
1. INTRODUCTION

Technological advances we are confronting today are influencing society. End users can
now exploit powerful, pervasive devices that offer several features, especially con-
nectivity and sensors, and host the execution of multiple applications that until a few
years ago were totally out of the users’ reach. In addition, the Internet of Things (IoT)
facilitates the creation of ecosystems of heterogeneous and distributed services that
enable the access through the Internet to functionality and data provided by physical

This research is partially funded by the Italian project SHELL (Shared Interoperable Home Ecosystems for
a Green, ComfortabLe, and Safe Living – CTN01 00128 111357).
Authors’ addresses: G. Desolda and C. Ardito, Dipartimento di Informatica, Università di Bari Aldo Moro, via
Orabona, 4, 70125 Bari (Italy); emails: {giuseppe.desolda, carmelo.ardito}@uniba.it; M. Matera, Politecnico
di Milano, Dipartimento di Elettronica, Informazione e Bioigegneria, Piazza Leonardo da Vinci, 32, 20133
Milano (Italy); email: maristella.matera@polimi.it.

Empowering End Users to Customize their Smart Environments:
Model, Composition Paradigms, and Domain-Specific Tools

Giuseppe Desolda and Carmelo Ardito,Universita` di Bari Aldo Moro,
Maristella Matera, Politecnico di Milano

Research on the Internet of Things (IoT) has devoted many efforts to technological aspects. Little social and
practical benefits have emerged so far. IoT devices, so-called smart objects, are becoming even more
pervasive and social, leading to the need to provide non-technical users with innovative interaction strategies
for controlling their behavior. In other words, the opportunities offered by IoT can be amplified if new
approaches are conceived to enable non-technical users to be directly involved in “composing” their smart
objects by synchronizing their behavior. To fulfill this goal, this article introduces a model that includes new
operators for defining rules combining multiple events and conditions exposed by smart objects, and for
defining temporal and spatial constraints on rule activation. The article also presents the results of an
elicitation study that was conducted to identify possible visual paradigms for expressing composition rules.
Prototypes implementing the resulting visual paradigms were compared during a controlled experiment and
the one that resulted most relevant for our goals was used in a study that involved home-automation experts.
Finally, the article discusses some design implications that came out from the performed studies and presents
the architecture of a platform supporting rule definition and execution.

This is a post-peer-review, pre-copyedit version of the following article:Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. 2017.
Empowering end users to customize their smart environments: Model, composition paradigms and domain-specific tools. ACM Trans.
Comput.-Hum. Interact. 24, 2, Article 12 (April 2017), 52 pages.
The final authenticated version is available online at: http://dx.doi.org/10.1145/3057859

CCS Concepts: Information systems → Mashups; Software and its engineering → Integrated and visual
development environments; Visual languages; Human-centered computing → User studies

Additional Key Words and Phrases: End-User Development (EUD), Internet of Things (IoT), End-User
Empowerment, Task-Automation Platforms

Received April 2016; revised January 2017; accepted January 2017

http://dx.doi.org/10.1145/3057859
http://dx.doi.org/10.1145/3057859

devices equipped with electronics, sensors and actuators, and embedded software – the
so-called smart objects [Atzori et al. 2010].

Smart objects can foster important changes in our lives as they are increasingly
pervading the environments we live in. If enabled to exploit the abundance of the re-
lated resources (the object functionality, the produced data, the related applications),
end users could compose the different “behaviors” exposed by the surrounding envi-
ronment to accommodate their everyday needs. However, while research on IoT has
devoted many efforts to the technological aspects characterizing smart objects, little
social, and practical benefits have emerged so far. Programming the behavior of smart
objects is currently an opportunity for professional developers only, as it requires the
use of scripting languages that can also vary depending on the underlying hardware.
Another aspect is that often the available objects expose a very specific functionality
that does not result in useful services able to accommodate users’ needs.

The openings offered by IoT can be amplified by means of new approaches that,
based on high-level abstractions and adequate interaction paradigms, involve directly
non-technical users in configuring the behavior of their smart objects. End users pos-
sess the domain knowledge required to build applications that can support their tasks.
The new technology scenario increases the end users’ attitude towards the new de-
vices and applications, and fuels their desire to participate in the creation of applica-
tions to satisfy the “long tail” of specific – and sometimes unexpected – needs [Daniel
et al. 2011; Fischer 2009]. End users are therefore the most suitable stakeholders to
specify how the available resources should be exploited to create new valuable ser-
vices. To accommodate this vision, End-User Development (EUD) paradigms support-
ing smart-object composition are needed. Indeed, as largely recognized in the literature
[Ardito et al. 2012a; Costabile et al. 2007; Fischer et al. 2004; Fogli and Piccinno 2013;
Lieberman et al. 2006a], EUD methodologies fit very well the requirement of letting
users customize their systems to support personal, situational needs.

By smart-object composition, we mean synchronizing the behavior of multiple objects
to create new, added-value services. We indeed believe that it is not relevant to pro-
vide end users with very specific applications governing the behavior of single objects.
Rather, end users should be empowered to take advantage of ecosystems of interopera-
ble smart objects and services [Barricelli and Valtolina 2015], by letting them combine
flexibly, i.e., according to their situational needs, the behavior of different smart objects.

Some recently proposed tools support non-technical users to configure smart object
behavior. Many of them, however, consist of pre-packaged solutions, e.g., vendor- and
device-specific apps for remotely controlling single smart objects that cannot be eas-
ily adapted to the requirements deriving from specific domains and contexts of use.
So-called Task-Automation (TA) tools [Coronado and Iglesias 2016], to combine social
services, data sources, and sensors, are also gaining momentum. They have become
popular as they offer very easy and intuitive paradigms to synchronize the behavior of
objects and applications [Lucci and Paternò 2015]. Through Web editors, users can syn-
chronize the behavior of smart objects by either graphically sketching the interaction
among the objects, for example, by means of graphs that represent how events and data
parameters propagate among the different objects to achieve their synchronization, or
by defining event-condition-action (ECA) rules [Pane et al. 2001], a paradigm largely
used for the specification of active systems (see, for example, Ceri et al. [2007] and
Daniel et al. [2008]), which in the IoT domain can be fruitfully exploited to express how
and when some object behaviors have to be activated in reaction to detected events.

Despite the popularity of such tools, their graphical notations for rule specification
do not match the mental model of most users [Wajid et al. 2011]. Research on Web
mashup composition paradigms [Daniel and Matera 2014] – a field that has many
aspects in common with smart object composition – showed that graph-based notations

are suitable for programmers; instead, fundamental issues concerning the conceptual
understanding of such notations arise with laypeople, as they do not think about
“connecting” services [Namoun et al. 2010b; Zang and Rosson 2008].

Another limiting factor is that the expressive power of the ECA rules that can be
specified through current tools is limited to very simple synchronized behaviors. For
example, in Barricelli and Valtolina [2015], authors discuss the importance of temporal
and spatial conditions to create ECA rules that better satisfy users’ needs. Specifying
temporal conditions also emerged as an important requirement in home automation,
to schedule rules for appliance activation [Rode et al. 2004]. Some of the available TA
tools allow the definition of such spatial and temporal conditions, but only by means of
workarounds, for example, by considering additional events to monitor the system time,
or by creating filters on smart device data (e.g., in Zapier). Obviously, such workarounds
complicate the rule creation, thus resulting into a scarce adoption of the available tools,
especially by non-technical users, or in their adoption only for very simple tasks.

We believe there are numerous opportunities for research and development in the
area of EUD for smart object composition. Many research challenges are related to tech-
nical aspects, concerning, for example, the interoperability of different smart objects
and devices, the heterogeneity of data formats, the necessity to connect in real-time to
network interfaces, and the scalability of the proposed systems. Our research recognizes
the importance of these technical aspects, but purposely focuses on a different facet,
which is more related to the possibility for the end users, especially non-programmers,
to make sense of the advances of IoT technology. The ultimate goal of our research
is indeed to provide end users with interactive tools that could allow them to cus-
tomize smart spaces without being forced to get acquainted with technology issues. We
indeed believe that a user-centered design of IoT platforms, as the one described in
this article, is fundamental to identify abstractions and metaphors that can help even
non-technical users to take advantage of the available IoT capabilities. This article
concentrates specifically on this aspect.

1.1. Contributions

In our previous work, we defined paradigms and related platforms for the EUD of
Web mashups. In particular, we investigated how data provided by Web APIs could
be integrated into unified visualizations [Desolda 2015; Desolda et al. 2016], and how
such visualizations could be synchronized at the presentation level by means of an
event-driven technique [Cappiello et al. 2015; Cappiello et al. 2011]. Through visual
editors, end users were enabled to build interactive Web applications synchronizing the
behavior of different visual components. Inspired by our previous work, in this article,
we concentrate on a special class of tools, the TA tools [Coronado and Iglesias 2016],
which revisits the mashup paradigm to synchronize different smart objects and any
resources that can generate events or can be activated by the occurrence of events. TA
tools exploit an event-driven, publish-subscribe composition of the involved resources,
a technique that already proved successful for the composition of Web APIs within
Web mashups [Cappiello et al. 2015; Daniel et al. 2007]. As a new contribution, in this
article we show how, thanks to adequate notations and usable user interfaces (UIs)
designed by involving a sample of users, the event-driven synchronization of services
and smart objects can be mastered by non-technical users. The contribution of this
article is therefore articulated along the following issues:

—Specification of Task-Automation (TA) rules. We analyzed the most common TA tools.
We identified the pros and cons of their composition paradigms; thus, we conceived

some new operators for rule specification that can extend the expressive power of

currently supported ECA rules. In this article, we present a model that specifies how
these new operators can be exploited in the creation of ECA rules.

