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Abstract—The dynamics of modern hybrid power systems
are characterized by behaviors at different timescales, typically
separated by several orders of magnitude. In this paper we apply
the envelope-following method to hybrid power systems simula-
tions, in which single-phase and three-phase representations of a
power system co-occur. This simulation method is well suited for
handling coexisting behaviors occurring at different timescales.
Compared to the simulation approaches present in the literature,
the envelope-following method does not need to continuously
switch between two separate simulation engines, but rather
automatically handles instantaneous variations in the dynamics
of the system, such as faults or topology changes. Additionally,
given the vast penetration of power electronic components in
modern electricity networks, employing the envelope-following
method allows using a vast array of numerical algorithms that
have been developed over the years to simulate electrical and
electronic circuits. The proposed approach is validated by means
of power systems case studies of increasing complexity.

Index Terms—Power system, envelope following method, time
domain circuit simulation, photovoltaic system simulation, hybrid
power system.

I. INTRODUCTION

IN the last decades an increasing number of distributed
energy resources and non-conventional loads have been

installed in distribution systems and portions of the same
transmission system. Separate transmission systems have been
interconnected by high-voltage direct current (HVDC) and
multi-terminal direct current (MTDC) systems. In the literature,
these mixed systems are referred to as hybrid power systems
[1]. The electrical characteristics of these systems have chan-
ged the simulation paradigm and led to the need of simul-
taneously simulating the power generation and transmission
systems together with the power distribution systems, at the
cost of higher simulation time and complexity. Before the
arrival of hybrid power systems, in general electromagnetic
transient (EMT) simulation tools were not used in the analysis
of conventional generation and transmission systems because
of their heavy computational load. Single-phase equivalent
models and ad hoc simulation tools were and are usually
employed to accelerate the simulations. The large penetration
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of electronically connected loads and local generations by re-
newable sources requires simulating distribution systems with
EMT simulation tools adopting accurate three-phase models,
which has thus an impact on the overall simulation efficiency.

This has led to the introduction of the concept of hybrid
simulation, in which single-phase and three-phase representa-
tions of a power system coexist in the same simulation [2]–[5].
For example, [2], [3] proposed a robust and flexible simulation
scheme that switches from hybrid simulation mode back
to pure phasor-domain dynamic simulation mode to achieve
significantly improved simulation efficiency. Another instance
of the application of the hybrid simulation paradigm is [6],
where the authors proposed a benchmark transmission and dis-
tribution system, and showed that the total computational time
was significantly reduced compared to running the EMT hybrid
simulation for the whole simulation period, while maintaining
good simulation accuracy. Additional hybrid simulation ap-
proaches can be found in [7] and [8]: the former describes
an EMT/electromechanical hybrid simulator suited to modern
HVAC and DC power systems, while the latter introduces a
simulation tool used to study the impact of integration of
photovoltaic systems on distribution networks. We refer the
interested reader to [9]–[12] for additional approaches to the
hybrid simulation of power systems.

Albeit successful, the hybrid approach to the simulation of
power systems dynamics is characterized by several critical
aspects. First of all, the presence of two simulators running
in parallel creates the need for complex “synchronization”
strategies. In [2], [3], for instance, the transient stability (TS)
simulation is always running, even when the EMT simulation
is “in control”. An even more problematic aspect of having
two simulators is that the switch from EMT to TS simulation
happens when the two concurrent solutions converge to an
“identical” one. This implies that the results of the two
representations must tend to the same solution, which may
not be the case, due for example to different models of parts
of the entire power system [3].

Here, we propose a novel approach to the simulation of
power system dynamics that mitigates the long-standing pro-
blems related to the usage of EMTP-like simulators, while at
the same time not requiring to continuously switch between
two separate simulation engines. The key point consists in
employing a single simulation engine capable of dealing with
both a single-phase equivalent and a full three-phase model.
The former can embody a portion of the generation and trans-
mission sub-system, generally characterized by electromecha-
nical models with relatively slow dynamics. On the contrary,
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the latter incorporates the remaining parts of the network
(distribution system included) contributing fast dynamics. In
addition, as highlighted in the following, the components of
the three-phase subsystem (e.g., distribution feeders, circuit
breakers, AC/DC systems, and converters) potentially feature
a high degree of detail.

Importantly, it is up to the users to decide how to partition
the full power system, based on details that are needed
in simulating the entire hybrid system. However note that
partitioning must be also driven by the characteristics of the
used models. The single-phase one may account for both
the positive and negative sequence components (albeit being
extremely efficient when only the former is present), but it
disregards zero sequence components that may arise during
unbalanced operating conditions (e.g., single line-to-ground
faults). To address this issue, the zero sequence must be
confined in the detailed three-phase model. This can be easily
accomplished by exploiting YYg or ∆Yg transformers as
possible boundary elements between two sub-systems modeled
with a single and three-phase model, respectively. Indeed,
these transformers prevent zero sequence currents from flo-
wing from their secondary to primary windings.

