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Abstract

Network operators need to continuously upgrade their infrastructures in order to
keep their customer satisfaction levels high. Crowdsourcing-based approaches are
generally adopted, where customers are directly asked to answer surveys about
their experience. Since the number of collaborative users is generally low, net-
work operators rely on Machine Learning models to predict the satisfaction lev-
els/QoE of the users rather than directly measuring it through surveys. Finally,
combining the true/predicted users satisfaction labels with information on each
user mobility (e.g, which network sites each user has visited and for how long),
an operator may reveal critical areas in the network and drive/prioritize invest-
ments properly. In this work, we propose an empirical framework tailored to
assess the quality of the detection of under-performing cells starting from subjec-
tive user experience grades. The framework allows to simulate diverse networking
scenarios, where a network characterized by a small set of under-performing cells
is visited by heterogeneous users moving through it according to realistic mobil-
ity models. The framework simulates both the processes of satisfaction surveys
delivery and users satisfaction prediction, considering different delivery strategies
and evaluating prediction algorithms characterized by different prediction perfor-
mance. We use the simulation framework to test empirically the performance of
under-performing sites detection in general scenarios characterized by different
users density and mobility models to obtain insights which are generalizable and
that provide interesting guidelines for network operators.
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1. Introduction

According to recent Cisco estimates [1], by 2021 mobile cellular networks
will connect more than 11 billion mobile devices and will be responsible for more
than one fifth of the total IP traffic generated worldwide. Moreover, the global
average broadband speed will more than double from 2018 to 2023, from 45.9
Mbps to 110.4 Mbps. This will result in increased utilisation of high-bandwidth
demanding applications, such as on-demand 4K video streaming, cloud storage,
etc. To face this unprecedented growth in both volume of mobile traffic and data
rate needs of customers, network operators continuously invest in all network do-
mains, including but not limited to spectrum, radio access network (RAN) infras-
tructure, transmission and core networks. The final goal of such investments is to
generate profit by (i) attracting as many customers as possible and (ii) minimizing
the number of churners, i.e., users who stop their current subscriptions and move
to a different operator.

Concerning the latter point, a well established process mobile operators per-
form to avoid churns is to monitor their customers satisfaction levels through di-
rected surveys: as an example, the Net Promoter Score (NPS) survey asks users
to indicate the likelihood of recommending the network operator to a friend or
colleague on a scale from O to 10. In addition to such a generic survey, operators
often ask customers to reply very specific questions related to the user satisfaction
or Quality of Experience (QoE) relative to certain network services (network cov-
erage, voice and video quality, etc.), which can better highlight possible problems
in the network, such as under-perfoming or malfunctioning network cells/sites.
In fact, recognizing faults in a given network cell/site looking solely at objec-
tive QoS measurements when there is no clear degradation of performance is a
complex challenge, considering that such a strategy forces an operator to work
in a unsupervised fashion where there is no ground truth about which network
element is truly under-performing. As an example, regarding video streaming
applications, low throughput does not always interrupt viewers’ watching expe-
riences [2], meaning that QoS based metrics could fail to capture the reasons for
users dissatisfaction. Indeed, it is often the case that a mobile operator has no clear
evidence of a fault at a network site (i.e., the operator is not able to recognize it
directly from objective measurements) but yet the visitors of the site are not sat-
isfied about one or more network services. Therefore, tracking users satisfaction



to get objective insights about the performance of network cells/sites represents a
useful tool for improving the effectiveness of network monitoring processes. Un-
fortunately, such a direct way to track users satisfaction is costly and cumbersome
for operators, mainly due to the generic poor cooperative attitude of customers.
Moreover, the problem of the reliability of users’ replies to such surveys is sub-
ject to intense investigations [3, 4, 5, 6]: regardless of the subject of the surveys,
studies confirm that it is not a trivial task to gather reliable responses from crowds,
especially when no reward systems are conceived.

To cope with these issues, several studies in the recent literature addressed
the problem of predicting the satisfaction level of customers, rather than directly
measuring it through surveys [7, 8, 9, 10, 11]. Following the renovated interest
in big data, machine learning and artificial intelligence, the goal of such works
is to identify the set of unsatisfied customers starting from a large variety of ob-
jective features, both operative (e.g., average throughput and signal quality) and
business-related (e.g., gender, age or tariff plan). Such features, and the corre-
sponding ground-truth satisfaction levels, are generally used to train machine-
learning models and eventually used to estimate the satisfaction levels/QoE of a
much larger population. Finally, combining the true/predicted users satisfaction
levels with information on each user mobility (e.g, which network sites each user
has visited and for how much time), an operator may reveal critical areas in the
network and drive/prioritize investments properly.

However, the detection of under-performing cells starting from true/predicted
subjective grades has its own issues. First, users are heterogeneous and their per-
ception of network quality is highly subjective. Second, when a negative satis-
faction expressed by a user refers to a long period of time (e.g., one month), it
is difficult to identify which of the network sites visited during that period is the
most responsible. Third, in case the user satisfaction level is estimated through a
machine learning algorithm, a prediction error is likely to be expected. Therefore,
in this complex scenario, an operator may argue about the validity/quality of the
detected under-performing cells. To solve these issues, we propose an empirical
framework tailored to assess the quality of the detection of under-performing cells
starting from subjective users grades. In details, the contributions of this paper are:

1. We build a framework that allows to simulate a network composed of a
(small) set of under-performing/malfunctioning cells, with heterogeneous
users moving freely in it according to realistic mobility models. Depending
on each user mobility and subjective profile, the framework allows to obtain
each user’s (true) satisfaction level.



2. The framework also simulates the process of satisfaction surveys delivery
performed by the operator, which is able to sample only a subset of the true
users satisfaction levels through surveys. We consider two different delivery
strategies: a completely random one and one which maximizes the number
of covered network sites.

3. Moreover, the proposed framework allows to simulate the process of users
satisfaction prediction using a machine learning algorithm whose perfor-
mance can be changed at will. This allows to quantify the impact of pre-
diction errors on the detection process, and to understand what are the min-
imum performance a prediction model for user satisfaction should possess
to be applied in the overall methodology.

4. Finally, we test empirically the simulation framework with different users
density and mobility models to obtain insights which are generalizable.

