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Abstract— In this paper a real-time collision avoidance ap-
proach using machine learning is presented for safe human-
robot coexistence. More specifically, the collision avoidance
problem is tackled with Deep Reinforcement Learning (DRL)
techniques, applied to robot manipulators with a workspace
invaded by unpredictable obstacles. Since the robotic systems
are defined in the continuous space, a Normalized Advantage
Function (NAF) model-free algorithm has been used. In order
to assess the proposal, a robotic system, that is a COMAU-
SMART3-S2 anthropomorphic robot manipulator, has been
considered. The robotic system has been interfaced with ex-
ternal tools for evaluation, control, and automatic training.
Simulations carried out on a virtual environment are finally
reported to show the effectiveness of the proposed model-free
deep reinforcement learning algorithm.

I. INTRODUCTION AND MOTIVATION

The use of friendly-robots as multipurpose service assis-
tants in the daily life and industry, giving rise to the so-called
physical Human-Robot Interaction (pHRI), is nowadays a
reality, due to the needs of performing complex or physically
demanding tasks [1]. Since a close cooperation between
humans and robots is required, in order to merge human
motions and high performance of robots in terms of speed
and precision, safety-oriented control strategies are mandatory
in order to make a safe human-robots coexistence feasible.
Hence, safety is the essential feature of pHRI, without which
coexistence and collaboration cannot take place [2].

Particularly, collision avoidance is one of the most im-
portant challenges in pHRI. As discussed in [3], a typical
real-time collision avoidance method consists of three parts:
i) perception of the environment; ii) collision avoidance
algorithms; and iii) robot control. A more detailed architecture
of a collision avoidance method is reported in [4] where
seven phases (pre-collision, detection, isolation, identification,
classification, reaction and post-collision) in a collision
avoidance pipeline and their outputs are reported.

Over past years, several planning and control approaches for
obstacle avoidance have been proposed in the literature. Com-
pliant mechanical design of manipulators [5] and collision
detection/reaction strategies based on the use of exteroceptive
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sensors are among the possible solutions. Other approaches
are based on the redundancy of the degrees of freedom of
the robot, which becomes able to track the desired trajectory
while avoiding obstacles [6]. Furthermore, many real-time
planning algorithms are based on the so-called potential field
approach introduced in [7] and further improved as in [8].
This method is based on the fact that a virtual repulsive
field is associated to obstacles to avoid them, while an
attractive field is associated to the target in order to reach the
goal. Real-time adaptive motion planning algorithms have
been also proposed relying on parametrized collision-free
trajectories, the parameters of which are updated according
to the environment changes discovered by the robot sensors
[9]. In [10] robot and human are represented by a number
of spheres and a collision-free trajectory is designed relying
on the exploration of the possible end-effector movements
in predefined directions. In [11] obstacles located in the
robot workspace are approximated in a conservative way
with circles in the configuration space, allowing to obtain
an efficient trajectory planning and tracking. A virtual
spring concept is proposed in [12] to generate collision-free
motion trajectories also incorporating the prediction of human
behavior. The majority of algorithms needs information
about the environment and the obstacles. Basically, collision
avoidance algorithms are based on a measure of the distances
between the robot and the obstacles, received for instance
directly from an image of the environment, by expanding the
convex hull associated to the robot until the image associated
to an obstacle is reached [13]. Recent works use instead
depth data through visual feedback in order to compute the
information needed for collision avoidance [3].

In this paper, the collision avoidance problem is tackled
with Deep Reinforcement Learning (DRL) techniques, applied
to robots in a virtual scenario involving a reaching task with
an unpredictable obstacle invading the robot’s workspace. This
approach uses a general framework to accomplish specific
tasks [14]. For systems with higher degrees of complexity,
like robotic systems, model-free approaches based on Deep
Neural Networks (DNN) for Q-function approximation have
been proved to work [15]. In order to apply such methods
to robotic systems defined in the continuous space, the
Normalized Advantage Function (NAF) algorithm has been
introduced in [16]. Differently from the majority of collision
avoidance approaches, the proposed one is a model-free
approach, thus considerably reducing the modelization and
implementation phase for the designer. Moreover, it represents
an easy to implement solution in field application, overcoming
the problems related to the passage from the offline trajectory



generation and the online update and execution. To the best
of the authors’ knowledge, the proposed approach is one of
the first examples of application of DRL techniques to robot
manipulators for collision avoidance.