The envelope-following method (EFM) we propose builds
on previous works [13], [14], in which we showed how to
efficiently interface the single-phase and three-phase portions
of the full system and how to initialize them. Here, we describe
how to perform simulations either with a conventional tran-
sient analysis or with the EFM [15]–[19], which, as we will see,
greatly reduces the time to solution. The motivation behind the
usage of EFMs lays in the fact that in the simulation of hybrid
power systems, where some parts are described by detailed
three-phase models, the integration time step must be much
smaller than the system frequency (i.e., 1/T = 50 Hz or 60 Hz)
to achieve an adequate degree of accuracy. In most cases of
practical importance, this constraint constitutes a “best-case
scenario”. Indeed, if the three-phase system under analysis
contains for instance power converters described by detailed
switching models, the integration time step must be at least
comparable to the internal clock signals, i.e., it can drop to a
few tens of micro-seconds, while the time intervals of interest
may be in the order of thousands or even tens of thousands
of periods T . Additionally, one is typically not interested in
the details of voltages or currents during every period T , but
rather in the long-term dynamics of other network quantities,
such as the generators’ angular frequency. We show that EFM
allows performing simulations spanning thousands of periods
in a relatively short CPU time, with only a minor sacrifice in
terms of accuracy, by integrating only a reduced number of
periods and then doing a forward computation of the solution.

The paper is organized as follows: in Sec. II we describe
the mathematical foundations of the extension of the EFM
to hybrid power systems and in Sec. III we provide some
details about the EFM. In Sec. IV we present three test cases
to highlight the main features of the proposed approach and
finally in Sec. V we discuss the main results of our work.

Figure 1. High-level block schematic of an electrical power system. The
classical power system model (PSM) of the PSS and the MNA three-phase
model of the ESS communicate at V connection points through as many
connectors.

II. ELECTRICAL POWER SYSTEM MODELING

Figure 1 shows a high-level block schematic of an electrical
power system. It represents an electrical network split into
two distinct parts, the power electromechanical sub-system
(PSS) model and the electromagnetic sub-system (ESS) model.
The former and latter are described by the classical power
system model (PSM) [20] (i.e., by the single-phase equivalent
model) and a three-phase EMT dynamic model, respectively.
The entire power system exploits the modified nodal analysis
(MNA) representation to implement the constitutive equations
of elements [21], [22]. To enable the communication between
these two sub-systems, V connection points, corresponding to
as many virtual connectors, are added. These elements are not
present in the original description of the system: rather, they
are introduced by the user as interfacing elements between the
two simulation models.

The set of differential algebraic equations (DAEs) ruling the
dynamics of the overall electrical power system is [23]

u̇ + r(u, z) = 0, h(u, z) = 0, (1a,b)

q̇(x) + f(x,

λ∈RSy+3V︷ ︸︸ ︷[
y, ıC

a,b,c

]
, t) = 0, g(x,λ, t) = 0, (1c,d)

ıC
a + ıC

b + ıC
c = 0. (1e)

Equations 1a and 1b refer to the power electromechanical
sub-system (PSS) model: u ∈ RSu are the state variables
(introduced for example by generators, regulators, controllers)
spanning the PSS phase space and z ∈ RSz are the algebraic
variables (e.g, bus voltages, currents). Equations 1c and 1d
refer to the electromagnetic sub-system (ESS): x ∈ RSx are
the state variables (i.e., capacitive voltages and inductive
currents), y ∈ RSy are the algebraic variables (i.e., ground-
referenced node voltages and branch currents), and the en-
tries of q : RSx → RSx are capacitive charges and inductive
fluxes. The V pairs of voltages vC

d,q =
[
vC1

d,q, . . . , v
CV

d,q

]
at

the corresponding connection buses, where virtual connectors
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are inserted, feed the ESS through V triplets of voltages
vC
a,b,c =

[
vC1

a,b,c, . . . , v
CV

a,b,c,
]

set by V three-phase controlled
voltage sources, which are obtained by applying the DQ-
ABC transformation to vC

d,q . These circuits elements do not
admit voltage basis and consequently since we use MNA, the
algebraic-variable vector is enlarged with the V triplets of
currents ıC

a,b,c =
[
ıC1

a,b,c, . . . , ı
CV

a,b,c,
]

flowing through them (see
the λ vector in Eqs. 1c and 1d). The ıC

d,q currents at the PSS
side are obtained from the ıC

a,b,c currents at the ESS through the
ABC-DQ transformation. Equation 1e implements a constraint
that forces to zero the 0 component of the ıC

a,b,c currents. This
is done to ensure that these components are not injected in
the PSS, since the PSM of the PSS is developed by assuming
that 0 components are null. This assumption replicates what
happens in practice when ∆Yg or YYg transformers are used
in feeders.

The DAEs in Eqs. 1 are recast gathering the differential
equations and the algebraic constraints, thus obtaining the
following semi-explicit index-1 DAE [24] and initial conditions

ξ̇ = γ(ξ,ψ, t), η(ξ,ψ, t) = 0, (2a,b)
ξ(t0) = ξ0, η(ξ0,ψ0, t0) = 0, (2c,d)

where ξ = [u,x] ∈ RSu+Sx , ψ = [z,λ] ∈ RSz+Sy+3V , and

γ : RSu+Sx+Sz+Sy+3V+1 → RSu+Sx

η : RSu+Sx+Sz+Sy+3V+1 → RSz+Sy+3V .

The steady-state solution of power systems such as those
in Fig. 1 and described using this mathematical formalism is
not constant but oscillates at least in the three-phase model
and it may do so in the single-phase model as well if there
are negative components or harmonics [14]. It reduces to the
well-known power flow (PF) solution when the ESS is not
present. To compute the steady-state solution one has to resort
to methods such as the one presented in detail in [13], which
we employed in all the examples described in the following
(but see [25], [26] for possible alternative methods).

