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Abstract

We consider operators of the form L =
∑n
i=1X

2
i + X0 in a bounded domain

of Rp where X0, X1, . . . , Xn are nonsmooth Hörmander’s vector fields of step r
such that the highest order commutators are only Hölder continuous. Applying
Levi’s parametrix method we construct a local fundamental solution γ for L and
provide growth estimates for γ and its first derivatives with respect to the vector
fields. Requiring the existence of one more derivative of the coefficients we prove
that γ also possesses second derivatives, and we deduce the local solvability of L,
constructing, by means of γ, a solution to Lu = f with Hölder continuous f . We
also prove C2,α

X,loc estimates on this solution.
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1. Introduction

Object and main results of the paper In the study of elliptic-parabolic de-
generate partial differential operators, an important class is represented by Hörmander’s
operators

(1.1) L =

n∑
i=1

X2
i +X0

built on real smooth vector fields

(1.2) Xi =

p∑
j=1

bij (x) ∂xj

which are defined in some domain Ω ⊂ Rp. A famous theorem by Hörmander
[19] states that if the Lie algebra generated by the Xi’s (i = 0, 1, 2, ..., n) coincides
with the whole Rp at any point of Ω, then L is hypoelliptic in Ω, that is any
distributional solution to the equation Lu = f ∈ C∞ (Ω) belongs to C∞ (Ω). Over
the years, a number of deep properties of Hörmander’s operators and systems of
Hörmander’s vector fields have been established. Some of them are related to
the metric induced by Hörmander’s vector fields (connectivity property, doubling
property for metric balls, see [34]), or to the “gradient” associated to Hörmander’s
vector fields (Poincaré’s inequality, see [20]); other properties are related to second
order Hörmander’s operators (properties of fundamental solutions, see [13], [34],
[37], or a priori estimates on the second order derivatives with respect to the vector
fields, see [14], [13], [36]; see also the book [17], where these results, with an
original approach, are presented in a systematic framework).

One can note that, apart from Hörmander’s hypoellipticity theorem, which
intrinsically requires C∞ regularity of the vector fields, most of the important ex-
isting results in this area are expressed by statements which are meaningful, and
hopefully still hold, under much less regularity of the vector fields. So a natural
question consists in asking how much of the classical theory of Hörmander’s vector
fields and Hörmander’s operators still holds if we consider a family of vector fields
whose coefficients possess just the right number of derivatives which are enough
to check that Hörmander’s condition at some step r holds (see section 2 for the
definition). However, this generalization is far from being obvious, since if one tries
to repeat the classical proofs just paying attention to the minimal regularity re-
quired, one finds that some arguments need the existence of a very high number of
derivatives (for instance, the double of the step r), while others simply cannot be
repeated. Experience shows that proving relevant results about nonsmooth vector
fields under reasonably weak assumptions is almost always a hard task. Never-
theless, this is a natural problem if one hopes to settle the basis for applications
to nonlinear equations which involve vector fields depending on the solution itself
(such as Levi-type equations that we will discuss later in this introduction).

This paper is the third step in a larger project started by three of us in [5] and
[6], and devoted to this issue. Our framework is the following. Let X0, X1, ..., Xn

be a system of real vector fields, defined in a bounded domain Ω ⊂ Rp. We assume
that for some integer r > 2 and some α ∈ (0, 1] the coefficients of the vector
fields X1, X2, ..., Xn belong to Cr−1,α (Ω) , while the coefficients of X0 belong to
Cr−2,α (Ω). If r = 2, we assume α = 1. Here and in the following, Ck,α stands
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for the classical space of functions which are differentiable up to order k, with α-
Hölder continuous derivatives of order k. Moreover, we assume that X0, X1, ..., Xn

satisfy Hörmander’s condition of weighted step r in Ω: if we assign weight 1 to
X1, X2, ..., Xn and weight 2 to X0, then the commutators of the vector fields Xi,
up to weight r, span Rp at any point of Ω (more precise definitions will be given
later).

An extension to this nonsmooth context of some basic properties of the distance
induced by the vector fields, Chow’s connectivity theorem, the estimate on the
volume of metric balls, the doubling condition, and Poincaré’s inequality has been
given in [5]. These results also imply a Sobolev embedding and the validity of
Moser’s iteration technique to handle operators of the kind

n∑
i,j=1

X∗i (aij (x)Xju) .

In [6] the same authors have extended to the nonsmooth context the lifting and
approximation theory developed in the smooth case by Rothschild-Stein [36] and
some related results, such as the comparison between volumes of balls in the lifted
and original space. Starting with the paper [36], this technique has been used, in
the smooth case, to reduce the study of general Hörmander’s operators (1.1) to
that of left invariant homogeneous operators on homogeneous groups, for which
Folland’s theory developed in [13] applies, granting the existence of a homogeneous
left invariant fundamental solution, which is a good starting point to prove a-priori
estimates of several types.

Following this idea, in the present paper we use tools and results from [5] and [6]
to study Hörmander’s operators (1.1) built with nonsmooth vector fields or, briefly,
nonsmooth Hörmander’s operators. Namely, we are able to adapt to this situation
the classical Levi’s parametrix method, in order to build a fundamental solution
γ (x, y) for L (in the small), possessing some good properties. More precisely, under
the above assumptions we prove (see Thm. 4.8) that for any x0 ∈ Ω there exists
a neighborhood U (x0) and a function γ (x, y), defined and continuous in the joint
variables for x, y ∈ U (x0), x 6= y, satisfying

(1.3)

∫
γ (x, y)L∗ω (x) dx = −ω (y)

for any ω ∈ C∞0 (U (x0)); moreover, γ satisfies the bounds

|γ (x, y)| 6 c d (x, y)
2

|B (x, d (x, y))|
;(1.4)

|Xiγ (x, y)| 6 c d (x, y)

|B (x, d (x, y))|
, i = 1, 2, ..., n,(1.5)

where, here and in the following, Xiγ (x, y) denotes the Xi derivative with respect
to the first variable, x, the distance d is the one induced by the vector fields Xi,
and B (x, r) are the corresponding balls.

Under the stronger assumption that the coefficients of the Xi’s (i = 1, 2, ..., n)
belong to Cr,α (Ω) and the coefficients of X0 belong to Cr−1,α (Ω), we are able
to prove that γ also possesses second derivatives with respect to the vector fields,



1. INTRODUCTION 3

satisfying the bounds

|XjXiγ (x, y)| 6 c

|B (x, d (x, y))|
, i, j = 1, 2, ..., n,(1.6)

|X0γ (x, y)| 6 c

|B (x, d (x, y))|
,

and that γ (·, y) is a classical solution to the equation Lγ (x, y) = 0 for x 6= y (see
Thm. 5.9). Exploiting these results we prove (see Thm. 5.18) the following local
solvability result for L: for every x0 ∈ Ω there exists a neighborhood U such that for

any β > 0 and f ∈ CβX (U) (i.e., β-Hölder continuous with respect to the distance
d) there exists a classical solution u to the equation Lu = f in U . Pushing even
forward our analysis, we show that the functions XiXjγ satisfy the following local
Hölder estimate: for every x1, x2, y ∈ U such that d (x1, y) > 2d (x1, x2),

(1.7) |XiXjγ (x1, y)−XiXjγ (x2, y)| 6 cε
(
d (x1, x2)

d (x1, y)

)α−ε
1

|B (x1, d (x1, y))|
for any ε ∈ (0, α) and i, j = 1, 2, ..., n, with cε depending on ε (Thm. 5.17). As a
consequence, we eventually show that the local solution w to Lw = f that we have

built for f ∈ CβX (U), with β < α, actually belongs to C2,β
X,loc (U) (see Thm. 5.20).

Comparison with the existent literature
The study of nonsmooth Hörmander’s vector fields has been carried out by sev-
eral authors; we refer to the introduction of [5] for a detailed discussion of the
related bibliography. Here we just point out that the peculiarity of the research
project consisting in the present paper and [5], [6] is that of considering nonsmooth
Hörmander’s vector fields of completely general form. Indeed, with the notable ex-
ception of the papers [31], [32], [33] by Montanari-Morbidelli, the paper [38] by
Street (which in turn is based on some ideas of Tao-Wright [39]), and some papers
by Karmanova-Vodopyanov (see [22], [40] and the references therein), all the other
previous results about nonsmooth vector fields either hold only for vector fields
with a particular structure, or assume axiomatically some important properties of
the metric induced by the vector fields themselves. A word of comparison between
our regularity assumptions and the ones made by the aforementioned authors. In
the papers [31], [22], [40], [38] the regularity assumptions on the vector fields are
expressed in a way that reflects the nonisotropic nature of the problem. The explicit
conditions are quite technical, but substantially they imply that the highest order
commutators have coefficients which are Lipschitz continuous or better. Relying
on the results in [5], [6], and as already explained, here we make an isotropic as-
sumption on the regularity of the coefficients which ensures that the highest order
commutators are at least C0 ,α, or C1,α for some stronger results. A more detailed
comparison about these assumptions can be found in [38, § 1.2.3].

Another characteristic feature of the present research is to take explicitly into
account the possibility that one of the vector fields X0 (“the drift”) could have
weight two, as in the case of Hörmander’s operators (1.1). This is relevant for
instance in view of the possible application of the present theory to operators of
Kolmogorov-Fokker-Planck type with nonsmooth drift.

While the literature devoted to the geometry of nonsmooth vector fields is
quite large, the one about Hörmander’s operators built on nonsmooth vector fields
is much narrower. Particular classes of operators of this kind have been studied in
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the framework of regularity results for nonlinear equations of Levi type by Citti,
Lanconelli, Montanari, starting with the paper [8] and continuing with [10], [9],
[28] (see also references therein). A somewhat related field of research is that
about the Levi-Monge-Ampère equation, see [29], [30], which also motivates the
study of nonvariational operators modeled on (possibly nonsmooth) Hörmander’s
vector fields. Another application of this circle of ideas to a nonlinear regularization
problem has been given by Citti, Pascucci, Polidoro in [11]. However, the present
paper seems to be the first one where Hörmander’s operators built with nonsmooth
vector fields of general structure are studied.

Let us come to some remarks about the techniques used. The parametrix
method was originally developed more than a century ago by E. E. Levi to study
uniformly elliptic equations of order 2n (see [25]), and later extended to uniformly
parabolic operators (see e.g. [15]). For more details about this method in the el-
liptic case we refer to [27, § 19], [18, Part IV, Chap.3] and [21]. In particular, the
last reference contains a rich account of the previous literature on this subject and
a careful discussion of the assumptions made by different authors to implement the
method. The parametrix method was first adapted to hypoelliptic ultraparabolic
operators of Kolmogorov-Fokker-Planck type by Polidoro in [35], exploiting the
knowledge of an explicit expression for the fundamental solution of the “frozen”
operator, which had been constructed in [24]. It was later adapted by Bonfiglioli,
Lanconelli, Uguzzoni in [1] to a general class of operators structured on homoge-
neous left invariant (smooth) vector fields on Carnot groups, for which no explicit
fundamental solution is known in general, and by Bramanti, Brandolini, Lanconelli,
Uguzzoni in [4] to the more general context of arbitrary (smooth) Hörmander’s
vector fields. Finally, in the nonsmooth context, the parametrix method has been
exploited by Manfredini in [26] to deal with sum of squares of C1,α-intrinsic vector
fields of step 2, with a particular structure.

In order to evaluate our assumptions about the regularity of vector fields, one
can draw a comparison with the assumptions made in the elliptic case, as reported
in [21]. Rewriting our operator in the form

L =

p∑
j,k=1

ajk (x) ∂2
xjxk

+

p∑
k=1

bk (x) ∂xk + c (x)

one can see that our stronger assumptions (see Assumptions B in § 5) imply in the
simplest degenerate case r = 2

ajk ∈ C2,1 (Ω) , bk ∈ C1,1 (Ω) , c ∈ C1,1 (Ω)

while in the elliptic case [21, Thm.3] it is essentially required that

ajk ∈ C2 (Ω) ∩ C0,α (Ω) , bj ∈ C1 (Ω) ∩ C0,α (Ω) , c ∈ C0,α (Ω) .

Finally, we note that Klainerman and Rodnianski in [23] developed a geomet-
ric Littlewood-Paley theory for the Laplace-Beltrami operator of a 2-dimensional
compact manifold. Since in their setting this operator may have nonsmooth coeffi-
cents, it may be interesting to see if their construction can be adapted to operators
generated using Hörmander’s vector fields.

Strategy and plan of the paper
The technique of “lifting and approximation” developed by Rothschild-Stein in [36]
and extended to nonsmooth vector fields in [6], coupled with the results by Folland
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[13] suggests that, in order to study the (nonsmooth) operator (1.1), natural steps
consist in lifting L, in a neighborhood of a point x0 ∈ Rp, to a new (nonsmooth)
operator

L̃ =

n∑
i=1

X̃2
i + X̃0

defined in a neighborhood U of (x0, 0) ∈ Rp+m, and then approximate L̃ with a
(smooth) left invariant homogeneous operator

L =

n∑
i=1

Y 2
i + Y0

which possesses a homogeneous left invariant fundamental solution Γ
(
v−1 ◦ u

)
, with

respect to a structure of homogeneous group in Rp+m. Then, a natural parametrix

of L̃ can be defined by

P0 (ξ, η) = Γ (Θη (ξ)) ,

where the map Θη (ξ) (a nonsmooth version, introduced in [6], of the function
defined by Rothschild-Stein in [36]) is, for any fixed η ∈ U , a smooth diffeomorphism

which allows to approximate L̃ with L near η, and Θη (ξ) depends on η in a Hölder
continuous way. Hence P0 (ξ, η) is smooth in ξ but just Hölder continuous in η
(or C1,α in η, if the coefficients of the Xi’s are Cr,α and the coefficients of X0 are
Cr−1,α, see Proposition 5.4). This rough asymmetry in the properties of P0 with
respect to the two variables prevents us from repeating Rothschild-Stein’s technique
to prove Lp or Cα estimates for second order derivatives with respect to the vector
fields, for a solution to Lu = f . Instead, one can think to adapt to this case the
classical Levi’s parametrix method, which is compatible with a different degree of
regularity of P0 in the two variables. Now, if we applied the parametrix method

directly to the kernel P0 we would build a local fundamental solution for L̃. Starting
from this object, however, there is no obvious way to produce a local fundamental
solution for L. Instead, we have to define directly a parametrix for L, shaped on
P0 saturating the lifted variables by integration, in the following way:

(1.8) P (x, y) =

∫
Rm

(∫
Rm

Γ
(
Θ(y,k) (x, h)

)
ϕ (h) dh

)
ϕ (k) dk, for x, y ∈ U,

where ϕ ∈ C∞0 (Rm) is a cutoff function fixed once and for all, equal to one in
a neighborhood of the origin. This P turns out to be a good parametrix for L,
and starting with it we can actually construct a local fundamental solution for L,
satisfying natural growth estimates and regularity properties. However, performing
this construction (see §4) is a hard task, since we are forced to work in a metric
measure space where the measure of balls does not behave like a fixed power of the
radius, in particular there is not a homogeneous dimension. Therefore a good deal
of preliminary work (see §3) has to be done to craft the geometric and real analysis
tools necessary to make the Levi method work. In particular, it turns out that the
right function to measure the size of a kernel k (x, y) is

φβ (x, y) =

∫ R

d(x,y)

rβ−1

|B (x, r)|
dr
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which for β ∈ (0, p), is bounded by (but not equivalent to)

(1.9) c
d (x, y)

β

|B (x, d (x, y))|

and satisfies a key property which is very useful in iterative computations (see
Theorem 3.5), and could not be proved for (1.9).

The Levi method is then implemented as follows. We look for a fundamental
solution for L of the form

γ (x, y) = P (x, y) + J (x, y)

where P is as in (1.8) and

J (x, y) =

∫
U

P (x, z) Φ (z, y) dz.

In turn, we will find Φ as the series

Φ (z, y) =

∞∑
j=1

Zj (z, y) for z 6= y

where the Zj ’s are defined inductively by

Z1 (x, y) = L (P (·, y)) (x)

Zj+1 (x, y) =

∫
U

Z1 (x, z)Zj (z, y) dz for x 6= y.

In §4, exploiting the results of §3 and some results proved in [5], [6] and recalled
in §2, we prove the basic properties and upper bounds satisfied by the functions
Z1, Zj ,Φ, J, and we deduce the existence of a local fundamental solution γ satisfying
(1.3), (1.4), (1.5).

The next step, in §5, is then to compute the second derivatives of γ, that is

XiXjγ (x, y) = XiXjP (x, y) +Xi

∫
U

XjP (x, z) Φ (z, y) dz

(all the Xi derivatives being taken with respect to the x variable). In order to
do that one has to exploit, in particular, Hölder continuity (with respect to d)
of z 7→ Φ (z, y), to allow differentiation under the integral sign. Proving Hölder
continuity of Φ and the existence of XiXjγ forces us to deepen the analysis of
the properties of the map Θη (ξ) and to strengthen our assumptions on the vector
fields, requiring from now on Xi ∈ Cr,α and X0 ∈ Cr−1,α. Once the existence of
XiXjγ and the upper bound (1.6) are proved, we can show that for any β > 0 and

f ∈ CβX (U), the function

(1.10) w (x) = −
∫
U

γ (x, y) f (y) dy

is a classical solution to the equation Lw = f in U . In particular, we establish an
“explicit” representation formula for XiXjw (see Corollary 5.19), containing singu-
lar integrals, fractional integrals, and multiplicative terms. This formula, although
rather involved, is designed in view of the subsequent proof of Hölder continuity.
The point is that, for technical reasons related to the starting definition of the
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parametrix P (x, y), which is assigned by an integral with respect to the “lifted
variables”, the singular part of

Xi

∫
U

Xjγ (x, y) f (y) dy

cannot be easily written in a form like

lim
ε→0

∫
d(x,y)>ε

XiXjγ (x, y) f (y) dy,

which should allow to apply directly some abstract theory of singular integrals.
Instead, we have to rewrite properly the integral, to transform the singular part
into something like

(1.11)

∫
k (x, y) [f (y)− f (x)] dy

with k singular near the diagonal.
In §5 we also prove Hölder estimates on XiXjγ, the difficult part of the es-

timate being that on XiXjJ . We then pass to prove that the solution (1.10) to
Lu = f possesses locally Hölder continuous derivatives XiXjw. This amounts to
proving Hölder continuity of each term of the representation formula for XiXjw
previously established. While for the fractional integrals it is fairly enough to ex-
ploit Hölder continuity of XiXjJ , the singular integral term also requires the proof
of a cancellation property of the kind∣∣∣∣∣

∫
r1<d(x,y)<r2

k (x, y) dy

∣∣∣∣∣ 6 c for any r1 < r2.

In order to prove CαX continuity of singular and fractional integrals we both apply
some abstract results proved in [7] for locally homogeneous spaces and revise some
techniques used in [3].

Finally, in Appendix we give some examples of nonsmooth Hörmander’s oper-
ators satisfying assumption A in §2 or assumption B in §5.

2. Some known results about nonsmooth Hörmander’s vector fields

In this section we fix precisely our notation and assumptions, and recall a
number of known facts which will be used throughout the paper. In some cases, we
do not recall the complete definitions given in [5, 6], but only the properties that
are needed for our current purposes.

Let X0, X1, ..., Xn be a system of real vector fields

Xi =

p∑
j=1

bij (x) ∂xj ,

defined in a bounded, arcwise connected open set Ω ⊂ Rp. Let us assign to each Xi

a weight pi, saying that

p0 = 2 and pi = 1 for i = 1, 2, . . . , n.

For any multiindex

I = (i1, i2, . . . , ik)
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we define the weight of I as

|I| =
k∑
j=1

pij

and we set
XI = Xi1Xi2 ...Xik

and
X[I] =

[
Xi1 ,

[
Xi2 , ...

[
Xik−1

, Xik

]
...
]]
,

where [X,Y ] is the usual Lie bracket of vector fields. If I = (i1) , then

X[I] = Xi1 = XI .

As usual, X[I] can be seen either as a differential operator or as a vector field. We
will write X[I]f to denote the differential operator X[I] acting on a function f , and(
X[I]

)
x

to denote the vector field X[I] evaluated at the point x.

For a positive integer k and α ∈ (0, 1] we define the (classical) Hölder space
Ck,α (Ω) of functions k times differentiable (in classical sense), with derivatives
of order k belonging to the Hölder (or Lipschitz) space Cα (Ω) , defined by the
finiteness of the norm

‖f‖Cα(Ω) = sup
x∈Ω
|f (x)|+ |f |Cα(Ω) ,

with

|f |Cα(Ω) = sup
x,y∈Ω,x 6=y

|f (x)− f (y)|
|x− y|α

.

Assumptions A. We assume that for some integer r > 2 and some α ∈ (0, 1],
the coefficients of the vector fields X1, X2, ..., Xn belong to Cr−1,α (Ω) , while the
coefficients of X0 belong to Cr−2,α (Ω). If r = 2, we assume α = 1. Moreover, we
assume that X0, X1, ..., Xn satisfy Hörmander’s condition of step r in Ω, i.e. the
vectors {(

X[I]

)
x

}
|I|6r

span Rp for any x ∈ Ω. (For examples of systems of vector fields satisfying the
assumptions, see the Appendix).

We note that under our assumptions, for any 1 6 k 6 r, the differential opera-
tors {XI}|I|6k and the vector fields

{
X[I]

}
|I|6k are well defined, and have Cr−k,α

coefficients.
We will sometimes need the transpose operator

(2.1) L∗ =

n∑
i=1

(X∗i )
2

+X∗0

defined by the transpose operators X∗i of the vector fields, which act on smooth
functions as

X∗i u (x) = −
p∑
j=1

∂xj (bij (x)u (x)) .

Note that, in order for L∗u to be well defined, at least as an L∞ function, we need
the bij ’s to be at least C1,1 for i = 1, 2, ..., p, and C0,1 for i = 0. This is one of the
reasons why we need α = 1 if r = 2. We will also use this in the proof of Theorem
2.10.
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The subelliptic metric, analogous to that introduced by Nagel-Stein-Wainger
in [34], is defined as follows:

Definition 2.1. For any δ > 0, let C (δ) be the class of absolutely continuous
mappings ϕ : [0, 1] −→ Ω which satisfy

ϕ′ (t) =
∑
|I|6r

aI (t)
(
X[I]

)
ϕ(t)

a.e.

with aI : [0, 1]→ R measurable functions,

|aI (t)| 6 δ|I|.
Then define

d (x, y) = inf {δ > 0 : ∃ϕ ∈ C (δ) with ϕ (0) = x, ϕ (1) = y}
and denote B(x, ρ) the associated ball of center x and radius ρ.