II. BASICS ON REINFORCEMENT LEARNING

The essential concepts of Reinforcement Learning (RL) are
perception, action and goal. The idea is that an agent, having
learned from past experience, understands which actions will
lead to maximize a numerical result (reward) in a given time
horizon, for any given situation (state). In fact, the typical
challenge of many RL problems is to maximize not only the
best current reward, but also the best future ones, which can
be obtained by influencing future states through actions. The
agent must be able to perceive the state of the environment
and take actions that will affect it, trying to reach one or
more goals related to the accomplishment of a predefined
task. Hence, RL takes into account two aspects: exploitation
and exploration. The first aspect consists in exploiting what
the agent already knows to obtain reward, the latter means
exploring other actions in order to make better selections in
the next steps. Looking for a trade-off between exploitation
and exploration is one of the most challenging problems
concerning RL. A strategy that favors the exploitation at the
cost of exploration is called greedy.

A. Agent and Environment

At each time step t, the agent and environment can be
modeled as a state st ∈ S with S being the state space, which
contains all the relevant information about the system. Starting
from a given state, the agent performs an action at ∈A with A
being the action space. Each action perturbs the environment
and hence changes its state. Before advancing to the next time
step t +1 , the agent receives a reward r ∈R, with R being
the reward space, and moves to the new state st+1, according
to the dynamics indicated as ρ(st+1 |st , at ). S and A can be
either continuous or discrete sets, while the mapping from
states to action is dictated by a policy π , that can be either
deterministic or probabilistic. For a given control task, the
learning process is divided into episodes, where the agent
interacts with the environment for either a complete attempt
to perform a goal task or a fixed number of time-steps before
being reset. The whole training process includes a typically
large number of such episodes, up to a predefined maximum.

B. Rewards and Policy

A reward rt is a scalar feedback signal that indicates “how
well” an agent has done at step t. The agent’s goal is to
maximize the (expected) cumulative reward it receives in the
long run. In case of episodic tasks with finite horizon T , the
expected cumulative reward Rt is defined as

Rt =
T

∑
k=0

γ
krt+k+1 (1)

where the term 0≤ γ ≤ 1 is the discount rate, used to prioritize
earlier rewards over later ones. In RL, a Markov Decision
Process (MDP), defined by the state and action sets and

the transition probability matrix of the environment, is used.
Given the current state s, action a and the next state s′, the
expected value of the next reward is defined as:

r(s,a,s′) = E [ri+1|st ,at ,st+1] . (2)

A policy π(a|s) is the probability that the agent will
perform action a while in state s. Depending on the task,
the policy can be represented as a simple function or lookup
table, or as a more complex deterministic or probabilistic
function that requires extensive computation. The expected
cumulative reward the agent can accumulate in the long run,
starting from a certain state and following the policy π , is
called value function.

C. Deep Reinforcement Learning

The MDP requires that the model, i.e., the transition
probability, of the environment is completely observable. If
this information is not available, which is usually the case of
complex systems such as robotic systems, a different learning
model is required. Q-learning is an off-policy algorithm that
directly approximates the optimal action-value function Q?

independently of the policy being followed. While selecting
the action, the agent can carry on exploring the environment
with probability ε , by randomly choosing an action and
ignoring its previous knowledge.

Q-learning can however become infeasible in case of
continuous action problems with a large number of states.
The problem could be overcome with the use of a parametric
approximator of the action-value function, or Q-function. One
way to build such approximator is a Deep Neural Network
(DNN). A DNN is a parametric function that can model
complex non-linear relationships. The term deep refers to
the level of composition of the parameters and the use of
multiple hidden layers between the input and output ones.
Consider a parametrized action-value function Q̃

(
st ,at |θ Q

)
such that

Q̃
(
s,a|θ Q)= Ã

(
s,a|θ A)+Ṽ

(
s|θV ) (3)

where Ã and Ṽ are approximators of advantage function
Aπ(st ,at) = Qπ(st ,at)−V π(st) and the value function V π(st),
respectively. The goal is to minimize a loss function

L(θ Q) = Er,ρβ ,β

[(
Q̃
(
st ,at |θ Q)− yt

)2
]
, (4)

where the term yt is the target

yt = r(st ,at)+ γQ̃
(
st+1,µ(st+1)|θ Q) , (5)

θ Q are parameters of the action-value functions, β is a
stochastic behavior policy such that at = β (st), and ρβ is
the state visitation frequency with policy β . The computation
of the greedy policy µ(st ,at) = argmaxa Q̃(st ,at) is however,
a major issue: the computational load of the maximization
of a non-linear, complex function at each time step could
be unfeasible and not suited for real-time processes such as
robotics.