—EUD paradigms for task automation. With the help of end users involved in an
elicitation study, we identified how ECA rules, extended with the new operators, can
be specified through visual notations that were considered adequate by the end users
themselves. Three different visual paradigms emerged, that we then compared in a
controlled experiment conducted to investigate their usability. We further validated
the best-evaluated paradigm with the help of a group of home-automation experts.
We report on the results of the studies and discuss some design implications.

—Reference architecture. In order to foster the replicability of our approach, we present
the architecture of the platform that we exploited to build the prototypes imple-
menting the visual paradigms analyzed in our studies. Illustrating the platform
architecture also allows us to show how we solved the problem of supporting domain-
specificity, i.e., the capability of the platform to adapt to requirements characterizing
specific domains [Casati 2011]. Given the intrinsic flexibility of the tool, which is
favored by the decoupling of the UI from the other layers, different user skills and
competences can be easily accommodated by “plugging-in” different UIs with dif-
ferent composition metaphors. We exploited such flexibility to generate the three
prototypes assessed in the comparative and validation studies, each one offering a
different composition metaphor.

—Lightweight integration of resources. The main challenge of the proposed composition
paradigm is not the definition of a new service synchronization technique; rather,
based on existing technologies, our approach especially aims to promote abstractions
that (1) capture and simplify the most salient technology aspects of smart objects,
making them suitable for end users; and (2) can be handled by lightweight Web
architectures, making them easily accessible in any environment where they are
needed and through different devices. This lightweight paradigm could have a lim-
ited coverage with respect to the immense capability offered by IoT technology. We,
however, do not consider it as a weakness with respect to the goals of our research,
as we purposely tried to filter out, through a user-centered design, those aspects that
can really help end users make sense of IoT technology.

1.2. Article Organization

The article is organized as follows. Section 2 introduces some background concepts by
referring to related work and clarifies the rationale of our research. Section 3 illustrates
the main elements of the model we propose for the specification of ECA rules. Section 4
and Section 5, respectively, describe the elicitation study, conducted to identify visual
paradigms for ECA rule specification, and the three prototypes that we implemented
on the basis of the identified visual paradigms. Section 6 reports the comparative study
conducted to assess both user performance and satisfaction for the three prototypes;
threats of validity for the comparative study are discussed, also highlighting under
which conditions study results can be exploited in other contexts. Section 7 describes
a further validation study in which experts in IoT and home automation were asked
to use the prototype that in the comparative study resulted as the most promising.
Section 8 discusses the design implications resulting from the overall study. Section 9
illustrates a reference architecture that we adopted for the development of a platform
prototype. Finally, Section 10 draws our conclusions and outlines our future work.

2. RATIONALE AND BACKGROUND

The IoT idea emerged in 2009 when Kevin Ashton and his team at MIT’s Auto-ID Center
coined this term to describe a system where the Internet is connected to the physical

world via ubiquitous sensors.1 In the following years, thanks to a wide spreading of low-
cost integrated technologies with sensors and actuators, it became possible to easily
build the so-called smart objects, i.e., the building blocks of the IoT.

A smart object is a device equipped with embedded software that is typically con-
nected to the Internet [Atzori et al. 2010]. It exploits sensors to “feel” the environment
and/or actuators to communicate with the environment. Examples of sensors are those
measuring light intensity, the physical pressure of an object, and also air humidity. Ac-
tuators can be light and sound emitters, electric valves, motor servos, relays, and the
like. According to the classification proposed in Barricelli and Valtolina [2015], smart
objects can be classified as settled, if they are installed in a fixed position (e.g., an IP
Camera in a room) or mobile if their position can change as in the case of wearable
devices (e.g., smart bracelets that measure steps and heart rate); as asynchronous or
synchronous depending on the modality for sending and receiving data; for either in-
dividual or collective use, if they communicate data only to the owner, for example, the
alcohol gas sensors that alert home owners in case of danger, or if they provide data to
groups of users, for example, the air pollution stations that provide air quality data to
the citizens of a given geographical area.

Many domains are taking advantage of IoT technology, for example, healthcare,
smart homes, industry, smart cities, agriculture, vehicles, smart buildings, retail, fac-
tories, oil & gas. Each one exploits different types of smart objects [Atzori et al. 2010].
About 18.2 billion smart objects were produced by the end of 2015. Cisco’s forecasting
estimates that more than 50 billion smart objects will be deployed by 2020.2

Given the rapid spread of such technology, a number of research lines are emerging to
address this problem space, which differ for the strategies used to take into account end
users and technologies according to the sphere of activity and users’ skills. Among the
most prominent, workflow design tools and business rules engines address the problem
of ECA rule design and management from a technical perspective. Such platforms have
traditionally supported the definition of ECA rules for the design of active systems
[Casati et al. 2001; Jennifer and Stefano 1996]. They are now receiving interest also
in relation to the design of IoT systems. Platforms like JBoss Drools [Red Hat 2016],
OpenRules [OpenRules 2016], and IBM WebSphereJRules [IBM 2016] support the
management of rules. In these platforms, programming the behavior of IoT systems
consists in specifying the flow of data produced by different devices, and how events
captured from this flow have to trigger actions that progressively change the state
of the whole system. In some cases,3 such platforms offer mechanisms to ease rule
programming, such as diagrammatic notations, decision tables, or helper codes to avoid
syntactic errors. Still, these paradigms are effective for expert information system
designers and programmers, while they require technical competences that are not
generally mastered by non-programmers. For example, graph-based notations ask the
designers to deal with concepts like data flow, parameter passing, or even to identify the
sequence of actions. Certainly, such engines can cover complex, critical requirements.
However, we believe that an innovative aspect in IoT would be to empower non-expert
users to make sense of IoT. With this respect, an intuitive rule specification paradigm
needs to be identified. Also, the multiple, complex features supported by business
rule engines need to be filtered out, as very often they go well beyond the actual
needs of “casual” programmers and non-technical users. We do not want to argue that
complexity, and all the related technical requirements, have to be discarded. We instead

1http://www.rfidjournal.com/articles/view?4986.
2http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342.
3See, for example, tools like Talend Open Studio (https://www.talend.com/products/talend-open-studio), and
Waylay.io (http:// http://www.waylay.io/).

aim to promote the right level of simplicity and expressiveness, which can allow the
non-technical end users to operate on the IoT.

More on the side of this class of end users, the composition paradigms adopted in
many mashup tools break new ground by offering easy-to-use control metaphors and
lightweight platforms, mainly deployed on the Web, for the composition of heteroge-
neous resources (e.g., Web APIs, data sources, interactive widgets) and the execution
of the resulting applications [Daniel and Matera 2014]. Recently, also the mashup
paradigm has been revisited to move the focus from pure service composition to TA:
Resource composition addresses not only Web APIs but also services controlling smart
objects, which can be synchronized to define active behaviors in smart spaces. Some of
such tools adopt wired notations, thus keeping a composition paradigm similar to the
tools dedicated to workflow designers. Other tools then follow the trend of simplifying
as much as possible the definition of automation tasks, in some cases proposing collec-
tions of ready-to-use “recipes.” These tools are gaining momentum, as their simplicity
and immediateness look appealing for the masses [Coronado and Iglesias 2016].

Our research addresses this specific segment of systems, which includes popular
tools, such as IFTTT, Zapier, and Atooma, which currently best encounters the skills
of inexperienced users [Lucci and Paternò 2015]. In the sequel of this section, after a
brief explanation of the motivations to adopt a mashup approach for the EUD of IoT
systems, we will review and classify works that fall within the category of mashup tools
for TA – TA tools for short.

2.1. EUD for IoT by Means of the Mashup Paradigm

The rapid spread of smart objects and their strong heterogeneity are presenting im-
portant challenges, which are not exclusively related to the technology involved, but
rather to methodologies and systems that let the end users make sense of this promis-
ing technology [Tetteroo et al. 2013]. IoT is intrinsically about people [Burnett and
Kulesza 2015], as its ultimate goal is to improve people experiences in their living and
working environments. IoT can achieve deeper, more meaningful, and faster insights
if the user is placed at the center of systems that include ambient and personal sen-
sors, pervasive devices, and communicative tools [Tetteroo et al. 2015]. One relevant
challenge, scarcely approached so far in the literature, is therefore related to the defi-
nition of adequate paradigms to compose different resources, i.e., paradigms based on
adequate interfaces that allow end users to customize technology to their needs.

EUD fits very well the problem of customizing systems to support the user’s personal,
context-specific, and situational needs [Lieberman et al. 2006b]. EUD goes beyond
conventional methodologies for the design of interactive systems since its goal is to
provide end users with tools to compose the applications they use or to create brand
new ones. Some works in the literature propose composition techniques based on EUD
practices, which allow non-technical users to compose smart objects [Bellucci et al.
2014a; Bellucci et al. 2014b]. Thanks to IoT technology, smart objects can indeed be
accessed as services, as they are often provided with a URI that identifies them on the
Internet and are published by exploiting traditional service technologies (e.g., RESTful)
that enable capturing events and running actions remotely. The problems of composing
smart objects can be therefore considered as a special case of Web service mashup.

In the case of service mashups, the platforms implementing an event-driven, publish-
subscribe approach, such as the one described in Cappiello et al. [2011], synchronize
Web APIs, so that the events produced by/on a service (e.g., selection of a displayed data
item) trigger operations of other services (e.g., a search based on the selected word).
This paradigm suits very well the need of synchronizing the behavior of smart objects
[Ghiani et al. 2015]. However, very often tools exploiting it are oriented to developers,

while there is a lack of approaches exploiting notations and metaphors adequate for
non-technical users.