The finiteness of d for any couple of points of Ω, as well as the basic properties of
this distance in the nonsmooth context have been established in [5]. In particular,
we will use the following facts:

Proposition 2.2 (Relation with the Euclidean distance). There exist a positive
constant c1 depending on Ω and the Xi’s and, for every Ω′ b Ω, a positive constant
c2 depending on Ω′ and the Xi’s, such that

(2.2) c1 |x− y| 6 d (x, y) 6 c2 |x− y|1/r for any x, y ∈ Ω′.

In particular, the distance d induces Euclidean topology.

Theorem 2.3 (Doubling condition). Under the previous assumptions, for any
domain Ω′ b Ω, there exist positive constants c, ρ0, depending on Ω,Ω′ and the
Xi’s, such that

|B (x, 2ρ)| 6 c |B (x, ρ)|
for any x ∈ Ω′, ρ < ρ0.

Theorem 2.4 (Volume of metric balls). For any family I of p multiindices
I1, I2, ..., Ip with |Ij | 6 r, let |I| =

∑p
j=1 |Ij | and λI (x) be the determinant of

the p × p matrix with rows
{(
X[Ij ]

)
x

}
Ij∈I

. For any Ω′ b Ω there exist positive

constants c1, c2, ρ0 depending on Ω,Ω′ and the Xi’s, such that

(2.3) c1
∑
I
|λI (x)| ρ|I| 6 |B (x, ρ)| 6 c2

∑
I
|λI (x)| ρ|I|

for any ρ < ρ0, x ∈ Ω′, where the sum is taken over any family I with the above
properties.

Definition 2.5 (Hölder spaces). For any U b Ω we can introduce Hölder
spaces CαX (U) with respect to the distance d, letting for α > 0,

‖f‖CαX(U) = sup
x∈U
|f (x)|+ |f |CαX(U) ,

with

|f |CαX(U) = sup
x,y∈U,x 6=y

|f (x)− f (y)|
d (x, y)

α .

Also, we let
C2 ,α
X (U) = {f : U → R| ‖f‖C2,α

X (U) <∞}
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where

‖f‖C2,α
X (U) = ‖f‖CαX(U) +

∑
|I|62

‖XIf‖CβX(U) .

By (2.2) the following hold:

f ∈ Cα (Ω′)⇒ f ∈ CαX (Ω′)

f ∈ CαX (Ω′)⇒ f ∈ Cα/r (Ω′) .

Note, in particular, that saying “f ∈ Cβ (Ω′) for some β > 0” is the same as

“f ∈ CβX (Ω′) for some β > 0”.
We will also need the following property, which is similar to that proved in [5,

Thm. 5.11]. For convenience of the reader, we recall here its short proof.

Proposition 2.6. Let x ∈ Ω and let B (x,R) ⊂ Ω. For any f ∈ C1(B (x,R)),
one has

|f(x)− f(x)| 6 d (x, x)

(
n∑
i=1

sup
B(x,R)

|Xif |+ d (x, x) sup
B(x,R)

|X0f |

)
for any x ∈ B (x,R).

Proof. Let x ∈ B (x,R), hence by Definition 2.1 there exists a curve ϕ(t),
such that ϕ(0) = x, ϕ(1) = x, and

ϕ′(t) =

n∑
i=0

λi(t) (Xi)ϕ(t)

with |λ0(t)| 6 d (x, x)
2

and |λi(t)| 6 d (x, x) for i = 1, . . . , n. Moreover, every point
γ (t) for t ∈ (0, 1) belongs to B (x,R). Then we can write:

|f(x)− f(x)| =
∣∣∣∣∫ 1

0

d

dt
f(ϕ(t)) dt

∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

n∑
i=0

λi(t) (Xif)ϕ(t) dt

∣∣∣∣∣
6 d (x, x)

n∑
i=1

sup
B(x,R)

|Xif |+ d (x, x)
2

sup
B(x,R)

|X0f | ,

as desired. �

In [6] an extension to nonsmooth vector fields of some known results by Rothschild-
Stein [36] are proved. The first one is:

Theorem 2.7 (Lifting theorem). For every x0 ∈ Ω, there exist a neighborhood
U (x0) , an integer m and vector fields of the form

(2.4) X̃k = Xk +

m∑
j=1

ukj (x, h1, h2, ..., hj−1)
∂

∂hj

(k = 0, 1, ..., n), where the ukj’s are polynomials of degree at most r − 1, such that

the X̃k’s are free up to step r and such that

{(
X̃[I]

)
(x,h)

}
|I|6r

span Rp+m ≡ RN

for every (x, h) ∈ U (x0)× I, where I is a neighborhood of 0 ∈ Rm.
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We do not repeat here the exact definition of free vector fields, in our weighted
situations, because we will never use it explicitly.

An easy consequence of the structure (2.4) of the lifted vector fields is that for
any differentiable function f (x, h) and any smooth cutoff function ϕ (h) we have

(2.5)

∫
Rm

X̃k [f (x, h)ϕ (h)] dh =

∫
Rm

Xkf (x, h)ϕ (h) dh

since the integrals
∫
Rm

∂
∂hj

(...) dh vanish.

We will denote by d̃ the distance induced in U (x0)×I by the lifted vector fields

X̃i (i = 0, 1, 2, ..., n) , as in Definition 2.1, and by B̃(η, r) the corresponding metric
ball of center η and radius r. We will also set

L̃ =

n∑
i=1

X̃2
i + X̃0.

Let us recall that a structure of homogeneous group G on RN consists in a Lie
group operation ◦ (which we think of as translation) such that the origin is the
unit in the group and the Euclidean opposite is the inverse in the group, and a
one-parameter family {D (λ)}λ>0 of group automorphisms (which we think of as
dilations), acting as follows:

(2.6) D (λ) (u1, u2, ..., uN ) = (λα1u1, λ
α2u2, ..., λ

αNuN ) ,

for some positive integers α1, α2, ..., αN . The sum of these integers is called the
homogeneous dimension Q of G.

A homogeneous norm on G is any function ‖·‖ : G→[0,∞) such that
‖u‖ = 0⇐⇒ u = 0, ‖D (λ)u‖ = λ ‖u‖ for any λ > 0,
‖u1 ◦ u2‖ 6 c (‖u1‖+ ‖u2‖),

∥∥u−1
∥∥ 6 c ‖u‖ for any u, u1, u2 ∈ G.

Such a homogeneous norm naturally induces a distance
∥∥u−1

1 ◦ u2

∥∥ in G; the
(Lebesgue) measure of the corresponding ball in G is translation invariant, and
multiple of rQ. In the following we will use a fixed homogeneous norm on G.

Definition 2.8. (See [6]) We say that a vector field

R =

N∑
j=1

cj (u) ∂uj

on the group G has weight > β, for some β ∈ R, if

|cj (u)| 6 c ‖u‖αj+β

for u in a neighborhood of 0.

The second basic result proved in [6] is:

Theorem 2.9 (Approximation by left invariant Hörmander’s opera-
tor). Let x0, U (x0), and I be as in the lifting theorem. There exist a structure of
homogeneous group G on RN , N = p + m, a family of homogeneous left invariant
Hörmander’s vector fields Y0, Y1, Y2, ..., Yn on G and an open set V ⊂ U (x0) × I,
such that for any η ∈ V there exists a smooth diffeomorphism Θη from a neighbor-
hood of η containing V onto a neighborhood of the origin in G such that Θη (ξ) and
its first order derivatives with respect to ξ depend on η in a Cα continuous way,
locally uniformly in ξ, and for any smooth function f : G→ R,

(2.7) X̃i (f ◦Θη) (ξ) = (Yif +Rηi f) (Θη (ξ)) ∀ξ, η ∈ V
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(i = 0, 1, ..., n) where Rηi are Cr−pi,α vector fields of weight > α− pi. Moreover:

(1) The following equivalences hold:

(2.8) c1 |Θη (ξ)| 6 c2d̃ (η, ξ) 6 ‖Θη (ξ)‖ 6 c3d̃ (η, ξ) 6 c4 |Θη (ξ)|1/r

for any ξ, η ∈ V . Also,

(2.9) c1ρ
Q 6

∣∣∣B̃ (ξ, ρ)
∣∣∣ 6 c2ρQ for any ξ ∈ V, ρ 6 ρ0

where Q is the homogeneous dimension of the group G and ci, ρ0 are
suitable positive constants.

(2) The modulus of the Jacobian determinant of ξ 7→ Θη (ξ) has the form

(2.10) dξ = c (η) (1 +O (‖u‖)) du,
where

c (η) =

∣∣∣∣∣det

((
X̃[I]

)
I∈B

)
η

∣∣∣∣∣
is a Cα function, bounded and bounded away from zero. (Here B is the

set of multiindices giving the basis {X̃[I]}I∈B involved in the definition of
the map Θη.) More explicitly, (2.10) means that

dξ = c (η) [1 + ω (η, u)] du

with |ω (η, u)| 6 c ‖u‖, ω smooth in u and Cα with respect to η, uniformly
in u.

The diffeomorphism Θη (·) is defined as the inverse of the exponential function

u 7→ E (u, η) = exp

(∑
I∈B

uIS[I],η

)
(η)

where the vector fields S[I],η are smooth vector fields depending on η in a Cα way
(see [6, §3] for the details).

In the next theorem we will show that both E (·, η) and Θη (·) have derivatives
that depend on η in a Cα way. As a consequence we will prove some properties of
the coefficients of the vector fields Rηi .

Theorem 2.10.

(1) For every multi-index β the derivatives ∂|β|E
∂uβ

(u, η) and
∂|β|Θη
∂ξβ

(ξ) depend

on η in a Cα way.

(2) If Rηi =
∑N
k=1 c

η
ik (u) ∂uk then:

i. the functions cηik (u) (for 0 6 i 6 n) and
∂cηik
∂uj

(u) (for 1 6 i 6 n)

depend on η in a Cα way, locally uniformly with respect to u;

ii. the vector fields
∑N
k=1

∂cηik
∂uj

(u) ∂uk (for 1 6 i 6 n, 1 6 j 6 N) have

weight > α− 2.

Proof. We start with ∂|β|E
∂uβ

. We know that

E (u, η) = γ (1, u, η)

where γ solves the Cauchy problem
d

dt
γ (t, u, η) =

∑
I∈B

uI
(
S[I],η

)
γ(t,u,η)

γ (0, u, η) = η.
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For a fixed η the solution γ (·, ·, η) is smooth; moreover γ depends on η in a Cα

way. Therefore
d

dt

∂γ

∂uJ
(t, u, η) =

∑
I∈B

uI
∂S[I],η

∂ξ
(γ (t, u, η))

∂γ

∂uJ
(t, u, η) +

(
S[J],η

)
γ(t,u,η)

∂γ

∂uJ
(0, u, η) = 0.

Let now

ω (t, u, η) =
∂γ

∂uJ
(t, u, η) ,

A (t, u, η) =
∑
I∈B

uI
∂S[I],η

∂ξ
(γ (t, u, η)) ,

BJ (t, u, η) =
(
S[J],η

)
γ(t,u,η)

.

Since
(
S[J],η

)
ξ

and
∂S[I],η

∂ξ (ξ) are smooth in the ξ variable and Cα in the η variable,

the functions A (t, u, η) and BJ (t, u, η) are smooth in (t, u) and Cα in η. With the
above notation,{ d

dtω (t, u, η) = A (t, u, η) ω (t, u, η) +BJ (t, u, η)

ω (0, u, η) = 0

whence we readily see that ω is Cα in η. This shows that ∂E
∂uJ

(u, η) = ω (1, u, η)

has the same property. An iteration of this argument shows that also ∂|β|E
∂uβ

is Cα

with respect to η.

To prove the analogous result for
∂|β|Θη
∂ξβ

(ξ) we differentiate with respect to ξ

the identity

ξ = E (Θη (ξ) , η)

finding the matrix identity

I =
∂E

∂u
(Θη (ξ) , η)

∂Θη

∂ξ
(ξ)

and then

∂Θη

∂ξ
(ξ) =

[
∂E

∂u
(Θη (ξ) , η)

]−1

.

Since ∂E
∂u (ξ, η) is smooth in ξ and Cα in η and Θη (ξ) is Cα in η, we get the desired

result. An iteration of this argument shows that also
∂|β|Θη
∂ξβ

(ξ) is Cα in η.

To prove 2.i, let f (u) = uk and gη (ξ) = f (Θη (ξ)) = (Θη (ξ))k. Then, by (2.7),
we have

X̃igη (ξ) = (Yiuk) (Θη (ξ)) + cηik (Θη (ξ)) ,

so that

(2.11) cηik (u) = X̃igη
(
Θ−1
η (u)

)
− Yiuk.
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Since Yiuk is independent of η it is enough to consider the term X̃igη
(
Θ−1
η (u)

)
.

Let us write∣∣∣X̃igη1
(
Θ−1
η1 (u)

)
− X̃igη2

(
Θ−1
η2 (u)

)∣∣∣
6
∣∣∣X̃igη1

(
Θ−1
η1 (u)

)
− X̃igη1

(
Θ−1
η2 (u)

)∣∣∣+
∣∣∣X̃igη1

(
Θ−1
η2 (u)

)
− X̃igη2

(
Θ−1
η2 (u)

)∣∣∣
and

X̃igη (ξ) =
∑

b̃ij (ξ)
∂gη
∂ξj

(ξ) .

By Assumption A the coefficients b̃ij are at least Lipschitz. Since
∂gη
∂ξj

(ξ) are smooth

in ξ we have∣∣∣X̃igη1
(
Θ−1
η1 (u)

)
− X̃igη1

(
Θ−1
η2 (u)

)∣∣∣ 6 c ∣∣Θ−1
η1 (u)−Θ−1

η2 (u)
∣∣

6 c |η1 − η2|α .

Also, since
∂gη
∂ξj

(ξ) depends on η in a Cα way, we have∣∣∣X̃igη1
(
Θ−1
η2 (u)

)
− X̃igη2

(
Θ−1
η2 (u)

)∣∣∣ 6 c |η1 − η2|α .

By (2.11) this shows that η 7→ cηik (u) is Cα. Let us consider now

∂cηik
∂uj

(u) = ∇ξ
(
X̃igη

) (
Θ−1
η (u)

)
·
∂Θ−1

η (u)

∂uj
− ∂

∂uj
(Yiuk) .

Since
∂Θ−1

η (u)

∂uj
depends on η in a Cα way it is enough to study ∇ξ

(
X̃igη

) (
Θ−1
η (u)

)
.

We have

∂

∂ξ`
X̃igη (ξ) =

∑ ∂b̃ij
∂ξ`

(ξ)
∂gη
∂ξj

(ξ) +
∑

b̃ij (ξ)
∂2gη
∂ξ`∂ξj

(ξ) .

By Assumption A, for i 6= 0, b̃ij ∈ Cr−1,α, so that
∂b̃ij
∂ξ`
∈ Cr−2,α. Since for r = 2

we have α = 1,
∂b̃ij
∂ξ`

is at least Lipschitz therefore ∂
∂ξ`
X̃igη (ξ) is Lipschitz with

respect to ξ and Cα with respect to η. The proof now follows as in the previous
case.

To show 2.ii, we first note that, from the proof of [6, Prop. 3.5], one reads that

(2.12) |cηik (u)| 6 c |u|r−1+α
.

On the other hand, we know that cηik (·) ∈ Cr−1,α, hence the Taylor expansion of
cηik (·) and the bound (2.12) imply∣∣∣∣∂cηik∂uj

(u)

∣∣∣∣ 6 c |u|r−2+α 6 c ‖u‖αk−2+α
.

This implies 2.ii. �

The assertions on the “weight” of the remainders Rηi in point 2.ii of the previous
theorem in particular mean that, whenever f : G → R is homogeneous of degree
−k (with respect to the dilations D (λ)), then near the origin

(2.13) |Rηi f (u)| 6 c

‖u‖k+pi−α for i = 0, 1, ..., n.

Moreover, the statements 2.i and 2.ii in the above theorem immediately imply:
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Corollary 2.11. All the differential operators Dη
ij defined by the compositions

YjR
η
i , Rηi Yj, R

η
iR

η
j (i, j = 1, 2, ..., n)

satisfy the bound

(2.14)
∣∣Dη

ijf (u)
∣∣ 6 c

‖u‖k+2−α

for u in a neighborhood of the origin, whenever f : G → R is D (λ)-homogeneous
of degree −k. Also, the coefficients of Dη

ij depend on η in a Cα way.

Next, we have to point out some properties related to the volume of metric
balls.

Remark 2.12. In contrast with (2.9), if we apply the estimates (2.3) for x in
the neighborhood U (x0) where the lifting theorem applies, we find the following
useful inequalities

(2.15) c1

(
r1

r2

)p
6
|B (x, r1)|
|B (x, r2)|

6 c2

(
r1

r2

)Q
for any r1, r2 with ρ0 > r1 > r2 > 0. This follows from the inequalities p 6 |I| 6 Q,
holding for each I in the sums appearing in (2.3).

The following nonsmooth version of a well-known result by Sánchez-Calle [37]
and Nagel, Stein, Wainger [34], has been proved in [5], and allows one to compare
the volume of balls in the lifted and in the original variables.

Theorem 2.13. Let x0, U (x0), and I be as in the lifting theorem. Then, up
to possibly shrinking the set U (x0), there exist positive constants c1, c2, ρ0, and
δ ∈ (0, 1) such that for any (x, h) ∈ U (x0) × I, any y ∈ B (x, δρ) , 0 < ρ < ρ0, we
have

(2.16) c1

∣∣∣B̃ ((x, h) , ρ)
∣∣∣

|B (x, ρ)|
6
∫
Rm

χB̃((x,h),ρ) (y, s) ds 6 c2

∣∣∣B̃ ((x, h) , ρ)
∣∣∣

|B (x, ρ)|
.

Actually the second inequality holds for every y ∈ U (x0). Also, the projection of

B̃ ((x, h) , ρ) on Rp is exactly B (x, ρ) .

Remark 2.14. Actually (2.16) is stated in [5] when X0 is lacking; however, the
proof given in [5] relies on the analog result which holds for smooth Hörmander’s
vector fields. In turn, the result for smooth Hörmander’s vector fields has been
proved in [37] when X0 is lacking, while just one of the two inequalities in (2.16)
has been proved in [34] also in presence of X0; however, as shown in [20], the same
argument used in [34] allows one to prove also the other inequality. Hence (2.16)
holds in the smooth case also in presence of X0, and the same is true for nonsmooth
Hörmander’s vector fields.

Notation. Throughout the paper we will handle four types of vector fields,
which will be regarded as differential operators acting on different variables. The
vector fields

Yi and Rηi
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act on the variable u in the group G (that is, they are written in the coordinates
u), and we will often have u = Θη (ξ); moreover, the coefficients of the Rηi ’s depend
on the variable η as a parameter. The vector fields

Xi and X̃i

act on Rp, RN , respectively; they are often applied on a function of two variables,
and in this case, they will always be seen as acting on the first variable, which in
Rp is called x and in RN is called ξ = (x, h). For instance,

Xif (x, y) = Xi [f (·, y)] (x) ;

X̃if (ξ, η) = X̃i [f (·, η)] (ξ) .

These conventions will be applied consistently throughout the paper.

3. Geometric estimates

In this section we establish some estimates which relate the growth of some
kernels defined in the lifted space with that of kernels defined in the original space
Rp. The fact that the volume of metric balls in Rp does not behave like a fixed
power of the radius makes these estimates delicate to be proved. These results will
be fundamental throughout the following.

Let Ω ⊂ Rp be a domain where our assumptions are satisfied, Ω′ b Ω, x0 ∈ Ω′,
U (x0) = B (x0, r0) b Ω a neighborhood of x0 where the lifting and approximation
theorem is applicable, R a number small enough so that B (x, 2R) b Ω for any
x ∈ U (x0). Let ϕ,ψ ∈ C∞0 (Rm) be supported in the neighborhood I of the origin
which appears in Theorem 2.7. Shrinking if necessary U (x0) and the supports of
ϕ,ψ, we can assume that 4r0 6 R and

d̃ ((x, h) , (y, k)) < R

for x, y ∈ U (x0) and h, k in the supports of ϕ,ψ, respectively. With this notation,
we have the following:

Lemma 3.1. For every β ∈ R there exists c > 0 such that∫
Rm

∫
Rm

ψ (h)∥∥Θ(y,k) (x, h)
∥∥Q−β dhϕ (k) dk 6 c

∫ R

d(x,y)

rβ−1

|B (x, r)|
dr

for any x, y ∈ U (x0).

This is just [34, Thm. 5], in our nonsmooth context. It can be proved at the
same way using Theorem 2.13.

It is convenient to give a name to the function which appears in the previous
Lemma, since it will be a central object throughout the following.

Definition 3.2. For x, y ∈ U (x0) , x 6= y and β ∈ R, let

(3.1) φβ (x, y) =

∫ R

d(x,y)

rβ−1

|B (x, r)|
dr.

The estimate in the previous lemma is made more readable by the next:
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Lemma 3.3. For x, y ∈ U (x0) , x 6= y, the following inequalities hold:

φβ (x, y) 6



c
d (x, y)

β

|B (x, d (x, y))|
for β < p

c
d (x, y)

p

|B (x, d (x, y))|
log

R

d (x, y)
for β = p

c
d (x, y)

p

|B (x, d (x, y))|
Rβ−p for β > p

(recall that p is the Euclidean dimension of the space of variables x, y).

Proof. By (2.15) we have:

|B (x, r)| > c |B (x, d (x, y))|
(

r

d (x, y)

)p
for d (x, y) < r < R.

Hence, for β < p,∫ R

d(x,y)

rβ−1

|B (x, r)|
dr 6 c

d (x, y)
p

|B (x, d (x, y))|

∫ R

d(x,y)

rβ−1

rp
dr

= c
d (x, y)

p

|B (x, d (x, y))|

[
d (x, y)

β−p −Rβ−p

p− β

]

6 c
d (x, y)

p

|B (x, d (x, y))|
d (x, y)

β−p
= c

d (x, y)
β

|B (x, d (x, y))|
.

The proof in other cases is analogous. �

By a standard computation the previous lemma immediately implies

Corollary 3.4. For any β > 0 the following bounds hold:

Ψβ (x, r) ≡
∫
d(x,y)<r

φβ (x, y) dy 6

 crβ if β < p
cεr

β−ε if β = p (any ε > 0)
crp if β > p

where in case β < p the constant c is independent of R. In any case, Ψβ (x, r)→ 0
as r → 0, uniformly in x.

Theorem 3.5. We have the following:
1) there exists c > 0 such that for every β, γ > 0 :∫

U(x0)

φβ (x, y)φγ (y, z) dy 6 c

(
1

β
+

1

γ

)
φβ+γ (x, z)

for every x, z ∈ U (x0).
2) there exists c > 0 such that for every γ > Q

φγ (x, y) 6 cRγ−Q

for every x, y ∈ U (x0). (Recall that Q is the homogeneous dimension of the group
in the lifted space).
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Remark 3.6. Comparing point 2) in the statement of the above theorem with
the case β > p in the statement of Lemma 3.3, one can see why in our context it is
necessary to work with the functions φβ instead of the simpler functions

ψβ (x, y) =
d (x, y)

β

|B (x, d (x, y))|
.