D. Normalized Advantage Function

Normalized Advantage Function (NAF), introduced in [16],
is a method that allows one to enable Q-learning in continuous
action spaces with deep neural networks. The idea behind
this method is to design the Q-function in a way that its
maximum argmaxa Q(st ,at) can be easily computed during
each update. More specifically, the algorithm uses a DNN to
separately output the terms Ã and Ṽ , where the advantage
term is parametrized as a quadratic function,

Ã
(
s,a|θ A)=−1

2
(a− µ̃(s|θ µ))T P(x|θ P)(a− µ̃(s|θ µ)) .

(6)

The term P
(
s|θ P

)
is a state dependent, positive-definite

square matrix. The Q-function is quadratic in the action
and by computing the maximum, one has

∂

∂a
Q̃(s,a|θ Q) = (µ̃(s|θ µ)−a)T P(x|θ P) = 0 . (7)

Therefore the action a that maximizes Q(s,a) is always

a = µ̃(s|θ µ) . (8)

The NAF algorithm is structured as in Algorithm 1 where
TAR and PRED are two different networks, built in order
to update the present target parameters θ

Q
TAR using the

present predicted parameters θ
Q
PRED and the previous target

parameters. The noise element D is a stochastic process
added to the action to foster exploration, even though the
algorithm uses a greedy policy. The Replay Buffer RB collects
all the samples i = {st ,at ,rt ,st+1} produced by the training
process throughout the episodes. The Mini Batch MB, instead,
contains a fixed number of samples randomly selected from
RB; it can be normalized with unit variance and zero mean.
Finally, the coefficients γ , η , and τ are the discount factor,
the learning factor and the update factor, respectively.

III. THE PROPOSED REINFORCEMENT LEARNING BASED
COLLISION AVOIDANCE APPROACH

In this section, the proposed collision avoidance method
based on NAF algorithm is discussed in detail for the robotic
case. To this end, one needs to define the setup for the RL
framework, that consists in building the state space S, the
action space A and the reward function.

A. State Space

The observations relevant for the training process are
the measured joint positions q, the joint velocities q̇, the
target point position pt, the end-effector position pe, the
obstacle position po and its velocity ṗo. Note that typically
robots are equipped with resolvers to only measure positions.
However, if the quality of mechanical design is high, finite
differentiation of the position signal is sufficient to obtain
a good estimate of the velocity q̇. If this is not the case,
the estimate of the velocities q̇ can be obtained for instance
using observers, even of robust type, like sliding mode based
differentiators [17] as successfully used in [18]. As for the
end-effector position, it is assumed known and provided by

Algorithm 1 NAF algorithm for continuous Q-learning

Randomly initialize Q̃(s,a|θ Q
PRED ) θ Q := (θ µ ,θ P,θV )

Initialize the target network with θ
Q
TAR← θ

Q
PRED

Initialize replay buffer RB← 0
for each episode do:

Initialize random process D for action exploration
s0← Environment (reset)
for t = 0 to T do:

at ← µ

(
st |θ µ

PRED

)
+Dt

rt← r(st ,at)
st+1← Environment (st ,at)
RB← RB∪{(st ,at ,rt ,st+1)} store transition in RB
Sample at random and normalize the mini batch MB
for each sample i = (si,ai,ri,si+1) in MB

yi = ri + γṼ
(
si+1|θV

TAR

)
Compute gradients

∂

∂θ Q

(
yi−Q

(
si,ai|θ Q

PRED

))2
(Loss

function L(θ Q))
θ

Q
PRED← θ

Q
PRED−η

(
∂

∂θ Q L(θ Q)
)

θ
Q
TAR← τθ

Q
PRED +(1+ τ)θ Q

TAR
end for

end for
end for

cameras located in the workspace. Analogous considerations
hold for the obstacle position, while its velocity is assumed
to be correctly estimated. The state space S is hence defined
as

S = {q, q̇, pe, pt, po, ṗo} . (9)

B. Action Space

The action space A is defined as

A= {q̇tar} , (10)

where q̇tar is the vector of the rotational velocity at each joint.
Specifically, the velocity control of the joints is such that, at
each step, the joint has to rotate at the target velocity using
the maximum torque available.