In Appendix we consider a basic version of an AC/DC
system, whose purpose is twofold: first, by means of pen-
and-paper calculations, it shows how the general structure of
Eq. 2 can be derived. Secondly, it further proves that the EFM
can be effectively used to simulate AC/DC systems (this latter
aspect is also shown by the third case study in Sec. IV-D).

III. THE ENVELOPE-FOLLOWING METHOD

The envelope-following method (EFM) [18], [19] is an
algorithm that finds widespread application in the compu-
tation of the numerical solution of a system of DAEs that
display oscillatory behavior [15], [17], [27]–[30], with a high-
frequency component of period T , which is either constant
or slowly varying with time. In these systems, it is thus
possible to reduce the simulation time without compromising
accuracy by exploiting the fact that the behavior of such a
system in a given period T is similar, but not identical, to
its behavior in the preceding and following ones. At its core,
the algorithm consists in using the information obtained by
conventionally solving the system of DAEs over a single period

solution ξ(t)

envelope χ(nT )

t1 t1 + T t1 + 3T

A B
C

t

Figure 2. Example of the envelope-following method: the gray continuous
trace is the conventional solution ξ(t) of Eq. 2, while the black circular
markers indicate the χ samples that make up the envelope of the solution.
The bottom panel shows how the solution over one period (black trace from
points A to B) is used to project the envelope solution two periods ahead in
time to point C.

to accurately “project” the solution several periods (possibly
hundreds) ahead in time (see Fig. 2 for an example), thus
substantially speeding-up the computation of the solution over
very long time intervals. The χ sequence formed by sampling
the ξ(t) state vector (black circular markers in Fig. 2, see
Eq. 2), i.e., X = {ξ(t1+T ), ξ(t1+2T ), . . . , ξ(t1+mT )}, must
change slowly as a function of m (t1 ≥ t0). The continuous
function obtained by interpolating χ for t ∈ [t1 +T, t1 +mT ]
is defined as the envelope solution of Eq. 2 (dashed black line
in Fig. 2). To derive a “differential-like” evolution law for the
elements of χ, the envelope vector field is introduced

ρ(t1, ξ(t1), ξ(t1 + T )) =
1

T
(ξ(t1 + T )− ξ(t1)) , (3)

where system (2) is integrated from t1 to t1 + T with con-
ventional methods (black continuous line in the bottom panel
of Fig. 2). If one is interested in computing ξ(t1 +mT ) from
ξ(t1 + nT ) (m− n ≥ 1) it is possible to write

ξ(t1 +mT ) = ξ(t1 + nT )+

+Hρ(t1 + nT, ξ(t1 + nT ), ξ(t1 + (n+ 1)T )) ,
(4)

where H = (m−n)T is the forward envelope time step: in the
example shown in Fig. 2, n = 0 and m = 3. This corresponds
to adopting the explicit Euler integration method to predict
the next value of the envelope. In (4) ξ(t1 + nT ) is known,
ξ(t1 +mT ) is the unknown envelope solution at m−n times
the period T after t1 + nT , where the envelope solution is
known. The envelope vector field is obtained by integrating the
envelope solution from t1 + nT to t1 + (n+ 1)T , i.e., along
one period T from t1 + nT . To this end we used either the
trapezoidal method or the Gear method up to order 6 [31]. In
the latter case we adapted the order by varying it along the
[t1 + nT, t1 + (n+ 1)T ] integration time interval. We used a
variable time step, as a large number of simulators do, to meet
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accuracy and numerical efficiency. So doing, the computation
of the solution of the complete system along m− n periods T
is skipped. This is not the only possible strategy, i.e., one can
resort, for instance, to the implicit Euler integration method

ξ(t1 +mT ) = ξ(t1 + nT )+

+Hρ(t1 +mT, ξ(t1 +mT ), ξ(t1 + (m+ 1)T )) ,
(5)

or the trapezoidal rule

ξ(t1 +mT ) = ξ(t1 + nT )+

+
H

2
[ρ(t1 + nT, ξ(t1 + nT ), ξ(t1 + (n+ 1)T )) .

(6)

Equations 5 and 6 represent the corrector step of a predictor-
corrector algorithm, where the predictor part is given by Eq. 4.
The associated local truncation errors (LTEs) for the implicit
Euler method (IE) and trapezoidal rule (TR) are respectively
O(H2) and O(H3), and are given by

LTEIE =
H2

2
ξ̈(t)

LTETR =
H3

12

...
ξ (t) .

(7)

By defining an appropriate limit on the LTE of the envelope
solution, one can therefore implement an adaptive procedure to
adjust the envelope time step H to meet the required accuracy
level.

Additionally, whenever ξ(t) starts displaying fast transient
variations with respect to T , it will not be possible for
the EFM to maintain the error below a suitable threshold
value and therefore the envelope integration time step will
be progressively reduced until it reaches the minimum value
of H = 1, which corresponds to a conventional integration
of Eq. 2. Further details on the EFM can be found in [17].
We point out that in the examples described in this paper, the
period T is constant and known to the simulator. However, our
simulator PAN can also deal with systems in which T varies
slowly with time: in such cases, the time-varying value of T
is detected by determining the instants at which a subset of
the state variables crosses an appropriate Poincaré section.