The remainder of this article is organized as follows: Section 2 describes a
general crowdsourcing network monitoring process than can be adopted by an
operator to perform detection of under-performing sites, leveraging both objective
data and true/predicted user satisfaction levels; Section 3 describes the simulation
framework that can be used to assess the quality of the detection process. Diverse
scenarios characterized by different users densities, mobility models and surveys
delivery strategies are simulated in Section 4, to empirically test the performance
of the detection of under-performing cellular sites. Section 5 reviews the relevant
literature on QoE prediction and QoE-based issues detection in cellular networks.
Finally, Section 6 summarises remarks and conclusions.

2. Under-Performing Sites Detection Process

Detecting possible issues in an operator network infrastructure using informa-
tion about the perceived user experience is a process known under the name of
crowdsourcing network monitoring, a field which has received increasing atten-
tion in the last few years [12, 13, 14]. According to this approach, the mobile
operator administers to its customers population U, |U{| = N, a set of user expe-
rience/satisfaction surveys (either directly or through the help of proper apps in-
stalled on the users equipments), whose answers may help to reveal critical/under-
performing network sites, hence steering investments in the right directions (e.g.,
increasing the bandwidth or the output power available at specific base stations).



Rather than detecting all sites responsible for users dissatisfaction, a more con-
venient output for a mobile operator consists in a site ranking, i.e., a sorted list
of network sites in which the ones responsible for the highest number of unsat-
isfied users appear at the top positions. In such a way, an operator may allocate
the available budget for investing into the first & sites in the list in a prioritized
fashion.

When the responses gathered from the users are few (and this is often the case
[11]), operators may rely on data science techniques to predict the satisfaction of
additional users, artificially enlarging the set of available responses. This is gen-
erally obtained by exploiting pre-trained machine learning models that correlate
objective network measurements collected from the users (e.g., throughput, chan-
nel quality, amount of time spent with limited service) with the users perceived
satisfaction. Since the objective network measurements are generally available for
a much larger amount of users compared to the (subjective) satisfaction responses,
this strategy allows to greatly enlarge the knowledge base usable for detecting or
ranking under-performing sites. The general process is illustrated in Figure 1: let
U = {U, UlU,, } be the total set of network users, composed of customers whose
survey response is available (4,) or not ({4,,). Similarly, let X, and X,,, be the set
of objective network measurements for the two sets of users. A machine learning
model f(-), trained and possibly updated with the knowledge coming from users
whose answers sy are available, can be used to predict the satisfactions 8 of non-
answering users. We underline that the model f(-) can be trained independently
of the detection process and updated any time new surveys responses are gathered
by the operator. Finally, the objective network measurements (X,, X,,) and the
true and predicted users satisfaction (sy and §) are leveraged to produce a ranked
list of sites in the network, which we refer to as ju

Several important questions related to such an approach can be raised by a
mobile network operator:

Q.1 Ranking strategy: Assuming the availability of the (true) satisfaction of the
entire set of users, how can under-performing sites be ranked/detected?

Q.2 User heterogeneity: Different users react to network issues in different
ways. How does such heterogeneity impact on the detection of under-
performing sites?

Q.3 Prediction errors: When a ML model f(+) is used to predict the satisfaction
of the non-answering users, a prediction error is generally expected. How
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Figure 1: General process for crowdsourcing-based sites ranking. The satisfaction grades from
the users, true or predicted, are combined with objective information (such as user visit times) to
detect critical network sites and rank them according to their impact on users satisfaction. Dashed
lines refer to the fact that the model f(-) is independent from the detection process and may be
updated asynchronously whenever new survey responses are gathered by the operator.

does such an error impact on the ranking/detection of under-performing
sites?

Q.4 Users density: What is the relationship among the cardinality of the sets of
answering and non-answering users, the number of sites in the network and
the performance of the ranking/detection operation?

Q.5 Survey delivery: 1f only a subset of users is expected to answer the satisfac-
tion surveys, is there a way to select such a subset in order to increase the
performance of the detection process?

In the following, we describe a simulation framework that an operator can leverage
in order to find answers to such questions.
3. Simulation Framework

In order to answer to questions Q.1-Q.5, we propose a simulation framework
composed of several building blocks, illustrated in Figure 2. The following Sec-
tions provide details on each component of the framework.

3.1. Topology Generator (TG)

The TG is responsible of generating mobile network instances composed of a
set of network sites 7, |J| = M, deployed in a realistic scenario (e.g., urban or

6
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Figure 2: Architecture of a simulation framework to test the anomaly detection system.

rural). The TG also defines which sites 7, C J,|J.| = 2 < M, are malfunc-
tioning or under-performing in a given network topology. In particular, consider-
ing that a network site is composed by different but co-located network elements
which mostly work in a shared fashion to deliver diverse network services to the
end users (e.g., the base-band unit processes information coming from different
antennas working a different RF bands), in our work the TG does not associate the
failure to one or the other specific network element but rather it marks the over-
all network site as under-performing. The selection of the under-performing sites
is performed according to a random process, specified in input. In this work we
consider a uniform distribution (i.e., all network sites have the same probability of
being under-performing), assuming that the degradation of the performance of a
under-performing site is due to a random failure. Note that in general an operator
may use any other input distribution, e.g. to simulate the case in which it has a
prior regarding what most likely has caused the degradation of performance in its
own network. As an example, if an operator suspects that congestion is the main
cause of the degradation of its customers experience, then it can tune the TG such
as sites characterized by a higher level of congestion (e.g., visited by large number
of users) are selected as under-performing with a higher probability. We recall that
both the total number of sites M and the number of malfunctioning sites € are in-
put parameters of the simulation framework. To conclude, we observe that the TG
can be easily generalized to support the case where network sites are composed
of different sectors (multiple antennas) or frequency layers that can independently
be subject to failure: this requires the operator to specify the mapping between
physical location and most likely serving cell, an operation which is generally
performed through the use of coverage maps.