The approach proposed in this article takes advantage of our previous experience in
the design of mashup platforms [Ardito et al. 2014a; Ardito et al. 2014c; Desolda et al.
2016]. The composition paradigm previously defined, which supported the synchroniza-
tion of service functionality and the integration of data, has been purposely extended
to cover also the synchronization of smart object behaviors. As smart objects are ac-
cessible and programmable through Web services, the new extensions mainly privilege
event-driven synchronization by means of ECA rules, a composition technique that we
previously experimented for the composition of Web APIs through client-side, light-
weight mashup approaches [Ardito et al. 2012b; Cappiello et al. 2015; Cappiello et al.
2011]. The new extensions are also in line with recently proposed TA tools (see next sec-
tion). However, as illustrated next in this article, these extensions propose a richer set
of operators for the definition of ECA rules, and especially introduce a visual paradigm
that tries to accommodate the user mental model, as it was elicited with the help of a
sample of end users.

2.2. Task-Automation Tools

Event-driven architectures have been studied since many years to address the design
of active systems in different fields, from active databases, to workflow design, and
context-aware applications [Eisenhauer et al. 2009]. They can be applied anytime the
involved components of a system have to be orchestrated depending on the production,
detection, and consumption of some events.

In this architectural pattern, the design and management of ECA rules have a
fundamental role. These rules allow the specification of active behavior by means of
events indicating a signal triggering the invocation of the rule, a condition that can
determine the activation of an action, and the action that consists in an operation
acting on data or functions also exposed.

Recently, different Web tools have revisited the ECA rule paradigm to address the
problem of TA. In particular, they support the definition of ECA rules to synchronize
the behavior of smart objects and services [Coronado and Iglesias 2016; Fogli et al.
2016a]. Table I summarizes the main characteristics of the most popular tools for ECA
rule specification. Many of these tools are designed for non-technical people and offer
wizard procedures that guide users during the composition process. One of the most
popular is IFTTT (If This Then That), a free Web platform that, by means of a wizard-
based composition paradigm, allows end users to create simple chains of conditional
statements called “recipes” [IFTTT 2016]. Each recipe consists of (1) a service that
IFTTT tracks to detect if a specific event is triggered (e.g., the position of an Android
Device is within a specific area) and (2) another service that reacts to the triggered
event by executing a specific action (e.g., switch on the smart Coffee Maker).

Other tools also exploit wizard procedures. elastic.io provides a catalogue of Web
services primarily oriented to business aspects (e.g., Magento, SAP) and allows the
registration of custom services, for example, to access and control smart objects; wizard
procedures assist the users in the definition of dataflow chains among both pre-defined
and custom services [GMBH 2016]. Zapier enables the composition of both Web services
and smart objects. It proposes a wizard to specify one event and one action in a “basic
rule,” which can be later extended with further events and actions [Inc. 2016b]. The
addition of filters on the triggering event to further control rule activation is also
possible. For example, if in a rule the event is the creation of a new tweet, a filter on
the tweet text can limit the activation of the rule to the occurrence of the only tweets
that contain specific words. itDuzzit is a Web tool with a composition paradigm very
similar to Zapier, but its rules can contain only one trigger and one action [LLC 2016].

Table I. Task-Automation Tools and Their Characteristics. The Uppercase “S” in the Rule Type Column Indicates
That the Tool Supports the Specification of Multiple Triggers or Actions in the Rule

Name Service type
Composition

paradigm License
Execution

device
Target
users Rule type

Atooma Device functions
Web services
Smart objects

Wizard Free
Paying

Mobile Non-
technical

IF TriggerS
DO ActionS

AutomateIt Devices functions Item selection Free
Paying

Mobile Non-
technical

IF TriggerS
THEN ActionS

Bip.io Web services
Custom

Wired Free
Paying

PC Non-
technical

Complex process

Context-
Dependent
Authoring

Web services
Smart objects

Item selection Research
project

PC Non-
technical

IF TriggerS
THEN ActionS

Elastic.io Web services
Custom

Wizard Paying PC Non-
technical

Dataflow chain
service -> service

IFTTT Web services
Smart objects

Wizard Free PC Mobile Non-
technical

IF Trigger
THEN Action

itDuzzit Web services Wizard Free
Paying

PC Non-
technical

IF Trigger
THEN Action

Node-RED Web services
Smart objects
Custom

Wired
programming

Free PC Technical Complex process

Spacebrew Web services
Smart objects
Custom

Wired
programming

Free PC Non-
technical

Publishers ->
Subscribers

Tasker Devices functions Wizard Free
Paying

Mobile Technical IF TriggerS
THEN ActionS

We Wired
Web

Web services
Smart objects

Item selection Free
Paying

PC Non-
technical

When TriggerS
THEN ActionS

WigWag Smart objects Wizard Paying PC Mobile Non-
technical

When TriggerS
THEN ActionS

Zapier Web service
Custom

Wizard Free
Paying

PC Non-
technical

IF Trigger
THEN ActionS

Zipato Smart objects Building
blocks

Paying PC Mobile Technical Complex process

The wizard approach is also exploited by WigWag, a commercial Web tool specifically
designed for automation of smart environments [Inc. 2016a]. WigWag is also available
as mobile app.

Other types of composition paradigms have been proposed. For example, in We Wired
Web rule, creation occurs in a Web page, vertically divided into two panels dedicated
to the specification of the elements composing a rule: Triggering events can be defined
in the left-hand panel and actions in the right-hand panel [Apiant 2016]. As in Zapier,
filters can be used in the specification of triggering events.

A different approach is provided by Bip.io, which exploits the graph metaphor for
wiring Web services represented as nodes [wot.io 2016]. When nodes representing Web
services are connected by means of arrows, assisting procedures guide users in defining
trigger and action properties. A graph-based representation is also adopted in Node-
RED, a Web tool for composing both smart objects and Web services [JS_Foundation
2016]. Unlike Bip.io, Node-RED is meant for professional users since it also supports
advanced rule customization by means of nodes representing control statements, func-
tions written in JavaScript, and debug procedures.

Spacebrew offers a mix of the paradigms implemented in We Wired Web and Node-
RED [Group 2016]. It supports rule creation in a workspace vertically divided in two
parts, the left-hand panel for the configuration of the services publishing the events
and the right-hand panel for the configuration of services providing actions in response
to events. Such services can be connected in a wired fashion. A paradigm more suitable
for non-technical users is the one implemented in Zipato, a web tool that provides

typical programming language constructs (e.g., when-then, while, if , logical operators)
in form of graphical widgets that can be combined to create TA rules [Zipato 2016].

Some TA services can also be run on mobile devices, as in the case of Atooma, an
Android app for the composition of device functions, Web services, and smart objects
connected to a mobile device [Atooma 2016]. The rule composition follows an If-Do
paradigm. Multiple triggers and actions can be included in each rule. Moreover, filters
can be defined as in Zapier. Other similar Android apps are AutomateIt and Tasker,
which support the creation of rules limited to the composition of apps and functions
available on mobile devices [EU 2016; Ltd 2016].

In line with our goals, the ECCE toolkit [Bellucci et al. 2014b] aims to support
the definition of “ecologies” of smart objects. This work especially focuses on the way
smart objects can connect to a server, so that an ecology of such objects can be set-up
and managed. An XML-based language is used for describing the properties of single
smart objects. Based on this language, the corresponding code to handle the smart
objects behavior is generated on the platform server. Then, the behavior of single
“connected” devices can be synchronized by means of a Web interface addressing the
end user expertise. The synchronization consists in coupling some events generated
by one object to the operations exposed by other objects. The specification of further
conditions to constrain the rule activation is not supported.

Manipulation of physical objects was also investigated as a programming paradigm
to define smart object behaviors. For example, AutoHAN implements a new paradigm
for interaction with abstract functions of home appliances through special cubes that
act as “one-button remote controls.” Each cube is devoted to a function, for example,
Play/Pause, and the users can associate such functions by holding one face of a cube
against the front of an appliance (e.g., the Play/Pause cube can be associated with a
VCR or a DVD player). The expressive power of the language is realized through the
composition of these functions. It is achieved by placing two or more cubes next to each
other, and instructing AutoHAN to store the configuration of Cubes. Such configuration
can then be used to schedule home-automation processes. Another system, SiteView,
exploits the manipulation of physical objects for creating ECA rules [Beckmann and
Dey 2003]. Conditions are expressed by locating physical objects corresponding to rule
conditions in a “condition composer area”; actions are programmed by placing physical
objects, representing, for example, appliances, in a “world-in-miniature area,” which is
a small-scale picture of the active environment. In addition, the users can see a rule
representation in a “rule display” and can simulate the rule results in an “environment
display.”

A diverse use of user-defined event-action rules is illustrated in Ghiani et al. [2015].
An authoring tool supports the development of context-aware cross-device UIs through
the creation of rules in which different types of events can activate actions indicating
how the UI should adapt to the detected context.

The tools described above cover several relevant aspects of TA. However, in relation
to the composition paradigm, which represents the main aspect addressed by this
work, their potential benefits are still limited [Barricelli and Valtolina 2015]. On the
one hand, tools like IFTTT, elastic.io, Zapier, and itDuzzit address the skills of non-
technical users, but they only assist users in the creation of “basic” rules, i.e., rules that
synchronize one event with an action and do not include any additional conditions for
rule activation. This is also true for some research works illustrated in literature. For
example, the approaches reported in Kubitza and Schmidt [2015] and Zancanaro et al.
[2015] allow the reuse of pre-defined “recipes” or “schemas of digital experiences.” New
rules can be defined by only modifying and adapting pre-defined rules. Thus, end users
are not allowed to define their own rules, which can be needed if the pre-defined ones
do not accommodate their situational, even unexpected needs. On the other hand, tools

like Node-RED allow one to create more complex rules, but they also require advanced
skills.