The solution obtained with the EFM consists of a set of
points that lie on the envelope of the full solution (black
circular markers and gray trace in Fig. 2, respectively). Im-
portantly, each envelope point can be used as a starting point
for a conventional integration algorithm, if a more detailed
solution is required at specific points in time. As a matter of
fact, each envelope point belongs to a ball, which is centered
at a point of the overall conventional solution, whose radius
depends on the chosen envelope tolerances. As a consequence,
as the envelope algorithm actually does, each point of the
envelope solution can be profitably used to start a conventional
integration solution whenever needed/desired.

IV. HYBRID POWER SYSTEM SIMULATION

In this section we apply the proposed envelope-following
method (EFM) to power systems described by coexisting
single-phase (power electromechanical sub-system (PSS)) and

three-phase (electromagnetic sub-system (ESS)) models, cha-
racterized by widely separated time constants. We present
three test cases of increasing complexity to validate the
proposed EFM (an additional simple test case is reported in
the Appendix). The simulation results were obtained with our
simulator PAN [32], [33], in which we implemented the EFM.1

While we make direct comparisons with the conventional,
variable time step transient analysis available in PAN, we chose
not to use other simulators for the difficulty in obtaining either
their source code or a usable copy.

A. Model of a distribution feeder

Following what was done in [2], we modeled the distribution
systems by means of the 8-bus distribution feeder shown in
Fig. 3. The feeder is made up of eight buses connected by non-
perfectly transposed overhead lines, whose parameters and
line codes are taken from the IEEE 13-bus test feeder [34],
[35]. As shown in Fig. 3, a total of seven balanced and wye-
connected resistive loads, adding up to 8 MW at a nominal bus
voltage of 12.47 kV, are connected to the distribution feeder.
Additionally, three capacitive loads totaling 1.2 MVAR are
connected to buses 3, 5 and 7. Throughout this paper, the
distribution feeder and the parts of the networks connected
to it are modeled with a detailed three-phase representation
(necessary for the single phase-to-ground fault simulations
described in the following).

B. Hybrid system 1

The first test case we consider is shown in Fig. 4: it consists
of a three-phase generator (whose model includes a turbine
governor and an automatic voltage regulator) connected by
means of a three-phase line to a balanced 100 MW load and
to the previously described distribution feeder. We applied a
single line-to-ground fault at phase A of bus 7 of the feeder
lasting 5 periods of the 60 Hz nominal system frequency, and
recorded the three-phase voltages at buses 2 and 7 of the feeder
and bus 3 outside of the feeder. Note that the YYg and ∆Yg
transformers prevent the propagation of the zero sequence to
the single phase model, but do not eliminate the presence of
the negative sequence and harmonics.

Figure 5 shows the results of this simulation: the black dots
in the panels on the left correspond to the maxima of the fast
oscillations in each period. As can be seen, the application of
the fault at bus 7 of the feeder causes a marked decrease in
the voltage of phase A of all the buses of the system, with a
magnitude that depends on the distance between the bus where
the measurement is made and the fault location.

Interestingly, as shown in Fig. 5, the bus voltages return
to their pre-fault values in approximately 5 s. However, due
to the internal dynamics of the three-phase generator, the
timescale of the dynamics of the angular frequency of the
machine following the application of the fault is markedly
slower as shown in Fig. 6. The fault causes a deviation in
the rotation speed of approximately 0.5 mpu in the first few

1The files necessary to simulate with PAN the case studies presented in this
section are available on GitHub at the address https://github.com/danielelinaro/
power-envelope-paper.git.

https://github.com/danielelinaro/power-envelope-paper.git
https://github.com/danielelinaro/power-envelope-paper.git
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Figure 3. Model of the distribution feeder used in this study.

Figure 4. Generator with feeder: the three-phase generator is characterized by
internal dynamics and contains a turbine governor and an automatic voltage
regulator. The part of the system to the left of bus 3 is described by a single-
phase representation, while the rest of the system is modeled with a detailed
three-phase representation.

seconds immediately after the fault; at the same time, the
generator speed returns to its operating point value over a time
interval that is markedly different from what we showed for
the electrical quantities of the system, since it happens over a
time course of hundreds of seconds.

As mentioned in the Introduction, one is typically interested
in simulating the detailed dynamics of bus voltages and
currents from just before the application of the fault to right
after its clearing, but is not interested in a detailed simulation
(i.e., very short integration time step) after the fault clearing.
On the other hand, there is interest in having an idea of the
timescale over which the generators in the network return
to their normal operating point following a disturbance. As
a consequence, the application of EFM is perfectly suited to
achieving this goal. Figure 5 shows the results of simulating
the system in Fig. 4 during the application of a single line-to-
ground fault on bus 7 of the feeder. The procedure employed to
obtain the solution fundamentally differs from that used with
conventional integration methods: gray dots were obtained
after the simulation, by extracting the peaks of each period,
while the black circular markers are the actual points of the
envelope solution computed by the algorithm. Notice that the
scale of the panels on the right side is such that the gray dots
appear as a continuous line. This allows one to appreciate the
substantial reduction in terms of complexity of the solution
achievable by using EFMs. Additionally, we remark that each
point of the envelope solution can be used as a starting point
for a detailed integration, should one be interested in obtaining
additional details on a specific time interval.