The point is that the functions φβ are bounded for β large enough, so that an
iterative construction involving integrals of the kind∫

U(x0)

φβ (x, y)φγ (y, z) dy

ends with a bounded function. On the other hand, if one tries to prove an analog
of the previous theorem for the ψβ ’s, the best upper bound one can find is

d (x, y)
p

|B (x, d (x, y))|

which is generally unbounded, because |B (x, d (x, y))| > cd (x, y)
Q

with Q > p.
This “dimensional gap” occurs in our general context since the measure of a ball
does not behave like a fixed power of the radius.

Proof. We start by noting that

φβ (x, y) 6 cφβ (y, x) .

Indeed,

φβ (x, y) =

∫ R

d(x,y)

rβ−1

|B (x, r)|
dr 6 c

∫ R

d(x,y)

rβ−1

|B (y, r)|
dr = cφβ (y, x)

since for d (x, y) < r we have B (y, r) ⊂ B (x, 2r) ; for x ∈ U (x0) and r 6 R the
doubling condition is applicable and gives

|B (y, r)| 6 |B (x, 2r)| 6 c |B (x, r)| .

Also, since R > 4r0 > 2d (x, y) for any x, y ∈ U (x0), we have∫ R

1
2d(x,y)

rβ−1

|B (x, r)|
dr =

∫ R/2

1
2d(x,y)

rβ−1

|B (x, r)|
dr +

∫ R

R/2

rβ−1

|B (x, r)|
dr

6
c

2β

∫ R

d(x,y)

rβ−1

|B (x, r)|
dr +

∫ R

d(x,y)

rβ−1

|B (x, r)|
dr

6 c
∫ R

d(x,y)

rβ−1

|B (x, r)|
dr(3.2)

where c is independent of β. Now,∫
U(x0)

φβ (x, y)φγ (y, z) dy

=

∫
d(x,y)< 1

2d(x,z)

(...) dy +

∫
d(z,y)< 1

2d(x,z)

(...) dy +

∫
d(x,y)> 1

2d(x,z)

d(z,y)> 1
2d(x,z)

(...) dy

≡ I + II + III.
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To bound I we note that 1
2d (y, z) 6 d (x, z) 6 2d (y, z), hence

I =

∫
d(x,y)< 1

2d(x,z)

(∫ R

d(x,y)

rβ−1

|B (x, r)|
dr

∫ R

d(y,z)

sγ−1

|B (z, s)|
ds

)
dy

6 c
∫ R

1
2d(x,z)

sγ−1

|B (z, s)|
ds

∫
d(x,y)< 1

2d(x,z)

(∫ R

d(x,y)

rβ−1

|B (x, r)|
dr

)
dy

and, applying Fubini’s theorem in the integral in drdy,

d (x, y) <
1

2
d (x, z) , d (x, y) < r < R =⇒ 0 < r < R, d (x, y) < min

(
1

2
d (x, z) , r

)
,

we have that

I 6 c
∫ R

1
2d(x,z)

sγ−1

|B (z, s)|
ds

∫ R

0

rβ−1

|B (x, r)|

(∫
d(x,y)< 1

2d(x,z)∧r
dy

)
dr

= c

∫ R

1
2d(x,z)

sγ−1

|B (z, s)|
ds

{∫ 1
2d(x,z)

0

rβ−1

|B (x, r)|

(∫
d(x,y)<r

dy

)
dr

+

∫ R

1
2d(x,z)

rβ−1

|B (x, r)|

(∫
d(x,y)< 1

2d(x,z)

dy

)
dr

}

6 c
∫ R

1
2d(x,z)

sγ−1

|B (z, s)|
ds

{∫ 1
2d(x,z)

0

rβ−1dr +

∫ R

1
2d(x,z)

rβ−1

|B (x, r)|
|B (x, d (x, z))| dr

}
≡ IA + IB .

In turn,

IA =
c

β

(
1

2
d (x, z)

)β ∫ R

1
2d(x,z)

sγ−1

|B (z, s)|
ds 6

c

β

∫ R

d(x,z)

sβ+γ−1

|B (z, s)|
ds

and, using the notation B(x; z) = B (x, d (x, z)) and applying (3.2),

IB 6 c |B (x; z)|
∫ R

d(x,z)

sγ−1

|B (z, s)|
ds

∫ R

d(x,z)

rβ−1

|B (x, r)|
dr

= c |B (x; z)|
∫ R

d(x,z)

sγ−1

|B (z, s)|

(∫ s

d(x,z)

rβ−1

|B (x, r)|
dr +

∫ R

s

rβ−1

|B (x, r)|
dr

)
ds

≡ IB1
+ IB2

,

where, since in IB2
we have d (x, z) < s < r, then |B (x; z)| 6 |B (z, s)| and therefore

(3.3) IB2
6 c

∫ R

d(x,z)

sγ−1

(∫ R

s

rβ−1

|B (x, r)|
dr

)
ds

applying Fubini’s theorem:
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d (x, z) < s < R, s < r < R =⇒ d (x, z) < r < R, d (x, z) < s < r

= c

∫ R

d(x,z)

rβ−1

|B (x, r)|

(∫ r

d(x,z)

sγ−1ds

)
dr

6 c
∫ R

d(x,z)

rβ−1

|B (x, r)|

(∫ r

0

sγ−1ds

)
dr

=
c

γ

∫ R

d(x,z)

rβ+γ−1

|B (x, r)|
dr.

As to IB1
, applying once more Fubini’s theorem,

d (x, z) < s < R, d (x, z) < r < s =⇒ d (x, z) < r < R, r < s < R,

we have

IB1
= c |B (x; z)|

∫ R

d(x,z)

rβ−1

|B (x, r)|

(∫ R

r

sγ−1

|B (z, s)|
ds

)
dr

since d (x, z) < r implies |B (x; z)| 6 |B (x, r)|,

6 c
∫ R

d(x,z)

rβ−1

(∫ R

r

sγ−1

|B (z, s)|
ds

)
dr

and this can be handled as IB2
(see (3.3)).

We have therefore proved that I satisfies the desired bound. The term II can
be handled analogously (by symmetry).

Let us come to the bound on III. Since

d (x, y) >
1

2
d (x, z) , d (z, y) >

1

2
d (x, z) and d (x, y) < r < R, d (y, z) < s < R

imply

1

2
d (x, z) < r < R,

1

2
d (x, z) < s < R

and
1

2
d (x, z) < d (x, y) < r,

1

2
d (x, z) < d (y, z) < s,

applying Fubini’s theorem in the triple integral gives

III =

∫ R

1
2d(x,z)

rβ−1

|B (x, r)|

∫ R

1
2d(x,z)

sγ−1

|B (z, s)|

∫
1
2d(x,z)<d(x,y)<r
1
2d(x,z)<d(y,z)<s

dy

 dsdr

6
∫ R

1
2d(x,z)

rβ−1

|B (x, r)|

(∫ R

1
2d(x,z)

sγ−1

|B (z, s)|
|B (x, r) ∩B (z, s)| ds

)
dr

=

∫ R

1
2d(x,z)

rβ−1

|B (x, r)|

(∫ r

1
2d(x,z)

+

∫ R

r

)(
sγ−1

|B (z, s)|
|B (x, r) ∩B (z, s)| ds

)
dr

≡ IIIA + IIIB .
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Now,

IIIA 6
∫ R

1
2d(x,z)

rβ−1

|B (x, r)|

(∫ r

1
2d(x,z)

sγ−1ds

)
dr

6
∫ R

1
2d(x,z)

rβ−1

|B (x, r)|

(∫ r

0

sγ−1ds

)
dr

=
1

γ

∫ R

1
2d(x,z)

rβ+γ−1

|B (x, r)|
dr

6
c

γ

∫ R

d(x,z)

rβ+γ−1

|B (x, r)|
dr

by (3.2). As to IIIB , since

1

2
d (x, z) < r < R, r < s < R =⇒ 1

2
d (x, z) < s < R,

1

2
d (x, z) < r < s,

by Fubini’s theorem,

IIIB 6
∫ R

1
2d(x,z)

rβ−1

(∫ R

r

sγ−1

|B (z, s)|
ds

)
dr

=

∫ R

1
2d(x,z)

sγ−1

|B (z, s)|

(∫ s

1
2d(x,z)

rβ−1dr

)
ds

6
∫ R

1
2d(x,z)

sγ−1

|B (z, s)|

(∫ s

0

rβ−1dr

)
ds

=
1

β

∫ R

1
2d(x,z)

sβ+γ−1

|B (z, s)|
ds

6
c

β

∫ R

d(x,z)

sβ+γ−1

|B (z, s)|
ds.

This shows that also III satisfies the desired bound, and point 1 of the theorem is
proved.

As to point 2, the volume estimate (2.15) gives, for any r < R,

|B (x, r)| > c
( r
R

)Q
|B (x,R)| > crQ

since

inf
x∈Ω′

|B (x,R)| > c > 0

as easily follows by the doubling condition. Then, for any γ > Q,∫ R

d(x,y)

rγ−1

|B (x, r)|
dr 6

∫ R

d(x,y)

rγ−1

crQ
dr 6 c

∫ R

0

rγ−1−Qdr = cRγ−Q.

�

In order to deal with continuity matters of the next sections, we will need the
following
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Proposition 3.7. Let T ⊂ U (x0) be an open set.
(i) Let f (x, y) , g (x, y) be two functions defined in T × T satisfying

|f (x, y)| 6 cφβ (x, y) ;

|g (x, y)| 6 cφγ (x, y) ,

for some β, γ > 0 and any x, y ∈ T, x 6= y. Assume that both f and g are continuous
in the joint variables (x, y) for x 6= y. Then the function

h (x, y) =

∫
T

f (x, z) g (z, y) dz

is jointly continuous in T × T for x 6= y.
(ii) Let f (x, y) be a function defined in T × T satisfying

|f (x, y)| 6 c d (x, y)
β

|B (x, d (x, y))|
for some β > 0, f (x, y) measurable with respect to y for every x, and continuous
with respect to x at any x 6= y, for a.e. y. Then the function

m (x) =

∫
T

f (x, y) dy

is continuous in T .

Proof. (i) Let ϕε : [0,∞)→ [0, 1] be a continuous function such that ϕε (t) =
0 for t 6 ε/2, ϕε (t) = 1 for t > ε, and define

fε (x, y) = f (x, y)ϕε (d (x, y)) ;

gε (x, y) = g (x, y)ϕε (d (x, y)) ;

hε (x, y) =

∫
T

fε (x, z) gε (z, y) dz.

For any fixed ε > 0 the function

fε (x, z) gε (z, y)

is measurable with respect to z for every (x, y) and, for any z ∈ T, continuous in
the joint variables (x, y) . Moreover by our assumption on f, g and Lemma 3.3,

|fε (x, z) gε (z, y)| 6 c 1

|B (x, ε)|
1

|B (y, ε)|
6 c (ε) .

Then, by Lebesgue theorem, hε is continuous in T × T , since T has finite measure.
Let us show that hε (x, y) → h (x, y) locally uniformly for x 6= y, which will imply
the continuity of h. To see this, let us write

hε (x, y)− h (x, y) =

∫
T

[fε (x, z)− f (x, z)] gε (z, y) dz

+

∫
T

f (x, z) [gε (z, y)− g (z, y)] dz

and

|hε (x, y)− h (x, y)| 6 c
∫
d(x,z)<ε

φβ (x, z)φγ (z, y) dz

+ c

∫
d(z,y)<ε

φβ (x, z)φγ (z, y) dz = I + II.
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Now, for d (x, y) > δ > 0 and ε < δ/2, d (x, z) < ε implies d (z, y) > δ/2, hence by
Lemma 3.3 φγ (z, y) 6 c (δ) and

I 6 c (δ)

∫
d(x,z)<ε

φβ (x, z) dz = c (δ) Ψβ (x, ε)→ 0

as ε→ 0, uniformly for d (x, y) > δ > 0 (see Corollary 3.4). Analogously

II 6 c (δ)

∫
d(z,y)<ε

φγ (z, y) dz = c (δ) Ψγ (y, ε)→ 0

as ε → 0, uniformly for d (x, y) > δ > 0. Hence (i) is proved. The proof of (ii) is
similar but easier. �

4. The parametrix method

Let x0, U (x0), and I be as in the previous sections. To shorten notation, in the
following we will write U instead of U (x0). We will denote by ξ, η lifted variables
ranging in the small domain

V ⊂ U × I ⊂ Rp+m,

as in the approximation theorem. By known results of Folland [13], the operator

L =

p∑
i=1

Y 2
i + Y0

possesses a fundamental solution Γ on G, left invariant and homogeneous of degree
2−Q. (Recall that, in order for Folland’s theory to be applicable, the homogeneous
dimension Q of G must be > 3. However, this restriction only rules out uniformly
elliptic operators in two variables).

In particular, this means that for some positive constant c we have

|Γ (Θη (ξ))| 6 c

‖Θη (ξ)‖Q−2
;

|(YiΓ) (Θη (ξ))| ,
∣∣∣X̃i [Γ (Θη (ξ))]

∣∣∣ 6 c

‖Θη (ξ)‖Q−1
;

(4.1)

|(YiYjΓ) (Θη (ξ))| ,
∣∣∣X̃iX̃j [Γ (Θη (ξ))]

∣∣∣ 6 c

‖Θη (ξ)‖Q
;

|(Y0Γ) (Θη (ξ))| ,
∣∣∣X̃0 [Γ (Θη (ξ))]

∣∣∣ 6 c

‖Θη (ξ)‖Q
,

for every η, ξ ∈ V, η 6= ξ, where the X̃-derivatives act on the ξ variable. Recall
that, according to the Notation stated at the end of § 2, we will always assume that
differential operators act on the ξ variable of Γ (Θη (ξ)). Also, recall that by (2.8)

‖Θη (ξ)‖ is equivalent to d̃ (η, ξ).
Let us define the following (local) parametrix for the operator L. For x, y ∈ U ,

we set

(4.2) P (x, y) =

∫
Rm

(∫
Rm

Γ
(
Θ(y,k) (x, h)

)
ϕ (h) dh

)
ϕ (k) dk,
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where ϕ ∈ C∞0 (Rm) is a cutoff function fixed once and for all, equal to one in
a neighborhood of the origin and supported in I. It is worth telling that the
alternative definition ∫

Rm
Γ
(
Θ(y,0) (x, h)

)
ϕ (h) dh

of the parametrix (as in [34, eq.(20)]) would be fit for the purposes of this section,
but not for those of section 5. Let us also note that, in case our vector fields Xi

were free up to step s, the lifting procedure would be unnecessary, we would simply

have X̃i = Xi and:

P (x, y) = Γ (Θy (x)) .

As already sketched in the introduction, the strategy is then the following. We
look for a fundamental solution for L of the form

γ (x, y) = P (x, y) + J (x, y)

where

J (x, y) =

∫
U

P (x, z) Φ (z, y) dz.

In turn, we will find Φ as the series

(4.3) Φ (z, y) =

∞∑
j=1

Zj (z, y) for z 6= y

where the Zj ’s are defined inductively by

Z1 (x, y) = LP (x, y)(4.4)

Zj+1 (x, y) =

∫
U

Z1 (x, z)Zj (z, y) dz for x 6= y.

More precisely, we will eventually find that the above identities need to be slightly
modified multiplying some of the involved functions by a suitable coefficient c0 (x);
the necessity of this will be clear in the following.

Before carrying out this plan step by step, let us clarify the way how our
constants will depend on the vector fields:

Dependence of the constants. All the constants in the upper bounds proved
in this section will depend on the vector fields Xi’s only through the following
quantities:

(i) the norms Cr−1,α (Ω) of the coefficients of Xi (i = 1, 2, ..., n) and the norms
Cr−2,α (Ω) of the coefficients of X0;

(ii) a positive constant c0 such that the following bound holds:

inf
x∈Ω

max
|I1|,|I2|,...,|Ip|6r

∣∣∣det
((
X[I1]

)
x
,
(
X[I2]

)
x
, ...,

(
X[Ip]

)
x

)∣∣∣ > c0,
where “det” denotes the determinant of the p×p matrix having the vectors

(
X[Ii]

)
x

as rows.
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Proposition 4.1 (Properties of P ). Under the above assumptions and with
the above notation, we have, for any x, y ∈ U :

P (·, y) ∈ C∞ (U \ {y}) ;(4.5)

P (x, ·) ∈ Cαloc (U \ {x}) ;(4.6)

P ∈ C (U × U \∆) ;(4.7)

XiP, XjXiP, X0P ∈ C (U × U \∆)(4.8)

for i, j = 1, 2, ..., n, where ∆ = {(x, x) : x ∈ U} and the exponent α ∈ (0, 1] is
the one appearing in the assumptions on the coefficients of the vector fields Xi’s.
Moreover:

|P (x, y)| 6 cφ2 (x, y) ;(4.9)

|XiP (x, y)| 6 cφ1 (x, y) for i = 1, 2, ..., n;(4.10)

|XjXiP (x, y)| , |X0P (x, y)| 6 cφ0 (x, y) for i, j = 1, 2, ..., n.(4.11)

(For the meaning of the symbol XiP (x, y), recall the Notation fixed at the
end of § 2). Note that, regardless the infinite differentiability of P (·, y), only r
derivatives of P (·, y) with respect to the vector fields Xi exist (since the vector
fields themselves are nonsmooth). In particular, recalling that r > 2, we have that
XiXjP (x, y) is well defined for any x 6= y.

Proof. From (4.2) we read that for any x 6= y the integral defining P is
absolutely convergent, and P can be differentiated under the integral sign. Since Γ
is smooth outside the origin, by the properties of the map Θ stated in Theorem 2.9,
condition (4.5) immediately follows. To prove (4.6) and (4.7) we will show that for
x 6= y we have a locally uniform (in x) control on the Cαloc modulus of continuity
in y for P (x, ·). Namely, since Γ is smooth outside the origin, we can write

|Γ (u1)− Γ (u2)| 6 c (δ) |u1 − u2|

if |u1| > δ and |u1 − u2| 6 δ/2. Also, we know that, by Theorem 2.9

d (x, y) 6 d̃ ((x, h) , (y, k)) 6 c
∥∥Θ(y,k) (x, h)

∥∥ 6 c ∣∣Θ(y,k) (x, h)
∣∣1/r

and ∣∣Θ(y1,k) (x, h)−Θ(y2,k) (x, h)
∣∣ 6 c |y1 − y2|α ,

hence there exist constants c1, c2 such that for any fixed δ > 0, if d (x, y1) > c1δ1/r

and |y1 − y2| 6 c2δ1/α then

|P (x, y1)− P (x, y2)| 6
∫
Rm

(∫
Rm

∣∣Γ (Θ(y1,k) (x, h)
)
− Γ

(
Θ(y2,k) (x, h)

)∣∣ϕ (h) dh

)
ϕ (k) dk

6 c (δ) |y1 − y2|α

which means that P (x, ·) is Cα locally uniformly for x 6= y.
Lemma 3.1 with β = 2 together with (2.8), (4.1) and (4.2) implies (4.9).
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Moreover, by (2.5) and (2.7),

XiP (x, y) =

∫
Rm

∫
Rm

X̃i

[
Γ
(
Θ(y,k) (x, h)

)
ϕ (h)

]
dhϕ (k) dk

=

∫
Rm

∫
Rm

{[
(YiΓ)

(
Θ(y,k) (x, h)

)
+
(
R

(y,k)
i Γ

) (
Θ(y,k) (x, h)

)]
ϕ (h)

+ Γ
(
Θ(y,k) (x, h)

)
X̃iϕ (h)

}
dhϕ (k) dk

≡
∫
Rm

∫
Rm

(YiΓ)
(
Θ(y,k) (x, h)

)
ϕ (h) dhϕ (k) dk

+

∫
Rm

∫
Rm

2∑
l=1

Ql (y, k; x, h)ϕl (h) dhϕ (k) dk

where ϕl ∈ C∞0 (Rm) and, by (2.13) and (4.1),

|Ql (y, k; x, h)| 6 c∥∥Θ(y,k) (x, h)
∥∥Q−1+α

,

∣∣(YiΓ)
(
Θ(y,k) (x, h)

)∣∣ 6 c∥∥Θ(y,k) (x, h)
∥∥Q−1

,

so that Lemma 3.1 implies (4.10).
The proof of (4.11) is an iteration of the previous argument:

XjXiP (x, y) =

∫
Rm

∫
Rm

X̃jX̃i

[
Γ
(
Θ(y,k) (x, h)

)
ϕ (h)

]
dhϕ(k)dk

=

∫
Rm

∫
Rm

{
(YjYiΓ)

(
Θ(y,k) (x, h)

)
ϕ (h)

+
(
YjR

(y,k)
i Γ +R

(y,k)
j YiΓ +R

(y,k)
j R

(y,k)
i Γ

) (
Θ(y,k) (x, h)

)
ϕ (h)

+
[
(YjΓ)

(
Θ(y,k) (x, h)

)
+
(
R

(y,k)
j Γ

) (
Θ(y,k) (x, h)

)]
X̃iϕ (h)

+
[
(YiΓ)

(
Θ(y,k) (x, h)

)
+
(
R

(y,k)
i Γ

) (
Θ(y,k) (x, h)

)]
X̃jϕ (h)

+Γ
(
Θ(y,k) (x, h)

)
X̃jX̃iϕ (h)

}
dhϕ(k)dk

=

∫
Rm

∫
Rm

(YjYiΓ)
(
Θ(y,k) (x, h)

)
ϕ (h) dhϕ(k)dk

+

∫
Rm

∫
Rm

∑
s

Qs (y, k; x, h)ϕs (h) dhϕ (k) dk

with ϕs ∈ C∞0 (Rm) and, as above, exploiting now also Corollary 2.11,

|Qs (y, k; x, h)| 6 c∥∥Θ(y,k) (x, h)
∥∥Q−α ,∣∣(YjYiΓ)

(
Θ(y,k) (x, h)

)∣∣ 6 c∥∥Θ(y,k) (x, h)
∥∥Q

which by Lemma 3.1 implies (4.11) for XjXiP (x, y). The proof of the bound on
X0P (x, y) is similar.

Finally, the explicit expression of the derivatives XiP,XjXiP,X0P allows us
to repeat the argument used to prove (4.7), showing that also (4.8) holds. �
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Proposition 4.2 (Properties of Z1). Let L be as in (1.1) and, for x, y ∈ U ,
x 6= y, let

(4.12) Z1 (x, y) = LP (x, y) .

Under the above assumptions and with the above notation, we have:

Z1 (·, y) ∈ Cr−2,α
loc (U \ {y}) ;(4.13)

Z1 (x, ·) ∈ Cαloc (U \ {x}) ;(4.14)

Z1 ∈ C (U × U \∆) .(4.15)

Moreover:

(4.16) |Z1 (x, y)| 6 c1φα (x, y) .