C. Reward function

The reward function is a scalar function defined by the
weighted sum of three terms: the distance between the end-
effector and the target point, the magnitude of the actions,
and the distance of the obstacle from the robot, i.e.,

r = c1RT + c2RA + c3RO . (11)

The distance RT between the end-effector and the target point
is computed using the Huber-Loss function,

RT = Lδ (d) =

{
1
2 d2 for |d|< δ

δ
(
|d|− 1

2 δ
)

otherwise
(12)

where d is the Euclidean distance between the tip and the
target and δ is a parameter that determines the smoothness.



Fig. 1. Reward function on the planar section of the environment

The magnitude of the actions RA performed by the
manipulator is computed as the square of the norm of the
action vector a, as follows

RA =−‖a‖2 . (13)

It gives a negative contribute to the reward, therefore smaller
actions are encouraged. The distance between the robot and
the obstacle RO is computed as follows

RO =

(
dref

dO +dref

)p

(14)

where dref is a constant parameter so that 0 < RO < 1, dO
is the minimum distance from the obstacle as computed
by V-REP and p is for the exponential decay of negative
reward. The weights c1, c2, c3 are necessary in order to tune
the reward function depending on what is prioritized in the
training process.

Figure 1 shows the behavior of the reward function com-
puted on a planar cross section of the working environment of
the robot. Such plane is parallel to the floor and at the same
height of the target and the trajectory of the obstacle. The
target point is placed in (0.5,0.5) and the obstacle is centered
in (0.1,0). For the sake of simplicity, it is assumed that the
robot is a point moving in the space and only the terms RT
and RO of the reward function are considered. As it can be
observed from Figure 1, the resulting function is concave
with values less than zero, and it reaches its maximum when
the tip of the robot is placed on the target point. Moreover,
the value diminishes as the robot moves in proximity of the
obstacle.

D. Hyperparameters

The hyperparameters are all the elements that have to
be set up in order to adjust the learning environment. The
exploration of the policy during the training process is defined
by the following list of values:
• type of noise D: the type of stochastic process added at

each time step to the action, in order to keep exploring
the environment; it can be either Brownian or Ornstein–
Uhlenbeck noise;

• noise scale: scaling factor for noise exploration;

Fig. 2. Training scenario in V-REP with the virtual COMAU SMART3-S2,
obstacle and target (red circle)

TABLE I
CHOICE OF PARAMETERS FOR THE EXPERIMENTS

Parameters Value

Number of time steps 360
Time step 50 ms

c1 1000
c2 100
c3 60
δ 0.1
p 8

dref 0.2
Discount factor γ 0.99
Update factor τ 0.001
Learning rate η 0.001
Noise type D Ornstein–Uhlenbeck

Noise decay factor 0.01
Noise scale 1

• noise decay factor: how quickly does the noise decay
during the training episode.

Parameters related to the NAF learning algorithm are:
• update factor τ: soft target update at the end of each

step;
• discount factor γ: how much the future rewards are

valued with respect to the present one;
• learning rate η : how much the agent is able to acquire

new knowledge.
Parameters related to the reward function are:
• c1, c2, c3: weights of the three components, respectively

the distance from the target, the action magnitude and
the distance from the obstacle;

• δ : discriminating parameter for the Huber Loss;
• reference distance dref: default minimum distance be-

tween the obstacle and the body of the manipulator;
• exponential decay factor p: decay of the negative reward

when the distance from the obstacle increases.

IV. CASE STUDY AND SIMULATION EVALUATION

In this section the results obtained by applying the proposed
collision avoidance NAF algorithm will be illustrated for an



Fig. 3. Experiment results for fixed target, random moving obstacle

industrial manipulator with 6 joints that has to reach a point
in the space with its end-effector. While accomplishing its
task, it must avoid collisions with obstacles that move in
unpredictable ways. In order to carry on the evaluations,
the physical environment for the training process was re-
produced using the simulator V-REP. The simulator and the
NAF learning algorithm, implemented using TensorFlow, are
interfaced using V-REP’s Remote API functions and Gym in
Python. The used manipulator was the virtual replica of the
COMAU SMART3-S2 anthropomorphic robot (see Figure
2). The target point is placed on a plane, parallel to the floor
and in front of the robot, in order to emulate the production
line the manipulator has to interact with. The obstacle (that
in a real setting could be, for instance, a worker accidentally
entering the robot’s working space) is represented by a sphere
moving on a linear path, placed between the target point and
the manipulator.

