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Inspired by the idea of non-Hermitian spectral engineering and non-Hermitian skin effect, a novel design for
stable emission of coupled laser arrays with tunable phase locking and strong supermode competition suppression
is suggested. We consider a linear array of coupled resonators with asymmetric mode coupling displaying the non-
Hermitian skin effect and show that, under suitable tailoring of complex frequencies of the two edge resonators,
the laser array can stably emit in a single extended supermode with tunable phase locking and with strong
suppression of all other skin supermodes. The proposed laser array design offers strong robustness against both
structural imperfections of the system and dynamical instabilities typical of semiconductor laser arrays.
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Introduction. Recent technological advances in inte-
grated active photonics and the introduction of new ideas
from topological and non-Hermitian physics [1–7] have
stimulated a renewed interest into the rather old prob-
lem of robust phase locking of laser array systems [8–11].
Coherent combination and phase locking of individual
components are essential in obtaining high-radiance op-
tical emitters and lasers [10, 11], which are desirable for
several applications ranging from material processing,
broad-area displays, industrial heating, and lidars. In-
tegrated semiconductor laser arrays consist of a large
number of densely packed emitters which sustain sev-
eral supermodes. It is well known that the nonlinear
competition among the array supermodes results in a
complex spatiotemporal multimode oscillation [9, 12, 13]
and corresponding incoherent emission, spectral broad-
ening and poor beam quality. Several techniques of su-
permode selection and stabilization have been suggested
and demonstrated in early works on laser arrays [14–16].
Recently, new methods have been introduced to force
laser emission in a single supermode inspired by ideas
taken from other branches of physics, such as topologi-
cal and non-Hermitian physics or supersymmetric quan-
tum mechanics. Such methods include supersymmetric
laser array design [17–20], topological resonator cavi-
ties [21–31], and non-Hermitian mode coupling [32–36].
In particular, arrays with asymmetric mode coupling re-
alized via synthetic imaginary gauge fields have been
predicted to display robustness against both structural
imperfections (owing to the flowing nature of the su-
permode like in a topological laser [37]) and dynamical
instabilities arising from the slow relaxation dynamics of
the semiconductor gain medium [26,32].
In this Letter we suggest a simple design for robust phase
locking of linear laser arrays with tunable phase lock-
ing condition, inspired by the concepts of non-Hermitian
engineering and non-Hermitian skin effect [38–41]. In a
non-Hermitian lattice displaying the non-Hermitian skin
effect [39–41] the energy spectrum and corresponding su-

permodes of the underlying Hamiltonian are strongly
sensitive to the boundary conditions of the systems:
while under periodic (ring) boundary conditions (PBC)
the energy spectrum describes a closed loop in complex
energy plane and the supermodes are extended waves,
under open boundary conditions (OBC) the energy spec-
trum collapses to one or more open arcs in the inte-
rior of the PBC loop and the corresponding supermodes
are squeezed toward the edges of the lattice (skin su-
permodes). The main idea is to harness such a strong
boundary dependence of the energy spectrum and to en-
gineer a linear chain of coupled resonators displaying a
single low-loss extended supermode, with tailored phase
locking condition picked up from one point of the PBC
energy spectrum, and with all other OBC skin super-
modes showing a higher loss rate.