Proof. Let us first prove (4.16). The computation is similar to that of the
previous proof. However we have to write it explicitly because we will need it in
the following. By (2.5) and Theorem 2.9 we have

Z1 (x, y) =

∫
Rm

∫
Rm

L̃
[
Γ
(
Θ(y,k) (x, h)

)
ϕ (h)

]
dhϕ(k)dk

=

∫
Rm

∫
Rm

{
(LΓ)

(
Θ(y,k) (x, h)

)
ϕ (h) +

+

∑
j

(
YjR

(y,k)
j Γ +R

(y,k)
j YjΓ +R

(y,k)
j R

(y,k)
j Γ

)
+R

(y,k)
0 Γ

(Θ(y,k) (x, h)
)
ϕ (h)

+ 2
∑
j

[
(YjΓ)

(
Θ(y,k) (x, h)

)
+R

(y,k)
j Γ

(
Θ(y,k) (x, h)

)]
X̃jϕ (h)

+ Γ
(
Θ(y,k) (x, h)

)
L̃ϕ (h)

}
dhϕ(k)dk.

Since (LΓ) (u) = 0 for u 6= 0, then (LΓ)
(
Θ(y,k) (x, h)

)
= 0 for (x, h) 6= (y, k), so

that, for x 6= y,

(4.17) Z1 (x, y) =

∫
Rm

∫
Rm

3∑
i=1

Qi (y, k, x, h)ϕi (h) dhϕ(k)dk

where ϕi ∈ C∞0 (Rm) and, by Corollary 2.11,

|Qi (y, k, x, h)| 6 c∥∥Θ(y,k) (x, h)
∥∥Q−α .

It follows that

|Z1 (x, y)| 6 c
∫
Rm

(∫
Rm

ψ (h)∥∥Θ(y,k) (x, h)
∥∥Q−α dh

)
ϕ(k)dk

for some ψ ∈ C∞0 (Rm). By Lemma 3.1, (4.16) follows.
As to the regularity of Z1, let us inspect for instance the term∑

j

∫
Rm

∫
Rm

(
R

(y,k)
j R

(y,k)
j Γ

) (
Θ(y,k) (x, h)

)
ϕ (h) dhϕ (k) dk

(all the others being more regular). By Corollary 2.11,

u 7→ R
(y,k)
j R

(y,k)
j Γ (u)
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is a Cr−2,α
loc function outside the origin. Since ξ 7→ Θ(y,k) (ξ) is smooth,

(x, h) 7→ R
(y,k)
j R

(y,k)
j Γ

(
Θ(y,k) (x, h)

)
is at least Cr−2,α

loc for (x, h) 6= (y, k) , and Z1 (·, y) ∈ Cr−2,α
loc (U \ {y}) .

To deal with the regularity of Z1 (x, ·) note that by Corollary 2.11, RηjR
η
jΓ (u)

depends on η in a Cα continuous way locally uniformly in u 6= 0. It follows that

y 7→
(
R

(y,k)
j R

(y,k)
j Γ

) (
Θ(y,k) (x, h)

)
is Cαloc (U \ {x}) and the same is true for Z1 (x, ·), by an argument similar to that
used in the proof of Proposition 4.1 to deal with P (x, ·). Joint continuity of Z1

in (x, y) , outside the diagonal, also follows from these facts by a local uniformity
argument. �

Next, we can prove:

Proposition 4.3 (Properties of Φ). Let, for j = 1, 2, 3, ...,

(4.18) Zj+1 (x, y) =

∫
U

Z1 (x, z)Zj (z, y) dz for x, y ∈ U, x 6= y.

Then the functions Zj (x, y) are well defined for x, y ∈ U, x 6= y. Moreover, shrinking
U if necessary, the series

(4.19) Φ (x, y) =

∞∑
j=1

Zj (x, y)

converges for x, y ∈ U, x 6= y and the function Φ satisfies the bound

(4.20) |Φ (x, y)| 6 cφα (x, y)

and the integral equation

(4.21) Φ (x, y) = Z1 (x, y) +

∫
U

Z1 (x, z) Φ (z, y) dz for x, y ∈ U, x 6= y.

Finally,

Zj ,Φ ∈ C (U × U \∆) .

Proof. By definition of Zj , the bound (4.16) and Theorem 3.5 we have, re-
cursively:

|Z2 (x, y)| 6 c21c
2

α
φ2α (x, y) ;

|Z3 (x, y)| 6 c31
(
c

2

α

)
c

(
1

α
+

1

2α

)
φ3α (x, y) 6 c31

(
c

2

α

)2

φ3α (x, y) ;

...

|Zj0 (x, y)| 6 cj01
(
c

2

α

)j0−1

φj0α (x, y) 6 CRj0α−Q 6 CRα,

where j0 is the least integer such that j0 > Q/α. Then:

|Zj0+k (x, y)| 6 CRα (cc1R
α)
k

for any k > 0.

We now choose U small enough in order to get

δ ≡ cc1Rα < 1.
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Then

|Zj0+k (x, y)| 6 Cδk

so that the series
∞∑
j=j0

Zj (x, y)

totally converges and the upper bound (4.20) holds. Moreover, we can write, for
any x, y ∈ U, x 6= y:

Z1 (x, y) +

∫
U

Z1 (x, z) Φ (z, y) dz

= Z1 (x, y) +

∫
U

Z1 (x, z)

∞∑
j=1

Zj (z, y) dz

= Z1 (x, y) +

∞∑
j=1

∫
U

Z1 (x, z)Zj (z, y) dz

= Z1 (x, y) +

∞∑
j=1

Zj+1 (x, y)

=

∞∑
j=1

Zj (x, y) = Φ (x, y)

so that (4.21) holds. Let us come to the continuity properties of Zj ,Φ. By (4.15)
and Lemma 3.7, the definition (4.18) recursively implies that

Zj ∈ C (U × U \∆) for j = 2, 3, ...

Since, by the above proof, the series in (4.3) totally converges, this also implies that

Φ ∈ C (U × U \∆) .

�

Proposition 4.4 (Properties of J). Let U be as in the previous proposition.
For x, y ∈ U, x 6= y, let

(4.22) J (x, y) =

∫
U

P (x, z) Φ (z, y) dz.

Then: J and XiJ (i = 1, 2, ..., n) are well defined for any x, y ∈ U, x 6= y;

(4.23) J, XiJ ∈ C (U × U \∆) ;

moreover, the following estimates hold (i = 1, 2, ..., n):

|J (x, y)| 6 cφ2+α (x, y) ;(4.24)

|XiJ (x, y)| 6 cφ1+α (x, y) .(4.25)

Proof. By (4.9), (4.20) and Theorem 3.5, we have

|J (x, y)| 6 c
∫
U

φ2 (x, z)φα (z, y) dz 6 cφ2+α (x, y) .
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Also, XiJ is well defined, indeed

XiJ (x, y) = Xi

∫
U

P (x, z) Φ (z, y) dz

=

∫
U

XiP (x, z) Φ (z, y) dz

and, by Propositions 4.1, 4.3 and Theorem 3.5,

|XiJ (x, z)| 6 c
∫
U

φ1 (x, z)φα (z, y) dz 6 cφ1+α (x, y) .

As to the continuity properties: by Proposition 4.1 and Proposition 4.3 we know
that P (x, y) , XiP (x, y) ,Φ (x, y) are continuous in the joint variables for x 6= y and
satisfy the bounds

|P (x, y)| 6 cφ2 (x, y) ;

|XiP (x, y)| 6 cφ1 (x, y) (i = 1, 2, ..., n) ;

|Φ (x, y)| 6 cφα (x, y) .

Hence Proposition 3.7 implies (4.23). �

Proposition 4.5. The following identity and upper bound hold in weak sense:

LJ (x, y) =

∫
U

Z1 (x, z) Φ (z, y) dz − c0 (x) Φ (x, y) ,(4.26)

|LJ (x, y)| 6 cφα (x, y)(4.27)

where

c0 (x) =

∫
Rm

c (x, k)ϕ2(k)dk

and c (x, k) is defined in (2.10).
Explicitly, denoting by G (x, y) the right hand side of (4.26), we have

(4.28)

∫
U

J (x, y)L∗ψ (x) dx =

∫
U

G (x, y)ψ (x) dx

for any ψ ∈ C∞0 (U) and y ∈ U , where L∗ is the transposed operator of L (see
(2.1)), and

|G (x, y)| 6 cφα (x, y) .

For the proof of the above proposition we need the following lemma.

Lemma 4.6. Let ω be a smooth function on G such that ω (u) = 0 for ‖u‖ < 1
2

and ω (u) = 1 for ‖u‖ > 1 and let ωε (u) = ω
(
D
(
ε−1
)
u
)
. Let R1 and R2 be vector

fields on G given by

R1 =

N∑
j=1

aj (u) ∂uj , R2 =

N∑
j=1

bj (u) ∂uj

and assume that, for a couple of s1, s2 ∈ R and some constant c > 0, every j, k =
1, 2, ..., N,

|aj (u)| 6 c ‖u‖s1+αj ;

|bj (u)| 6 c ‖u‖s2+αj ;

|∂ukbj (u)| 6 c ‖u‖s2+αj−αk
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where the αj’s are as in (2.6). Then there exists c′ > 0 such that for every ε > 0
and u ∈ G

|R1ωε (u)| 6 c′ ‖u‖s1

|R1R2ωε (u)| 6 c′ ‖u‖s1+s2 .

Proof. We have

|R1ωε (u)| 6
∑
|aj (u)|

∣∣∣∣∂ωε∂uj
(u)

∣∣∣∣
6
∑
‖u‖s1+αj 1

εαj

∣∣∣∣ ∂ω∂uj (D (ε−1
)
u
)∣∣∣∣

6 c ‖u‖s1

since on the support of ∂ω
∂uj

(
D
(
ε−1
)
u
)

we have ‖u‖ 6 ε. Similarly,

|R1R2ωε (u)| =

=

∣∣∣∣∣∣
 N∑
k=1

ak (u) ∂uk

N∑
j=1

bj (u) ∂uj

ωε (u)

∣∣∣∣∣∣
6 c

N∑
k=1

‖u‖s1+αk
N∑
j=1

∣∣∣∂ukbj (u) ∂ujωε (u) + bj (u) ∂2
ukuj

ωε

∣∣∣
6 c

N∑
k=1

‖u‖s1+αk
N∑
j=1

(
‖u‖s2+αj−αk

εαj

∣∣∣∣∂ujω(D(1

ε

)
u

)∣∣∣∣+
‖u‖s2+αj

εαk+αj

∣∣∣∣∂2
ukuj

ω

(
D

(
1

ε

)
u

)∣∣∣∣
)

6 c
N∑
k=1

‖u‖s1+αk ‖u‖s2−αk = c ‖u‖s1+s2 .

�

Proof of Proposition 4.5. To prove (4.26) we use a distributional argu-
ment. Let ωε be as in the previous Lemma, let Γε = ωεΓ and define

Pε (x, y) =

∫
Rm

(∫
Rm

Γε
(
Θ(y,k) (x, h)

)
ϕ (h) dh

)
ϕ (k) dk

and

Jε (x, y) =

∫
U

Pε (x, z) Φ (z, y) dz.

We have

Jε (x, y) =

∫
Rm

(∫
Rm

∫
U

Γε
(
Θ(z,k) (x, h)

)
Φ (z, y) dz ϕ (h) dh

)
ϕ (k) dk

and

LJε (x, y)

=

∫
Rm

∫
Rm

∫
U

L̃
[
Γε
(
Θ(z,k) (x, h)

)
ϕ (h)

]
Φ (z, y)ϕ (k) dzdhdk
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=

∫
Rm

∫
Rm

∫
U

LΓε
(
Θ(z,k) (x, h)

)
ϕ (h) Φ (z, y)ϕ (k) dzdhdk

+

∫
Rm

∫
Rm

∫
U

(∑
i

(
YiR

(z,k)
i +R

(z,k)
i Yi +R

(z,k)
i R

(z,k)
i +R

(z,k)
0

)
Γε
(
Θ(z,k) (x, h)

))
×

× ϕ (h) Φ (z, y)ϕ (k) dzdhdk

+

∫
Rm

∫
Rm

∫
U

2
∑
i

YiΓε
(
Θ(z,k) (x, h)

)
X̃iϕ (h) Φ (z, y)ϕ (k) dzdhdk

+

∫
Rm

∫
Rm

∫
U

Γε
(
Θ(z,k) (x, h)

)
L̃(x,h)ϕ (h) Φ (z, y)ϕ (k) dzdhdk.

To bound ∑
i

(
YiR

(z,k)
i +R

(z,k)
i Yi +R

(z,k)
i R

(z,k)
i +R

(z,k)
0

)
Γε (u)

we now recall that, by Theorem 2.9, the vector fields R
(z,k)
i , Yi, R

(z,k)
0 satisfy the

assumptions of Lemma 4.6 with s1 or s2 equal to α− 1,−1, α− 2, respectively. A
simple computation shows that∣∣∣∣∣∑

i

(
YiR

(z,k)
i +R

(z,k)
i Yi +R

(z,k)
i R

(z,k)
i +R

(z,k)
0

)
Γε (u)

∣∣∣∣∣ 6 c

‖u‖Q−α
.

Hence for suitable ϕj ∈ C∞0 (Rm) and Qε,j satisfying

|Qε,j (z, k; x, h)| 6 c∥∥Θ(z,k) (x, h)
∥∥Q−α

we have

LJε (x, y) =

∫
Rm

∫
Rm

∫
U

LΓε
(
Θ(z,k) (x, h)

)
ϕ (h) Φ (z, y)ϕ (k) dzdhdk

+

∫
Rm

∫
Rm

∫
U

3∑
j=1

Qε,j (z, k; x, h)ϕj (h) Φ (z, y)ϕ (k) dzdhdk.

Let now ψ ∈ C∞0 (U) be any test function. Then∫
Rp
LJε (x, y)ψ (x) dx =

=

∫
U

∫
Rm

∫
Rm

∫
Rp
LΓε

(
Θ(z,k) (x, h)

)
ψ (x)ϕ (h)ϕ (k) dxdhdkΦ (z, y) dz

+

∫
U

∫
Rm

∫
Rm

∫
Rp

3∑
j=1

Qε,j (z, k; x, h)ψ (x)ϕj (h)ϕ (k) dxdhdkΦ (z, y) dz.

Let now change variable in the first integral setting u = Θ(z,k) (x, h) . Then, by
(2.10),

dxdh = c (z, k) (1 +O (‖u‖)) du,
and setting

ϕ̂(z,k) (u) = ϕ (h)ψ (x)

∣∣∣∣
u=Θ(z,k)(x,h)
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we have∫
Rp
LJε (x, y)ψ (x) dx =

∫
U

∫
Rm

∫
G
LΓε (u) ϕ̂(z,k) (u) du c(z, k)ϕ(k)dkΦ (z, y) dz

+

∫
U

∫
Rm

∫
G
LΓε (u)O (‖u‖) ϕ̂(z,k) (u) du c(z, k)ϕ(k)dkΦ (z, y) dz

+

∫
U

∫
Rm

∫
Rm

∫
Rp

3∑
j=1

Qε,j (z, k; x, h)ϕj (h)ψ (x) dxϕ(k)dhdkΦ (z, y) dz.

Since LΓε (u) = 0 for ‖u‖ > ε, letting ε → 0 the second integral in the right hand
side vanishes, by Lebesgue’s theorem, and integrating by part in the first integral
we get:

lim
ε→0

∫
Rp
LJε (x, y)ψ (x) dx =

=

∫
U

∫
Rm

∫
G

Γ (u)L∗ϕ̂(z,k) (u) du c(z, k)ϕ(k)dkΦ (z, y) dz

+

∫
U

∫
Rm

∫
Rm

∫
Rp

3∑
j=1

Qj (z, k; x, h)ϕj (h)ψ (x)ϕ(k)dxdhdkΦ (z, y) dz

where Qj are as in (4.17) and

L∗ =

n∑
i=1

Y 2
i − Y0

is the adjoint operator of L, so that∫
G

Γ (u)L∗ϕ̂(z,k) (u) du = −ϕ̂(z,k) (0) = −ϕ (k)ψ (z)

and

lim
ε→0

∫
Rp
LJε (x, y)ψ (x) dx

= −
∫
U

ψ (z) c0 (z) Φ (z, y) dz +

∫
U

∫
Rp
Z1 (x, z) Φ (z, y)ψ (x) dxdz,

having set

(4.29) c0 (z) =

∫
Rm

c (z, k)ϕ2(k)dk.

On the other hand,

lim
ε→0

∫
Rp
LJε (x, y)ψ (x) dx = lim

ε→0

∫
Rp
Jε (x, y)L∗ψ (x) dx =

∫
Rp
J (x, y)L∗ψ (x) dx,

which easily follows by Lebesgue’s dominated convergence theorem and the bound
(4.24) on J, Jε. Therefore

LJ (x, y) = −c0 (x) Φ (x, y) +

∫
U

Z1 (x, y) Φ (z, y) dz,
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which is (4.26). This also implies, by (4.20), (4.16) and Theorem 3.5:

|LJ (x, y)| 6 cφα (x, y) + c

∫
U

φα (x, z)φα (z, y) dz

6 cφα (x, y) + cφ2α (x, y) 6 cφα (x, y) ,

which is (4.27). �

In view of the presence of the term c0 (x) in the identity (4.26) we now modify
our previous construction as follows:

Z ′1 (x, y) =
1

c0 (x)
Z1 (x, y) ;

Z ′k+1 (x, y) =

∫
U

Z ′1 (x, z)Z ′k (z, y) dz;

Φ′ (x, y) =

∞∑
k=1

Z ′k (x, y) ;

J ′ (x, y) =

∫
U

P (x, z) Φ′ (z, y) dz.

With these definitions, the following hold:

Φ′ (x, y) = Z ′1 (x, y) +

∫
U

Z ′1 (x, z) Φ′ (z, y) dz;(4.30)

c0 (x) Φ′ (x, y) = Z1 (x, y) +

∫
U

Z1 (x, z) Φ′ (z, y) dz;(4.31)

LJ ′ (x, y) =

∫
U

Z1 (x, z) Φ′ (z, y) dz − c0 (x) Φ′ (x, y) .(4.32)

Remark 4.7. Recalling that

0 < c1 6 c0 (x) 6 c2

for any x ∈ U , and that c0 ∈ Cα (U) (since by Theorem 2.9 the function c is Hölder
continuous), it is immediate to check that the functions Z ′1, Z

′
k,Φ

′, J ′ satisfy the
same upper bounds (with different constants) and continuity properties proved in
Propositions 4.2, 4.3, 4.5 for Z1, Zk,Φ, J , respectively.

We have, at last:

Theorem 4.8 (Existence of fundamental solution). Let

γ (x, y) =
1

c0 (y)
[P (x, y) + J ′ (x, y)] .

Then γ (x, y) and Xiγ (x, y) (i = 1, 2, ..., n) are well defined and continuous in the
joint variables x, y ∈ U, x 6= y, and satisfy the following bounds:

|γ (x, y)| 6 cφ2 (x, y) ;(4.33)

|Xiγ (x, y)| 6 cφ1 (x, y) .(4.34)

Moreover, γ (·, y) is a weak solution to Lγ (·, y) = −δy, that is:

(4.35)

∫
U

γ (x, y)L∗ψ (x) dx = −ψ (y)
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for any ψ ∈ C∞0 (U) , y ∈ U . Finally, if X0 ≡ 0, then there exists ε > 0 such that

(4.36) γ (x, y) > 0 for d (x, y) < ε.

Remark 4.9. When X0 does not vanish the fundamental solution Γ of the
homogeneous operator can be proved to be only non-negative, as the example of
the heat operator suggests. As a consequence nothing can be said in this case about
the sign of γ near the pole.

Proof. By (4.7), (4.8), (4.23) and Remark 4.7 the functions γ (x, y) and
Xiγ (x, y) are continuous in the joint variables x, y ∈ U, x 6= y.

The bounds (4.33), (4.34) follow from Proposition 4.4 and Proposition 4.1. As
to (4.36),

|c0 (y) γ (x, y)− P (x, y)| = |J ′ (x, y)| 6 cφ2+α (x, y) 6 c
d (x, y)

2+α

|B (x, d (x, y))|
.

If X0 ≡ 0, then also Y0 ≡ 0 and by [1, Prop. 5.3.13, p.243] the function Γ is strictly
positive, hence

Γ (u) >
c

‖u‖Q−2

and, reasoning like in Lemma 3.1 one can check that

P (x, y) > c
∫
|k|6ε

∫
|h|6ε

dhdk∥∥Θ(y,k) (x, h)
∥∥Q−2

> c
∫ R

d(x,y)

r

|B (x, r)|
dr > c

d (x, y)
2

|B (x, d (x, y))|

and (4.36) follows.
To prove (4.35), we have to show that for any test function ψ

−ψ (y) c0 (y) =

∫
P (x, y)L∗ψ (x) dx+

∫
J ′ (x, y)L∗ψ (x) dx ≡ A+B.

As to A, exploiting the same computation performed in the proof of Proposition
4.5,

A = lim
ε→0

∫
Pε (x, y)L∗ψ (x) dx = lim

ε→0

∫
LPε (x, y)ψ (x) dx

= −ψ (y) c0 (y) +

∫
Rp
Z1 (x, y)ψ (x) dx.

On the other hand, by (4.32),

B =

∫
Rp
ψ (x)

{∫
Z1 (x, z) Φ′ (z, y) dz − c0 (x) Φ′ (x, y)

}
dx.

By (4.31),

A+B = −ψ (y) c0 (y) +

+

∫
Rp
ψ (x)

{
Z1 (x, y) +

∫
Z1 (x, z) Φ′ (z, y) dz − c0 (x) Φ′ (x, y)

}
dx

= −ψ (y) c0 (y)

and we are done. �
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5. Further regularity of the fundamental solution
and local solvability of L

In this section, under a stronger regularity assumption on the coefficients of the
vector fields, we will show that the fundamental solution γ (·, y) actually possesses
second order derivatives with respect to the vector fields, satisfying natural growth
bounds, and γ (·, y) satisfies the equation Lu = 0 (outside the pole) in classical
sense. As a consequence, we can establish a local solvability result for the operator
L.

Assumptions B. In this section we assume that for some integer r > 2 and some
α ∈ (0, 1], the coefficients of the vector fields X1, X2, ..., Xn belong to Cr,α (Ω) ,
while the coefficients of X0 belong to Cr−1,α (Ω). If r = 2 we assume α = 1.
Moreover, we still assume that X0, X1, ..., Xn satisfy Hörmander’s condition of step
r in Ω: the vectors {(

X[I]

)
x

}
|I|6r

span Rp for any x ∈ Ω. (For examples of systems of vector fields satisfying the
assumptions, see the Appendix).