The algorithm’s performances were evaluated for different
settings, in which the variable elements are the obstacle’s
movement and the position of the target point. All experiments
use the same set of parameters, summarized in Table III-D.
The settings considered for the experiments are:

(i) fixed target, moving obstacle: the position of the target
point is the same for each episode, and the obstacle
moves from one end to the other of the linear path, at
constant velocity;

(ii) fixed target, randomly moving obstacle: the position of
the target point is the same for each episode, and the
obstacle moves randomly along the path; the sphere
can change direction at any time or stop for an interval
of time;

(iii) random target, moving obstacle: the position of the
target point is randomly initialized at the beginning of
each episode, and the obstacle moves back and forth
in a deterministic way;

(iv) random target, random moving obstacle: the position of
the target point is randomly initialized at the beginning
of each episode and the obstacle moves randomly along
the path.

For all the experiments, the total reward and the average

loss function per episode have been traced. Moreover, the
norm of the distance between the tip and the target and the
norm of the distance from the obstacle have been retrieved
at each step of the simulation to better show the behavior of
the robot during one training episode. The results refer to the
values obtained after 650 episodes of 360 steps each. All the
training sessions have been carried out on a machine mounting
a 8x intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz with a
32GB RAM and a NVIDIA Quadro k5000 GPU with 4GB
DRAM. Each process took about 32 hours. As it is possible
to observe in Figure 3, in all the experiments the cumulative
reward converges to its maximum value: this means that the
robot has learned a way to efficiently complete its task. This
applies also to the trend of the average loss function, that
presents little variations. Furthermore, as the distance from
the obstacle diminishes, the robot adjusts its position with
respect to the target, moving away further until the obstacle is
again at a safe distance. The distance between the tip and the
target point diminishes as the robot approaches the target and
maintains its position until the sphere becomes dangerously
close to the body of the robot. Then, the robot backs off from
the target until the obstacle starts moving further away from
the manipulator. The same behavior has been obtained in
both the experiments with the deterministic moving obstacle
and random moving obstacle.

A. Transfer learning

In machine learning, the term transfer learning refers to
the application of previously gained knowledge to perform a
different task. After extensive training sessions, the results
of transfer learning on a process have been also evaluated,
considering three different approaches:

(i) model transfer: reuse of the approximators parameters
during the initialization;

(ii) experience transfer: reuse of the information con-
tained in the Replay Buffer RB, i.e., the quadruplets
{st ,at ,rt ,st+1};

(iii) model and the experience transfer: both of the above.
The transfer has been made using knowledge acquired during
the experiment with the random target and the deterministic



Fig. 4. Performance comparison between the three methods of transfer
learning: model only (blue), experience only (black) and model and
experience combined (red)

Fig. 5. Behavior of the manipulator with respect to the distance from the
obstacle with experience transfer

moving obstacle for the training in case of a randomly moving
obstacle. It can be observed that the learning process using
the experience significantly improves its performances. On
the other hand, the transfer of the model produces poor results.
The use of both experience and model, instead, maintains a
similar trend. Nevertheless, the reward function converges
and the experiments give satisfactory results. An overall
comparison between the performances of the three methods
used for transfer learning is reported in Figure 4.

B. Robustness

In order to test the collision avoidance functionality, it has
also been implemented a feature that allows one to manually
change the direction of the obstacle with a simple graphic
interface. Despite the attempts to collide with the robot, the
knowledge has been such to avoid the obstacle. Figure 5
shows that attempts to get the obstacle close to the robot
result in a collision avoidance. The results have been obtained
by transferring the experience acquired in a training session
with the deterministic moving obstacle.

V. CONCLUSIONS

In this paper, the applicability of deep reinforcement learn-
ing methods to problems of collision avoidance in robotics
has been investigated. To this end, a Q-learning approach
has been applied. It is a model-free learning approach,
suitable for complex systems in the continuous framework,
using a specific algorithm called Normalized Advantage
Function, explicitly designed to simplify computation, making
it practically applicable to this kind of problems.
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