Finding a tradeoff to mediate these two extremes is the challenge that we address
in this article by focusing on the following aspects:

—Rule specification must include logical operators to combine triggering events and
actions exposed by multiple services and objects. This would accommodate the need
for programming the composition of multiple resources. Some platforms (for exam-
ple, Atooma) already support the OR combination of multiple events. In line with
these approaches, we also think that, in order to express composite behaviors, end
users must be enabled to define combinations of multiple events and actions. Logical
operators can allow them to express such combinations.

—The specification of temporal and spatial constraints must be possible. As discussed
in Barricelli and Valtolina [2015], existing tools (e.g., itDuzzit) do support the speci-
fication of such constraints, but only as filters on the data generated by the services
that trigger events. This could not be simple for non-technical users, who are forced
to understand what output is generated by the services. In addition, if the services
involved in the rule do not return timestamp data, temporal constraints cannot be
expressed. These are the reasons why we aim to propose mechanisms for temporal
and spatial constraints to be defined on parameters characterizing the context in
which the rule is executed (spatial constraint) and regardless of the service times-
tamp (temporal constraint).

—If on the one hand the use of logical operators and the specification of temporal and
spatial conditions would introduce some cognitive overhead, on the other hand usable
composition paradigms, increasing the users’ awareness of what the surrounding
environment offers and how composite behaviors of the available objects and services
can be achieved, could alleviate the resulting complexity. The following sections will
illustrate how, by means of user studies, we identified some design implications
leading to the definition of usable composition paradigms.

3. MODEL FOR RULE CREATION

TA platforms allow one to synchronize the behavior of Web services and smart objects
by specifying chains of conditional statements for triggering actions that change the
status of coupled resources. Such chains are usually called “rules” as they are actually
based on ECA rules, but different names are also used, e.g., “recipes” in IFTTT, “Zaps”
in Zapier, “Duzzit” in itDuzzit. Although specified according to a different syntax, the
rules adhere to the common schema:

cause(s) ⇒ effect(s)

where the causes are the events triggered by some services and the effects are the
actions performed by the same or by other services.

In relation to the specification of rules, our research aims to identify the right tradeoff
between simplicity and expressiveness, which can allow the end users to operate on the
IoT. By analyzing the available TA platforms, we observed that they effectively cover
several aspects of IoT. However, their composition paradigms are very complex and
with an abundant expressiveness that goes well beyond the needs of end users, or very
simple but not expressive enough. Most of such platforms do not permit (for example,
in IFTTT) or make it difficult (for example, in Node-RED) to specify multiple events
and actions. Similar difficulties arise when specifying temporal or spatial constraints,
e.g., to define the following behavior: “If I’m in Rome and I post an image on Instagram
between 8.00 and 11.00 a.m., post the same picture also on Twitter and Tumblr.” The
need to define temporal and spatial conditions in ECA rules was recently discussed in

Fig. 1. Example of causes and effects in a rule.

Barricelli and Valtolina [2015], and also emerged as requirements in home-automation
systems to schedule rule for appliance activation [Rode et al. 2004].

In order to identify composition paradigms able to guide users in the definition of
articulated rules, we wanted to elicit the end-user mental model, which is an aspect
scarcely explored in the field of TA [Ur et al. 2014]. As the seed of our investigation, we
were inspired by the 5W model, which is adopted in several domains, such as journalism
and customer analysis, and more in general in problem solving, to analyze the complete
story about a fact. It suggests describing a fact by answering the following questions:

—Who did it?
—What happened?
—When did it take place?
—Where did it take place?
—Why did it happen?

These questions can help formulate rules with rich conditions; especially they can
guide the users to express temporal and spatial elements. We therefore adopted the 5W
model in an elicitation study aimed at identifying, with the help of users, a notation
for the specification of TA rules that would feature the tradeoff between simplicity and
expressiveness that we mentioned above. In particular, the model, which we called
Rule_5W, would guide users in identifying the elements that are essential for creating
rich rules for smart object composition. In the Rule_5W model (see Figure 1), “Who” is
replaced by “Which” for specifying the services involved in a rule. “What” indicates the
triggered events, as well as the actions to be activated. “When” and “Where” refer to the
specification of, respectively, temporal and spatial conditions for triggering events and
performing actions. Finally, “Why” is used for reporting a short description to explain
the rule behavior to a human reader, e.g., other users with whom the rule is possibly
shared.

4. ELICITATION STUDY

Driven by the main goal of our research, i.e., providing end users, even without technical
skills in computer programming, with interactive tools to customize smart spaces, we
carried out an elicitation study to identify adequate visual composition mechanisms.
In this study, starting from the identified Rule_5W model, we asked participants to
propose, in terms of Which, What, When, Where, and Why, how they would specify
in a rule event-action relationships between different services. This study, and the
consequent identification of composition mechanisms, can be considered the first step
to design an EUD platform for IoT. Indeed, we wanted to assess in which measure

and under which assumptions the IoT technology could be mastered by non-technical
users. We wanted, in particular, to understand whether and how the definition of
synchronization rules involving the invocation of web services, the use of logic operator,
and the specification of temporal and spatial constraints, could be mastered by users
who do not have any knowledge about all these technical concepts. The leading question
of the study, therefore, was

“How to specify events and actions in a rule by answering to the Which, What,
When, Where, and Why questions?”

Different techniques can be used to elicit system solutions but few were those inves-
tigated to understand programming in domestic environments. An example was the
“Fuzzy Felt Ethnography” technique proposed in Rode et al. [2004] aiming to elicit the
programming patterns of domestic appliance. In particular, a felt board, divided into
four sections with a set of felt icons representing appliances, is used as data gathering
tool. Such board support designers to understand programming of domestic appliances,
distinguishing between program actions at future times and macro creation to facili-
tate repeated tasks. Since the goal of this phase in our research was to elicit techniques
to create ECA rules for smart environments, which is more general than the domestic
environments, we exploited a different technique. In particular, the study followed a rig-
orous procedure, based on carefully selected materials, questionnaires, and tasks to be
performed. In order to collect as much as possible significant ideas properly discussed
among participants, we required them to work in groups, according to the partners
technique presented in Morris et al. [2014]. This consists in performing several focus
groups involving participants, i.e., partners, enabling them to fruitfully build upon one
another’s ideas, carefully analyzing the proposed ideas, to stimulate more reflection
and discussion and elicit diverse opinions about possible designs. Therefore, our focus
groups went beyond pure elicitation, already including some co-creation activities, sim-
ilar to what was done in Marquardt et al. [2012] and Voida et al. [2005]. However, even
if our participants (i.e., Computer Science students) had some experience in system
design, we could not expect that they would came out with a complete and successful
design proposal. Thus, we adopted a scenario-based design. Scenarios help designers to
maintain an orientation towards perspective users and their actual needs [Rosson and
Carroll 2003]. As described later in this paper, the results of the study showed that this
organization enabled participants to provide novel and elaborated ideas about the UI
and interaction mechanisms. In order to avoid participants being forced to “tell what
they don’t have to tell,” we did not require groups to produce a minimum number of
proposals for accomplishing the assigned tasks or to reach a goal. Finally, participants
were encouraged to demonstrate their ideas by sketching paper prototypes. At the end
of the focus groups, participants filled in online questionnaires. The study protocol was
preliminarily assessed by involving two groups of four participants each.

It is worth noting that we purposely did not contextualize the identification of the
visual notation in a specific domain. First of all, we wanted to identify “generic” inter-
active mechanisms that would be adequate for non-programmers and especially ensure
a reasonable level of expressiveness. Our approach to the definition of EUD paradigms
and tools indeed promotes the definition of generic platforms that, however, can be
easily adapted to be domain-specific. As we will discuss in Section 9, it is possible to
define a platform organization so that visual notations and interactive paradigms can
be easily adapted to the requirements characterizing specific end-users’ communities,
identified through dedicated ethnographic studies to be conducted after the deployment
of the generic platform.

4.1. Participants

The elicitation study involved a total of 25 participants (6 female), randomly divided
into 6 groups (from 3 to 5 participants), aged between 20 and 43 years (x̄ = 23.7, SD =
5.06). The participants were recruited from the third-year students of the Bachelor
degree in Computer Science. They had no experience with tools for defining TA rules
or for managing IoT elements. All of them had a PC and a mobile device; only six
participants (x̄ = 23.7, SD = 5.06) had one or more smart objects.

4.2. Procedure

The study was performed by two HCI researchers on two consecutive days in a uni-
versity laboratory. It consisted of six sessions, one for each group. Three sessions took
place the first day. In every session, the group sat around a table. One of the two HCI
researchers gave a 10-minute presentation to introduce participants to the addressed
domain, by illustrating daily-life and working situations in which a tool for defining
the behavior of Web services and objects could be useful. To avoid any bias in the
participants’ proposals, possible solutions or tools were not shown.

The group was provided with blank paper sheets and markers for sketching their
proposals. Each participant was also provided with a paper sheet reporting the two
tasks to be performed. The two following tasks asked participants to propose a UI and
interaction mechanisms as a response to the leading question of the study:

(1) How to define a task-automation rule by using the system that you want to pro-
pose? For example, how to program the system so that each post published on my
Facebook wall is also posted on Twitter? Or so that every time the alarm clock is
switched-off the roll-up shutters are opened?

(2) How to include further conditions on rule activation? For example, how to program
the system so that each post published on my Facebook or Instagram wall is also
posted on Twitter? Or so that every time the alarm clock is switched-off the shutters
are opened and the coffee machine is switched on?