Throughout this section we keep using the notation introduced in §4; in par-
ticular, U stands for a fixed neighborhood of a point x0 ∈ Ω where all the previous
construction can be performed. Accordingly to Assumptions B, from now on the
constants appearing in our estimates will have the following dependence on the
vector fields:

Dependence of the constants. All the constants appearing in the upper bounds
proved in this section will depend on the vector fields only through the following
quantities:

(i) the norms Cr,α (Ω) of the coefficients of Xi (i = 1, 2, ..., n) and the norms
Cr−1,α (Ω) of the coefficients of X0;

(ii) a positive constant c0 such that the following bound holds:

inf
x∈Ω

max
|I1|,|I2|,...,|Ip|6r

∣∣∣det
((
X[I1]

)
x
,
(
X[I2]

)
x
, ...,

(
X[Ip]

)
x

)∣∣∣ > c0.
Before proceeding we need to define precisely our functional framework and the

notion of solution.

Definition 5.1. If u is a function, not necessarily smooth, defined in an open
set D ⊆ Ω, then:

we say that Xiu exists in D if the classical Xi-directional derivative of u exists
in D;

we say that u ∈ C1
X (D) if for i = 1, 2, ..., n, the derivatives Xiu exist and are

continuous in D;
we say that u ∈ C2

X (D) if u ∈ C1
X (D) and for i, j = 1, 2, ..., n, the derivatives

XiXju and X0u exist and are continuous in D.
Let f be a continuous function in D. We say that u is a (classical) solution to

Lu = f in D

if u ∈ C2
X (D) and Lu (x) = f (x) for every x ∈ D.
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We say that the operator L is locally solvable in Ω if for every x0 ∈ Ω there
exists a neighborhood U (x0) such that for every β > 0 and f ∈ Cβ (U (x0)) the
equation Lw = f has at least a C2

X (U (x0)) solution.

Note that, by Proposition 2.6, any C2
X (D) function is necessarily continuous;

if X0 ≡ 0 the same conclusion holds for C1
X (D) functions.

Remark 5.2. We recall that, even for the classical Laplacian, under the mere
assumption of continuity of f in D, a C2 (D) solution to ∆w = f may not exist.
A counterexample is given for instance in [16, exercise 4.9, p.71]. Therefore the
condition f ∈ Cβ (D) in the definition of solvability is a natural requirement.

The existence of Xiu will be sometimes established by the following:

Lemma 5.3. Let D ⊂ Rp be an open set and let X be a C1 (D) vector field. Let
w be a C (D) function and let wε ∈ C1 (D) be such that for x ∈ D, wε (x)→ w (x)
as ε → 0 and Xwε → g uniformly on D. Then w is differentiable along X and
Xw = g.

Proof. Let x ∈ D and let υ (t) be an integral curve of X such that υ (0) = x
and let hε (t) = wε (υ (t)). Since h′ε (t) converges uniformly we have

g (υ (t)) = lim
ε→0

Xwε (υ (t)) = lim
ε→0

h′ε (t)

=
d

dt

(
lim
ε→0

hε (t)
)

=
d

dt

(
lim
ε→0

wε (υ (t))
)

= Xw (υ (t)) ,

so that

g (x) = Xw (x) .

�

5.1. Preliminary results. We now need to sharpen the analysis of the map
Θη (ξ) performed in [6] showing that, under the above (stronger) Assumptions B,
this function possesses reasonable properties also with respect to the “bad” variable
η. Namely, the following holds:
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Proposition 5.4. Under Assumptions B:

i) the vector fields Rηi appearing in (2.7) are Cr+1−pi,α vector fields of weight
> α− pi, depending on η in a Cα way.

ii) the coefficients of the differential operators Dη
i defined by the compositions

YiR
η
jR

η
k, R

η
iR

η
jR

η
k, YiYjR

η
k, R

η
i Y

η
j R

η
k, YiR

η
jYk, R

η
iR

η
jYk, YiR

η
0 , R

η
iR

η
0

(i = 0, 1, 2, ..., n; j, k = 1, 2, ..., n) satisfy the bound

|Dη
i f (u)| 6 c

‖u‖µ+2+pi−α

for u in a neighborhood of the origin, whenever f : G → R is D (λ)-
homogeneous of degree −µ. Also, the coefficients of Dη

i depend on η in a
Cα way.

iii) the change of variables η 7→ u = Θη (ξ) is a C1,α diffeomorphism in a
neighborhood of the origin and its inverse η = Θ(·)(ξ)

−1(u) is C1,α in the
joint variables (ξ, u). Moreover we have

dη = c (ξ) (1 + χ (ξ, u)) du,

where, analogously to Theorem 2.9, c (·) is a Cα function, bounded and
bounded away from zero, χ (ξ, u) is Cα in the joint variables (ξ, u) and for
every γ1, γ2 > 0 such that γ1 + γ2 6 α there exists a constant c such that

|χ (ξ1, u)− χ (ξ2, u)| 6 c |ξ1 − ξ2|γ1 ‖u‖γ2 .

In particular

|χ (ξ, u)| 6 c ‖u‖α .

Proof. i) This follows with the same proof of [6, Thm. 3.9], under assumption
B.

ii) This follows as Corollary 2.11, by point 2.i of Theorem 2.10. Actually, the
same proof of point 2.i of Theorem 2.10 implies this stronger conclusion, under the
stronger assumption B.

iii) With the notations of [6, section 3.2] let

ξ = E (u, η) = exp

(∑
I∈B

uIS[I],η

)
(η)

and recall that Θη (ξ) is defined by E (Θη (ξ) , η) = ξ. Observe that, for every fixed
ξ, to express η as a function of u is equivalent to solve with respect to η the equation

(5.1) E (u, η)− ξ = 0.

Revising the proof of [6, Thm. 3.9] under the assumption bij ∈ Cr,α (Ω), one can
see that the smooth vector fields S[I],η depend on η in a C1,α way. This implies that

ξ = E (u, η) depends in a C1,α way on the joint variables (u, η) (see [6, Prop. 30]).
Since E (0, η) = η we have ∂E

∂η (0, η) = I. The implicit function theorem applied

to equation (5.1) shows that η = η (u, ξ) is at least C1 in the joint variables. The
standard argument used to prove the further regularity of the implicit function
allows to prove that this function is indeed C1,α in the joint variables. Also, since

E (u, η (u, ξ))− ξ = 0
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differentiating with respect to u yields

∂E

∂u
(u, η (u, ξ)) +

∂E

∂η
(u, η (u, ξ))

∂η

∂u
(u, ξ) = 0.

Evaluating this identity for u = 0 (that is η = ξ) gives

∂E

∂u
(0, ξ) + I

∂η

∂u
(0, ξ) = 0

so that

∂η

∂u
(0, ξ) = −∂E

∂u
(0, ξ) = −

((
S[I],ξ

)
ξ

)
I∈B

= −
((

X̃[I]

)
ξ

)
I∈B

.

Since

dη = Jξ (u) du

with Jξ (u) =
∣∣∣det ∂η∂u (ξ, u)

∣∣∣, we have

(5.2) Jξ (u) =

∣∣∣∣det

((
X̃[I]

)
ξ

)
I∈B

∣∣∣∣+ χ0 (ξ, u) .

Note that χ0 (ξ, u) is Cα in the joint variables (u, ξ) since η (u, ξ) is C1,α.
Assume now |ξ1 − ξ2| < |u|, then for any γ1, γ2 > 0 with γ1 + γ2 6 0,

|χ0 (u, ξ1)− χ0 (u, ξ2)| 6 c |ξ1 − ξ2|α 6 c |ξ1 − ξ2|γ1 |u|γ2 .
If |ξ1 − ξ2| > |u| , since χ0 (0, ξ1) = χ0 (0, ξ2) = 0 we have

|χ0 (u, ξ1)− χ0 (u, ξ2)| 6 |χ0 (u, ξ1)− χ0 (0, ξ1)|+ |χ0 (u, ξ2)− χ0 (0, ξ2)|
6 c |u|α 6 c |ξ1 − ξ2|γ1 |u|γ2 .

Hence in any case

(5.3) |χ0 (ξ1, u)− χ0 (ξ2, u)| 6 c |ξ1 − ξ2|γ1 ||u||γ2 .
Then (5.2) can be rewritten as

dη = c (ξ) (1 + χ (ξ, u)) du

where

c (ξ) =

∣∣∣∣det

((
X̃[I]

)
ξ

)
I∈B

∣∣∣∣
is Cα and locally bounded away from zero, while

χ (ξ, u) =
χ0 (ξ, u)

c (ξ)

still satisfies (5.3). Hence point (iii) is proved. �

The following Hölder continuity estimate on the function Φ′ will be crucial.

Proposition 5.5. For any ε ∈ (0, α) there exists c > 0 such that

|Φ′ (x1, y)− Φ′ (x2, y)| 6 cd (x1, x2)
α−ε

φε (x1, y)

for any x1, x2, y ∈ U with d (x1, y) > 3d (x1, x2).

Note that the same result holds if the number 3 is replaced by another constant
k > 1, with c depending on k.

The following easy variation of the previous result will be also useful:
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Corollary 5.6. For any ε ∈ (0, α) there exists c > 0 such that

|Φ′ (x1, y)− Φ′ (x2, y)| 6 cd (x1, x2)
α−ε

[
d (x1, y)

ε

|B (x1, d (x1, y))|
+

d (x2, y)
ε

|B (x2, d (x2, y))|

]
for any x1, x2, y ∈ U with y 6= x1, x2.

Proof of Corollary 5.6. If d (x1, y) > 3d (x1, x2) by Proposition 5.5 and
Lemma 3.3 we can bound

|Φ′ (x1, y)− Φ′ (x2, y)| 6 cd (x1, x2)
α−ε

φε (x1, y) 6 cd (x1, x2)
α−ε d (x1, y)

ε

|B (x1, d (x1, y))|
.

Analogously if d (x2, y) > 3d (x1, x2) we can write

|Φ′ (x1, y)− Φ′ (x2, y)| 6 cd (x1, x2)
α−ε

φε (x2, y) 6 cd (x1, x2)
α−ε d (x2, y)

ε

|B (x2, d (x1, y))|
.

Hence, let us assume 3d (x1, x2) > max (d (x1, y) , d (x2, y)). Then by Proposition
4.3 and Lemma 3.3:

|Φ′ (x1, y)− Φ′ (x2, y)| 6 c {φα (x1, y) + φα (x2, y)}

6 c

{
d (x1, y)

α

|B (x1, d (x1, y))|
+

d (x2, y)
α

|B (x2, d (x2, y))|

}
6 cd (x1, x2)

α−ε
{

d (x1, y)
ε

|B (x1, d (x1, y))|
+

d (x2, y)
ε

|B (x2, d (x2, y))|

}
.

�

Proposition 5.5 will be proved in several steps, establishing first an analogous
result for the functions Z ′1 and Z ′k.

Lemma 5.7. For every x1, x2, y ∈ U with d (x1, y) > 2d (x1, x2) we have

(5.4) |Z ′1 (x1, y)− Z ′1 (x2, y)| 6 cd (x1, x2)
α
φ0 (x1, y) .

Proof. Since

Z ′1 (x, y) =
1

c0 (x)
Z1 (x, y)

with c0 Hölder continuous and bounded away from zero, it suffices to prove (5.4)

with Z
′

1 replaced by Z1. Under assumptions B, the explicit expression of Z1 given
in the proof of Proposition 4.2 shows, by Proposition 5.4, that

Z1 (·, y) ∈ C1,α
loc (U \ {y}) .

In particular, for fixed y, x1, we have that Z1 (·, y) ∈ C1,α
(
B
(
x1,

1
2d (x1, y)

))
and

we can apply Proposition 2.6 with R = 1
2d (x1, y), writing

|Z1 (x1, y)− Z1 (x2, y)| 6 cd (x1, x2)

 n∑
i=1

sup
x∈B(x1,

1
2d(x1,y))

|XiZ1 (x, y)|+(5.5)

+d (x1, x2) sup
x∈B(x1,

1
2d(x1,y))

|X0Z1 (x, y)|


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for d (x1, y) > 2d (x1, x2). Let us estimate supx∈B(x1,
1
2d(x1,y)) |XiZ1 (x, y)|. We

know that:

Z1 (x, y) =

3∑
i=1

∫
Rm

∫
Rm

Qi (y, k; x, h)ϕi (h)ϕ (k) dhdk,

where the Qi’s are defined in the proof of Proposition 4.2. Let us bound XiZ1 for
one of the terms Qi, for instance

R
(y,k)
j R

(y,k)
j Γ

(
Θ(y,k) (x, h)

)
(since the other terms do not behave worse than this). We have, for i = 1, 2, ..., n,

Xi

∫
Rm

∫
Rm

R
(y,k)
j R

(y,k)
j Γ

(
Θ(y,k) (x, h)

)
ϕ (h)ϕ (k) dhdk

=

∫
Rm

∫
Rm

X̃i

[
R

(y,k)
j R

(y,k)
j Γ

(
Θ(y,k) (x, h)

)
ϕ (h)

]
ϕ (k) dhdk

=

∫
Rm

∫
Rm

R
(y,k)
j R

(y,k)
j Γ

(
Θ(y,k) (x, h)

) (
X̃ϕi

)
(h)ϕ (k) dhdk(5.6)

+

∫
Rm

∫
Rm

(
YiR

(y,k)
j R

(y,k)
j Γ

) (
Θ(y,k) (x, h)

)
ϕ (h)ϕ (k) dhdk

+

∫
Rm

∫
Rm

(
R

(y,k)
i R

(y,k)
j R

(y,k)
j Γ

) (
Θ(y,k) (x, h)

)
ϕ (h)ϕ (k) dhdk.

Now, by Proposition 5.4, (ii),∣∣∣∣∫
Rm

∫
Rm

(
YiR

(y,k)
j R

(y,k)
j Γ

) (
Θ(y,k) (x, h)

)
ϕ (h)ϕ (k) dhdk

∣∣∣∣
6 c

∫
Rm

∫
Rm

ϕ (h)ϕ (k)∥∥Θ(y,k) (x, h)
∥∥Q+1−α dhdk 6 c

∫ R

d(x,y)

rα−2

|B (x, r)|
dr,

and the other two terms in (5.6) are bounded by the same quantity. Next, we
have to take the supremum of the last quantity for x ∈ B

(
x1,

1
2d (x1, y)

)
. Since

d (x1, y) < 2d (x, y), by (3.2), this sup is bounded by

c

∫ R

d(x1,y)

rα−2

|B (x, r)|
dr,

hence

d (x1, x2)

n∑
i=1

sup
x∈B(x1,

1
2d(x1,y))

|XiZ1 (x, y)| 6 cd (x1, x2)

∫ R

d(x1,y)

rα−2

|B (x, r)|
dr

since d (x1, x2) 6 1
2d (x1, y) < r

6 cd (x1, x2)
α
∫ R

d(x1,y)

r1−α rα−2

|B (x, r)|
dr

= cd (x1, x2)
α
∫ R

d(x1,y)

r−1

|B (x, r)|
dr

= cd (x1, x2)
α
φ0 (x1, y) .
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An analogous computation gives

d (x1, x2)
2

sup
x∈B(x1,

1
2d(x1,y))

|X0Z1 (x, y)| 6 cd (x1, x2)
2
∫ R

d(x1,y)

rα−3

|B (x, r)|
dr

= cd (x1, x2)
α
∫ R

d(x1,y)

r2−α rα−3

|B (x, r)|
dr

= cd (x1, x2)
α
φ0 (x1, y) .

Then (5.5) implies

|Z1 (x1, y)− Z1 (x2, y)| 6 cd (x1, x2)
α
φ0 (x1, y)

and the lemma is proved. �

Next we need the following:

Lemma 5.8. For any β > 0, let

A (x1, x2, y) =

∫
U

|Z ′1 (x1, z)− Z ′1 (x2, z)|φβ (z, y) dz.

For any ε > 0 there exists c > 0 such that

A (x1, x2, y) 6 cd (x1, x2)
α−ε

φβ+ε (x1, y)

for d (x1, y) > 3d (x1, x2).

Proof. Let us split:

A (x1, x2, y) =

∫
d(x1,z)>2d(x1,x2)

(. . .) dz +

∫
d(x1,z)<2d(x1,x2)

(. . .) dz ≡ I + II.

By Lemma 5.7,

I 6 c
∫
d(x1,z)>2d(x1,x2)

d (x1, x2)
α
φ0 (x1, z)φβ (z, y) dz.

Now, for any ε > 0, and d (x1, z) > 2d (x1, x2) , we have

d (x1, x2)
α
φ0 (x1, z) 6 cd (x1, x2)

α−ε
d (x1, z)

ε
∫ R

d(x1,z)

r−1

|B (x1, r)|
dr

6 cd (x1, x2)
α−ε

∫ R

d(x1,z)

rε−1

|B (x1, r)|
dr = cd (x1, x2)

α−ε
φε (x1, z)

hence, by Theorem 3.5

I 6 cd (x1, x2)
α−ε

∫
d(x1,z)>2d(x1,x2)

φε (x1, z)φβ (z, y) dz(5.7)

6 cd (x1, x2)
α−ε

φβ+ε (x1, y) .

Next,

II 6
∫
d(x1,z)<2d(x1,x2)

[φα (x1, z) + φα (x2, z)]φβ (z, y) dz

≡ IIA + IIB .

From d (x1, y) > 3d (x1, x2) and d (x1, z) < 2d (x1, x2) , we deduce d (y, z) > d (x1, x2) ,
hence d (x1, z) 6 2d (y, z) and

d (x1, y) 6 d (x1, z) + d (z, y) 6 3d (z, y)
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which allows us to write

IIA 6 cφβ (x1, y)

∫
d(x1,z)<2d(x1,x2)

φα (x1, z) dz

by Corollary 3.4

6 cφβ (x1, y) d (x1, x2)
α
.

By the same reason,

IIB 6 cφβ (x1, y)

∫
d(x1,z)<2d(x1,x2)

φα (x2, z) dz

6 cφβ (x1, y)

∫
d(x2,z)<3d(x1,x2)

φα (x2, z) dz

6 cφβ (x1, y) d (x1, x2)
α

as above. We conclude, for d (x1, y) > 3d (x1, x2) ,

II 6 cφβ (x1, y) d (x1, x2)
α 6

6 cd (x1, x2)
α−ε

d (x1, y)
ε
∫ R

d(x1,y)

rβ−1

|B (x1, r)|
dr

6 cd (x1, x2)
α−ε

φβ+ε (x1, y) ,

which together with (5.7) gives the assertion. �

Proof of Proposition 5.5. Let x1, x2, y ∈ U with d (x1, y) > 3d (x1, x2).
By the identity (4.30) we can write

Φ′ (x1, y)−Φ′ (x2, y) = Z ′1 (x1, y)−Z ′1 (x2, y)+

∫
U

[Z ′1 (x1, z)− Z ′1 (x2, z)] Φ′ (z, y) dz

which by (4.20) gives

|Φ′ (x1, y)− Φ′ (x2, y)| 6 |Z ′1 (x1, y)− Z ′1 (x2, y)|+c
∫
U

|Z ′1 (x1, z)− Z ′1 (x2, z)|φα (z, y) dz.

Exploiting Lemmas 5.7 and 5.8, for any ε > 0 we get

|Φ′ (x1, y)− Φ′ (x2, y)| 6 cd (x1, x2)
α
φ0 (x1, y) + cd (x1, x2)

α−ε
φβ+ε (x1, y)

6 cd (x1, x2)
α−ε

φε (x1, y)

as desired. �

5.2. Estimates on the second derivatives of the fundamental solution.
We are now going to prove the existence and a sharp bound of Hölder type of the
second derivatives of our local fundamental solution.

Theorem 5.9 (Second derivatives of the fundamental solution). Under As-
sumptions B, for i, j = 1, 2, ..., n and for x, y ∈ U, x 6= y, the following assertions
hold true.

(i) There exist the second derivatives XjXiJ
′ (x, y), X0J

′ (x, y), XiXjγ (x, y),
X0γ (x, y) continuous in the joint variables for x 6= y; in particular,

γ (·, y) ∈ C2
X (U \ {y}) for any y ∈ U .
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(ii) For every ε ∈ (0, α), every U ′ b U there exists c > 0 such that for every
x ∈ U ′ and y ∈ U,

(5.8) |XjXiJ
′ (x, y)| , |X0J

′ (x, y)| 6 cRε d (x, y)
α−ε

|B (x, d (x, y))|

with R as at the beginning of §3, and

(5.9) |XjXiγ (x, y)| , |X0γ (x, y)| 6 c 1

|B (x, d (x, y))|
.

Note the presence, at the right-hand side of (5.8), (5.9), of the kernels d (x, y)
α−ε |B (x, d (x, y))|−1

,

|B (x, d (x, y))|−1
, instead of φα−ε (x, y) , φ0 (x, y), which one could expect.

In order to reduce the length of some computation in the proof of this theorem
and some of the following ones, it is convenient to introduce first the following
abstract definitions, and make a preliminary study of the involved concept.

Definition 5.10. We say that R` (x, y) is a remainder of type ` (= 0, 1, 2, 3)
if for x 6= y

R` (x, y) =

m∑
s=1

∫
Rm

∫
Rm

D
(y,k)
`,s Γ

(
Θ(y,k) (x, h)

)
as (h) bs (k) dhdk

where D
(y,k)
`,s are differential operators given by the composition of at most ` vector

fields of the kind Yi or R
(y,k)
i , of total weight > α− `, depending on (y, k) in a Cα

way and as, bs are cutoff functions. Here and in the following, the number α is
fixed, and is the exponent appearing in Assumptions B.

Definition 5.11. We say that k` (x, y) is a kernel of type ` (= 0, 1, 2, 3) if for
x 6= y

k` (x, y) =

∫
Rm

∫
Rm

D`Γ
(
Θ(y,k) (x, h)

)
a0 (h) b0 (k) dhdk +R` (x, y)

where D` is a left invariant differential operator homogeneous of degree `, a0, b0
are cutoff functions and R` (x, y) is a remainder of type `. If R` (x, y) ≡ 0, we say
that k` (x, y) is a pure kernel of type `.

Theorem 5.12. Under Assumptions B, let k` (x, y) be a kernel of type `. Then
for x 6= y, k` (x, y) is jointly continuous and satisfies the bound:

|k` (x, y)| 6 cφ2−` (x, y) .

Moreover, if ` 6 2, then Xik` (x, y) is a kernel of type ` + 1 for i = 1, 2, ..., n; if
` 6 1, then X0k` (x, y) is a kernel of type `+ 2.

Let R` (x, y) be a remainder of type ` = 0, 1, 2, 3. Then, for x 6= y, R` (x, y) is
jointly continuous and satisfies the bound:

|R` (x, y)| 6 cφ2+α−` (x, y) .

