw, for some X ∈ N ,
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|w| < m – we remind that L(G,X) generates a language of words whose length
is a multiple of m. The word w can be factored as w = w′a, with w′ ∈ (Σ2)∗,
a ∈ Σ. Therefore, the same construction of the proof of Th. 5 may be applied,
by finding a CST characterization for L(G,X) and then extending it also to
L(G,X) · w′. Hence, there exists a word s over the Dyck alphabet Ωq such
that w′ = ρ(s). Just concatenate 〈−, a, a, 0〉 to the right of s, and extend the
definition of ρ by setting ρ (〈−, a, a, 0〉) = a for all a ∈ Σ.
This completes the proof of Th. 4. ✷

Example 2. To illustrate the case of odd length sentences, we modify the lan-
guage and grammar in the example of Sect. 3.2.2 as follows.

L = {a2n+4b6n | n ≥ 0} · c
A grammar for L (axiom A): A → Sc , S → aaSb6 | a4 (25)

Then the quotiented normal form of order 2 is the grammar

A → A/c c , A/c → aaS/εb
6 | a4

Few changes are needed with respect to the previous example. The Dyck al-
phabet and homomorphism τ of Eq. (23) are extended with the neutral symbol
〈−, c, c, 0〉; e.g., the Dyck sentence of Eq. (24) needs to be concatenated with
〈−, c, c, 0〉. The homomorphism ρ in the statement of Th. 4 is defined by ex-
tending ρ of Th. 5 with ρ (〈−, c, c, 0〉) = c.

4. Complexity of Dyck alphabet and relation with Medvedev theorem

We have already given in Corollary 2 the size of the Dyck alphabet used by
Th. 5. Since the number of neutral symbols introduced in Sect. 3.3 only linearly
depends on |Σ|, we have:

Corollary 4. The cardinality of the Dyck alphabet Ωq,|Σ| of Th. 4 is O(|Σ|46).

The value q is thus polynomial in the cardinality of the alphabet Σ. The current
bound is related to our constructions of grammars in the generalized DGNF of
some order m. A trivial lower bound is Ω(|Σ|), but it is open whether one can
always use a significantly smaller alphabet than the one computed above.

On the other hand, it is easy to see that in the case of some linear grammars,
the bound of Corollary 4 is largely overestimated. In particular, suppose that a
grammar is both linear and in DGNF, i.e., its rules are in (N × Σ(N ∪ {ǫ})Σ)∪
(N × Σ). Such grammars generate only a subset of the linear languages, but
they are still an interesting case.

We now proceed to characterize the languages generated by linear gram-
mars in DGNF through a CST using a different approach, based on Medvedev’s
homomorphic characterization of regular languages. In [16] we extended the
historical Medvedev theorem [4, 5], which states that every regular language R
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can be represented as a letter-to-letter homomorphism of a 2-SLT language over
a larger alphabet. Moving beyond width two, we proved the following relation
between the alphabet sizes, the complexity of language R (measured by the
number of states of its NFA), and the SLT width parameter.

Theorem 6. [16] Given a finite alphabet ∆, if a regular language R ⊆ ∆∗ is
accepted by an NFA with |Q| states, then there exist a letter-to-letter homomor-
phism f and an s-SLT language T over an alphabet Λ of size 2|∆|, such that
R = f(T ), with the width parameter s ∈ Θ(log |Q|).

Our work [16] also exhibits a language R ⊆ ∆∗ such that, for any SLT language
T over an alphabet of size < 2|∆|, a letter-to-letter homomorphism f satisfying
R = f(T ) does not exist.

Next, we apply Th. 6 to languages generated by linear grammars in DGNF.

Proposition 3. Let L = L(G) ⊆ Σ+, where G = (Σ, N, P, S) is a linear gram-
mar in DGNF. Then there exist a Dyck alphabet (with neutral symbols) Ωn,l, a
letter-to-letter homomorphism g : Ωn,l → Σ and an SLT language U over Ωn,l

such that:

1. L = g (Dn,l ∩ U),

2. n = 2 · |Σ|2 and l = |Σ|,

3. U is an s-SLT language with s ∈ log(|N |).

Proof. For brevity, we prove the case when L has only words of even length,
hence neutral symbols are not needed in the Dyck alphabet. The extension to
the general case is immediate.
Let Σ1,Σ2 be alphabets; for all pairs 〈a, b〉 ∈ Σ1×Σ2, let |1, |2 be the projections
respectively on the first and the second component, i.e., 〈a, b〉|1 = a, 〈a, b〉|2 = b.
Let ∆ = Σ×Σ. From the structure of linear grammars in DGNF, it is obvious
that there exists a regular language W over the alphabet ∆, such that:

L =
{
w|1 · w|R2 | w ∈ W

}
(26)

where w|R2 (equivalent to wR|2) is the mirror image of the projection w|2. More-
over, W can be easily defined by means of an NFA having |N |+ 1 states.
By Th. 6, there exist an alphabet Λ of size n = 2·|∆| = 2·|Σ|2, a homomorphism
f : Λ → ∆, a value s ∈ Θ(log |N |), and an s-SLT language T ⊆ Λ∗ such that
W = f(T ).
Let o⊛ Λ = { o } × Λ and c⊛ Λ = { c } × Λ be two sets of opening and closing
brackets, stipulating that, for every λ ∈ Λ, bracket 〈o, λ〉 matches bracket 〈c, λ〉.
Thus Ωn = (o⊛ Λ)∪(c⊛ Λ) is a Dyck alphabet and we denote the corresponding
Dyck language by Dn.
We also define o ⊛ λ1 . . . λm ∈ Λ+, for every λ1 . . . λm ∈ Λ+, m ≥ 1, as
〈o, λ1〉 . . . 〈o, λn〉. The notation is further extended to a language as usual,
e.g., o ⊛X for a language X ⊆ Λ+ is the set of words {o ⊛ x | x ∈ X}. The
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similar notations c⊛x and c⊛X have the obvious meaning, e.g., c⊛(λ1 . . . λm),
m ≥ 1, is the word 〈c, λ1〉 . . . 〈c, λn〉.
We define the regular language U over the alphabet Ωn as:

U = (o⊛ T ) ·
(
c⊛ Λ+

)

Since T is s-SLT, it is obvious that also o⊛ T and U are s-SLT.
It is easy to see that, for all t = λ1 . . . λm ∈ T , the set (o⊛ t)·(c⊛ Λ+) ∩Dn ⊆ U

is a singleton including the word (o⊛ t)u ∈ Dn, where u|1 = c|t| and u|2 = tR,
i.e., u = c ⊛ (λn . . . λ1). We can then write u as the mirror image (c ⊛ t)R of
c⊛ t.
Denote with U(t) the word (o ⊛ t) · (c ⊛ t)R for every t ∈ T : we have that
U ∩Dn =

⋃
t∈T U(t).

Define the homomorphism g : (c⊛ Λ) ∪ (o⊛ Λ) → Σ as:

{
g(z) = (f(z|2)) |1, if z ∈ o⊛ Λ

g(z) = (f(z|2)) |2, if z ∈ c⊛ Λ

where f is the homomorphism of Th. 6 defined above. This definition is exem-
plified by {

g (〈o, λ〉) = f(λ)|1
g (〈c, λ〉) = f(λ)|2

By definition, for every t ∈ T , it holds:





g (U(t)) = g(o⊛ t) · g(c⊛ t)R

= (f ((o⊛ t)|2)) |2 ·
(
f((c⊛ t)|2)|1

)R

= f(t)|1 · (f(t)|2)R .

We now show that L = g(Dn ∩ U). If x ∈ L, then by Eq. (26) x = w|1 w|R2
for some w ∈ W . Since W = f(T ), there is t ∈ T such that w = f(t) and,

by definition of U , it holds U(t) ∈ U . Hence, g (U(t)) = f(t)|1 (f(t)|2)R =
w|1w|R2 = x.

The converse proof is similar. If x ∈ g(D ∩ U) then there exists t ∈ T

such that x = g(U(t)). Let w = f(t), hence, w ∈ W . By definition of g,

x = g(U(t)) = f(t)|1 (f(t)|2)R = w|1w|R2 , hence x ∈ L. ✷

5. Conclusion

The main contribution of this paper is the homomorphic characterization of
context-free languages using a grammar-independent Dyck alphabet and a non-
erasing homomorphism. It substantially departs from previous characterizations
which either used a grammar-dependent alphabet, or had to erase an unbounded
number of brackets.

Our result says that, given a terminal alphabet, any language over the same
alphabet can be homomorphically characterized using the same Dyck language
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and the same homomorphism together with a language-specific regular lan-
guage. In other terms, the idiosyncratic properties of each context-free language
are completely represented in the words of the regular language, which more-
over have the same length as the original sentences. In this way, for each source
alphabet size, a one-to-one correspondence between context-fre grammars and
regular (more precisely strictly locally testable) languages is established. In ac-
cordance with the trade-off between the complexity of the language, the Dyck
alphabet size and the regular language complexity (Proposition 1), the more
complex the source language, the higher is the width of the sliding window used
by the regular language. We hope that further studies of such correspondence
between the two fundamental context-free and regular language families, may
lead to new insights.

A technical question is open to further investigation. The Dyck alphabet
size that we have proved to be sufficient is a rather high power of the source
alphabet size. It may be possible to obtain substantial size reductions, for the
general case and, more likely, for some subfamilies of context-free languages, as
we have shown for the linear languages in double Greibach normal form.
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