The bottom panel of Fig. 6 shows the length H of the
time steps taken by the EFM. A value of 50, for instance,
means that the algorithm places one point every 50 periods
of the full solution of the system, obtained by conventional
methods. It is worth noticing that the H time step automa-
tically reduces at the time instant of occurrence of the fault
and later increases again until H = 300 once the fault has
been cleared. This adjustment mechanism grants the EFM a
substantial speed-up [18], [19]. To validate this statement, we
compared the CPU time needed by the conventional transient

0   100 200 300 
Time since fault [ms]

0.95

1

1.05

0 1 2 3 4 5
Time since fault [s]

Bus 3

0.8

0.9

1

1.1

Ph
as

e 
vo

lta
ge

 [
p.

u.
]

Feeder bus 2
0

0.5

1

Feeder bus 7

Figure 5. Phase A voltages at buses 7 and 2 inside the distribution feeder and
at bus 3 outside the distribution feeder following the application of a single
line-to-ground fault at bus 7 (phase A) of the feeder. Notice how the voltages
return to their pre-fault values in approximately 5 s. Black circles represent
the solution obtained by the envelope-following algorithm, while gray dots
are the maxima, in each period, of the solution obtained with a conventional
variable time-step integration method (i.e., they represent the “true” envelope
of the solution). The scale of the right-hand panels is such that the gray
dots appear as an uninterrupted line. The light gray patches indicate the time
interval where the fault was applied.

analysis with a variable time step and with the envelope-
following algorithm to obtain the results shown in Figs. 5
and 6. The former and latter respectively required 379 s and
15 s to simulate 400 s of network time on the same computer
and with the same software environment, which corresponds
to a 25× speed-up. Note that this result has been achieved
without sacrificing accuracy: indeed, the root mean squared
error (RMSE) between the two solutions remains always well
within acceptable values, as shown in Table I for the electrical
variables shown in Fig. 5. The calculation of the RMSE was
subdivided before and after the fault due to the change in range
(i.e., the difference between maximum and minimum values)
of several electrical quantities, which would have otherwise
resulted in an incorrect quantification of the error either before
or after the fault for those variables.

We remark here that the usage of either integration techni-
ques, i.e., conventional transient integration or EFM, does not
require any specific strategy to deal with discontinuities such
as those introduced by faults in the system. This is a marked
paradigm shift in comparison to the simulation approaches
described in [2], [3] and mentioned in the Introduction, which
rely on two simulators running in parallel and on a heuristic
to appropriately switch between simulators.
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Figure 6. Top panel: angular frequency ω of the generator (gray and
black traces obtained with conventional and envelope-following algorithms,
respectively). Bottom panel: envelope time step, in units of periods of the
underlying oscillation at 60Hz.

Figure 7. Schematic of the 9-bus, 3-generator WSCC system. The distribution
feeder connected to bus 10 is modeled with a detailed three-phase represen-
tation. The rest of the power system is described by a single-phase model.

C. The WSCC 9-bus system

The second example we considered is the WSCC 9-bus
system in Fig. 7. It implements an extremely simplified version
of the Western System Coordinating Council network [36] and
is widely used in the literature as a test case [37]–[39]. We
substituted part of the original 125 MW load connected to bus
5 with the distribution feeder we used throughout this work,
as shown in Fig. 7.

To investigate the applicability of EFMs to this test case, we
applied once again a single line-to-ground fault at phase A
of bus 7 of the feeder. In this instance, however, we included

Table I
RMSE BETWEEN CONVENTIONAL EMT INTEGRATION AND EFM FOR THE

TRACES SHOWN IN FIG. 5

Before fault After fault
Variable RMSE Range RMSE Range

Feeder bus 7 voltage 4.2V 35.8 kV 103V 86.3 kV
Feeder bus 2 voltage 4.2V 36.1 kV 22V 36.3 kV

Bus 3 voltage 77V 667 kV 79V 669 kV

0.995
1

1.005
1.01

1.015
1.02

1.025
1.03

 [
p.

u.
]

Machine 1
Machine 2
Machine 3
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Time since fault [s]
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1.1

N
or

m
. P
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Figure 8. Dynamics of the angular frequency (top panel) and mechanical
power (bottom panel) of the generators of the 9-bus WSCC network in response
to the application of a single line-to-ground fault. See Fig. 9 for a zoom of
the time interval surrounding the application of the fault.

in the distribution feeder a sulfur hexafluoride (SF6) circuit
breaker [40]–[42], whose detailed model takes into account
the fast dynamical behavior (in the range of the µs) of the
plasma [43]. The SF6 breaker is connected between the D1Yg
transformer and bus 1 of the feeder shown in Fig. 3. Its
purpose is to disconnect the distribution feeder 200 ms after
the occurrence of the fault.

To show the potentiality of the proposed envelope following
method, our target is to accurately simulate both the very
short-term behavior (µs) of the SF6 breaker that isolates the
feeder and the long-term behavior on the WSCC system after
the feeder is disconnected. The disconnection of the feeder
causes an overall decrease of the load connected to the WSCC
network2. As shown in Fig. 8, this results in an increase in
the rotor frequency ω of the three machines (top panel) and
in a corresponding decrease of their mechanical input power
given by turbine governors (bottom panel), which takes place
right after the “spike” caused by the fault.