Also, if ` 6 2, then XiR` (x, y) is a remainder of type ` + 1 for i = 1, 2, ..., n; if
` 6 1, then X0R` (x, y) is a remainder of type `+ 2.
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Proof. The continuity properties follow as in the proof of Proposition 4.1.
Also, we have ∣∣D`Γ

(
Θ(y,k) (x, h)

)∣∣ 6 c∥∥Θ(y,k) (x, h)
∥∥Q−2+`

,∣∣∣D(y,k)
`,s Γ

(
Θ(y,k) (x, h)

)∣∣∣ 6 c∥∥Θ(y,k) (x, h)
∥∥Q−2+`−α

hence by Lemma 3.1 we have

|k` (x, y)| 6 cφ2−` (x, y) ,

|R` (x, y)| 6 cφ2−`+α (x, y) .

Let us compute, for x 6= y,

Xik` (x, y) =

∫
Rm

∫
Rm

X̃i

[
D`Γ

(
Θ(y,k) (x, h)

)
a0 (h)

]
b0 (k) dhdk

+

m∑
s=1

∫
Rm

∫
Rm

X̃i

[
D

(y,k)
`,s Γ

(
Θ(y,k) (x, h)

)
as (h)

]
bs (k) dhdk

=

∫
Rm

∫
Rm

YiD`Γ
(
Θ(y,k) (x, h)

)
a0 (h) b0 (k) dhdk

+

∫
Rm

∫
Rm

R
(y,k)
i D`Γ

(
Θ(y,k) (x, h)

)
a0 (h) b0 (k) dhdk

+

∫
Rm

∫
Rm

D`Γ
(
Θ(y,k) (x, h)

)
X̃ia0 (h) b0 (k) dhdk

+

m∑
s=1

∫
Rm

∫
Rm

YiD
(y,k)
`,s Γ

(
Θ(y,k) (x, h)

)
as (h) bs (k) dhdk

+

m∑
s=1

∫
Rm

∫
Rm

R
(y,k)
i D

(y,k)
`,s Γ

(
Θ(y,k) (x, h)

)
as (h) bs (k) dhdk

+

m∑
s=1

∫
Rm

∫
Rm

D
(y,k)
`,s Γ

(
Θ(y,k) (x, h)

)
X̃ias (h) bs (k) dhdk

by Proposition 5.4 and Definition 5.10

=

∫
Rm

∫
Rm

D`+1Γ
(
Θ(y,k) (x, h)

)
a0 (h) b0 (k) dhdk

+

m′∑
s=1

∫
Rm

∫
Rm

D
(y,k)
`+1,sΓ

(
Θ(y,k) (x, h)

)
a′s (h) b′s (k) dhdk

which gives the desired result for Xik`; analogously one can handle X0k`. �

Definition 5.13. Let Φ0 : {(x, y) ∈ U × U : x 6= y} → R. We say that Φ0 is a
function of (φ, α)-type if it is continuous (in the joint variables), satisfies

|Φ0 (x, y)| 6 cφα (x, y)

and for every ε ∈ (0, α) there exists a constant cε such that for every x1, x2, y ∈ U
with d (x1, y) > 3d (x1, x2)

|Φ0 (x1, y)− Φ0 (x2, y)| 6 cεd (x1, x2)
α−ε

φε (x1, y) .
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Lemma 5.14. Let Φ0 be a (φ, α)-type function. For every ε ∈ (0, α) there exists
cε such that for every x1, x2, y ∈ U we have

|Φ0 (x1, y)− Φ0 (x2, y)| 6 cεd (x1, x2)
α−ε

[
d (x1, y)

ε

|B (x1, d (x1, y))|
+

d (x2, y)
ε

|B (x2, d (x2, y))|

]
.

The Lemma follows from the above definition as in the proof of Corollary 5.6.
We will also need the following easy

Lemma 5.15. If β ∈ R and ε > 0, then there exists c > 0 such that

(5.10)

∫
Rm

∫
Rm

ψ (h)ϕ (k)∥∥Θ(y,k) (x, h)
∥∥Q−β χ{h:‖Θ(y,k)(x,h)‖<δ}dhdk 6 cδ

εφβ−ε (x, y) .

Proof. To prove (5.10) it is enough to observe that∫
Rm

∫
Rm

ψ (h)ϕ (k)∥∥Θ(y,k) (x, h)
∥∥Q−β χ{h:‖Θ(y,k)(x,h)‖<δ}dhdk

6 δε
∫
Rm

∫
Rm

ψ (h)ϕ (k)∥∥Θ(y,k) (x, h)
∥∥Q−β+ε

χ{h:‖Θ(y,k)(x,h)‖<δ}dhdk 6 cδ
εφβ−ε (x, y)

by Lemma 3.1. �

Theorem 5.16. Let k be a kernel of type ` = 0 and let Φ0 be a function of
(φ, α)-type. If

J0 (x, y) =

∫
U

k (x, z) Φ0 (z, y) dz,

then for i = 1, 2, ..., n,

XiJ0 (x, y) =

∫
U

Xik (x, z) Φ0 (z, y) dz

and
|XiJ0 (x, y)| 6 cφ1+α (x, y) .

Let ωδ ∈ C∞ (G) such that ωδ (u) = 1 for ‖u‖ > δ and ωδ (u) = 0 for ‖u‖ <
δ/2, then, for i, j = 1, 2, ..., n, XjXiJ0 (x, y) exists and is continuous in the joint
variables for x 6= y and can be computed as follows

XjXiJ0 (x, y)

= lim
δ→0

∫
U

∫
Rm

∫
Rm

Yj (ωδD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdkΦ0 (z, y) dz

+

∫
U

R′2 (x, z) Φ0 (z, y) dz

=

∫
U

∫
Rm

∫
Rm

(YjD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdk [Φ0 (z, y)− Φ0 (x, y)] dz

+ C (x) Φ0 (x, y) +

∫
U

R′′2 (x, z) Φ0 (z, y) dz

(5.11)

where D1 is a left invariant homogeneous vector field of degree 1, R′2 (x, z) and
R′′2 (x, z) are suitable remainders of type 2 and C ∈ CαX,loc (U). Moreover, for any

U ′ b U there exists c > 0 such that for every x ∈ U ′, y ∈ U , x 6= y

(5.12) |XjXiJ0 (x, y)| 6 c d (x, y)
α−ε

|B (x, d (x, y))|
.
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Proof. Since Xik ≡ k1 is a kernel of type 1 we have

|Xik (x, y)| 6 cφ1 (x, y) 6 c
d (x, y)

|B (x, d (x, y))|
,

so that we can differentiate under the integral sign. Therefore

XiJ0 (x, y) =

∫
U

k1 (x, z) Φ0 (z, y) dz

with

|XiJ0 (x, y)| 6 cφ1+α (x, y) .

In order to compute XjXiJ0 (x, y) we rewrite

k1 (x, z) =

∫
Rm

∫
Rm

D1Γ
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdk +R1 (x, z)

where R1 (x, z) is a remainder of type 1. Then

XiJ0 (x, y) =

∫
U

∫
Rm

∫
Rm

D1Γ
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdkΦ0 (z, y) dz

+

∫
U

R1 (x, z) Φ0 (z, y) dz

≡ B1 (x, y) +B2 (x, y) .

As to B2 we can simply write

XjB2 (x, y) =

∫
U

XjR1 (x, z) Φ0 (z, y) dz

≡
∫
U

R2 (x, z) Φ0 (z, y) dz

where R2 (x, z) is a remainder of type 2.
To handle B1 (x, y) we consider

Bδ1 (x, y) =

∫
U

∫
Rm

∫
Rm

(ωδD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdkΦ0 (z, y) dz.

Due to the presence of this cutoff function, we can compute the derivative

XjB
δ
1 (x, y) =

∫
U

∫
Rm

∫
Rm

X̃j

[
(ωδD1Γ)

(
Θ(z,k) (x, h)

)
a0 (h)

]
b0 (k) dhdkΦ0 (z, y) dz

=

∫
U

∫
Rm

∫
Rm

Yj (ωδD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdkΦ0 (z, y) dz

+

∫
U

∫
Rm

∫
Rm

R
(y,k)
j (ωδD1Γ)

(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdkΦ0 (z, y) dz

+

∫
U

∫
Rm

∫
Rm

(ωδD1Γ)
(
Θ(z,k) (x, h)

)
X̃ja0 (h) b0 (k) dhdkΦ0 (z, y) dz

= Bδ1,1 (x, y) +Bδ1,2 (x, y) +Bδ1,3 (x, y) .

An argument similar to one already used shows that for any fixed δ the function
XjB

δ
1 (x, y) is continuous in the joint variables for any x, y ∈ U , x 6= y.
First of all we observe that

lim
δ→0

Bδ1,2 (x, y) =

∫
U

∫
Rm

∫
Rm

(
R

(y,k)
j D1Γ

) (
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdkΦ0 (z, y) dz
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since (
R

(y,k)
j ωδ

)
(u) 6= 0 for

δ

2
< ‖u‖ < δ,

hence∣∣∣∣∫
U

∫
Rm

∫
Rm

((
R

(y,k)
j ωδ

)
D1Γ

) (
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdkΦ0 (z, y) dz

∣∣∣∣
6
∫
Rm

∫
‖Θ(z,k)(x,h)‖<δ

c∥∥Θ(z,k) (x, h)
∥∥Q−α |a0 (h) b0 (k) Φ0 (z, y)| dk dzdh

6
∫
Rm

∫
‖Θ(z,k)(x,h)‖<δ

c∥∥Θ(z,k) (x, h)
∥∥Q−α dk dz |a0 (h)| dh 6 cδα → 0 as δ → 0

for some constant c depending on d (x, y).
Also

lim
δ→0

Bδ1,3 (x, y) =

∫
U

∫
Rm

∫
Rm

(D1Γ)
(
Θ(z,k) (x, h)

)
X̃ja0 (h) b0 (k) dhdkΦ0 (z, y) dz

so that

lim
δ→0

XjB
δ
1 (x, y) = lim

δ→0
Bδ1,1 (x, y) +

∫
U

R3 (x, z) Φ0 (z, y) dz

where R3 (x, z) is still another remainder of type 2.
Let us now consider

Bδ1,1 (x, y) =

∫
U

∫
Rm

∫
Rm

Yj (ωδD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdkΦ0 (z, y) dz.

We write

Bδ1,1 (x, y) =

∫
U

∫
Rm

∫
Rm

Yj (ωδD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdk [Φ0 (z, y)− Φ0 (x, y)] dz

+ Φ0 (x, y)

∫
U

∫
Rm

∫
Rm

Yj (ωδD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdk dz

≡ Bδ1,1,1 (x, y) +Bδ1,1,2 (x, y) .

We have

Bδ1,1,1 (x, y) =

∫
U

∫
Rm

∫
Rm

(Yjωδ ·D1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdk [Φ0 (z, y)− Φ0 (x, y)] dz

+

∫
U

∫
Rm

∫
Rm

(ωδ YjD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdk [Φ0 (z, y)− Φ0 (x, y)] dz.

Since Yjωδ
(
Θ(z,k) (x, h)

)
is supported in

{
δ
2 <

∥∥Θ(z,k) (x, h)
∥∥ < δ

}
and bounded by

δ−1, by Lemma 5.15 , Corollary 5.6 and Lemma 3.3 the first term of Bδ1,1,1 (x, y) is
bounded by

c

∫
U

∫
Rm

∫
Rm

χ{δ/26‖Θ(z,k)(x,h)‖6δ}
∥∥Θ(z,k) (x, h)

∥∥−Q a0 (h) b0 (k) dhdk |Φ0 (z, y)− Φ0 (x, y)| dz

6 c
∫
U

δεφ−ε (x, z) |Φ0 (z, y)− Φ0 (x, y)| dz

6 cδε
∫
U

d (x, z)
α−2ε

|B (x, d (x, z))|

(
d (z, y)

ε

|B (z, d (z, y))|
+

d (x, y)
ε

|B (x, d (x, y))|

)
dz.
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Since this last integral converges the first term in Bδ1,1,1 (x, y) vanishes uniformly
in x (as long as x stays away from y) as δ → 0. We will show now that the second
term converges uniformly to∫

U

∫
Rm

∫
Rm

(YjD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdk [Φ0 (z, y)− Φ0 (x, y)] dz

as δ → 0. Again, by Lemma 5.15, Lemma 5.14 and Lemma 3.3 we have∫
U

∫
Rm

∫
Rm

∣∣((1− ωδ) YjD1Γ)
(
Θ(z,k) (x, h)

)∣∣ a0 (h) b0 (k) dhdk |Φ0 (z, y)− Φ0 (x, y)| dz

6 c
∫
U

∫
Rm

∫
Rm

χ{‖Θ(z,k)(x,h)‖6δ}
∥∥Θ(z,k) (x, h)

∥∥−Q |a0 (h) b0 (k)| dhdk |Φ0 (z, y)− Φ0 (x, y)| dz

6 cδε
∫
U

φ−ε (x, z) |Φ0 (z, y)− Φ0 (x, y)| dz

and from this bound we conclude as above that this term converges to 0 as δ → 0,
uniformly as soon as d (x, y) > c.

To handle Bδ1,1,2 (x, y), let us first fix some notation. Let U ′ b U , I ⊂ Rm and
r > 0 such that I ⊃ sprt a0 ∪ sprt b0 and:

(x, h) ∈ U ′ × sprt a0 and
∥∥Θ(z,k) (x, h)

∥∥ < r ⇒ (z, k) ∈ U × I ≡ Σ.

Then for any x ∈ U ′ we have:

Bδ1,1,2 (x, y) = Φ0 (x, y)

∫
Rm

a0 (h)

(∫
Σ

Yj (ωδD1Γ)
(
Θ(z,k) (x, h)

)
b0 (k) dkdz

)
dh

= Φ0 (x, y)

∫
Rm

a0 (h)

(∫
‖Θ(z,k)(x,h)‖<r

(...) dkdz +

∫
Σ,‖Θ(z,k)(x,h)‖>r

(...) dkdz

)
dh

= Φ0 (x, y)
[
Iδ1 (x) + Iδ2 (x)

]
.

Next, making the change of variables (z, k) 7→ u = Θ(z,k) (x, h) and letting b̃0 (ξ, u) =

b0

(
Θ· (x, h)

−1
(u)
)
,

Iδ1 (x) =

∫
Rm

c (ξ) a0 (h)

(∫
‖u‖<r

[Yj (ωδD1Γ)] (u) (1 + χ (ξ, u)) b̃0 (ξ, u) du

)
dh

=

∫
Rm

c (ξ) a0 (h)

(∫
‖u‖<r

[Yj (ωδD1Γ)] (u)χ (ξ, u) b̃0 (ξ, u) du

)
dh

+

∫
Rm

c (ξ) a0 (h)

(∫
‖u‖<r

[Yj (ωδD1Γ)] (u) b̃0 (ξ, u) du

)
dh

≡ βδ1 (x) + βδ2 (x) .

By Proposition 5.4 we know that |χ (ξ, u)| 6 c ‖u‖α, hence for δ → 0 (by the same
argument used to compute the limit of Bδ1,2)

βδ1 (x)→
∫
Rm

c (ξ) a0 (h)

(∫
‖u‖<r

(YjD1Γ) (u)χ (ξ, u) b̃0 (ξ, u) du

)
dh ≡ β1 (x) .

Note β1 ∈ Cα (U ′). Namely, the functions c (·) , χ (·, u) are Hölder continuous by

5.4 (iii); since Θ· (x, h)
−1

(u) is C1,α also b̃0 (·, u) is Hölder continuous.
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To handle βδ2 (x) we integrate by parts; writing Yj =
∑N
k=1 ajk (u) ∂uk and

denoting by ν = (ν1, ν2, ..., νN ) the unit outer normal we get

βδ2 (x) = −
∫
Rm

c (ξ) a0 (h)

(∫
‖u‖<r

(ωδD1Γ) (u)
(
Yj b̃0 (ξ, ·)

)
(u) du

)
dh

+

∫
Rm

c (ξ) a0 (h)

(∫
‖u‖=r

(ωδD1Γ) (u) b̃0 (ξ, u)
∑
k

ajk (u) νkdσ (u)

)
dh

→ −
∫
Rm

c (ξ) a0 (h)

(∫
‖u‖<r

(D1Γ) (u)
(
Yj b̃0 (ξ, ·)

)
(u) du

)
dh

+

∫
Rm

c (ξ) a0 (h)

(∫
‖u‖=r

(D1Γ) (u) b̃0 (ξ, u)

N∑
k=1

ajk (u) νkdσ (u)

)
dh

≡ β2 (x)

which is again a Cα (U ′) function by Proposition 5.4 (iii). Hence for any x ∈ U ′,

Iδ1 (x)→ β1 (x) + β2 (x) ,

which is a Cα (U ′) function.
As to Iδ2 (x), for any δ < r we have (writing η = (z, k))

Iδ2 (x) = I2 (x) ≡
∫
Rm

a0 (h)

(∫
Σ,‖Θη(x,h)‖>r

(YjD1Γ) (Θη (x, h)) b0 (k) dη

)
dh.

Let us show that I2 is Hölder continuous. Actually, we will show that

|I2 (x1)− I2 (x2)| 6 c |x1 − x2|

for small |x1 − x2|. Since I2 is clearly bounded, this is enough to conclude Hölder
continuity in U ′.

I2 (x1)− I2 (x2)

=

∫
Rm

a0 (h)

(∫
Σ,‖Θη(x1,h)‖>r

[YjD1Γ (Θη (x1, h))− YjD1Γ (Θη (x2, h))] b0 (k) dη

)
dh

+

∫
Rm

a0 (h)

(∫
Σ,‖Θη(x1,h)‖>r

YjD1Γ (Θη (x2, h)) b0 (k) dη

)
dh

−
∫
Rm

a0 (h)

(∫
Σ,‖Θη(x2,h)‖>r

YjD1Γ (Θη (x2, h)) b0 (k) dη

)
dh

≡ A+B − C.

Note that for some small c1 (r) , c2 (r) > 0, if |x1 − x2| < c1 and ‖Θη (x1, h)‖ > r
then also ‖Θη (x2, h)‖ > c2r. Then

|A| 6 c (r) |x1 − x2|
∫
Rm

a0 (h)

∫
Σ,‖Θη(x1,h)‖>r

b0 (k) dηdh 6 c (r) |x1 − x2| .

Moreover, letting

Λ = {η : ‖Θη (x2, h)‖ > r, ‖Θη (x1, h)‖ 6 r }∪{η : ‖Θη (x1, h)‖ > r, ‖Θη (x2, h)‖ 6 r} = Λ1∪Λ2
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we have:

|B − C| 6
∫
Rm

a0 (h)

(∫
Σ∩Λ

|YjD1Γ (Θη (x2, h))| b0 (η) dη

)
dh

In Λ1 we have

r < ‖Θη (x2, h)‖ 6 ‖Θη (x1, h)‖+ ‖Θη (x2, h)−Θη (x1, h)‖
6 r + ‖Θη (x2, h)−Θη (x1, h)‖ 6 r + c |x1 − x2|

hence ∫
Rm

a0 (h)

(∫
Σ∩Λ1

|YjD1Γ (Θη (x2, h))| b0 (η) dη

)
dh

6 c (r)

∫
Rm

a0 (h)

(∫
r<‖Θη(x2,h)‖<r+c|x1−x2|

b0 (η) dη

)
dh

6 c
∫
Rm

a0 (h)

(∫
r<‖u‖<r+c|x1−x2|

du

)
dh

6 c
[
(r + c |x1 − x2|)Q − rQ

]
6 c (r) |x1 − x2| .

Since for η ∈ Λ2 we have ‖Θη (x2, h)‖ > c2r (by the above remark), we can still
write ∫

Rm
a0 (h)

(∫
Σ∩Λ2

|YjD1Γ (Θη (x2, h))| b0 (η) dη

)
dh

6 c
∫
Rm

a0 (h)

(∫
r<‖Θη(x1,h)‖<r+c|x1−x2|

b0 (η) dη

)
dh

6 c |x1 − x2| .

We can conclude that

Bδ1,1,2 (x, y)→ C (x) Φ0 (x, y) as δ → 0,

where C(x) is a suitable CαX,loc (U) function. This completes the proof of (5.11).

In particular, for any x ∈ U ′, y ∈ U,

|XkXiJ0 (x, y)| 6 c1
∫
U

φ0 (x, z) |Φ0 (z, y)− Φ0 (x, y)| dz

+ c2φα (x, y) + c3

∫
U

φα (x, z)φα (z, y) dz.

Let now ∫
U

φ0 (x, z) |Φ0 (z, y)− Φ0 (x, y)| dz

6 c
∫
{d(x,y)>3d(x,z)}

φ0 (x, z) dα−ε (x, z)φε (x, y) dz

+ c

∫
{d(x,y)<3d(x,z)}

φ0 (x, z) (φα (z, y) + φα (x, y)) dz

= D + E.
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Then

D 6 cφε (x, y)

∫
{d(x,y)>3d(x,z)}

φ0 (x, z) dα−ε (x, z) dz

6 cφε (x, y)

∫
{d(x,y)>3d(x,z)}

φα−ε (x, z) dz

6 cφε (x, y) d (x, y)
α−ε 6 c

d (x, y)
α

|B (x, d (x, y))|
.

and

E 6
c

d (x, y)
ε

∫
U

(φα (z, y) + φα (x, y))φε (x, z) dz

6
c

d (x, y)
ε

[
φα+ε (x, y) + φα (x, y)

∫
U

φε (x, z) dz

]
6

c

d (x, y)
ε [φα+ε (x, y) + φα (x, y)Rε]

6
c

d (x, y)
ε

[
d (x, y)

α+ε

|B (x, d (x, y))|
+

d (x, y)
α
Rε

|B (x, d (x, y))|

]

6 cRε
d (x, y)

α−ε

|B (x, d (x, y))|
.