3.2. User Mobility Manager (UMM)

The UMM models the mobility of the population of users U/ through the cel-
lular network simulated by the TG. In particular, the UMM leverages a human
mobility model which defines for the i-th user i) which network sites are visited
and ii) for how long. Several models are available in the literature to simulate the
statistical properties of human mobility [15, 16, 17, 18]. In this work we consider
the model proposed in [18], which is based on the following observations: 1) hu-
mans have a periodic tendency to return to previously visited places, ii) humans
spend most of their time in a few number of locations and iii) the distributions of
the time spent by a user in a location P(At) and the distance covered between two
sightings P(Ar) are fat-tailed, i.e. P(Ar) ~ |Ar|71"* and P(At) ~ |At|7177,
In details, the mobility model implemented in the UMM works according to dif-
ferent steps, as illustrated in Figure 3:

e [nitialization: let S; be an integer variable which counts the number of dis-
tinct locations visited by the i-th user, initially set to 1. At startup, each
user is associated to one site in the network topology, chosen at random.
Then, each user waits for a random period of time At and eventually de-
cides whether to explore a new location (Exploration step) or to return to an
already visited site, including the current one (Preferential Return step).

e Exploration: with probability P,.,, = pS;~ "7, the user jumps in a random
direction 6, uniformly distributed in the range [0, 27) and with a random
jump length Ar. The closest site to the landing location will be visited by
the user. As the user moves to this new position, the number of previously
visited locations increases from S; to S; + 1.

e Preferential Return: with probability 1 — P,.,,, the user returns to a previ-
ously visited location with a probability proportional to the number of visits
the user previously had to that location.

These steps are repeated independently for each user: at each iteration the UMM
updates the vector t; € R whose entries ¢; ; correspond to the visit times of the
i-th user in the j-th network site. The process ends when the total visit time for
each user is equal to the simulation time horizon 7, i.e., when ) i ti; =T, Vi.
The parameters controlling the user’s tendency of exploring a new place p and 7,
as well as the fat-tail distribution parameters for the jump sizes « and the waiting
times /3 can be modified according to the specific case under consideration. We
detail the choice of such hyper-parameters in Section 4.
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Figure 3: Considering a generic user 4, S equals the cardinality of the set of visited places, circles
stems for the sites already visited by the user while their size represents the probability that the
user visits the corresponding network site.

3.3. User Profiler (UP)

As illustrated in Figure 2, the UP leverages the network topology created by
the TG and the mobility information output by the UMM to simulate the users
(subjective) reactions s to the corresponding experiences in the network. As gen-
erally done in the field of QoE research [19, 20, 11], in this work we assume the
users reactions to be binary, i.e., s € [0, 1]V, In details, the i-th user reaction s; is
defined as:

1, if the ¢-th user is dissatisfied with her/his network service )
s; =
' 0, otherwise.

It is well known from the literature that the duration of a network disservice
has great impact on the experience perceived by a user. As an example, in the
case of video streaming, QoE is primarily influenced by the frequency and du-
ration of stalling events [21, 2]. Similarly, for web browsing, the number and
duration of IRAT handovers is shown to have a strong negative impact on users
experience [22]. In both cases users are observed to tolerate a certain amount of
disservice before expressing a negative opinion: for video streaming, one stalling
event per clip is acceptable as long as its duration is below 3 seconds, while for
web browsing a single IRAT handover is generally tolerated.

9



Following these observations, it is reasonable to link the user satisfaction s; to
the time spent in under-performing or malfunctioning network sites. Operatively,
the UP leverages the set of under-performing sites 7, and the users visit times ¢; ;
to generate users satisfaction according to the following:

1, if Zjejc ti,j > ulT
0, otherwise.

2)

S; —

where 7' is the simulation time horizon and w; is a percentage value corre-
sponding to the user tolerance. In other words, we assume that each user has a
specific patience level with respect to negative network experiences. Intuitively,
the higher the tolerance of a user the more she will tolerate low service quality
during her network activity. To model the heterogeneity of the users, we assume
that the user tolerance u; is a Gaussian-distributed random variable with mean p
and standard deviation o, i.e., u; ~ N'(u, 0?). For the sake of clarity, we specify
that while the average profile of the users is defined jointly by the mean and the
standard deviation of the Gaussian distribution, the heterogeneity of the popula-
tion is embedded in the ratio between the standard deviation and the mean of the
distribution, i.e. in the so-called coefficient of variation o/ of the distribution.
Later in Section 4.2 we will discuss about the choice of their values. Finally, we
observe that the reported user satisfaction depends also on factors completely un-
related with the network service itself, such as the ones relative to users personal
attitudes and expectations [10]. The UP models such noisy behaviours by gener-
ating a percentage 1 of the satisfaction labels s; at random, regardless of the sites
visited by users and their tolerance. Again, ) represents a hyper-parameter of the
model that can be set by the operator to simulate different population types.

3.4. Survey Delivery (SD)

Any crowdsourcing-based network monitoring system is limited by the asso-
ciated network coverage, i.e., the percentage of sites visited by users answering
the surveys, as it is not possible to detect under-performing sites for which no in-
formation from users is available. As aforementioned, the number of users which
answer to surveys is generally small compared to the total number of customers,
and the set of corresponding Ground Truth (GT) responses sy is much smaller
than s. The SD component of the proposed framework simulates the process of
administrating satisfaction surveys to the customers, and can therefore be thought
of as a sampling process of the true users reactions. In this paper we consider two
scenarios for the surveys delivery strategy:

10



(a) RD: low network coverage (b) OD: high network coverage
scenario scenario

Figure 4: Strategies for the delivery of satisfaction surveys: a network coverage perspective. User
icons refer to the users who replied to the received surveys, while blackish and redish base stations
refer to regular and anomalous network sites respectively.

e Random Delivery (RD): in the most general case, we assume that the set of
users answering the surveys is randomly sampled from the total population.
This strategy is represented in Figure 4(a), where user icons represent those
users who replied to the received survey. In this (unlucky) example the
operator has low network coverage, as the received responses do not cover
under-performing sites in the network.

e Optimized Delivery (OD): with this policy, depicted in Figure 4(b), the op-
erator delivers surveys in a way to maximize the network coverage. This
is done by leveraging the users visit times ¢; ; to set up an optimization
problem (formalized in Section Appendix A) that selects the smallest set
of users whose responses would allow to maximize the number of visited
sites. Clearly, in this case we assume that the operator puts in place an in-
centive strategy for the voting procedure, such that a user selected from the
optimization problem is rewarded for her answer (e.g. with premium data
plan access for limited time or other incentives), as they are proven to foster
users participation to this type of campaigns [23, 24, 25, 26].

Regardless of the chosen delivery strategy, the SD block samples the set of
users reactions s and returns a set of GT users feedbacks sy, which is input to the
under-performing sites ranking and detection algorithm. Note that the output
of this block is assumed to be uniformly distributed with respect to users
personal details (such as age, gender, education level, job, etc.), as it should

11



always be targeted by mobile operators in practical scenarios to ensure that
the set of GT users reactions is a representative sample of the satisfaction of
the whole customer base.