The variation in generator angular frequency and mechani-
cal power happens over timescales of the order of the hundreds
of seconds: this, combined with the fact that the detailed model
of the SF6 breaker we employed adds significant numerical
complexity to the simulation and that the arcs quench in a time
interval smaller than some tens of µs, implies that conventional
approaches to the simulation of this type of systems, over
the time course shown here, would require a prohibitively
large amount of time to provide a solution. For example, if
a fixed time step of 1µs were used to accurately simulate the
dynamics of the arcs and we were interested in the behavior
of the WSCC system after the feeder disconnection (lasting
about 150 s) an EMTP-like simulation would have to compute
150,000,000 time points. Also in this case we compared the
conventional transient analysis with a variable time step and
the envelope-following algorithm in terms of simulation time,
obtaining a speed-up of approximately 17× (3058 s and 182 s
for the former and latter analyses, respectively, to simulate
400 s of network time). Beyond the significant speed-up in
terms of simulation time, the approach outlined here with

2The total decrease of the mechanical power of the three machines amounts
to 7.6MW, which is in line with the nominal power absorbed by the loads
connected to the distribution feeder.
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a single simulation engine allows one to include accurate
models of various parts of the system, similarly to what we
did for the circuit breaker. To highlight this key feature, we
analyzed in more detail the dynamics of the system around
the time of the application of the fault. The results are shown
in Fig. 9: as it can be seen from panel E, by looking at
currents across the SF6 breaker one can easily discern both
the instant of the application of the fault (at t = 0 ms) and
that of the opening of the breaker (at t = 200 ms). Panels
C and D show respectively the dynamics of the machines’
angular frequency and mechanical power. The former displays
oscillatory behavior between the onset of the fault and the
opening of the breaker due to the presence of relevant negative
sequence components. Finally, panels E and F present the
behavior of some of the electrical quantities associated with
the three-phase circuit breaker, namely the arc currents and
voltages: the former shows a clear increase in the phase A
current following the fault until the opening of the breaker,
while the latter are non-zero only after the opening of the
breaker. These waveforms show constant parts although they
oscillate at (about) 60 Hz because the points that are H periods
apart in the envelope solution are connected in the figure.

To better characterize the ability of the EFM to adapt the
integration of the envelope portion of the solution, we report
in panels G and H the current of phase A of the SF6 breaker
during zero crossing when the arc quenches and the correspon-
ding voltage across the breaker (transient recovery voltage).
The tail current (due to charge recombination in the quenching
arc) beginning just after voltage zero crossing reaches a
negative peak of a few amperes due to the negative transient
recovery voltage across the arc: in this current interruption, the
recovery voltage does not pose any problem. The interrupted
currents of phases B and C, while behaving in a qualitatively
similar way, are significantly smaller in magnitude than the
current of phase A.

The RMSE between conventional and EFM solutions is well
within acceptable values, as indicated in Table II for all the
electrical variables shown in Fig. 9. In the table, N/A indicates
that the range of a given variable before or after the fault
was below the numerical absolute tolerance of the integration
method.

These results highlight the flexibility of the proposed met-
hod: employing EFMs grants a substantial reduction in the time
to solution, with only minor sacrifices in terms of accuracy of

Table II
RMSE BETWEEN CONVENTIONAL EMT INTEGRATION AND EFM FOR THE

TRACES SHOWN IN FIG. 9

Before fault After fault
Variable RMSE Range RMSE Range

Bus 7 voltage 4.8V 33.7 kV N/A N/A
Bus 5 voltage 79V 626.8 kV 98V 631 kV

Arc current (phase A) 80mA 590A 1.3µA 4.3 kA
Arc current (phase B) 44mA 592A 1.5µA 638A
Arc current (phase C) 37mA 590A 1.4µA 696A
Arc voltage (phase A) 7.5µV 57mV 5.6V 35.6 kV
Arc voltage (phase B) 4.3µV 58mV 5.4V 35.5 kV
Arc voltage (phase C) 3.6µV 57mV 5.6V 34.2 kV
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Figure 9. Detailed dynamics of the WSCC system immediately after the
application of a single line-to-ground fault. (A-B) Phase A voltages at bus
7 of the feeder (A), where the fault is applied, and at bus 5 outside of
the distribution feeder (B), normalized to their nominal values (12.47 and
230 kV, respectively). (C-D) Angular frequency and mechanical power of the
3 generators of the system (black, magenta and green traces, respectively).
Each value of mechanical power is normalized to its baseline value before
the application of the fault. (E) Arc current flowing through each phase of the
SF6 circuit breaker. Notice how the increase in arc current is more marked in
the phase on which the fault is applied (black trace) (F) Arc voltage across
the three phases of the SF6 circuit breaker. (G-H) Enlargements of the arc
current (G) and voltage (H) dynamics around the opening time of the breaker.

the obtained solution. Additionally, in the same simulation one
can include models described at different levels of complexity
to investigate specific dynamics of the system.

D. The modified IEEE 14-bus test system

The final test system we considered is a modified version
of the well-known and largely used IEEE-14 power system,
shown in Fig. 10: the distribution feeder used so far (Fig. 3)
was connected to bus 4 and a solar plant (Fig. 11, top) was
connected to bus 7 of the feeder. The solar plant generates
4.87 MW when irradiance is 1 kW/m2. We added a 36 mHz
dead-band to the turbine governor of the largest synchronous
generator G1 [44]. The solar plant was connected to the
feeder through the three-phase LCL filter-based voltage source
converter (VSC) and the DC/DC converter shown in Fig. 11.
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Figure 10. High-level block schematic of the modified IEEE-14 power system.
The solar plant (labeled with SP©) is connected to the main network by means
of the feeder shown in Fig. 3. Turbine governors installed in synchronous
machines are labeled with TG©.