After reading aloud and commenting the first task, the researcher asked participants
to reason about and discuss how they would perform the activities reported in the exam-
ple. He also highlighted that the elements involved in the rules (services, things, condi-
tions) can be described by specifying four aspects, i.e., Which, What, Where, and When,
while the purpose of the rule can be described by answering to the Why statement.
The researcher stimulated participants to elaborate new interaction ideas, which were
also expressed by sketching new paper prototypes. He also encouraged the discussion
of positive and negative aspects of the suggested solutions. The same procedure was
repeated for the second task, during which participants revised the sketches produced
for the first task, in order to address the new requirements. The second researcher took
notes. Each session was also audio-video taped.

At the end of the session, participants filled in a questionnaire composed of 18
questions. Thirteen questions aimed to collect participants’ demographic data, and
determine their expertise with programming, mobile devices, smart objects, and Web
services. Two questions investigated participants’ understanding of and comfort with
study procedure and proposed tasks. One question addressed the perceived useful-
ness of TA tools. The last two questions addressed the pros and cons of the ideas the
participants suggested during the study.

4.3. Data Collection

The data analyzed in the study were collected by reviewing the following: (1) the set of
notes taken by the researchers in the study sessions; (2) the video recorded during the

sessions; (3) the sketches drawn during the sessions; (4) the answers participants gave
to the online questionnaire.

The two researchers transcribed their notes and the audios, and independently
double-checked 65% of the material. The initial reliability value was 81%; thus, the
researchers discussed the differences and reached a full agreement. The transcripts
were analyzed through a thematic analysis following a semantic approach. Themes
were identified within the explicit or surface meaning of the data [Braun and Clarke
2006b]. The two open questions of the online questionnaire, related to the advantages
and disadvantages of participants’ proposals, were analyzed through the affinity dia-
gram technique proposed in Rogers et al. [2015].

4.4. Results from the Proposed User Interface Sketches

The six groups elaborated a total of nine UI sketches, complemented with comments
explaining how to interact with them. A design team, composed of the two HCI re-
searchers who participated in the study and an interaction designer, analyzed the
sketches. In order to understand important details on how the sketches were created,
video recordings were analyzed. Some sketches had several features in common, thus
the design team managed their integration in a unique design proposal also taking
into account interaction principles and usability criteria. Eventually, the three differ-
ent proposals described below emerged and gave rise to the three prototypes described
in Section 5.

The first design proposal came from the contributions by groups G1, G3, G4, and G6.
G1 envisioned the workspace for defining and representing the rule vertically divided
in two sides: events on the left, actions on the right. Services representing events
and actions are displayed in a menu available at the most left side of the screen and
are dragged in the appropriate workspace side. Every time a service is dropped in
the workspace, a wizard procedure is presented in a pop-up window to guide users in
defining service details by answering the What, When, and Where questions. At the end
of the wizard, the new event or action is displayed as a box, labeled with an identifying
name and icon, and placed at the bottom of other events/actions previously created,
if any. A similar proposal also originated from G3; the main difference is that when a
service is added in the workspace, it is immediately represented as a large box divided
in three areas for specifying the type of event/action, and the temporal and the spatial
constraints (see Figure 2). After the parameterization, the box can be minimized.

The second design proposal was conceived according to the input of G4. They con-
ceived the rule creation into two main steps: The first one is the creation of a basic rule
with only an event and an action; the second step consists in adding further events and
actions. The rule is visualized in a workspace where the events are placed on the left
side and the actions on the right side. Two buttons, “Add an event” and “Add an action,”
allow users to add further events and actions, as also suggested by G6 participants.

The third design proposal is completely different from the previous ones. It is based
on a graph metaphor and it was proposed by G3 and G5. Nodes represent services
and arrows between nodes indicate event/action relationships. In particular, given two
nodes connected by an arrow, the staring node is the rule event, whereas the final
node is the action. G3 and G5 proposed two different solutions to specify event and
action details; G5 suggested a button in each node (see Figure 3), whereas G3 a wizard
procedure automatically activated when the arrow (i.e., the relationship) between nodes
is drawn.

4.5. Results From the Online Questionnaire Data

The analysis of the online questionnaires referring to demographic data, experience in
using IT technology, and in programming provided the participants’ characterization

Fig. 2. A design proposal sketched by G3.

Fig. 3. A design proposal sketched by G5.

already reported in Section 4.1. The usefulness of composing services and smart objects
was rated 6.09 out of 7. Regarding the advantages expressed in the open questions, par-
ticipants reported that (i) TA performed through their solutions save time and reduce
errors; (ii) their solutions can be exploited by non-technical users; (iii) it is useful to add
constraints based on time and spatial conditions; (iv) it is interesting to create rules
for performing powerful TA. Concerning the disadvantages, participants commented
on the limited possibilities of configuring useful smart environments because of the
currently poor spreading of smart objects and on the lack of device interoperability due
to protocol heterogeneity.

5. IMPLEMENTED PROTOTYPES

Based on the three main designs emerged during the elicitation study, we developed
three interactive prototypes: EFESTO-Free, EFESTO-Wizard, and EFESTO-Wired,
abbreviated to E-Free, E-Wizard, and E-Wired, respectively. EFESTO is the name of
the mashup platform proposed by the authors in their previous works (e.g., Ardito et al.
[2014b], Ardito et al. [2014c], and Desolda et al. [2016]). EFESTO was used as the basis
for the implementation of the three prototypes as the EUD paradigms for smart object
composition can exploit the EFESTO layers for service invocation.

The three prototypes share some design choices:

—In the UI, the terms events and actions are used instead of causes and effects, respec-
tively, because they are the most adopted terms in IoT and TA domains.

—In principle, rule events can be chained by means of AND and OR logical operators;
however, in order to avoid complex logical expressions, all the events in a rule are
in either AND or OR, depending on the operator used for connecting the first two
events.

—Actions can be chained only by the AND logical operator, otherwise it would not be
possible for the system to disambiguate which action has to be performed. In other
words, if the event conditions are fulfilled, all the specified actions are executed.

—Both events and actions are specified by answering the Rule_5W questions, Which,
What, When, Where, and Why. In particular, the answer to the Why question is meant
to provide a title briefly describing the rule (e.g., “Synchronize my social posts” in
Figure 1), which can be useful when rules are shared with other users.

—Spatial constraints can be defined only if the smart device provides its GPS position;
temporal constraints can be always defined because the prototypes compare the user-
defined temporal conditions with the user account timestamp instead of the device
timestamp, which could not be always provided by the device.

The prototypes were developed as Web applications using the Java Spring frame-
work.4 Their UIs were programmed by using Thymeleaf,5 a Java HTML5 template
engine, and the Bootstrap6 front-end framework. The use of Bootstrap allowed us to
build responsive UIs, which adapt their layout to the device on which they are run
(e.g., PCs, smartphone, tablet). To create nodes and edges in the E-Wired prototype, a
specific JavaScript plugin was used. All the prototypes have been deployed on a virtual
machine created in the Windows Azure cloud platform (4 core, 8GB RAM, Windows
Server 2012).

We devoted particular attention to the smart objects and services made available
in our prototypes. We indeed wanted to propose realistic scenarios for rule creation,

4https://spring.io/.
5http://www.thymeleaf.org/.
6http://getbootstrap.com/.
7https://github.com/Rodsevich/JointTooledViewPlugin.

Fig. 4. E-Free: the interface for rule creation.

comparable to the ones supported by the existing and most popular tools. A set of
services available in IFTTT was therefore selected by analyzing the 20 most popular
IFTTT recipes. The services and smart objects used in these rules were then registered
in our prototypes, together with their events and actions. The three prototypes are
described in the rest of this section.

5.1. E-Free

The first prototype is called E-Free because of the few limitations the users encounter
in the rule definition process. As an example of interaction with E-Free, in the following
a user, who we suppose is female, creates a rule to automatically turn on the coffee
machine and roll-up the shutters when her smart bracelet detects that she has just
woken up or the smart alarm clock rings. In order to create this rule, the user clicks the
“New Rule” button in the navigation bar (Figure 4, circle 1) and the “Creating Rule”
interface appears. The UI shows the main area in which a rule is defined. The left side
is for specifying the triggering events, and the right side is to define the actions to be
activated by the selected services.

A wizard procedure, activated by the green “+” button highlighted by circle 2 in
Figure 4, guides the users in defining the events. The wizard sequentially shows some
pop-up windows in which the service, the events, and the conditions are specified. The
first wizard step is to define an event in terms of Which is the service to be monitored
for detecting the triggering event (Figure 5(a)). The second step asks for What service
event has to be monitored (Figure 5(b)). The last step allows the definition of When and
Where the event has to be triggered (Figure 5(c)). The specification of When and Where
conditions is optional. At the end of the wizard procedure, the event is defined and
its summary appears under the “Events” area (Figure 5(d), circle 1). In the example
of Figure 5(d), the user has specified that the triggering event is the “Just Awake”
condition of her “Bracelet” object.

Actions can be defined by clicking on the green “+” button highlighted by circle 3
in Figure 5(d). The button activates a wizard procedure that guides the user in the
definition of an action in terms of Which service will execute the action as a consequence
of the event(s), What action the service has to perform, and When and Where the action
can be performed.

In E-Free, users may either define first all the events and then the actions, or define
first a basic rule including one event and one action and then include new events and
new actions. Events and actions can be added or removed at any time. Further events
can be added by clicking one of the two green “+” buttons labeled And/Or (Figure 5(d),
circle 2). Choosing the “And” button starts the definition of a new event that will cause
the execution of the rule action(s) if all conditions of all events are satisfied. The “Or”

Fig. 5. E-Free wizard procedure for specifying events: (a) the wizard first asks to select the service that
will activate the event; (b) as second step, the event is selected among those offered by the chosen service;
(c) temporal and spatial constraints are defined; (d) the event has been defined and the user can define
further events or actions.