Non-Hermitian laser array engineering. We consider
an array of N passive optical resonators with the same
resonance frequency ω0 and loss rate γ (i.e. complex
frequency ω0 − iγ), in which nearest-neighbor cavities
are non-Hermitian coupled with asymmetric left/right
coupling constants κ1 = κ exp(h) and κ2 = κ exp(−h),
where h is a synthetic imaginary gauge field. Such a
lattice basically describes the clean (i.e. disorder-free)
Hatano-Nelson model [42] with a non-Hermitian Hamil-
tonian H of elements Hn,m = δn,m−1κ1 + δn,m+1κ2.
We note that, contrary to other non-Hermitian lat-
tice models exhibiting particle-hole symmetry and thus
topologically-protected zero-energy modes [24, 43], the
Hatano-Nelson model does not possess particle-hole-
symmetry, rather it displays the non-Hermitian skin ef-
fect.The experimental realization of such non-Hermitian
asymmetric coupling has been reported in some recent
works using integrated semiconductor microring laser
technology [36, 37]. For a purely passive system, the
imaginary part of any eigenvalue of H must be nega-
tive (or vanishing) under different boundary conditions,
which requires the minimal constraint γ ≥ 2κ sinhh. For
h 6= 0, the Hamiltonian displays the non-Hermitian skin
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effect, i.e. a strong dependence of its energy spectrum
and corresponding eigenvectors on the boundary con-
ditions [39–41]. We indicate by HPBC and HOBC the
Hamiltonians under periodic (PBC) and open (OBC)
boundary conditions, respectively, corresponding to a
ring geometry and to a linear array geometry of the
resonators [Figs.1(a) and (b)]. In the former case, the
energy spectrum of HPBC describes an ellipse in com-
plex energy plane, EPBC(q) = −iγ + 2κ cos(q − ih),
and the corresponding eigenvectors (supermodes) are ex-
tended Bloch waves with quantized Bloch wave number
q = ql = 2πl/N (l = 0, 1, 2, ..., N−1). The various values
of ql correspond to different phase locking conditions of
the emitters with the same (homogeneous) intensity dis-
tribution in the near-field. The specific value of ql deter-
mines the far-field pattern of the radiated light [8, 34],
with typically a main single lobe at ql = 0 with the high-
est radiation efficiency and the formation of two lobes as
ql is increased to ql = π (see Supplemental document).
In the open linear chain of Fig.1(b), the energy spectrum
collapses to a set of points on a segment in the interior
of the ellipse, namely EOBC(q) = −iγ + 2κ cos(q) with
quantized values q = ql = lπ/(N + 1) (l = 1, 2, ..., N);
the corresponding supermodes are exponentially local-
ized at the edge of the array (skin supermodes). The
localization properties of a given supermode with field
amplitudes En is catched by the inverse participation ra-

tio IPR =
∑

n(|En|4)/
(∑

n |En|2
)2

, which varies in the
range (0, 1): an IPR value close to 1 corresponds to a
tightly localized supermode, while a value of IPR close to
zero corresponds to a fully extended supermode (in the
large N limit). When a uniform linear gain g is added
to each resonator by optical or electrical pumping, the
linear coupled-mode equations describing the dynamics
of the modal field amplitudes En in each resonator read

i
dEn
dt

=

N∑
l=1

Hn,lEl + igEn (1)

with H specified by the corresponding boundary condi-
tions. Clearly, in the linear chain geometry of Fig.1(b),
i.e. under OBC, all supermodes are degenerate in
threshold, so that the array will exhibit rather generally
a complex spatio-temporal multimode dynamics above
threshold. Conversely, in the ring geometry of Fig.1(a)
there is one supermode with lowest decay rate corre-
sponding to the Bloch wave number (or phase locking
condition) q = π/2: such a supermode will lase first
near threshold, and under certain conditions it can be a
stable attractor of the dynamics above threshold when
the gain dynamics is considered [32]. The asymmetric
coupling between adjacent resonators provides a chiral
energy flow along the ring, making the phase locking
robust against small-to-moderate structural imperfec-
tions or disorder in the system [37]. In the framework
of the Hatano-Nelson model [42], such a phase locking
robustness is basically related to the phenomenon of
non-Hermitian transparency [44], i.e. the ability of light

to flow immune through scattering centers in the lattice.
However, the supermode discrimination in the ring
geometry becomes poor as the number N of cavities is
increased, resulting in a narrow stability region, and it
is not possible to tune the phase locking condition far
from q = π/2; a smaller value of q would be more desir-
able to enhance the radiation efficiency in the far field [8].

In order to improve supermode discrimination and to
tune the phase locking condition far from q = π/2, our
main idea is to strategically design a third Hamiltonian
H′OBC , corresponding to a linear array with OBC but
with modified complex frequencies δω1 and δωN for the
edge resonators of the array, as schematically shown in
Fig.3(c). i.e. (H′OBC)n,m = (HOBC)n,m + δω1δn,1δm,1 +
δωNδn,Nδm,N (see also Supplemental document). In a
practical setting, the control of the complex frequencies
of the two edge resonators can be achieved by a judi-
cious tuning of the optical (or current) pump rate and
by a thermal tuning of the cavity resonances. Remark-
ably, after tuning δω1 and δωN to