3.5. Under-Performing Sites Ranking and Detection Algorithm

At this point, the detection system mentioned at the end of Section 2 can be
used to detect/rank under-performing sites in the network. The ranking algorithm
will leverage: 1) the user-specific cells visit times information generated by the
UMM; ii) the set of GT survey responses generated by the SD block and iii) a
pre-trained ML model f(-) to predict the satisfaction feedback of all those users
who did not answer a survey. Note that the ML model is assumed to be al-
ready trained: while detailing which learning features belong to X, and X,,,
is outside the scope of this paper, we underline that in this work the joint dis-
tributions of model features and classification target of answering and non-
answering users are assumed to be of the same type (as it usually happens
when users belong to the same environment [27, 28], e.g., a urban scenario).
For the sake of clarity, we remark that the ranking algorithm is blinded about the
true location of the under-performing sites, i.e., it does not know which network
site belongs to 7,,.

For each network site in the network topology, the algorithm computes a score
r; according to the following procedure:

1. First, the set V; of all the dissatisfied visitors of site j is selected. Note that
V; contains all those users such that ¢; ; > 0 and the associated ground truth
or predicted satisfaction is 1. Considering that a user visits multiple sites
and its dissatisfaction may be due only to one of them, we tighten the time
constraint as it follows:

tig =&Y tij (3)
J

where £ is a percentage that acts as an activation threshold for considering
site 7 as responsible to the experience of the i-th user. Further details about
the choice of the value of ¢ will be given in Section 4.2.

2. Then, considering only users relative visit times above the threshold &, the
site score is computed as it follows:

lij tij
r; = SR @)
=2 doitig it

iEV]'
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The proposed scoring rule takes into account: i) the fraction of time that a
dissatisfied visitor 7 has spent in a site 7 with respect to the overall time spent by

the visitor in the network (i.e., Zt—g) and 1i) the fraction of time that the visitor
Y

1 has spent in cell j with respect to the overall service time of cell j (i.e., Zf Zg ; ).
In other words, if the score of a network site is high then it means that 1) fneiny
dissatisfied visitors have visited the site for most of the time they have spent in the
network and ii) the site has served dissatisfied visitors for most of its service time.
Note that in this work > ;li,j = T for each user ¢ € U, although the scoring rule
can be applied as it is even if the total visit time differs for different users. Finally,
network sites are ranked in descending order according to r; and the operator may
use such an information to prioritise upgrading investments in the network. In
fact, Equation 4 scores network sites without assuming anything about the cause
of the degradation of their performance (if any), which could then be recognized
by the operator after a more focused operative intervention. In particular, here
we assume that the operator has a budget for investigating/upgrading £ network
sites. Feeding the value of % into the detection system allows to output a set T
| Ju| = K, containing the first k sites of the ranked list.

In the following Section we run the simulation framework in different scenar-
ios and we compare the ranked set J. with the true set of under-performing cells
Ju to assess the detection performance.

4. System evaluation

We use the proposed simulation framework to perform several experiments,
with the goal of answering questions (Q.1-Q.5). This section is organized as fol-
lows: first, we provide details on the experimental setup in Section 4.1. Then,
Section 4.2 focuses on the relationship between users satisfaction profile and the
detection performance, providing an answer to Questions Q.1 and Q.2. Finally,
Section 4.3 comments on the impact that both the surveys delivery strategy and
the satisfaction prediction errors have on the overall ranking task, thus answering
Questions Q.3, Q.4 and Q.5.

4.1. Experiments Overview

We feed the Topology Generator with information gathered from a real cellular
network, currently operative in a middle-sized European city. The network is
composed of 136 network sites deployed in an area of approximately 180 Km?,
whose locations are illustrated in Figure 5. We consider three different densities of
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Figure 5: Voronoi representation of the considered network.

users per network site, corresponding to population sizes equal to 100k, 10k and
1k users. Moreover, regardless of the population size, we consider two different
mobility scenarios according to the value of the hyper-parameter ~y that is input to
the UMM:

e Scenario 1 (S1): this case reproduces the setup described in [18], where a
dataset containing one-year period trajectories of three million anonymized
mobile-phone users is used to statistically estimate the values of the hyper-
parameters. In this case, v is set equal to 0.21;

e Scenario 2 (S2): we reproduce the users mobility patterns observed in a
dataset of 1500 anonymised customers in the same cellular network used
to feed the TG for a period of 1 month. In this case, «y is set equal to 3.
Therefore, this scenario is characterized by a lower tendency of the users to
visit new sites compared to the first scenario.

For what regards the others parameters input in the UMM (i.e., , 3, and p), they
are set to values estimated in [18] for both scenarios, that is & = 0.55, 5 = 0.8
and p = 0.6. Moreover, the simulation time horizon 7' is set equal to 30 days for
both mobility scenarios.

We plot in Figures 6(a) and 6(b) the average proportion of visit time result-
ing from the UMM for the case of 100k users for the two scenarios, ranked in
decreasing order. The first bar refers to the average proportion of time spent by
users in the most visited site, the second bar refers to the second most visited site
and so on. As one can see, in both scenarios the distributions have a negative
exponential trend, with the five most visited sites representing on average more

14
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Figure 6: Average distribution of users visit time versus the site’s rank of importance, for scenarios
S1 (red bins) and S2 (blue bins).

than 60% and 95% of the overall users visit time in the network for S1 and S2
scenarios, respectively.

For what concerns the generation of the under-performing sites and the users
profiling, we set the value of (2 (i.e., the number of under-performing sites in the
network) to |0.1M |, while p and o (i.e., mean and variance of the random variable
u; that controls users tolerance) are set so that the percentage of dissatisfied users
ranges between 15% and 30% of the whole population. This is because cellular
users feedbacks are typically unbalanced [7, 11, 10], i.e., the class of satisfied
users is usually much larger then the class of dissatisfied ones. Finally, we leave
to the next Section the discussion about the choice of the value of &, where we
will also comment its relationship with the profile of the visiting population (i.e.,
with the hyper-parameters ;. and o).