Fig. 6. E-Free: example of rule including two events and two actions.

button determines the definition of a new event that will cause the execution of the
rule action(s), if the conditions of at least one event are satisfied.

Once the rule is created, it can be saved by entering a short description (the Why
in the Rule_5W model). Figure 6 shows the example rule created by the user: As soon
as the smart Bracelet detects that the user has woken up OR when the Alarm Clock
rings, the Coffee_Machine is turned on and the Roll-up Shutter is opened.

5.2. E-Wizard

With respect to E-Free, E-Wizard implements the same UI but it also offers a wizard
procedure that guides users in event and action specification. As first step, once the
“New Rule” button is clicked, users are compelled to follow a wizard procedure to create
a “basic rule” composed of one event and one action. Then, they can add further events
and actions. This should facilitate the rule creation, because users can incrementally
extend and adapt the rule to their needs. Even if the two paradigms appear very similar,
in E-Free the user can freely compose the rule by adding events and actions at any
moment and in no particular order. In E-Wizard, rule creation is more under the control
of the system. This paradigm is also similar to the one proposed by IFTTT. However, in
IFTTT the combination of multiple events and actions, as wells as temporal and spatial
conditions are not allowed. We found it worth investigating the differences in the two
paradigms (free vs. incremental), thus we implemented both E-Free and E-Wizard.

In E-Wizard, the first step is clicking the “Create Rule” button in the navigation bar.
A wizard procedure starts by informing users what to do to create the basic rule. Then,
it continues as in E-Free to guide the definition of an event in terms of Which, What,
When, and Where. Having defined the Event, the wizard procedure, without returning
to the main screen, continues with the definition of the Action. At the end, the interface
in Figure 7 (identical to the E-Free interface) shows the rule that has just been created.

Fig. 7. E-Wizard: example of “basic rule” including one event and one action.

Fig. 8. E-Wired: example of rule including one event and one action.

From now on, the user might continue by adding further events or actions as she would
do with E-Free.

5.3. E-Wired

The E-Wired interaction paradigm is based on the graph metaphor: Nodes represent
services involved in a rule, whereas directed edges, i.e., arrows, represent cause–effect
relationships between services. As reported in Figure 8, the E-Wired UI has two main
areas. The sidebar on the left provides the list of all the available services: Web services
are light-yellow, whereas smart objects are light-green. In the workspace area, the user
builds the rule. She first selects one of the services in the left sidebar, which is added

Fig. 9. E-Wired: definition of (a) event parameters and (b) action parameters.

to the workspace and represented as a box augmented with two small circles, light-
blue and purple, which represent the connection points for the arrows representing
cause–effect relationships.

In the example illustrated in Figure 8, a Bracelet and a Coffee_machine have been
added into the workspace to provide the answer to the Which. The two objects have been
connected by drawing an arrow from the purple circle of the Bracelet, whose events
have to be monitored, to the light-blue circle of the Coffee_machine that will execute
the actions. As soon as the arrow is drawn, two pop-up windows in sequence allow the
user to specify the parameters of the Event (Figure 9(a)) and of the Action (Figure 9(b))
in terms of What, When, and Where. The “Create Rule” button of the second pop-up
window permits to save the rule, also specifying Why, i.e., a title shortly describing the
rule.

.

6. COMPARING THE PROTOTYPES

We carried out an experimental study, in order to understand if and how different
composition paradigms might affect the definition of TA rules that include elements
of the Rule_5W model. We compared our prototypes with IFTTT, which was chosen as
baseline for three main reasons. First, it is widely acknowledged that IFTTT is one
of the most representative tools for the class of TA systems [Coronado and Iglesias
2016]. IFTTT is also considered one of the most popular tools for non-programmers,
and indeed it was used as baseline in other comparative studies focusing on EUD
paradigms for task automation (see, for example, Cabitza et al. [2016] and Lucci and
Paternò [2015]). Second, even though more powerful TA tools offer visual composition
mechanisms, sometimes they also require programming skills to accomplish specific
tasks. For example, Node-RED offers a wired visual paradigm; however, temporal and
spatial constraints within rules have to be defined by writing JavaScript code. Since
our target users are non-programmers, we exploited our E-Wired prototype as it can be
considered a representative of the class of wire-based TA tools (a class that we wanted
to include in the comparison) and at the same time does not require writing code for
rule specification. Third, we had to find a reasonable balance among number of tools,
tasks, and session duration. Therefore, we could not consider as baseline more than
one tool.

Further analyses were carried out by comparing only the three EFESTO systems.
The reason for this second comparison is that we wanted to assess performances
and satisfaction of users with the definition of more expressive rules, which is al-
lowed by our prototype but not by IFTTT or by other TA tools without requiring some
coding.

6.1. Participants and Study Design

Since the target users of the experimented applications are mainly non-technical users,
i.e., persons without technical skills in computer programming or Computer Science,
we recruited both technical and non-technical users. In particular, 40 participants
(27 males, 13 females) were recruited among the students of the second and third
year of Computer Science (n = 27), Business (n = 10), and Physiotherapy (n = 3)
Bachelor degree courses of the University of Bari. The mean age was 23.38 years
(SD = 2.75, min = 18, max = 30). We considered the 27 Computer Science students as
technical users because they had experience with computer programming. The other
13 students were considered non-technical because they did have neither a Computer
Science background nor any experience with computer programming. This mixed sam-
pling has been necessary also because we wanted to verify which of the experimented
tools provide a composition paradigm fitting the mental model of both technical and
non-technical users. The recruitment started 2 weeks before the study execution and
it was performed via email. Participants were rewarded with an 8GB USB memory
stick.

Two research questions guided the study:

—RQ1) What is the difference between the considered systems in terms of user perfor-
mance in creating rules?

—RQ2) What is the difference between the considered systems in terms of user
satisfaction?

To answer these research questions, we performed a controlled experiment adopting a
within-subject design, with system as an independent variable and four within-subject
factors: E-Free, E-Wizard, E-Wired, and IFTTT.

Table II. Rule Schemas Used to Design the Tasks

Rule schema Rule structure Constraints
RS1 event ⇒ action
RS2 event1 OR event2 ⇒ action
RS3 event ⇒ action Temporal and spatial constraints
RS4 event1 OR event2 ⇒ action AND action2 Temporal and spatial constraints

Table III. The Eight Experimental Tasks Used in the Comparative Study. Tasks Labeled with ∗ Cannot
be Performed with IFTTT

Rule schema Task ID Task statement
RS1 T1 If I post a picture on Instagram, then post the same picture on

Twitter.
T2 If my Android device battery drops below 15%, then send a

notification on my Android Wear.
RS2 T3 If I post a picture on Instagram OR Flickr, then post the same

picture on Twitter.
T4 If my Android Device battery drops below 15% OR my Android

device connects to any Wi-Fi network, then send a notification to my
Android Wear.

RS3 T5∗ If I post a text on Twitter geo-localized in Milan between 8 and 12
a.m., then create a Google Drive document having as its name the
tweet id and as its content the tweet text.

T6∗ If my Android Wear changes position to the address of my home
between 7 and 11 p.m., then switch-on the home air conditioners
setting 25◦C as temperature.

RS4 T7∗ If I post on Instagram or Flickr a picture geo-localized in Rome
between 8 and 12 a.m., then post the same picture on Twitter AND
Tumblr with the same geo-localization data.

T8∗ If between 7 and 8 a.m. my Android Wear changes to the address of
my home OR my smart alarm clock rings, then switch-on the coffee
machine and open the roll-up shutter of my bedroom.

6.2. Tasks

The tasks executed during the comparative study required participants to create rules
for the composition of Web services and smart objects. As reported in Table II, four rule
schemas (RS) were considered to guide the definition of tasks with different complexity.
RS1 refers to the simplest rule, characterized by one event and one action, without
temporal or spatial constraints. The other rule schemas introduce different operators
and constraints.

RS2 represents rules with multiple events combined with the OR operator. Tasks
based on the RS2 schema can be performed with IFTTT. In fact, the RS2 schema
(eventl1OR event2 ⇒ action) is logically equivalent to two rules (event1 ⇒ action)
and (event2 ⇒ action). Thus, to accomplish RS2 tasks with IFTTT participants had to
create two rules.

Tasks based on RS3 and RS4 schemas were not performed with IFTTT, because
logical operators on actions and temporal and spatial constraints are not allowed.

For each rule schema, two tasks were defined: One required the composition of Web
services, the other required the composition of smart objects. Thus, every participant
performed eight tasks with each system, except for IFTTT, for which they performed
only the four tasks allowed by this tool. Each participant performed 28 tasks, for a total
of 40 users × 28 tasks = 1,120 trials. The defined tasks, with their short identification
(Task ID), are reported in Table III. To improve the external validity of the study, all

Fig. 10. Comparative study setting.

the tasks required the inclusion of Web services and smart objects used in the most
popular rules created by the IFTTT community. Four out of the eight proposed tasks
required the parameterization of events and/or actions.

6.3. Procedure

The study took place in a quiet university room where the study apparatus was in-
stalled. Two HCI experts were involved: one acted as observer, the other as facilitator.
A laptop with a 15inch display provided with an external mouse was available. The
observation of the user interaction with the systems was facilitated by an external
monitor that duplicated the laptop screen (see Figure 10). The comparative study
lasted 10 days. Four participants were individually observed each day. Every partic-
ipant followed the same procedure. First, they were introduced to the study purpose
and what they had to do. Nobody refused to participate in the study. Participants were
asked to sign a consent form.