δω1 = κ exp(−h− iQ0) , δωn = κ exp(h+ iQ0) (2)

it can be proven (see Supplemental document) that
the N eigenvalues of H′OBC consist of a set of (N − 1)
points on the straight segment with the same decay
rate γ as for HOBC , namely El = −iγ + 2κ cos(πl/N)
(for l = 1, 2, 3, ..., N − 1), plus the additional isolated
eigenvalue E0 = −iγ + 2κ cos(Q0 − ih), with a decay
rate γs = γ − 2κ sinQ0 sinhh. The corresponding su-
permodes are (N − 1) skin modes, squeezed toward the
edge of the array, plus an extended (Bloch) supermode
En = exp(iQ0n) with phase locking condition defined by
the angle Q0. An example of energy spectrum and IPR
of various supermodes of H′OBC is shown in Fig.1(c).
Clearly, for h > 0 and 0 < Q0 < π the extended Bloch
supermode, whit the phase locking condition defined by
the angle Q0, shows the lowest oscillation threshold and
it is thus expected to be the stable lasing attractor of the
dynamics above threshold. Since the loss discrimination
γ − γs = 2κ sinQ0 sinh(h) over all other supermodes is
independent of array size N , the filtering method holds
for arbitrary long arrays. Also, the method could be
readily extended to a two-dimensional laser array (see
Supplemental document).

Semiconductor laser dynamics. When the optical gain
g in the cavities of the array is provided by an inverted
semiconductor medium, the spatio-temporal laser dy-
namics above threshold is described by a set of rate
equations that account for nonlinear coupled dynamics
of electric modal fields and carrier densities in the ac-
tive (pumped) cavities. Such a rate equation model is
capable of capturing the onset of dynamical instabilities
arising from supermode competition and from nonlinear-
induced resonance detuning of coupled cavities that can
disrupt phase locking [9, 12, 13, 26, 32]. The laser rate
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Fig. 1. (Color online) Energy spectrum and IPR of cor-
responding supermodes in an array of coupled cavities
with asymmetric coupling constants κ1 = κ exp(h), κ2 =
κ exp(−h) under different geometric settings: (a) PBC
(ring geometry), (b) OBC (linear chain), and (c) OBC
with modified complex frequencies of edge resonators.
The Hamiltonians of the three lattices are HPBC , HOBC

and H′OBC , respectively. Parameter values are: h = 0.3,
N = 32, γ/κ = 2 sinh(h) ' 0.609, and Q0 = π/3 in (c).
Energies are in units of κ. Note in (c) the existence of
an isolated eigenenergy (highlighted by the shaded cir-
cle) corresponding to an extended supermode with the
lowest IPR and decay rate.
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Fig. 2. (Color online) Stability diagram (shaded area)
in the (Q0, p) plane of the extended (Bloch) supermode
of the laser array of Fig.1(c) comprising N = 32 res-
onators for a few increasing values of the imaginary
gauge field h: (a) h = 0.3, (b) h = 0.5, and (c) h = 0.8.
Other parameter values are τs/τp = 2× 103, κτp = 0.05,
α = 3, and γ = 2κ sinhh. The lower boundary of the sta-
bility domain corresponds to the threshold value curve
pth(Q0) = γsτp = 2κτp(1− sinQ0) sinhh.

equations read [13,32,33]

τp
dEn
dt

= (1− iα)EnZn − iτp
N∑
l=1

Hn,lEl (3)

τs
dZn

dt
= p− Zn − (1 + 2Zn)|En|2 (4)

(n = 1, 2, ..., N), where En is the normalized electric
field amplitude in the n-th resonator of the array, Zn

is the normalized excess carrier density, τp is the pho-
ton lifetime in each cavity due to strong material ab-
sorption when the semiconductor is not pumped, τs is

the spontaneous carrier lifetime, α is the linewidth en-
hancement factor, and p is the normalized excess pump
current, which provides a linear gain g = p/τp. In the
engineered laser array of Fig.1(c), Eqs.(3) and (4) admit
of the following above-threshold steady-steady solution,
corresponding laser oscillation in the extended (Bloch)
supermode

En = E0 exp(iQ0n− iΩt) , Zn = τpγs ≡ Z0 (5)

where E0 = {(p−Z0)/(1 + 2Z0)}1/2 is the homogeneous
field amplitude and Ω = αγs + 2κ cosh(h) cos(Q0) the
oscillation frequency offset from the passive resonator
frequency ω0. The threshold pump rate is given by
pth = Z0 = τpγs. The stability of the stationary
supermode can be investigated by standard linear
stability analysis [9, 13, 32], which is detailed in the
Supplemental document. In particular, the growth
rate of perturbations can be numerically determined
from the eigenvalues of a 3N × 3N matrix. Examples
of stability diagrams in the (p,Q0) plane, for a few
increasing values of the imaginary gauge field h and
for values of τs/τp, α and κτp typical of semiconductor
laser array systems [32, 33], are shown in Fig.2. Note
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Fig. 3. (Color online) Numerical simulations show-
ing laser build up dynamics into the extended phase-
locked Bloch supermode, starting from random small
amplitudes of modes En and equilibrium carrier densi-
ties Zn = p. The phase locking parameter is Q0 = π/4
in (a), and Q0 = π/3 in (b). Parameter values are
h = 0.5, p = 0.1, N = 32, τs/τp = 2 × 103, κτp = 0.05,
α = 3, and γ/κ = 2 sinhh ' 1.042. The panels show
the temporal behavior of amplitudes |En| and phase dif-
ferences θn = (ϕn+1 − ϕn) between adjacent resonators
of the array for the normalized complex field amplitudes
En = |En| exp(iϕn).