4.2. Detection Performance and Users Heterogeneity

As a first experiment, we use the simulation framework to find answers to
questions Q.1 and Q.2. We leave aside the problem of predicting users satisfac-
tion, deactivating the sampling process in the Survey Delivery block and assuming
an ideal scenario in which the operator has knowledge of the true satisfaction s
for all the users. At the same time, we are interested in understanding how users
heterogeneity impacts on the process of detecting under-performing sites. There-
fore, we analyse the effect of parameters &, ¢ and o on the detection performance.
In particular, £ is varied between 0.05 and 1 while p takes values in [0.05, 0.15,
0.25, 0.35]. Note that for each value of the average user tolerance i, the corre-
sponding value of ¢ is adjusted in order to let the fraction of dissatisfied users be
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Table 1: Values of i and o considered in the next experiment.

p(%) [ o %) | o/u(%)
5 1.5 30
15 3 20
25 3 12
25 12.5 50
35 3 8.5

within 15% and 30%. Table 4.2 summarises the values of 1 and o chosen in the
experiments, as well as the value of the ratio o/x which embeds the heterogene-
ity of the customers population. We recall that the framework outputs a set T
containing the first & sites of the ranked list of under-performing sites, where & is
an input parameters which depends on the operator financial budget. The metrics
used for evaluating the detection performance are the Precision and Recall at k
(PQk, RQk), defined as:

MIGIRN

Pak = - (&)
| Tu(K))|
MAGIFA
R = L I 6
7] (6)

where the numerators correspond to the number of correctly detected sites, while
the denominators equal &k and §2 respectively.

As one can see, PQF is defined as the proportion of the top-k ranked net-
work sites that are actually under-performing. On the other hand, RQF corre-
sponds to the proportion of correctly detected under-performing sites. We per-
form several experiments with different values of ¢ and considering for ;4 and o
the values reported in Table 4.2. Since an operator is unaware of the true number
of under-performing sites, we evaluate the performance for different values of &
(i.e., k =1... M), evaluating each time the metrics PQk and RQFk. Finally, for a
fixed triple (¢, u, o) we first compute the Precision-Recall ROC curve at different
values of k, and then we summarize the performance of the system with the Area
Under the Curve value, AUC(E, i1, o). We highlight that the AUC summarizes the
detection performance for all possible values of k.

We run the tests 10 times, each time generating a new random set of under-
performing network sites. Figures 7(a) and 7(b) plot the average AUC values of
the detection process when applied to S1 and S2 scenarios, respectively. Referring
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Figure 7: AUC vs ¢ for different average users tolerance to bad network events p. The population
size equals 100k users, who move according to mobility scenarios S1 (left) and S2 (right).

to S1 (Figure 7(a)), for & < 0.50 we observe that when the satisfaction feedbacks
are retrieved from a population of excessively fouchy users (i.e., when 1 < 20%)
the system AUC lowers on average by 15% and 10% with respect to the other
population profiles for i = 5% and u = 10% respectively. Also, we observe that
the detection system performs similarly for ;. greater than 20%. When ¢ is above
50%, the performance of the system rapidly drop as very few dissatisfied users
meet the time constraint specified in Equation 3, due to the specific characteristics
of the mobility type of the population. Differently, in scenario S2 (Figure 7(b))
the values of the AUC are similar regardless of the value of 1, o and £ and always
greater or equal to 70%. As for the former scenario, the reason for which AUC
values do not drop when users move according to scenario S2 are traced in the
characteristics of the corresponding mobility pattern. In particular, also when
¢ = 1 the system is still able to detect some under-performing sites as there is a
non-empty set of dissatisfied users who have visited a single (under-performing)
network site. From these observations we conclude that:

1. The detection performance depends i) on the way users move throughout
the network and ii) on their subjective profiles. In general, considering that
the true value of 1 is unknown and uncontrollable by the operator, the rank-
ing algorithm yields good detection performance in both scenarios. In par-
ticular, AUC values are greater than 75% for £ < 0.50 when users move
according to S1 while they are above 98% for ¢ < 0.95 in case of scenario
S2. This answers to question Q.1 introduced in Section 2.

. Regardless of the average tolerance p of the population and the users het-
erogeneity (i.e. of the ratio o /), we observe that the detection performance
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are stable with respect to the value of &, highlighting a certain inherent ro-
bustness of the system. This is promising, as an operator doesn’t need to
worry about 1) estimating x and o or ii) tuning & with excessive care. As a
rule of thumb, setting £ as the mean of the average times spent in the most
visited and second most visited site is a good working point. This provides
the answer to question Q.2.

4.3. Satisfaction Prediction Trade-Off

To tackle question Q.3, we analyze the performance of the system in a more
realistic case where the operator has only partial information about users satis-
faction feedbacks. In particular, we investigate whether it is more reliable for an
operator to perform detection considering only GT users feedbacks (i.e., only sy)
or it is convenient to include also the predicted satisfaction labels (i.e., also 8).
Without loss of generality, the analysis is performed fixing the values of u, o and
¢ to 25%, 3% and 0.2, respectively. The performance metric used for this anal-
ysis is the Recall at {2, RQ(). Note that RQS) has a maximum value of 1, if all
under-performing cells are detected. The size of the GT users sets are fixed to 1%
of the overall population size, i.e., we will assume a users response rate to satis-
faction surveys of 1%, as observed in [11]. Consequently, the three populations
of 1k, 10k and 100k users will be respectively characterized by an average den-
sity of 0.073, 0.73 and 7.35 GT users per network site, which we refer to as Low,
Medium and High density. Concerning the delivery strategies, the OD optimiza-
tion problem is solved by setting n = 3. For a fair comparison, the OD budget B
is equal to the number of GT surveys used in the RD case.

4.3.1. Users QoFE Prediction for Anomaly Detection

Any machine learning algorithm an operator can use to predict the user satis-
faction s will be characterized by a certain prediction error. Considering the nature
of the satisfaction prediction problem, we assume the availability of a binary clas-
sifier and express its performance with the False Positive Rate (FPR) and the True
Positive Rate (TPR) metrics. In details, the FPR corresponds to the rate of false
alarms (satisfied users predicted as dissatisfied), while the TPR corresponds to the
recall of the classifier (percentage of dissatisfied users detected). We observe that
ML classifiers are characterized by several FPR and TPR working points, which
can be traded-off by tuning a decision threshold. To perform a comprehensive
analysis, we run the simulation framework assuming the availability of several
ML classifiers in order to cover all possible FPR and TPR working points. In
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particular, we let both the FPR and the TPR vary between 0 and 1 with step-size
equal to 0.05, thus analyzing 400 different performance points.