The participants were provided with a booklet composed of four pages. Each page
reported three training and eight experimental tasks to be performed with one of the
compared systems. Only four experimental tasks were reported on the IFTTT page,
namely those supported by this system. To avoid carry-over effect, the booklet pages,
as well as the experimental tasks on each page were ordered to have the system test
order counterbalanced across the participants, and the task set order counterbalanced
across the experimental conditions, both according to a Latin Square design.

The facilitator introduced the first system, i.e., the one reported on the first page
of the participant booklet, and demonstrated the creation of a rule based on the RS4
schema, being this the most complete one. The demonstration did not involve services
used in the experimental tasks. Then, the participants were invited to perform the
three training tasks, possibly asking the facilitator for help.

After the training, the participants had to execute the experimental tasks alone. They
had to read aloud the task text and then start the rule creation. At the end of each
task execution, participants had to tick a checkbox associated to the task statement, in

order to indicate if, in their opinion, the created rule fulfilled the task requests or not.
At the end of all the experimental tasks, they filled in an online questionnaire about
the system they had used. Before repeating the same procedure with the next system,
the participants were invited to relax for 5 minutes.

A paper questionnaire was administered at the end of the participant’s session. It
asked to rank the four systems on the basis of their usefulness, completeness, and ease
of use and to vote for the best system.

This procedure was preliminarily assessed by a pilot study involving three
participants.

6.4. Data Collection

Different types of data, both quantitative and qualitative, were collected to evaluate
respectively user performances and user preferences.

Regarding user performances, all the interactions were audio-video recorded by using
a screen-capture tool. Notes were taken by the observers on significant behavior or
externalized comments. The two researchers transcribed their notes and performed an
audio-video analysis of the screen-capture records. As a result, they built an excel file
reporting for each task performed by each user the following data: user ID (from 1 to
40), user experience (technical – non-technical), system name, task ID (T1–T8), task
schema (RS1, RS2, RS3, RS4), type of service (Web service – smart-object), time (in
seconds), clicks, number of errors (from 0 to n), type of error, user perception about rule
correctness (right – wrong). Then, they independently double-checked such data. The
initial reliability value was 94%, thus the researchers discussed the differences and
reached a full agreement.

Regarding user preferences, online and paper questionnaires were administered
during the study. The online questionnaire addressed two main dimensions: satisfaction
with system and satisfaction with created rules. The former was assessed through a
semantic-differential scale that required participants to judge the system on 12 pairs
of adjectives describing satisfaction in using the system. Participants could modulate
their evaluation on 7 points (after recoding of reversed items 1 = very negative, 7 =
positive). Such tool for measuring user satisfaction with system was already used in
some previous similar studies of ours (see, for example, De Angeli et al. [2003]) and
was designed with the involvement of an experimental psychologist working in the
HCI field. The latter was assessed directly by a Likert-type item asking participants
to express their gratification on a 7 point-scale (from “not at all” to “very much”) and
indirectly by a percentage estimation of the number of tasks accomplished correctly.
The paper questionnaire asked participants to rank experimented systems along three
dimensions, i.e., completeness, easiness, and usefulness.

6.5. Results on User Performance

In order to answer to the first research question, namely if there is any difference
in terms of user performance when creating rules with the different interaction
paradigms, we structured our analyses along five dimensions. The first dimension,
Rule Complexity Impact, compared the systems along different rule schemas implying
different levels of complexity. The second dimension, Type of Service Impact, aimed
to understand, for each system, if and how the type of service (Web service vs. smart
object) affects user performance. The third dimension, User Expertise Impact, refers to
the effect of the user expertise (technical vs. non-technical) on the user performance.
The fourth dimension, User Gender Impact, refers to the effect of gender (male vs.
female) on the user performance. The fifth dimension, Expressiveness of rule repre-
sentation, aims to evaluate if the way in which rules under creation are represented
helps users understand and perceive correctly the effect of their composition actions,

and if there are differences among the four systems. This analysis actually addressed
both performance and satisfaction: The wrong perception of the created rule not only
impacts users’ satisfaction but can also generate errors.

The variables time, clicks, and error severity were used in the first four analysis
dimensions. Time is the number of seconds the participant took to execute a task; we
considered as task starting point the moment when the participant finished reading
aloud the task statement. The ending point was the moment when the participant
saved the rule. The variable Clicks refers to the number of clicks. It was calculated
by analyzing the system logs. Error severity is an index that indicates the seriousness
of the task errors. A rate was assigned to each error depending on its severity. In
particular, triangulating the notes and video analysis, three different types of error
rates were identified. The first type is about wrong events or actions in a rule. The
second error type is related to wrong parameters in the specification of events and
actions. The last error type is about using a wrong logical operator (AND instead of OR)
to connect the events. A different score was assigned to each type of errors, respectively
3, 2, and 1 (3 is the most serious). The error rate of a specific task execution was thus
calculated as sum of the scores of all the errors observed in a screen snapshot showing
the final rule. The final error severity index was calculated as ratio between the sum
of the error rates and the number of errors (0 was assigned in case of no errors).

One-way repeated measures ANOVAs (all Greenhouse–Geisser corrected) with post-
hoc pairwise comparisons (Bonferroni corrected) were adopted in the first analysis that
addressed the role of different rule schemas. In Sections 6.5.1, we report in detail the
analyses of data related to this dimension. By means of tables, for each system, we
report mean (x̄) and standard deviation (SD) of the dependent variables, the results of
the ANOVA tests (p-values below .05 indicate a significant difference), and the results of
the Post-hoc tests. The latter highlights the couples of systems for which a statistically
significant difference exists (e.g., E-Free – E-Wired (p = .019) indicates that the first
system performed better than the second one). Log transformations were needed to
achieve a normal data distribution (assessed with Shapiro–Wilk test). However, the
tables report the original data, without log-transformation, to better show the real
system performances.

For the second, third, and fourth analyses, paired-sample t-tests were performed: In
the related tables, reported in Section 6.5.2, 6.5.3, and 6.5.4, respectively, the column
t-test reports test results (a significant difference exists when p-value < .05).

Last, chi-square tests were applied to data in the fifth analysis, as shown in Sec-
tion 6.5.5.

6.5.1. Rule Complexity Impact. A detailed comparison among the systems was performed
to analyze if and how the rule schema (RS1, RS2, RS3, and RS4) affects the dependent
variables.

Table IV shows that there was a significant difference among the systems in the
time to create an RS1 rule, i.e., a rule not requiring either logical operators not even
temporal and spatial constraints. In particular, IFTTT required more time than E-Free
and E-Wizard, while there are no significant differences between E-Wired and IFTTT.
Regarding clicks, significant differences emerged: E-Wired required less clicks than
E-Free and E-Wizard. IFTTT required less clicks than E-Free. No differences emerged
for the error severity.

A possible explanation of the two EFESTO systems advantage over IFTTT for the
time variable can be ascribed to the different organization of the wizard procedure
for selecting events, actions, and their parameters. In order to define a rule, IFTTT
requires passing through every single step, even when some elements do not need to
be specified for a rule under definition. For example, even if actions do not need the

Table IV. Performances in Task Execution Time, Clicks, and Error Severity of all
the Systems Along Rule Schema RS1

Time Clicks Error severity
System x̄ SD x̄ SD x̄ SD

R
u

le
S

ch
em

a
1

E-Free 33.82 15.84 13.27 4.63 .00 .00
E-Wizard 35.20 17.78 12.23 4.22 .05 .35
E-Wired 38.06 21.27 10.61 3.36 .06 .24
IFTTT 46.22 24.91 11.14 2.77 .00 .00
ANOVA
test

F(2.771, 218.879) = 7.725
p < .000
partial η2 = .098

F(2.798, 221.023) = 7.275
p < .000
partial η2 = .084

F(1.702, 134.442) = 1.953
p = .152
partial η2 = .024

Post-hoc E-Free – IFTTT (p = .001)
E-Wizard – IFTTT (p = .002)

E-Wired – E-Free (p < .000)
IFTTT – E-Free (p = .010)
E-Wired – E-Wizard
(p = .044)

–

Table V. Performances in Task Execution time, Clicks, and Error Severity of all
the Systems Along Rule Schema RS2

Time Clicks Error severity
System x̄ SD x̄ SD x̄ SD

R
u

le
S

ch
em

a
2

E-Free 61.39 27.64 19.62 7.04 .18 .56
E-Wizard 66.86 29.21 18.23 6.21 .24 .73
E-Wired 78.63 42.78 23.61 12.82 .05 .21
IFTTT 100.69 40.42 24.42 4.87 .05 .35

ANOVA
test

F(2.532, 200.065) = 32.508
p < .000
partial η2 = .292

F(2.714, 211.689) = 21.365
p < .000
partial η2 = .215

F(2.350, 185.658) = 2.842
p = .052
partial η2 = .035

Post-hoc E-Free – E-Wired (p < .000)
E-Free – IFTTT (p < .000)
E-Wizard – IFTTT (p < .000)
E-Wired – IFTTT (p < .000)

E-Free – E-Wired (p = .007)
E-Free – IFTTT (p < .000)
E-Wizard – E-Wired (p < .000)
E-Wizard – IFTTT (p < .000)

–

specification of parameters, as it happens in one of the two RS1 rules, the users have to
pass anyway through the page dedicated to parameter definition. More than a critical
problem, this could be considered a hint for designers of similar tool.

The time gap between IFTTT and the EFESTO systems, already evident in RS1
tasks, is even more accentuated in RS2 tasks that required the use of the OR logical
operator between two events (Table V). It is not uncommon that a user needs to activate
the same action as reaction to different events; in this situation, the paradigms of the
EFESTO systems are more efficient than IFTTT that, as it does not support logical
operators, requires the definition of two rules to perform RS2 tasks.