that the stability domain widens around Q0 = π/2 as h
is increased, corresponding to an enhanced suppression
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Fig. 4. (Color online) Robustness of phase locking of
the extended Bloch supermode in the presence of disor-
der in the cavity resonance frequencies. The plots show
the behavior of the mean phase difference 〈θ〉 (left pan-
els) and variance 〈∆θ2〉 (right panels) for 100 different
realizations of disorder of the cavity resonance frequen-
cies δΩn = κσn for a few increasing values of disorder
strength σ: (a) σ = 0.2, (b) σ = 0.5, and (c) σ = 1. Pa-
rameter values are as in Fig.3(a). The dashed horizontal
line in the left panels corresponds to the ideal phase lock-
ing condition Q0 = π/4 in the disorder-free array.

of skin supermodes. Note also the strong asymmetric
behavior of the stability for Q0 > π/2 and Q0 < π/2,
with a narrower stability region in the Q0 > π/2 region.
This behavior is ascribable to the gain-induce frequency
shift via the linewidth enhancement factor α > 0,
which tends to rapidly destabilize the supermodes with
Q0 > π/2 as compared to the ones with Q0 < π/2.
A reversed behavior, i.e. a narrower stability region
for Q0 < π/2, would be observed by flipping the sign
of α. Figures 3(a) and 3(b) show typical examples of
laser built up from initial noise and stable oscillation
in the dominant supermode, after relaxation oscillation
transient, for two different values of Q0, obtained
by proper tailoring the complex frequencies of edge
resonators according to Eq.(2). The results are obtained
by direct numerical simulations of Eqs.(3) and (4) using
an accurate fourth-order Runge-Kutta method; initial
condition is a small random noise of field amplitudes En
and equilibrium carrier densities.
The lasing supermode turns out to be stable against
small-to-moderate disorder in the system, a robustness
which is related to the phenomenon of non-Hermitian
transparency discussed in Refs. [37, 44]. As an example,
Fig.4 illustrates the robustness of the phase locking
condition in the presence of disorder of the resonance
frequencies of the resonators, which are varied from
the reference and common value ω0 by a quantity
δΩn = σnκ, where σn are independent random vari-
ables with the same probability density distribution.

Specifically, we assume for σn a uniform distribution
in the range (−σ/2, σ/2), where the dimensionless
parameter σ measures the strength of disorder with
respect to the coupling constant κ. The figures depict
the behavior of the mean 〈θ〉 = (

∑
n θn)/(N − 1) and

variance 〈∆θ2〉 = (
∑

n(θn − 〈θ〉)2)/(N − 1) of the
phase differences θn = (ϕn+1 − ϕn) between adjacent
resonators in the array, after the initial transient laser
switch on dynamics for the same parameter values as
Fig.3(a) and for 100 different realizations of disorder.
Note that, even for a moderate disorder strength of
cavity resonances, comparable to the coupling constant
κ [Fig.4(c)], the phase locking regime is not destabilized.
A similar behavior is found when considering disorder
in the coupling constants of the array, or simultaneous
disorder in both real and imaginary parts of the reso-
nance frequencies (see Supplemental document).

Conclusion. A method for robust and tunable phase
locking of laser arrays, inspired by the concepts of
non-Hermitian engineering and non-Hermitian skin
effect, has been theoretically suggested. As compared
to other methods based on the use of topological or
supersymmetric cavities, our technique enables for
tuning of the laser phase locking condition, avoiding the
onset of dynamical instabilities typical of semiconductor
laser arrays. The present results provide important
insights into the design of laser arrays, suggesting a po-
tentially powerful application of the recently-introduced
concept of non-Hermitian skin effect [39–41], and
are expected to stimulate further experimental and
theoretical studies in the rapidly growing research areas
of active integrated photonics and non-Hermitian optics.
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