As an example, Figure 8 shows the obtained RQS? for the case of 100k users
moving according to Scenario 1, where 1k user satisfaction grades are sampled
according to the RD strategy and the remaining are predicted with a ML classifier.
Curves with different colours refer to classifiers with different (and fixed) FPR
values, while the TPR is shown on the abscissa. Fixing a value of FPR (i.e.,
referring to one of such curves), allows to observe the recall of the sites detection
system (i.e., RQ)) versus the TPR of the users satisfaction classifier. The colored
stars refer to the performance of the classifier proposed in [11].

Considering a population of 100% users (Figures 8 and 9) we observe that:

e for a fixed TPR, the detection accuracy increases with decreasing FPR val-
ues;

e for a fixed FPR, the detection accuracy improves with increasing TPR val-
ues;

e for a fixed value A, decreasing the FPR by A is more beneficial than in-
creasing the TPR by the same value.

These observations suggest that i) predicting that a satisfied user is dissatisfied
(i.e., having a false positive) is more detrimental for the detection process than
missing a dissatisfied user (i.e., missing a true positive) and ii) when deciding the
FPR/TPR tradeoff of its classifier, an operator should prefer working points at low
FPR rather than at high TPR. Moreover, this holds regardless of the population
size, the mobility type and the surveys delivery strategy, as illustrated in Figures
12 and 13. This provides an answer to question Q.3.

4.3.2. To Predict or not to Predict?

It is worth analysing the best performance Rc@() achievable by a realistic
users satisfaction classifier C', such as the one we proposed in [11]. We plot
its performance points (FPRc, TPR() as coloured stars in Figures 8, 9, 12 and
13. For the sake of clarity, we summarize in Tables 2 and 3 the best values of
Rc@S) achievable in all tested scenarios, and we compare it with [2,,Q(2, the best
performance obtained leveraging only the available GT users satisfaction. We
observe that 2,,Q() corresponds to the performance of a classifier that predicts
each non-GT user as satisfied (i.e., FPR=0 and TPR=0), since satisfied users do
not contribute to the ranking score. Therefore, Ry @S2 corresponds to the top-left
brown point of a given performance cloud.
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Table 2: (S1) Working points of a real binary classifier that yield best anomaly detection accuracy,
where Rc@Q€2 and Ry @2 refer to the recall obtained when & = () and either the classifier C or
only ground truth users information are leveraged by the system, respectively.

GT Users/Site | Delivery | (FPRc, TPRc)(%) | Rc@QS) (%) | Ry @2 (%)
Low RD (9.10) 20 7
oD (9.10) 21 8
. RD (15,26) 26 35
Medium OD (15,26) 27 45
. RD (5.9) 42 72
High OD (5,9 ) 75

Table 3: (S2) Working points of a real binary classifier that yield best anomaly detection accuracy,
where Rc@Q€ and Ry @S2 refer to the recall obtained when & = €) and either the classifier C or
only ground truth users information are leveraged by the system, respectively.

GT Users/Site | Delivery | (FPRc, TPRc) (%) | Rc@Q€) (%) | Rq@QS2 (%)
o RD (20,33) 20 7
W OD (30,43) 22 11
. RD (20,33) 57 41
Medium OD (20,33) 58 49
. RD (20,33) 94 84
High OD (30,45) 95 91

As one can see from Table 2, which refers to Scenario S1, we observe that
for high density of GT users Ry@( is 30% and 33% higher than R-Q, for
RD and OD strategy respectively. For medium density of GT users per site the
recall gap reduces to 9% (RD) and 18% (OD) while the situation is inverse when
we consider low density of GT users, where we observe that it is better for the
operator to leverage the classifier fo(-) for detecting under-performing sites in
the network. In fact, in such case RcQf) is more than 13% better than R, Q)
for both delivery strategies. For what regards Table 3, where we summarize the
detection performance when users move according to mobility scenario S2, we
observe that regardless of the tested densities of GT users per network site it is
more convenient for the operator to include predicted users satisfaction feedbacks
in the process of detecting under-performing network sites. In fact, in the latter
case Rc@Q is always higher than R,@(2, with a recall gap equal to 13%, 16%
and 10% when RD strategy is adopted and equal to 11%, 9% and 4% when OD
strategy is adopted for respectively Low, Medium and High density instances.
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Such results are also illustrated in Figures 10(a) and 11(a).

Comparing the detection performance obtained in the two scenarios, we observe
that the impact of satisfaction prediction on the detection process depends both
on the density of GT users and on the characteristics of users mobility in the
network. On the one hand, in Figure 10(a) it is clear that when using the binary
classifier proposed in [11] there exists a critical GT users density (represented
with a colored star) above which satisfaction prediction becomes detrimental in
terms of detection performance. In fact, as observed in Figure 6(a), when users
move according to mobility scenario S1 they visit on average multiple network
sites for relatively similar visit times, this making in general harder identifying
the network sites that caused a visitor’s dissatisfaction. In such a scenario, it is
not convenient for a network operator to enlarge the set of GT feedbacks if the
density of GT users is large enough, i.e. if it is above the critical threshold, as
it would increase the complexity of the problem due to the introduction into the
system of satisfaction prediction errors. On the other hand, in Figure 11(a) we
observe that satisfaction prediction benefits the detection process regardless of
the density of GT users per network site. In fact, as shown in Figure 6(b), in
this mobility scenario users visit the favourite site for most of their time in the
network, thus increasing the probability that such a site is the most responsible
for their dissatisfaction (if any) and in turn reducing the detrimental impact that
satisfaction prediction errors have on the detection process. To conclude, since
an operator is able to evaluate both the actual GT users density available and the
characteristics of users mobility in its own network, it can also take a decision on
whether or not to predict users satisfaction. This answers to Q4.