It follows that

|XkXiJ0 (x, y)| 6 cRε d (x, y)
α−ε

|B (x, d (x, y))|
+ c2φα (x, y) + c3φ2α (x, y)

6 c
d (x, y)

α−ε

|B (x, d (x, y))|
,

which proves (5.12). �

Proof of Theorem 5.9. It is enough to prove (5.8) and the continuity of
XiXjJ

′ (x, y), X0J
′ (x, y) in the joint variables, for x 6= y, because these facts to-

gether with Proposition 4.1 imply (5.9) and the continuity properties ofXiXjγ (x, y),
X0γ (x, y). The results about XiXjJ

′ (x, y) immediately follow by Theorem 5.16
choosing Φ0 = Φ′. The proof of the analog result for X0J

′ (x, y) is very similar: we
can start from

J ′δ (x, y) =

∫
U

∫
Rm

∫
Rm

(ωδΓ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdkΦ′ (z, y) dz

and compute

XjJ
′
δ (x, y) =

∫
U

∫
Rm

∫
Rm

X̃j

[
(ωδΓ)

(
Θ(z,k) (x, h)

)
a0 (h)

]
b0 (k) dhdkΦ′ (z, y) dz

From this point the computation of X0J
′ (x, y) proceeds as above. �

We can now refine the previous analysis of the second derivatives of our local
fundamental solution and prove a sharp bound of Hölder type on XiXjγ. This is
both interesting in its own, and will be a basic ingredient to deduce, via the theory
of singular integrals, local Hölder estimates for the second derivatives of the local
solution to the equation Lw = f that we will build in the next section.
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Theorem 5.17. For every ε ∈ (0, α) and U ′ b U there exists c > 0 such that
for every x1, x2 ∈ U ′, y ∈ U such that d (x1, y) > 2d (x1, x2), i, j = 1, 2, ..., n,

|XiXjP (x1, y)−XiXjP (x2, y)| 6 cd (x1, x2)

d (x1, y)

1

|B (x1, d (x1, y))|
;(5.13)

|XiXjJ
′ (x1, y)−XiXjJ

′ (x2, y)| 6 c
(
d (x1, x2)

d (x1, y)

)α−2ε
d (x1, y)

α−ε

|B (x1, d (x1, y))|
;(5.14)

|XiXjγ (x1, y)−XiXjγ (x2, y)| 6 c
(
d (x1, x2)

d (x1, y)

)α−ε
1

|B (x1, d (x1, y))|
;(5.15)

|X0γ (x1, y)−X0γ (x2, y)| 6 c
(
d (x1, x2)

d (x1, y)

)α−ε
1

|B (x1, d (x1, y))|
.(5.16)

In particular, for every ε ∈ (0, α) and y ∈ U,

γ (·, y) ∈ C2,α−ε
X,loc (U \ {y}) .

Proof. The proof will be achieved in several steps. We know that

(5.17) XiXjγ (x, y) =
1

c0 (y)
[XiXjP (x, y) +XiXjJ

′ (x, y)] ,

hence (5.15) will follow from (5.13) and (5.14). Also (5.16) will follow from (5.15)
since X0γ (x, y) = −

∑n
j=1X

2
j γ (x, y) for x 6= y.

Let us first prove (5.13). To do this, let us apply “Lagrange theorem” (Propo-
sition 2.6) to the function

f (x) = XiXjP (x, y) for x ∈ B
(
x1,

1

2
d (x1, y)

)
:

|XiXjP (x1, y)−XiXjP (x2, y)| 6 cd (x1, x2)

 n∑
k=1

sup
B(x1,

1
2d(x1,y))

|XkXiXjP (·, y)|+

+d (x1, x2) sup
B(x1,

1
2d(x1,y))

|X0XiXjP (·, y)|

 .

Note that since, under our assumptions, the coefficients of the Xi’s belong to Cr,α,
with r > 2, the compositions XkXiXj , X0XiXj are actually well defined. Reason-
ing like in the proof of Proposition 4.1 we get, for x ∈ B

(
x1,

1
2d (x1, y)

)
|XkXiXjP (x, y)| 6 cφ−1 (x, y) 6 cφ−1 (x1, y)

6
c

d (x1, y) |B (x1, d (x1, y))|
by Lemma 3.3. Analogously,

|X0XiXjP (x, y)| 6 cφ−2 (x, y) 6
c

d (x1, y)
2 |B (x1, d (x1, y))|

so that, for 2d (x1, x2) 6 d (x1, y) ,

|XiXjP (x1, y)−XiXjP (x2, y)| 6 cd (x1, x2)

d (x1, y)

1

|B (x1, d (x1, y))|
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and (5.13) is proved. Applying Theorem 5.16 with Φ0 = Φ′, we know that for any
x ∈ U ′, y ∈ U

XjXiJ
′ (x, y)

=

∫
U

∫
Rm

∫
Rm

(YjD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdk [Φ′ (z, y)− Φ′ (x, y)] dz

+ C (x) Φ′ (x, y) +

∫
U

R2 (x, z) Φ′ (z, y) dz

≡ A (x, y) +B (x, y) + C (x, y) .

Let us start from the last two terms, which are easier. By Proposition 5.5 and the
local Hölder continuity of C (x) we have

|B (x2, y)−B (x1, y)| 6 |C (x2)− C (x1)|Φ′ (x2, y) + |C (x1)| |Φ′ (x2, y)− Φ′ (x1, y)|

6 cd (x1, x2)
α
φα (x2, y) + cd (x1, x2)

α−ε
φε (x1, y)

6 cd (x1, x2)
α−ε

φε (x1, y) 6 c

(
d (x1, x2)

d (x1, y)

)α−ε
d (x1, y)

α

|B (x1, d (x1, y))|
.

As to C,

C (x2, y)− C (x1, y) =

∫
U

[R2 (x2, z)−R2 (x1, z)] Φ′ (z, y) dz

=

∫
U,d(z,x1)>2d(x1,x2)

(...) dz +

∫
U,d(z,x1)62d(x1,x2)

(...) dz

≡ C1 + C2.

To bound C1 we apply Lagrange theorem:

|R2 (x2, z)−R2 (x1, z)| 6 cd (x1, x2)

 n∑
k=1

sup
B(x1,

1
2d(x1,z))

|XkR2 (·, z)|

+d (x1, x2) sup
B(x1,

1
2d(x1,z))

|X0R2 (·, z)|


6 cd (x1, x2)φ−1+α (x1, z)

where the bounds on |XkR2 (·, z)| , |X0R2 (·, z)| exploit Proposition 5.4 (ii). Hence

|C1| 6 cd (x1, x2)

∫
U,d(z,x1)>2d(x1,x2)

φ−1+α (x1, z)φα (z, y) dz

6 cd (x1, x2)
α−ε

∫
U,d(z,x1)>2d(x1,x2)

d (x1, z)
1−α+ε

φ−1+α (x1, z)φα (z, y) dz

6 cd (x1, x2)
α−ε

∫
U

φε (x1, z)φα (z, y) dz 6 cd (x1, x2)
α−ε

φα+ε (x1, y) ,

while

|C2| 6
∫
U,d(z,x1)62d(x1,x2)

[φα (x2, z) + φα (x1, z)]φα (z, y) dz.
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Since d (x1, z) 6 2d (x1, x2) and d (x1, y) > 3d (x1, x2) implies d (x1, y) 6 3d (z, y)

|C2| 6 c
∫
U,d(z,x1)62d(x1,x2)

[φα (x2, z) + φα (x1, z)]φα (x1, y) dz

6 cφα (x1, y)

(∫
U,d(z,x2)63d(x1,x2)

φα (x2, z) dz +

∫
U,d(z,x1)62d(x1,x2)

φα (x1, z) dz

)
6 cφα (x1, y) d (x1, x2)

α

by Corollary 3.4. Hence

|C (x2, y)− C (x1, y)| 6 cd (x1, x2)
α−ε

φα+ε (x1, y) + cφα (x1, y) d (x1, x2)
α

6 c

(
d (x1, x2)

d (x1, y)

)α−ε
d (x1, y)

2α

|B (x1, d (x1, y))|
+ c

(
d (x1, x2)

d (x1, y)

)α
d (x1, y)

2α

|B (x1, d (x1, y))|

6 c

(
d (x1, x2)

d (x1, y)

)α−ε
d (x1, y)

2α

|B (x1, d (x1, y))|
.

As to A, let

k (x, z) =

∫
Rm

∫
Rm

(YjD1Γ)
(
Θ(z,k) (x, h)

)
a0 (h) b0 (k) dhdk,

then

A (x2, y)−A (x1, y) =

∫
U

{k (x2, z) [Φ′ (z, y)− Φ′ (x2, y)]− k (x1, z) [Φ′ (z, y)− Φ′ (x1, y)]} dz

=

∫
U,d(x1,z)>2d(x1,x2)

{· · · } dz +

∫
U,d(x1,z)<2d(x1,x2)

{· · · } dz

≡ A1 (x1, x2, y) +A2 (x1, x2, y) .

A1 (x1, x2, y) =

∫
U,d(x1,z)>2d(x1,x2)

[k (x2, z)− k (x1, z)] [Φ′ (z, y)− Φ′ (x2, y)] dz

+ [Φ′ (x1, y)− Φ′ (x2, y)]

∫
U,d(x1,z)>2d(x1,x2)

k (x1, z) dz

≡ A1,1 (x1, x2, y) +A1,2 (x1, x2, y) .

Since, for d (x1, z) > 2d (x1, x2) we have

|k (x2, z)− k (x1, z)| 6 d (x1, x2)φ−1 (x1, z)

we obtain

|A1,1 (x1, x2, y)| 6 cd (x1, x2)

∫
U,d(x1,z)>2d(x1,x2)

φ−1 (x1, z) |Φ′ (z, y)− Φ′ (x2, y)| dz.

We now split the domain of integration {z ∈ U : d (x1, z) > 2d (x1, x2)} into two
pieces

U1 = {z : U : d (x1, z) > 2d (x1, x2) , d (z, y) > 3d (z, x2)} ,
U2 = {z : U : d (x1, z) > 2d (x1, x2) , d (z, y) < 3d (z, x2)} ,

so that

|A1,1 (x1, x2, y)| 6 cd (x1, x2)

∫
U1

(· · · ) dz + d (x1, x2)

∫
U2

(· · · ) dz

≡ A1,1,1 (x1, x2, y) +A1,1,2 (x1, x2, y) .
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Note that d (x1, z) and d (x2, z) are equivalent on U1 and U2. Also on U1 (since

d (z, y) > 3d (z, x2)) we have |Φ′ (z, y)− Φ′ (x2, y)| 6 d (z, x2)
α−ε

φε (z, y) and
therefore

|A1,1,1 (x1, x2, y)| 6 cd (x1, x2)

∫
U,d(x1,z)>2d(x1,x2)

φ−1 (x1, z) d (z, x2)
α−ε

φε (z, y) dz

6 cd (x1, x2)

∫
U,d(x1,z)>2d(x1,x2)

φ−1 (x1, z) d (z, x1)
α−ε

φε (z, y) dz

6 cd (x1, x2)
α−2ε

∫
U,d(x1,z)>2d(x1,x2)

φ−1 (x1, z) d (z, x1)
1+ε

φε (z, y) dz

6 cd (x1, x2)
α−2ε

∫
U

φε (x1, z)φε (z, y) dz

6 cd (x1, x2)
α−2ε

φ2ε (x1, y) 6 c

(
d (x1, x2)

d (x1, y)

)α−2ε
d (x1, y)

α

|B (x1, d (x1, y))|
.

We now consider the second term. We have

|A1,1,2 (x1, x2, y)| 6 cd (x1, x2)

∫
U2

φ−1 (x1, z) (φα (z, y) + φα (x2, y)) dz

≡ A′1,1,2 +A′′1,1,2.

Since d (y, z) 6 1
2d (x1, y) implies d (x1, y) 6 2d (x1, z) ,

A′1,1,2 6 cd (x1, x2)
d (x1, y)

1+ε

d (x1, y)
1+ε

∫
U2∩{d(y,z)6 1

2d(x1,y)}
φ−1 (x1, z)φα (z, y) dz

+ cd (x1, x2)
α−ε

∫
U2∩{d(y,z)> 1

2d(x1,y)}
d (x1, x2)

1−α+ε
φ−1 (x1, z)

d (z, y)
α

|B (z, d (z, y))|
dz

6 c
d (x1, x2)

d (x1, y)
1+ε

∫
U

φε (x1, z)φα (z, y) dz

+
cd (x1, x2)

α−ε

|B (y, d (x1, y))|

∫
U2∩{d(y,z)> 1

2d(x1,y)}
d (x1, z)

1−α+ε
φ−1 (x1, z) d (z, x1)

α
dz

6 c
d (x1, x2)

d (x1, y)
1+εφα+ε (x1, y) +

cd (x1, x2)
α−ε

|B (y, d (x1, y))|

∫
U

φε (x1, z) dz

6 cd (x1, x2)
d (x1, y)

α−1

|B (y, d (x1, y))|
+ c

d (x1, x2)
α−ε

|B (x1, d (x1, y))|
Rε

6 c

(
d (x1, x2)

d (x1, y)

)α−ε(
d (x1, y)

α−1
d (x1, x2)

d (x1, x2)
α−ε

d (x1, y)
α−ε

|B (y, d (x1, y))|
+

d (x1, y)
α−ε

|B (x1, d (x1, y))|

)

6 c

(
d (x1, x2)

d (x1, y)

)α−ε(
Rε

d (x1, y)
α−ε

|B (y, d (x1, y))|
+

d (x1, y)
α−ε

|B (x1, d (x1, y))|

)
.

Since in U2

d (x2, y) 6 d (x2, z) + d (z, y) 6 cd (z, x2) 6 cd (z, x1)
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we have

A′′1,1,2 6 d (x1, x2)
α−ε φα (x2, y)

d (x2, y)
α

∫
U2

φε (x1, z) dz 6 c
d (x1, x2)

α−ε

|B (x2, d (x2, y))|
Rε

6 c

(
d (x1, x2)

d (x2, y)

)α−ε
d (x2, y)

α−ε

|B (x2, d (x2, y))|
.

Hence

|A1,1,2 (x1, x2, y)| 6 c
(
d (x1, x2)

d (x1, y)

)α−ε
d (x1, y)

α−ε

|B (x1, d (x1, y))|

and

|A1,1 (x1, x2, y)| 6 c
(
d (x1, x2)

d (x1, y)

)α−2ε
d (x1, y)

α−ε

|B (x1, d (x1, y))|
.

We now consider A1,2. Observe that for d (x1, y) > 3d (x1, x2) we have

|A1,2 (x1, x2, y)| 6 |Φ′ (x1, y)− Φ′ (x2, y)|
∫
U,d(x1,z)>2d(x1,x2)

φ0 (x1, z) dz

6 cd (x1, x2)
α−ε

φε (x1, y)

∫
U,d(x1,z)>2d(x1,x2)

φ0 (x1, z) dz

6 cd (x1, x2)
α−2ε

φε (x1, y)

∫
U,d(x1,z)>2d(x1,x2)

φε (x1, z) dz

6 cd (x1, x2)
α−2ε

φε (x1, y)Rε 6 c

(
d (x1, x2)

d (x1, y)

)α−2ε
d (x1, y)

α−ε

|B (x1, d (x1, y))|
.

Finally we have to bound A2 (x1, x2, y). We have

|A2 (x1, x2, y)| 6
∫
U,d(x2,z)<3d(x1,x2)

φ0 (x2, z) |Φ′ (z, y)− Φ′ (x2, y)| dz

+

∫
U,d(x1,z)<2d(x1,x2)

φ0 (x1, z) |Φ′ (z, y)− Φ′ (x1, y)| dz.

Since the two terms are similar it is enough to bound the second. We have∫
U,d(x1,z)<2d(x1,x2)

φ0 (x1, z) |Φ′ (z, y)− Φ′ (x1, y)| dz

=

∫
U,d(x1,z)<2d(x1,x2),d(y,z)6 1

2d(x1,y)

{· · · } dz +

∫
U,d(x1,z)<2d(x1,x2),d(y,z)> 1

2d(x1,y)

{· · · } dz

≡ A2,1 (x1, x2, y) +A2,2 (x1, x2, y) .

As to A2,1 (x1, x2, y) , we note that, under the assumption d (x1, y) > 3d (x1, x2), in
the domain of integration the following equivalences hold:

d (x1, y) ' d (z, y) ' d (x1, z) .

Therefore

|Φ′ (z, y)− Φ′ (x1, y)| 6 φα (z, y) + φα (x1, y) 6 cφα (z, y)
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and

A2,1 (x1, x2, y) 6 c
∫
{d(x1,z)<2d(x1,x2),d(y,z)6 1

2d(x1,y)}
φ0 (x1, z)φα (z, y) dz

6
c

d (x1, y)
α

∫
{d(x1,z)<2d(x1,x2),d(y,z)6 1

2d(x1,y)}
d (x1, z)

α
φ0 (x1, z)φα (z, y) dz

6
c

d (x1, y)
αφα (x1, y)

∫
{d(x1,z)<2d(x1,x2)}

φα (x1, z) dz

6 c

(
d (x1, x2)

d (x1, y)

)α
φα (x1, y) 6 c

(
d (x1, x2)

d (x1, y)

)α
d (x1, y)

α

|B (x1, d (x1, y))|
.

On the other hand, since d (x1, z) 6 2d (x1, x2) 6 2
3d (x1, y) < 3d (x1, y), by

Proposition 5.5

A2,2 (x1, x2, y) 6

6 c
∫
U,d(x1,z)<2d(x1,x2),d(y,z)> 1

2d(x1,y)

φ0 (x1, z) d (x1, z)
α−ε

φε (z, y) dz

6 cd (x1, x2)
α−2ε

∫
U,d(x1,z)<2d(x1,x2),d(y,z)> 1

2d(x1,y)

d (x1, z)
ε
φ0 (x1, z)φε (z, y) dz

6 cd (x1, x2)
α−2ε

∫
U

φε (x1, z)φε (z, y) dz

6 cd (x1, x2)
α−2ε

φ2ε (x1, y) 6 c

(
d (x1, x2)

d (x1, y)

)α−2ε
d (x1, y)

α

|B (x1, d (x1, y))|
.

We can conclude that

|A (x2, y)−A (x1, y)| 6 c
(
d (x1, x2)

d (x1, y)

)α−2ε
d (x1, y)

α−ε

|B (x1, d (x1, y))|
.

This completes the proof of (5.14). �

5.3. Local solvability and Hölder estimates on the highest derivatives
of the solution. Throughout this section we keep Assumptions B, stated at the
beginning of §5. We can now prove one of the main results in this paper:

Theorem 5.18 (Local solvability of L). Under Assumptions B, the function γ
is a solution to the equation

Lγ (·, y) = 0 in U \ {y} , for any y ∈ U.

Moreover, for any β > 0, f ∈ CβX (U), the function

(5.18) w (x) = −
∫
U

γ (x, y) f (y) dy

is a C2
X (U) solution to the equation Lw = f in U (in the sense of Definition 5.1).

Hence the operator L is locally solvable in Ω.
Moreover, if X0 ≡ 0, choosing U small enough, we have the following positivity

property: if f ∈ CβX (U) , f 6 0 in U , then the equation Lw = f has at least a
C2
X (U) solution w > 0 in U .
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Proof. By Theorem 4.8 and Theorem 5.9 we already know that γ (·, y) ∈
C2
X (U \ {y}) . For fixed y ∈ U and r > 0, let ω ∈ C∞0 (U) , ω vanishing in the ball

B (y, r). Then, by Theorem 4.8 we have

0 =

∫
γ (x, y)L∗ω (x) dx =

∫
Lγ (x, y)ω (x) dx

with Lγ (·, y) continuous in the support of ω. Since r and ω are arbitrary, we get
Lγ (x, y) = 0 for every x ∈ U \ {y}, any y ∈ U.

Let now w be as in (5.18) for some f ∈ Cβ (U) , β > 0; for any ψ ∈ C∞0 (U) we
can write, by Theorem 4.8,∫

U

w (x)L∗ψ (x) dx =

∫
U

(
−
∫
U

γ (x, y) f (y) dy

)
L∗ψ (x) dx

= −
∫
U

(∫
U

γ (x, y)L∗ψ (x) dx

)
f (y) dy

=

∫
U

ψ (y) f (y) dy.(5.19)

Hence if we show that Lw actually exists and is continuous in U , we can write∫
U

w (x)L∗ψ (x) dx =

∫
U

Lw (x)ψ (x) dx ∀ψ ∈ C∞0 (U) ,

which coupled with (5.19) gives Lw = f . Actually, we will prove that w ∈ C2
X (U).

By the results in §4 it is easy to see that w ∈ C1
X (U). Namely, by Proposition

3.7 (ii), w ∈ C (U) by the estimate (4.33) while

Xiw (x) = −
∫
U

Xiγ (x, y) f (y) dy

is continuous in U by the estimate (4.34).
Let us write:

XjXiw (x) = −XjXi

∫
U

γ (x, y) f (y) dy =

= −XjXi

∫
U

1

c0 (y)
[P (x, y) + J ′ (x, y)] f (y) dy ≡ A (x) +B (x) .

By Theorem 5.9 we can write

(5.20) B (x) = −
∫
U

XjXiJ
′ (x, y) f̃ (y) dy,

having set

(5.21) f̃ (y) =
f (y)

c0 (y)

and again by Proposition 3.7 (ii), and the bound (5.9), B is continuous in U .
Let us now consider

(5.22) A (x) = −XjXi

∫
U

P (x, y) f̃ (y) dy.

From the computation in the proof of Theorem 5.16 we read that

−XiP (x, y) = k1 (x, y)
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with k1 (x, y) kernel of type 1 in the sense of Definition 5.11, hence

(5.23) A (x) = Xj

∫
U

k1 (x, y) f̃ (y) dy

where the function f̃ is Hölder continuous in U . To show that A (x) exists and is
continuous we can now proceed as we did in the proof of Theorem 5.16 for the term
XjB (x, y), getting, analogously to (5.11) and with the same notation,

A (x) =

∫
Rm

a0 (h)

∫
Σ

YjD1Γ (Θη (ξ)) b0 (k)
[
f̃ (z)− f̃ (x)

]
dηdh

+ c1 (x) f̃ (x) +

∫
U

R2 (x, z) f̃ (z) dz

where ξ = (x, h), η = (z, k), Σ = U × I, I ⊂ Rm such that I ⊃ sprt a0 ∪ sprt b0.

Note that here f̃ plays the role of the function Φ0 (·, y) in the proof of Theorem

5.16; since f̃ ∈ CβX (U) for some β > 0, it obviously satisfies the properties required
in the definition of Φ0 (·, y). Hence

XjXiw (x) =

∫
Rm

a0 (h)

∫
Σ

YjD1Γ (Θη (ξ)) b0 (k)
[
f̃ (z)− f̃ (x)

]
dηdh

+ c1 (x) f̃ (x) +

∫
U

R2 (x, z) f̃ (z) dz −
∫
U

XjXiJ
′ (x, z) f̃ (z) dz,

and this function is continuous in U .
To complete the proof we should prove the existence and continuity of

X0

∫
U

P (x, z) f̃ (z) dz.

However, this is very similar to what we have just done.
Finally, the positivity property of L when X0 ≡ 0 and U is small enough

immediately follows from (5.18) and (4.36). So we have finished. �

From the proof of the above theorem we read in particular a representation
formula for the second derivatives XiXjw of our solution. In view of the proof of
local Hölder continuity of XiXjw, we have to localize our representation formula.

For x ∈ U and B (x,R) ⊂ U , pick a cutoff function

(5.24) b ∈ C∞0 (B (x,R)) such that b = 1 in B

(
x,

3

4
R

)
.

For any β > 0, f ∈ CβX (U), let w be the solution to Lw = f in U assigned by
(5.18). Then, for any x ∈ B (x,R) we can write:

(5.25) w (x) = −
∫
B(x,R)

γ (x, y) b (y) f (y) dy +

∫
U

γ (x, y) [b (y)− 1] f (y) dy.