Figure 11. Schematics of the photovoltaic power plant (top) and of the voltage
source converter (bottom) through which the power plant is connected to bus
7 of the feeder in the IEEE-14 network.

A detailed description of the solar plant and connectors can
be found in [14]: briefly, the proportional-integral (PI) control
block labeled PI2 senses the vdc input voltage of the VSC
and acts on the ıd ref signal (d-axis reference current) so that
vdc is kept at vref . The DC-side of the VSC is connected to
the DC/DC converter that transfers power from solar panels
of the photovoltaic plant. The DC/DC converter is equipped
with a perturb and observe (P&O) maximum power point
tracker (MPPT) [45] (but see [46] for a potentially faster
implementation of the P&O algorithm). The MPPT senses the
instantaneous power delivered by the solar plant with a period
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Figure 12. Dynamics of the IEEE-14 system following an increase in the
irradiance of the photovoltaic plant connected to bus 7 of the feeder. (A) The
irradiance increases linearly from 200 to 1000W/m2 over the course of 60 s.
(B) Instantaneous voltage across the photovoltaic plant set by the P&O MPPT.
Insets: zooms of the dynamics in the boxed regions of the main panel. Each
“spike” corresponds to a detailed integration of one period (i.e., T = 1/60 s)
of the system, required for the computation of the envelope vector field, as
described in Eq. 3. (C) Electrical power injected by the photovoltaic plant at
bus 7 of the feeder. (D) Mechanical power from the prime mover of generators
G1 and G2 (black and gray traces respectively). (E) Rotor speeds of generators
G1 and G2 (black and gray traces respectively). (F) Time steps taken by the
EFM over the course of the simulation in units of T of the three-phase system.

of T/4 (in our case T = 1/60 s) and varies the vref reference
voltage by a discrete step to obtain the maximum power
generation from the photovoltaic array. The duty-cycle of the
DC/DC converter is varied in order to set the vpv voltage of
the photovoltaic array required to meet the maximum power
transfer condition.

Our target is to perform an electromagnetic transient analy-
sis of the modified IEEE-14 hybrid power system when clouds
clear the solar arrays and the irradiance S increases linearly
from 200 to 1000 W/m2 in about 60 s. Starting from the PF
solution, a simulation lasting for 140 s was performed by using
the proposed EFM approach. As shown in Fig. 12, while the
irradiance S increases (panel A), so does the voltage across the
photovoltaic plant due to the action of the MPPT (panel B). The
periodic action performed by the MPPT lasts for one period T
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and appears as “spikes” in the voltage waveforms shown in
the insets of Fig. 12B: consecutive spikes are separated by a
time corresponding to the time steps of the EFM (shown in
panel F), highlighting the efficiency increase with respect to
conventional EMT analysis. As a consequence of the increase
in irradiance, the power generated by the photovoltaic plant
also increases (panel C) and this in turn causes a reduction
of the mechanical power generated by the prime movers of
the synchronous generators G1 and G2 (panel D, black and
gray traces respectively) and a consequent increase in their
rotor speeds (panel E, black and gray traces still relate to G1
and G2, respectively). Notice that Pm1 remains constant as
long as ω1 remains within the amplitude of the dead-band:
once ω1 is outside the bounds determined by the dead-band,
also G1 contributes to compensate frequency variations. From
these results we can see that, even if S reaches its maximum
level after about 60 s, requiring 60×4×60 = 14400 cycles of
the MPPT, the system frequency stabilizes after about 120 s.
Finally, Fig. 12F shows the time steps H taken by the EFM
during simulation: during the transient part of the simulation,
i.e., before S reaches a steady-state value, H is between 25T
and 50T . Conversely, once S has reached its maximum value,
the system stabilizes and H progressively increases to higher
values (around 250− 300T ), indicating a substantial increase
in simulation efficiency. This is confirmed by the fact that
the actual simulation times were 11512 s and 461 s for the
conventional and envelope-following algorithms, respectively,
corresponding to an approximately 25× speed-up. At the same
time, the RMSE for the traces shown in Fig. 12 (reported in
Table III) is approximately two orders of magnitude smaller
than the range of variability of each variable, indicating a good
match between conventional and EFM solutions.

Once again, we stress the fact that these results have
been obtained by modeling the IEEE-14 bus test system with
the dynamic single-phase equivalent model while the feeder,
converters, MPPT and photovoltaic plant are described by a
detailed (three-phase) dynamic model.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper we have shown how to apply the envelope-
following technique to the simulation of hybrid power sys-
tems, made up of several types of energy sources connected
with conventional and non-conventional loads by means of
HVDC and MTDC systems. The main novelty of our work
lies in the fact that, unlike other commonly used simulation
approaches [2], [3], [7], [8], we use a single simulation engine
for both the EMT and phasor domain parts of the system.

Table III
RMSE BETWEEN CONVENTIONAL EMT INTEGRATION AND EFM FOR THE

TRACES SHOWN IN FIG. 12

Variable RMSE Range
MPPT voltage 0.7V 11.2V
MPPT power 20.1 kW 40.4MW

Generator 1 power 4.3m p.u. 45µ p.u.
Generator 2 power 37.2m p.u. 0.1m p.u.