4.3.3. Random vs Optimized delivery

Finally, we discuss the obtained results in order to find an answer for Q.5. We
observe from Figures 10(a) and 11(a) that the OD strategy always outperforms RD
strategy. Moreover, in Scenario S1, using the OD strategy has the effect of moving
the critical points (yellow star) towards lower GT users densities compared to
the RD strategy. The reason of such a better performance is clearly due to the
higher coverage that the OD strategy is able to reach. Figures 10(b) and 11(b)
show the network coverage for the different scenarios: as one can see, the OD
strategy allows to greatly increase the network coverage at different GT users
density, which in turns impact on the achievable RQS2. However, we recall that in
case of the OD strategy the operators may need to put in place incentive strategies
for receiving the answers from the users selected by the optimization problem,
thus incurring in higher costs.
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5. Related Works

Many works in literature recognize the importance for cellular operators to
monitor service levels at end hosts such to better understand which network events
hamper users experience [13, 14, 8, 12, 10]. On the one hand, the computa-
tional power embedded in today’s mobile devices let them be a powerful means
for data collection, that can be then processed by the operators for diverse pur-
poses [13, 14]. On the other hand, the analysis of users experiences in the net-
work and of their corresponding subjective perceptions have become a fundamen-
tal benchmark for network operators, which often adopt crowdsourcing strategies
to monitor and collect both objective and subjective users side information 8, 12].
In fact, Quality of Experience (QoE) models can be very helpful to quantify the
relationship between users experience and network quality of service [10], consid-
ering that the more users share the same perception about similar network events
the more likely those events share similar QoS characteristics [12]. Often, in or-
der to augment the set of users reached by a data collection campaign, operators
introduce rewards for users responses to encourage their participation. The goal
of such incentive-based crowdsourcing strategies is to increase users participation
while maximizing the Quality of Information (Qol) requirements of the reference
application [23, 24, 25, 26]. A popular Qol requirement is the one of maximizing
the data granularity, i.e., the area covered during the process of data gathering.
In [23], the authors propose a recurrent reverse auction incentive mechanism that
selects a representative subset of users according to their location given a fixed
budget, augmenting the covered area by more than 60% while keeping fixed the
number of collected samples. In [24], authors improve up to 80% the quality of a
crowdsourcing mechanism in terms of data quantity and data coverage designing
a proper incentive scheme for deep data gathering. Also, in [25] and [26] au-
thors exploit crowd-workers predicted mobility traces to match spatial tasks with
appropriate workers through an incentive-based crowdsourcing algorithm which
maximizes the coverage probability under pre-defined budget constraints.

Regardless of the choice about using incentives or not, a common way for
network operators to collect users QoE evaluations is to issue satisfaction surveys
where the customers are asked what is their likelihood regarding the experienced
mobile services. Then, operators can for example leverage the collected QoE
feedbacks to plan actions to minimize the churn-rate of their customers.i.e., the
percentage of customers who stop their contributions and move to a different op-
erator due to unsatisfactory service [7, 9, 11]. In [28] the authors identify four
main categories that influence the satisfaction of cellular users, namely context,
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user profile, system and content. The context considers factors like the purpose
of using the service, the user’s cultural background and the environment in which
the user uses the service while the user profile considers individual psychological
factors and memory. Finally, system and content address respectively technical
influence factors (such as device-related problems) and resolution/format related
issues.

However, a common problem found by cellular operators to assess the QoE
of their customers through crowdsourced surveying campaigns is that few users
usually respond to satisfaction surveys. To counteract this problem without incur-
ring in additional costs (e.g., due to the use of rewarding mechanisms), usually
operators implement techniques to estimate or predict users QoE feedbacks from
objective network mesurements. Many works in literature tackle the (complex)
issue of predicting users QoE in mobile networks, differentiating between short-
term ( [29, 30, 2, 31, 21]) and long-term ( [7, 9, 11, 32, 5] users experiences. On
the one hand, a short-term network experience refers to the case in which a user is
first requested to interact with a mobile application under variable (and manually
controlled) QoS network levels and secondly asked to provide a QoE evaluation of
the experience. In [29], authors use in-smartphone measurements to feed several
ML algorithms and predict users cellular users QoE with respect to several mobile
applications. Leveraging a dataset comprised of 30 users, which were requested
to watch short videos and give QoE feedbacks for each session, they obtain 91%
and 98% accuracy on users feedbacks and service acceptability level respectively.
A similar work is described in [30], where the authors conduct both lab tests and
on field trials to analyse the impact of many network related features (e.g., band-
width, latency, etc.) on users QoE of common mobile applications. Interestingly,
in both [2, 21] the authors show that users QoE of video streaming applications
is primarily influenced by the frequency and duration of stalling events, i.e., the
longer the video playback re-buffering time the more likely the user will stop
watching it. Similarly, authors in [31] recognize from subjective users QoE as-
sessments that i) long video re-buffering and loading time are perceived as highly
disturbing by the users and ii) fluent playbacks are preferred with respect to other
video-related service indicators (such as resolution, frame rate or bit-rate). In
other words, the longer the users experience disturbing network events the more
likely their QoE will decrease.

On the other hand, the prediction of long-term users satisfaction is a much
more challenging task to address. This is because a long-term user experience in
a mobile network composes of many and different network events which together
influence her QoE of the received cellular service. This means that users mem-
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ory plays an important role in long-term QoE assessment processes, as discussed
in [5]. Memory effects are also investigated in [7], where the authors leverage a
large volume of network data regarding the experience of users in the network of
one of the biggest mobile operator in China over several months, with the final
aim of implementing a churn prediction system. They also integrate the predic-
tion system in a closed loop automatic retention mechanism, with the aim of both
acquiring new customers while retaining potential churners. Their results show
that such a system improved the recharge rate of potential churners of more than
50%. With the same aim, in [9] authors introduce a modified random forest algo-
rithm able to estimate a cellular customer’s churn rate yielding an AUC value of
91.5%. Similarly, in [11] and [32] the authors correlate user-side network mea-
surements with corresponding QoE feedbacks to train several ML algorithms and
predict users satisfaction about network coverage and video streaming services,
comparing also the prediction performance with the case where only radio access
network measurements are used to train the ML classifiers. Moreover, consid-
ering that different users visit several network areas/elements and that the same
area/element is usually visited by many different users, they point out that i) the
information about ground truth and predicted users QoE feedbacks together with
network measurements data can be used to recognize what in the network causes
users dissatisfaction and i1) the impact of misclassification errors on such process
could be somehow reduced when users QoE information are grouped on a single
network area/element.