We also have:
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Corollary 5.19. With the notation and assumptions just recalled, for every
x ∈ B

(
x, R2

)
and i, j = 1, 2, ..., n, we have:

XjXiw (x) =

∫
U

XiXjγ (x, y) [b (y)− 1] f (y) dy + c1 (x) f̃ (x)

+

∫
B(x,R)

k2 (x, z)
[
f̃ (z)− f̃ (x)

]
b (z) dz

+

∫
B(x,R)

R2 (x, z) b (z) f̃ (z) dz −
∫
B(x,R)

XjXiJ
′ (x, z) b (z) f̃ (z) dz

≡
5∑
k=1

Tkf (x) ,

where c1 ∈ CαX
(
B
(
x, R2

))
, k2 and R2 are a pure kernel and a remainder of type 2,

respectively, in the sense of Definition 5.11 and f̃ is defined in (5.21).

Proof. Let us write

w (x) = −
∫
B(x,R)

γ (x, y) b (y) f (y) dy +

∫
U

γ (x, y) [b (y)− 1] f (y) dy

≡ K1f (x) +K2f (x) .

Note that for x ∈ B (x,R/2) the integral defining K2f (x) can be freely differenti-
ated since [b (y)− 1] 6= 0 only if d (x, y) > R/4, so

XiXjK2f(x) =

∫
U

XiXjγ (x, y) [b (y)− 1] f (y) dy.

Arguing as in the proof of Theorems 5.18 and 5.16 we have therefore (with η =
(z, k), ξ = (x, h), Σ = U × I for I ⊃ sprt a0 ∪ sprt b0)

XjXiw (x) =

∫
U

XiXjγ (x, y) [b (y)− 1] f (y) dy + c1 (x) f̃ (x)

+

∫
Rm

a0 (h)

∫
Σ

YjD1Γ (Θη (ξ))
[
f̃ (z) b (z)− f̃ (x) b (x)

]
b0 (k) dηdh

+

∫
B(x,R)

R2 (x, z) b (z) f̃ (z) dz −
∫
B(x,R)

XjXiJ
′ (x, z) b (z) f̃ (z) dz.

Let us rewrite the third term as∫
Rm

a0 (h)

∫
Σ

YjD1Γ (Θη (ξ))
[
f̃ (z)− f̃ (x)

]
b0 (k) b (z) dηdh

+ f̃ (x)

∫
Rm

a0 (h)

∫
Σ

YjD1Γ (Θη (ξ)) [b (z)− b (x)] b0 (k) dηdh

=

∫
B(x,R)

k2 (x, z)
[
f̃ (z)− f̃ (x)

]
b (z) dz

+ f̃ (x) c2 (x)

where k2 is a kernel of type 2, while

c2 (x) =

∫
U

k2 (x, z) [b (z)− b (x)] dz

=

∫
U

k2 (x, z) [b (z)− 1] dz
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is another CαX
(
B
(
x, R2

))
function. Namely, recalling that b = 1 in B

(
x, 3

4R
)
, for

any x1, x2 ∈ B (x,R/2), we have

(5.26) |c2 (x2)− c2 (x1)| 6
∫
U

|k2 (x2, z)− k2 (x1, z)| [1− b (z)] dz.

Note that, from

k2 (x, y) =

∫
Rm

∫
Rm

D2Γ
(
Θ(y,k) (x, h)

)
a0 (h) b0 (k) dhdk,

by Proposition 5.4 (ii) we read that

|k2 (x, y)| 6 cφ0 (x, y) ;(5.27)

|Xik2 (x, y)| 6 cφ−1 (x, y) for i = 1, 2, ..., n;

|X0k2 (x, y)| 6 cφ−2 (x, y) ,

hence by Lagrange theorem (Proposition 2.6),
(5.28)

|k2 (x2, z)− k2 (x1, z)| 6 c
d (x1, x2)

d (x1, z)

1

|B (x1, d (x1, z))|
for d (x1, z) > 2d (x1, x2) .

Now, note that the integrand function in (5.26) does not vanish only for d (x1, z) >
R/4, d (x2, z) > R/4. Hence if d (x1, x2) 6 R/8 by (5.28) we get

|c2 (x2)− c2 (x1)| 6 c (R) d (x1, x2) .

On the other hand, if d (x1, x2) > R/8,

|c2 (x2)− c2 (x1)| 6 |c2 (x2)|+ |c2 (x1)| 6 c (R) 6 c (R) d (x1, x2) ,

and c2 ∈ CαX
(
B
(
x, R2

))
. This completes the proof. �

The rest of this section will be devoted to the proof of the following:

Theorem 5.20. For any β ∈ (0, α) and f ∈ CβX (U), let w ∈ C2
X (U) be the

solution to Lw = f in U assigned by (5.18). Then w ∈ C2,β
X,loc (U). More precisely,

for any U ′ b U there exists c > 0 (depending on U , U ′, β and on the vector fields
as specified at the beginning of section 5) such that

(5.29) ‖w‖C2,β
X (U ′) 6 c ‖f‖CβX(U) .

Corollary 5.21 (C2,β
X local solvability). Under assumptions B, for every β ∈

(0, α) the operator L is locally C2,β
X solvable in Ω in the following senses:

(i) for every x ∈ Ω there exists a neighborhood U of x such that for every

f ∈ CβX (U) there exists a solution u ∈ C2,β
X,loc (U) to Lu = f in U.

(ii) for every x ∈ Ω there exists a neighborhood U of x such that for every

f ∈ CβX,0 (U) there exists a solution u ∈ C2,β
X (U) to Lu = f in U.

Proof. Point (i) immediately follows by the above theorem and Theorem 5.18.
As to point (ii), let U be the neighborhood of x given by point (i), and let U ′

be another neighborhood of x such that U ′ b U . For any f ∈ CβX,0 (U ′) we

can regard f also as a function in CβX,0 (U) , and solve Lu = f in U getting a

u ∈ C2,β
X,loc (U) by point (i); hence in particular u ∈ C2,β

X (U ′). Then U ′ is the
required neighborhood. �
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Since, in order to prove the above theorem, we will apply several abstract
results about singular and fractional integrals, it is time to explain what is the
suitable abstract context for the present situation. Recall that in our neighborhood
U we have the distance d, such that the Lebesgue measure is locally doubling (see
Theorem 2.3). However, we cannot assure the validity of a global doubling condition
in U , which should mean:

(5.30) |B (x, 2r) ∩ U | 6 c |B (x, r) ∩ U | for any x ∈ U, r > 0.

Actually, even for the Carnot-Carathéodory distance induced by smooth Hörmander’s
vector fields, condition (5.30) is known when U is for instance a metric ball and
the drift term X0 is lacking; in presence of a drift, however, the distance d does not
satisfy the segment property, and the validity of a condition (5.30) on some reason-
able U seems to be an open problem (fur further details on this issue we refer to
the introduction of [7]). This means that in our situation (U, d, dx) is not a space
of homogeneous type in the sense of Coifman-Weiss. However, (U, d, dx) fits the
assumptions of locally homogeneous spaces as defined in [7]. We will apply some
results proved in [7] which assure the local Cα continuity of singular and fractional
integrals defined by a kernel of the kind

a (x) k (x, y) b (y)

(with a, b smooth cutoff functions) provided that the kernel k satisfies natural as-
sumptions which never involve integration over domains of the kind B (x, r) ∩ U ,
but only over balls B (x, r) b U, which makes our local doubling condition usable.
Before starting the proof of the above theorem we need the following

Definition 5.22. We say that the a kernel k (x, y) satisfies the standard esti-
mates of fractional integrals with (positive) exponents ν, β in B (x,R) if

|k (x, y)| 6 c d (x, y)
ν

|B (x, d (x, y))|
for every x, y ∈ B (x,R), and

|k (x, y)− k (x0, y)| 6 c d (x0, y)
ν

|B (x0, d (x0, y))|

(
d (x0, x)

d (x0, y)

)β
for every x0, x, y ∈ B (x,R) such that d (x0, y) >Md (x0, x) for suitable M > 1.

We say that k (x, y) satisfies the standard estimates of singular integrals if the
previous estimates hold with ν = 0 and some positive β.

Proof of Theorem 5.20, first part. Fix U ′ b U and choose R0 > 0 such
that for any x ∈ U ′ one has B (x,KR0) ⊂ U , for some large number K > 1 which
is not important to specify (it comes out from some proofs in [7]). For any R 6 R0,
pick a cutoff function b ∈ C∞0 (B (x,R)) such that b ≡ 1 in B

(
x, 3

4R
)
. Then for

any x ∈ B (x,R/2) the representation formula proved in Corollary 5.19 holds:

XiXjw (x) =

5∑
k=1

Tkf (x) for i, j = 1, 2, ...., n.

Our proof will mainly consist in showing that for any β ∈ (0, α) and f ∈ CβX (U) ,

|XiXjw (x1)−XiXjw (x2)| 6 cd (x1, x2)
β ‖f‖Cβ(U)
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for any x1, x2 ∈ B
(
x, R2

)
. We are going to show how to bound the Cβ

(
B
(
x, R2

))
seminorm of each term in this formula, starting with the easier ones.

Consider the operator

T1f (x) =

∫
U

XiXjγ (x, y) [b (y)− 1] f (y) dy.

Then by our choice of the cutoff function b, we have, for x1, x2 ∈ B (x,R/2) ,

|T1f (x1)− T1f (x2)|

6 ‖f‖C0(U)

∫
U,d(x,y)> 3

4R,d(x1,y)>R
4 ,d(x2,y)>R

4

|XiXjγ (x1, y)−XiXjγ (x2, y)| dy

= ‖f‖C0(U)

(∫
2d(x1,x2)<d(x1,y),d(x1,y)>R

4

(...) dy +

∫
2d(x1,x2)>d(x1,y),d(x1,y)>R

4 ,d(x2,y)>R
4

(...) dy

)
by (5.15) and (5.9)

6 c ‖f‖C0(U)

{
d (x1, x2)

α−ε
∫
d(x1,y)>R

4

dy

d (x1, y)
α−ε |B (x1, d (x1, y))|

+
1

R

∫
2d(x1,x2)>d(x1,y)

d (x1, y)

|B (x1, d (x1, y))|
dy +

1

R

∫
3d(x1,x2)>d(x2,y)

d (x2, y)

|B (x2, d (x2, y))|
dy

}

6 ‖f‖C0(U)

{
c (R) d (x1, x2)

α−ε
+
d (x1, x2)

R

}
= cd (x1, x2)

α−ε ‖f‖C0(U) ,

so that
‖T1f‖CβX(B(x,R/2)) 6 c (β,R) ‖f‖C0(U) ∀β < α.

Next we introduce a second cutoff function a ∈ C∞0
(
B
(
x, 3

4R
))

such that a ≡ 1 in

B
(
x, R2

)
. For x ∈ B

(
x, R2

)
we have Tkf (x) = T̃kf (x), k = 4, 5 with

T̃4f (x) = a (x)

∫
B(x,R)

R2 (x, z) b (z) f̃ (z) dz

T̃5f (x) = −a (x)

∫
B(x,R)

XjXiJ
′ (x, z) b (z) f̃ (z) dz.

These new operators have the form

T̃jf(x) =

∫
B(x,R)

a (x) kj (x, y)
f (y)

c0 (y)
b (y) dy for j = 4, 5,

where the kernels kj (x, y) satisfy the standard estimates of fractional integrals.
Indeed, by Definition 5.10 and Proposition 5.4 (ii), the kernel k4 satisfies

|k4 (x, z)| 6 cφα (x, z) 6 c
d (x, z)

α

|B (x, d (x, z))|
;

|Xkk4 (x, z)| 6 cφα−1 (x, z) ;

|X0k4 (x, z)| 6 cφα−2 (x, z) .

If d (x1, z) > 2d (x1, x2), then by Lagrange theorem we can bound

|k4 (x1, z)− k4 (x2, z)| 6 c
{
d (x1, x2)φα−1 (x1, z) + d (x1, x2)

2
φα−2 (x1, z)

}
6 cd (x1, x2)

α−ε
φε (x1, z) .(5.31)
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Then k4 satisfies the standard estimates of fractional integrals with exponents ν, α,
for any ν < α;

The kernel k5 satisfies, by (5.8) and (5.14) (note that the cutoff function a (x)
compensates the local charachter of those bounds), the standard estimates of frac-
tional integrals with exponents ν, β, for any ν and β both < α, hence by [7, Thm.
5.8], for any β < α

‖Tjf‖CβX(B(x,R/2)) =
∥∥∥T̃jf∥∥∥

CβX(B(x,R/2))
6 c ‖f‖CβX(B(x,R)) for j = 4, 5,

with c depending on R and β.

Next, T2f(x) = c1(x)
c0(x)f(x), with c1, c0 Hölder continuous functions of exponent

α and c0 bounded away from zero.
We are left to handle the term

T3f(x) =

∫
B(x,R)

k2 (x, z)
[
f̃ (z)− f̃ (x)

]
b (z) dz

with k2 pure kernel of order 2, satisfying the standard estimates of singular integrals
(see (5.27), (5.28)). Moreover, the same is true for the kernel

k̃2 (x, y) = a (x) k2 (x, y) b (y) .

In order to deduce an Hölder estimate for T3f we still need to establish a suitable

cancellation property for k̃2. So, let us pause for a moment this proof and pass to
this auxiliary result. �

Proposition 5.23 (Cancellation property). There exists C > 0 such that for
a.e. x ∈ B (x,R) and 0 < ε1 < ε2 <∞

(5.32)

∣∣∣∣∣
∫
ε1<d(x,y)<ε2

a(x)k2 (x, y) b(y) dy

∣∣∣∣∣ 6 C.
Proof. By Proposition 5.1 in [7], it is enough to prove the following cancella-

tion property for k2: there exists C > 0 such that for a.e. x ∈ B (x,R0) and every
ε1, ε2 such that 0 < ε1 < ε2 and B (x, ε2) ⊂ U,

(5.33)

∣∣∣∣∣
∫
ε1<d(x,y)<ε2

k2 (x, y) dy

∣∣∣∣∣ 6 C.
According to Definition 5.11 of kernel of type 2 we write∫

ε1<d(x,y)<ε2

k2 (x, y) dy =

=

∫
ε1<d(x,y)<ε2

∫
Rm

∫
Rm

D2Γ
(
Θ(y,k) (x, h)

)
a0 (h) b0 (k) dhdk dy +

∫
ε1<d(x,y)<ε2

R2 (x, y) dy,

where the last integral is uniformly bounded in ε1, ε2 since the remainder R2 is
locally integrable.

We can assume ε2 < 1. Let us recall that

c
∥∥Θ(y,k) (x, h)

∥∥ > dX̃ ((x, h) , (y, k)) > d (x, y) ,
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then∫
ε1<d(x,y)<ε2

(∫
Rm

∫
Rm

D2Γ
(
Θ(y,k) (x, h)

)
a0 (h) b0 (k) dhdk

)
dy

=

∫
Rm

a0 (h)

(∫
ε1<c‖Θ(y,k)(x,h)‖<ε2

D2Γ
(
Θ(y,k) (x, h)

)
b0 (k) dkdy

)
dh

+

∫
Rm

a0 (h)

(∫
c‖Θ(y,k)(x,h)‖>ε2,d(x,y)<ε2

D2Γ
(
Θ(y,k) (x, h)

)
b0 (k) dkdy

)
dh

−
∫
Rm

a0 (h)

(∫
c‖Θ(y,k)(x,h)‖>ε1,d(x,y)<ε1

D2Γ
(
Θ(y,k) (x, h)

)
b0 (k) dkdy

)
dh

≡ Cε1,ε2 (x) +Dε2 (x)− Eε1 (x) .

To handle Cε1,ε2 (x) we start rewriting

Cε1,ε2 (x) =

∫
Rm

a0 (h)

(∫
ε1<c‖Θ(y,k)(x,h)‖<ε2

D2Γ
(
Θ(y,k) (x, h)

)
[b0 (k)− b0 (h)] dkdy

)
dh

+

∫
Rm

a0 (h) b0 (h)

(∫
ε1<c‖Θ(y,k)(x,h)‖<ε2

D2Γ
(
Θ(y,k) (x, h)

)
dkdy

)
dh

≡ Cε1,ε21 (x) + Cε1,ε22 (x) .

As to Cε1,ε21 (x), since

|b0 (k)− b0 (h)| 6 c |k − h| 6 c
∥∥Θ(y,k) (x, h)

∥∥ ,
we have

|Cε1,ε21 (x)| 6
∫
Rm
|a0 (h)|

(∫
‖Θ(y,k)(x,h)‖<ε2

c∥∥Θ(y,k) (x, h)
∥∥Q−1

dkdy

)
dh

6 cε2

∫
Rm
|a0 (h)| dh 6 c.

As to Cε1,ε22 (x), by the change of variables (y, k) 7→ u = Θ(y,k) (x, h) and Proposi-
tion 5.4 we have, letting ξ = (x, h) ,

Cε1,ε22 (x) =

∫
Rm

a0 (h) b0 (h) c (ξ)

(∫
ε1<c‖u‖<ε2

D2Γ (u) (1 + χ (ξ, u)) du

)
dh.

Keeping in mind the vanishing property of D2Γ, that is∫
ε1<c‖u‖<ε2

D2Γ (u) du = 0,

we have

Cε1,ε22 (x) =

∫
Rm

a0 (h) b0 (h) c (ξ)

(∫
ε1<c‖u‖<ε2

D2Γ (u)χ (ξ, u) du

)
dh

which is uniformly bounded in ε1, ε2 since∫
ε1<c‖u‖<ε2

|D2Γ (u)χ (ξ, u)| du 6
∫
c‖u‖<ε2

c

‖u‖Q−α
du 6 cεα2 6 c.
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Let us come to the terms Dε2 (x) and Eε1 (x). Choosing some small δ > 0 we can
write, by Corollary 3.4,

|Dε2 (x)| 6
∫
Rm

a0 (h)

(∫
c‖Θ(y,k)(x,h)‖>ε2,d(x,y)<ε2

∥∥Θ(y,k) (x, h)
∥∥−Q b0 (k) dkdy

)
dh

6
1

εδ2

∫
d(x,y)6ε2

(∫
Rm

∫
Rm

∥∥Θ(y,k) (x, h)
∥∥−Q+δ

a0 (h) b0 (k) dkdh

)
dy

6
c

εδ2

∫
d(x,y)6ε2

φδ (x, y) dy 6
c

εδ2
· εδ2 = c

and the term Eε1 (x) can be bounded at the same way. �

Conclusion of the proof of Theorem 5.20. We are left to prove the CβX
continuity of the operator T3. Let us consider first

T̃3f(x) =

∫
B(x,R)

k̃2 (x, y)
[
f̃ (y)− f̃ (x)

]
dy.

We know that the kernel k̃2 (x, y) satisfies the standard estimates of singular in-
tegrals with exponent β = 1 (see the end of the first part of this proof) and the
cancellation property (5.33). This is enough to repeat verbatim the proof of Theo-
rem 2.7 in [3]: the quantity

T̃3f (x)− T̃3f (x0)

is exactly the quantity which is called A in that proof, see [3, p.183], and the proof
of the bound
(5.34)

|T3f (x)− T3f (x0)| =
∣∣∣T̃3f (x)− T̃3f (x0)

∣∣∣ 6 cd (x, x0)
β ‖f‖CβX(B(x,R)) ∀β < 1

for any x, x0 ∈ B (x,R/2) only relies on the properties of the kernel that we have

already pointed out. In particular, since the integral defining T̃3f is over B (x,R)
and B (x, 3R) ⊂ U , we can safely apply the local doubling condition on the small
balls which are involved in that proof. Combining (5.34) with the first part of the
proof of this theorem, we can write

|XiXjw (x1)−XiXjw (x2)| 6 cd (x1, x2)
β ‖f‖CβX(U) ∀β < α

for any x1, x2 ∈ B
(
x, R2

)
, with some constant c also depending on R.

An analogous, but easier, inspection of each term Tjf also shows that

(5.35) sup
x∈B(x,R2 )

|XiXjw (x)| 6 c ‖f‖CβX(U) .

By a covering argument this implies

(5.36) sup
x∈U ′

|XiXjw (x)| 6 c ‖f‖CβX(U)

so that for each couple of points x1, x2 ∈ U ′ we can write

|XiXjw (x1)−XiXjw (x2)| 6 cd (x1, x2)
β ‖f‖CβX(U)
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if d (x1, x2) < R0/2, and, by (5.36),

|XiXjw (x1)−XiXjw (x2)| 6 2 sup
x∈U ′

|XiXjw (x)| 6 c
(
d (x1, x2)

R0

)β
‖f‖CβX(U)

if d (x1, x2) > R0/2. Hence

‖XiXjw‖CβX(U ′) 6 c ‖f‖CβX(U) .

The norms ‖Xiw‖CβX(U ′), i = 1, . . . n, and ‖w‖CβX(U ′) can be more easily handled

and (5.29) follows. �

6. Appendix. Examples of nonsmooth Hörmander’s operators
satisfying assumptions A or B

Example 6.1 (Nonsmooth sublaplacian of Heisenberg type). In R3 3 (x, y, t),
let

X1 =
∂

∂x
+ y (1 + |y|) ∂

∂t
; X2 =

∂

∂y
− x (1 + |x|) ∂

∂t
;

[X1, X2] = −2 (1 + |x|+ |y|) ∂
∂t

;

L = X2
1 +X2

2 .

The vector fields X1, X2 are C1,1 and satisfy Hörmander’s condition with r = 2,
hence Assumptions A hold. Replacing |x| , |y| with x |x| , y |y| we find C2,1 vector
fields, satisfying Assumptions B.

Example 6.2 (Nonsmooth operator of Kolmogorov type). In R3 3 (x, y, t) ,
with α ∈ (0, 1], let:

X1 =
∂

∂x
; X0 = x (1 + |x|α)

∂

∂y
+
∂

∂t
; [X1, X0] = (1 + (α+ 1) |x|α)

∂

∂y
;

L = X2
1 +X0.

X1, X0 satisfy Hörmander’s condition at weighted step r = 3; X1 ∈ C2,α, X0 ∈
C1,α, hence Assumptions A hold. Replacing |x|α with x |x|α, Assumptions B hold.

Example 6.3 (Nonsmooth operators of Grushin type with high step r). In
R2 3 (x, y), with α ∈ (0, 1], r > 2 positive integer, let

X1 =
∂

∂x
; X2 = xr−1 (1 + |x|α)

∂

∂y
;

L = X2
1 +X2

2 .

X1, X2 satisfy Hörmander’s condition at step r; X2 ∈ Cr−1,α, hence Assumptions
A hold (if r = 2 we need to take α = 1). Replacing |x|α with x |x|α, Assumptions
B hold.
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Math. J. 53 (1986), no. 2, 503–523.

[21] H. Kalf: On E. E. Levi’s method of constructing a fundamental solution for second-order

elliptic equations. Rend. Circ. Mat. Palermo (2) 41 (1992), no. 2, 251–294.

69



70 BIBLIOGRAPHY

[22] M. Karmanova, S. Vodopyanov: Geometry of Carnot-Carathéodory Spaces, Differentiability,
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