Generator 1 angular frequency 0.88m p.u. 6µ p.u.
Generator 2 angular frequency 0.88m p.u. 6µ p.u.

We achieve this by using so-called virtual connectors [13],
which, at the minor cost of discarding the zero sequence,
allow eliminating the need for the complex control strategies
required to synchronize two concurrently running simulators.
In particular, no information regarding the zero-sequence is
lost if unbalances are confined (by transformers) only in the
ESS portion of the power system and virtual connectors are
placed next to ∆Yg transformers (with the wye and delta
windings connected respectively to the electromagnetic and
power sub-systems). Besides, since ∆Yg transformers have
an infinite zero-sequence impedance, no zero-sequence current
can flow from the wye to the delta windings. The same holds
if the transformer adopted is of YYg type.

We validated our method by presenting three test cases
of increasing complexity: in the first one we highlighted the
general features of the EFM and its capability of automatically
handling discontinuities, such as faults, in the simulation. The
second one concerned the WSCC 9-bus system and showed
how one can easily incorporate increasing levels of detail
in the models of the components employed in the 3-phase
part of the simulation, and finally, with the third test case, a
modified version of the IEEE-14 power system, we showed
how the EFM is suitable for application to systems containing
inverter-based resources. Performance comparisons with a
conventional, variable time step transient analysis shows that
the speed-up attributable to the EFM ranges from one to two
orders of magnitude, while at the same time not requiring the
cumbersome heuristics employed by simulators such as those
described in [2], [3].

Finally, given the widespread penetration of electronics in
modern-day power systems, the usage of a single electrical
and power circuit simulator allows incorporating into the same
simulation all the detailed models of electronic components
that have been developed over the years.

APPENDIX

To support the reader in fully grasping the structure of
Eq. 2 and further demonstrate that the envelope-following
method (EFM) can be used to simulate AC/DC systems, we
consider the basic case-study shown in Fig. 13. This system
comprises a simplified model of an AC electro-mechanical
system (synchronous generator G) connected by a DC/AC
converter (controlled sources) to a HVDC link (Rdc). The
other side of the HVDC link is connected to an infinite
DC bus, which imposes the voltage Vdc regardless of grid

Figure 13. Simplified AC/DC system.
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operating conditions. Being sufficiently simple, on the whole,
the dynamical evolution of this AC/DC system is governed by
the following set of DAEs

δ̇ = Ω(ω − 1) (8a)

Mω̇ = Pm − (v1dı
1
d + v1q ı

1
q)−D(ω − 1) (8b)

Lk ı̇
1
k = vk −Rkı1k − v1k (8c,d,e)

v1d = Eg cos(δ) (8f)

v1q = Eg sin(δ) (8g)

va = Vac sin (Ωt+ ϕ) (8h)
vb = Vac sin (Ωt+ ϕ+ 2π/3) (8i)
vc = Vac sin (Ωt+ ϕ+ 4π/3) (8j)

Vac(Vdc − Vac)
Rdc

=
(
vaı

1
a + vbı

1
b + vcı

1
c

)
(8k)

v1
a,b,c = ΞTv1

d,q (8l)

ı1
d,q = Ξı1

a,b,c , (8m)

where k ∈ {a, b, c}. Eqs. 8a-e are differential and the remai-
ning ones are algebraic. Eqs. 8a-b and f-g describe the type-
II model G synchronous generator. The voltage-controlled
current source at the DC side and the voltage-controlled
voltage-sources at the AC side (see Fig. 13) are related by
Eqs. 8h-k, where Ω = 2π × 50 Hz is the synchronous fre-
quency of the power system, while the variables Vac and ϕ
can be controlled to attain a given active and reactive power
exchange. These controlled sources implement an ideal power
transfer between the DC and AC sides of the converter (i.e.,
no internal losses). The virtual connector between the three-
phase sub-systems and the single phase one (see the gray box
in Fig. 13) implements the ABC-DQ transformation (through
matrix Ξ) from the ı1

a,b,c to the ı1
d,q currents and the DQ-

ABC transformation (through matrix ΞT) from the v1
d,q to the

v1
a,b,c voltages (see Eqs. 8l-m). In this simple example, the

state variables on the three-phase side coincide with the ı1
d,q

virtual-connector currents.
It is straightforward to properly collect the equations of

Eq. 8 and organize them to obtain the generic compact repre-
sentation given in Eq. 2. In particular, ξ = (δ, ω, ı1a, ı

1
b , ı

1
c)

T

and ψ = (v1d, v
1
q , ı

1
d, ı

1
q, va, vb, vc, v

1
a, v

1
b , v

1
c , Vac)

T.
We simulated this simple system as follows: first, we

used the method in [13] to compute its periodic steady state
solution, which is periodic in the three-phase subsystem and
constant in the DC and single-phase ones. We then performed
an EFM analysis by varying ϕ in Eqs. 8h-k from 0 to 10o after
10 s from the start of the time domain analysis. This variation
emulates a permanent phase shifting of a phase locked loop
(PLL) (which would be present in the real control scheme of
an AC/DC converter). Figure 14 reports some results obtained
with the conventional transient stability analysis and the EFM,
which took 98 s and 260 ms to complete, respectively.
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