To conclude, considering that users QoE feedbacks are by definition subjec-
tive, an important issue regards the reliability of users answers to satisfaction sur-
veys. Many works [3, 4, 6, 28] show that gathering reliable information from a
crowd is a very challenging task. In [3] the authors give a probabilistic approach
for supervised learning in a situation when there are possibly noisy replies col-
lected from multiple users and there are no absolute gold standards (i.e. standard
questions used to evaluate the level of reliability of experts). Similarly, authors
in [4] propose an iterative algorithm for deciding best survey allocation and cal-
culating a weighted estimate of the correct survey answer. Interestingly, in [6]
it is shown how an incentive-compatible compensation algorithm together with
approval-voting mechanisms successfully convert a significant fraction of incor-
rect answers to correct replies at the price of little increase in net expenditures.
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6. Concluding Remarks

In this work we considered the process of crowdsourcing-based network mon-
itoring, which may be used by cellular operators to detect problems in their net-
work on the basis of users satisfaction feedbacks. We observe that several aspects
need to be considered by an operator that decides to leverage such an approach.
On the one hand, the heterogeneous reactions of users to service issues can ham-
per the detection of malfunctions in the network. On the other hand, it is not
trivial to understand which network site is the main responsible of a user feed-
back, considering that each user visits many network sites for different amounts
of time. Moreover, often very few users participate in the crowdsourcing process,
thus forcing the operator to implement ML algorithms able to predict users satis-
faction on the basis of objective measurements, in order to enlarge the knowledge
base usable for monitoring purposes. This introduces a further aspect, which re-
gards the impact of prediction errors on the detection of issues in the network.
For all these reasons, we implemented a simulation framework that can be used
by a cellular operator to analyse the application of a crowdsourcing-based net-
work monitoring process in different realistic scenarios and investigate the related
aspects. From the results we obtained, the following conclusions can be drawn:

e Under the reasonable assumption that users satisfaction depends on the per-
formance of the visited network sites, it is possible for a network operator
to rank/detect malfunctioning sites leveraging users satisfaction feedbacks
with good detection performance (as shown in Figure 7);

e The detection process works regardless of the satisfaction profile of the vis-
iting users, which in this work is represented by a random variable that con-
trols users tolerance to bad network events. In particular, Figure 7 shows
the robustness of the process with respect to the average users tolerance /i,
its standard deviation ¢ and the threshold ¢&;

e If a binary classifier f(-) is included in the detection process, working at
low FPR rather than high TPR is more rewarding in terms of detection per-
formance (as observed in Figures 8, 9, 12 and 13);

e When the coverage of the network ensured by GT users is low, it is conve-
nient for an operator to leverage a ML classifier to predict the satisfaction of
non-GT users such to augment the knowledge base usable for detection pur-
poses. Conversely, for higher coverage values, the impact of the use of a ML
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classifier on the detection process depends on the way customers move in
the network. On the one hand, if the users visit many network sites for sim-
ilar times, it is better for the operator to rely only on GT users for detecting
under-performing sites in the network. On the other hand, when the distri-
bution of users visit times in the network is skewed towards few favourite
sites, it is still convenient for an operator to predict unknown satisfaction
levels. These results are summarised in Figures 10 and 11. Note that the
above observations are true even when the classification performance of the
ML classifier are modest, as shown in Figures 8, 9, 12 and 13;

e The implementation of delivery strategies that optimally allocate satisfac-
tion surveys to users such as to maximize the network coverage increases
the detection performance, as observed in Figures 10 and 11;

We believe these observations can be useful for a network operator willing to
adopt crowdsourcing-based network monitoring.

Appendix A. Maximum Coverage Problem Formulation

In this Section, we describe the optimization problem that can be run by the
Survey Delivery block to optimize the delivery of the surveys in order to maximize
the network coverage. The optimization problem is the budgeted version [33] of
a family of well-known problems known as Maximum Coverage (MC) problems.
Given a collection S of items with associated costs defined over a domain of
weighted elements and a budget B, the (budgeted) MC problem aims to find a
subset S’ U such that the total cost of items in S” does not exceed B and the total
weight of the covered elements is maximized. In our case, we want to deliver
satisfaction surveys to users such that the number of covered network sites is
maximised, where a network site is covered if (i) it is visited by at least n users
and (ii) each user spends more than £ percentage of its own time in the site. Table
A.4 summarizes the parameters that are leveraged by the optimization program.
Let:

e 1, be a binary variable equals to 1 if a satisfaction survey is delivered to user
7 and zero otherwise;

e ¢; be a binary variable equals to 1 if network site j is covered and zero
otherwise;
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Table A.4: Parameters considered in the MC problem.

Parameter Definition

M Number of Network Sites

J Set of Network Sites
Z=A1,.,N} Set of Users

B GT Users Budget

T Time Horizon

t;j User-site visit time

Percentage of time a user
¢ needs to spend in a site for covering it
n Minimum number of visitors to consider a site covered

e /; ; be a binary association variable which equals 0 if the time that user 7
has spent in site j is lower than 7' (i.e., if it is not sufficient for coverage),
while it can be both O or 1 otherwise.

Under these definitions, we propose an Integer Linear Programming (ILP)

formulation for our version of the budgeted MC problem as it follows:

max

Ty
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Equation A.1 represents the objective function, which aims at maximizing the
number of distinct covered sites. Constraint A.2 limits the number of distinct users
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answering a survey to be lower or equal then the GT users budget 5. Note that for
large population sizes N the number of users which ensures full coverage could
be smaller than the budget. Constraint A.3 controls the minimum time needed for
a user 7 to contribute to the coverage of site j. Note that while the variable h; ;
is forced to be O when the time spent by user 7 is not sufficient to be a covering
visitor of site j, it is not constrained to be 1 if the coverage condition is met, so
that the solver can decide which user is more convenient to activate to maximize
the objective function. Constraints A.4 and A.5 control the selection of a generic
user ¢ for the delivery of the survey (i.e. the activation of user ¢), which arises from
the activation of the corresponding time variable /; ; for at least one of the visited
network sites. In particular, A.4 forces the variable z; to be 0 in the case in which
the summation on the left is 0, whereas A.5 forces the same variable to be 1 in the
case in which the corresponding summation is strictly greater than 0. Note that
when A.4 forces x; to be 0, then A.5 deactivates, while the opposite happens when
A.5 forces x; to equal 1. Finally, constraints A.6 and A.7 set the requirements for
considering a site as covered and work similarly to constraints A.4 and A.5.
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Figure 13: Scenario S2, 10k and 1k Users: Detection Accuracy versus Classifiers working points,
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