E-Free, E-Wizard, and E-Wired were then compared along the RS3 and RS4 tasks
to determine which paradigm is most suitable for managing rules that also include
logical operators and temporal and spatial constraints (see Table VI and Table VII,
respectively). IFTTT was not considered because it does not support these features.

There were significant differences in the time to create a rule. In particular, post-
hoc analysis revealed that participants were faster with E-Free and E-Wizard than
with E-Wired. With respect to clicks, it emerged that E-Wired requires a number of
clicks significantly higher than E-Wizard. In terms of error severity, the only significant
difference emerged in RS3 tasks: Participants performed less severe errors using E-
Wizard than using E-Wired.

The video analysis of the user interaction highlighted that participants spent more
time with E-Wired because of the rule graph representation. Drag&drop of the nodes

Table VI. Performances in Task Execution time, Clicks, and Error Severity of the EFESTO
Systems Along Rule Schema RS3

Table VII. Performances in Task Execution time, Clicks, and Error Severity of the EFESTO
Systems Along Rule Schema RS4

Time Clicks Error severity
System x̄ SD x̄ SD x̄ SD

R
u

le
S

ch
em

a
4

E-Free 122.32 47.31 41.31 13.40 .41 .80
E-Wizard 147.36 76.79 39.57 13.54 .51 .90
E-Wired 198.93 85.78 57.61 28.89 .59 .73

ANOVA test F(1.760, 139.017) = 33.726
p < .000
partial η2 = .299

F(1.854, 146.494) = 20.671
p < .000
partial η2 = .207

F(1.893, 149.566) = 1.132
p = .323
partial η2 = .014

Post-hoc E-Free – E-Wired (p < .000)
E-Wizard – E-Wired (p < .000)

E-Free – E-Wired (p < .000)
E-Wizard – E-Wired (p < .000)

–

Table VIII. Performances in Task Execution time, Clicks, and Error Severity of the Four Systems
Along the Type of Service. Tests Labeled with ∗ are Statistically Significant

representing services and definition of the relationships by arrow drawing was time
consuming.

6.5.2. Type of Service Impact. For each system, we investigated if there were statistical
differences in performing tasks with different types of resources, i.e., Web service and
smart object (see Table VIII).

Time and clicks values were significantly different in favor of smart objects for all
systems. A possible reason can be the number of events and actions exposed by smart
objects, which, in general, is lower than the number of events and actions exposed by

Table IX. Performances in Task Execution Time, Clicks, and Error Severity of the Four Systems Along
the User Expertise. Tests Labeled with ∗ are Statistically Significant

Web services. As also observed in Lucci and Paternò [2015], an excessive number of
service elements to choose from can make it difficult to identify the right one. Fur-
thermore, the parameterization of events is typically more complex in Web services.
About the error severity, there was a statistical difference in favor of smart objects only
in E-Free. Even in this case, the reason could be related to the greater complexity of
parameterization in Web services.

6.5.3. User Expertise Impact. We compared, for each system, the performance of techni-
cal users vs. non-technical users. As shown in Table IX, the only significant difference
regards the error severity of E-Wizard that is in favor of non-technical users. However,
since the error severity value is very low in both cases, we can safely assume that
E-Wizard does not specifically lead the users to perform important errors.

No differences emerged in terms of time and clicks. Thus, the EFESTO system
paradigms, as well as the one implemented in IFTTT, seem to fit the mental model of
non-technical users since they do not affect their performances. This result confirms
that the elicitation study (see Section 4) helped us identify paradigms that can be
exploited also by non-technical users, despite the use of logical operators and temporal
and spatial constrains that represent the step forward compared to the existing TA
systems analyzed in Section 2.2.

6.5.4. User Gender Impact. Gender is considered an issue relevant in EUD research,
especially in the smart environment [Blackwell et al. 2009]. In order to assess the
gender effect on the evaluated systems, we also compared the performance of male vs.
female participants. As shown in Table X, no significant differences emerged from this
analysis.

6.5.5. Expressiveness of Rule Representation. An important feature of TA systems is the
capability of communicating to the user if the created rule, statically visualized on the
computer display, will generate the expected service behavior when executed on actual
objects and services. In fact, one of the limitations of current TA systems is the limited
debugging possibilities [Coutaz and Crowley 2015].

This aspect was investigated by means of two dichotomous variables: perceived rule
correctness (right – wrong) and actual rule correctness (right – wrong). The value of
the former was explicitly stated by participants, who, for each task, ticked a check-
box indicating if the created rule fulfilled or not the task requests. The actual rule

Table X. Performances in Task Execution time, Clicks, and Error Severity of the Four Systems
Along the User Gender. Tests Labeled with ∗ are Statistically Significant

Table XI. Participants’ Perception of the Created Rule Correctness

correctness value was indicated by the two HCI researchers, who examined the cre-
ated rule through the screen snapshots.

For each system, chi-square tests were applied on the two dichotomous variables.
There was a statistically significant association between perceived rule correctness and
actual rule correctness in E-Free, E-Wizard, and E-Wired (X2

E-Free(1) = 46.506, p < .000;
X2

E-Wizard(1) = 39.811, p < .000; X2
E-Wired(1) = 20.080, p < .000), with a moderately

strong association in all cases (ϕE-Free = 0.381, p < .000; ϕE-Wizard = 0.250, p < .000;
ϕE-Wired = 0.353, p < .000). No statistical difference emerged in IFTTT (X2

IFTTT(1) =
.121, p = .728).

Table XI summarizes and offers a different perspective on the results of this anal-
ysis. The Correctly perceived column reports, for each system, the number of rules
participants correctly declared to fulfill (As right column) or not (As wrong) the task
requests. The Total column, calculated as sum of the two previous columns, indicates
the number of rules participants correctly perceived. Percentage, calculated on a total
of 320 rules for the three EFESTO versions and 160 for IFTTT, is reported in the %
column. Similarly, the Wrongly perceived column reports the same information related
to the rules wrongly perceived by participants.

Triangulating the chi-square test results with the data reported in Table XI, we can
assert that the EFESTO systems offer more adequate rule representation. The chi-
square test revealed that no association exists between the two variables in the case of
IFTTT, thus indicating that its rule representation generates a wrong user perception,
even if it has the lowest percentage of wrongly perceived rules (6.9%). This contrasting
result is explained by observing that participants were never able to identify wrong
rules: The two wrong rules were never recognized and the nine rules perceived as wrong
were right (100% of failures). This is the main cause of the weak association between
the two dichotomous variables. To identify the source of this problem, we considered

Table XII. Influence of Participant Background (Technical vs. Non-Technical) on the Perception of the Created
Rule Correctness

E-Wizard that, although very similar to IFTTT, does not suffer this problem. In fact,
12 out of 30 wrong rules (40% of failures) were perceived correctly. IFTTT proposes
a similar wizard as in E-Wizard with the same service names, events, and actions.
The very difference between these two systems is in the rule representation. E-Wizard
shows the rule in a horizontal panel, with events on the left and actions on the right
(see Figure 7); this representation is used both at creation time and when the rule has
been saved, according to a “What You See Is What You Get” (WYSIWYG) approach.
IFTTT shows, at creation time, the rule elements in a scrolling page, where they appear
in sequence as soon they are defined; when the rule is saved, it is shown as a text that
summarizes its features in natural language.

We were also interested in investigating if the participants’ background affected their
ability to evaluate rule correctness. Thus, the analysis has been executed considering
the two different participant samples, i.e., technical vs. non-technical.

In the case of technical users, there was a statistically significant association between
perceived rule correctness and actual rule correctness in E-Free, E-Wizard, and E-Wired
(X2

E-Free(1) = 33.252, p < .000; X2
E-Wizard(1) = 9.896, p = .002; X2

E-Wired(1) = 48.756, p <
.000) with a moderately strong association (ϕE-Free = 0.392, p < .000, ϕE-Wizard = 0.214,
p .002, ϕE-Wired 0.475, p < .000). No statistical difference emerged in IFTTT

(X2
=
IFTTT(1) = .049, p

=
= .825).In the case of non-technical users, there was a statistically significant association

between perceived rule correctness and actual rule correctness in E-Free and E-Wizard
(X2

E-Free(1) = 13.505, p < .000; X2
E-Wizard(1) = 12.486, p < .000) with a moderately

strong association between the variables (ϕE-Free = 0.360, p < .000, ϕE-Wizard = 0.346,
p < .000, ϕE-Wired 0.475, p < .000). No statistical difference emerged in E-Wired and

IFTTT (X2
E-Wired(1)

=
= 1.878, p = .171, X2

IFTTT(1) = .085, p = .771).Table XII reports participants’ performance in determining rule correctness, with a
distinction between technical and non-technical users. The main evidence is that the
E-Wired rule representation, based on a graph metaphor, is not correctly interpreted by
non-technical users, who are not acquainted with a language typical of the Computer
Science domain.

6.6. Results on User Satisfaction

User satisfaction was assessed by means of two types of questionnaires. The first one
was an online questionnaire filled in by participants after the use of each system.
The second one was a paper questionnaire administered at the end of the participant’s
session; it asked to rank the four systems on the basis of their usefulness, completeness,
and easiness, and to vote for the best system.

6.6.1. User Satisfaction with System and with Created Rules. The online questionnaire ad-
dressed two main dimensions: satisfaction with system and satisfaction with cre-
ated rules. One-way repeated measures ANOVAs (all Greenhouse–Geisser corrected)

Table XIII. User Satisfaction Results (the Highest x Value is the Best)

Satisfaction with system Satisfaction with created rules
System x̄ SD x̄ SD
E-Free 5.81 .89 488.50 167.095
E-Wizard 5.70 .86 485.75 485.69
E-Wired 4.55 1.14 425.75 184.97
IFTTT 5.73 .98 526.00 155.13

ANOVA test F(2.806, 109.423) = 19.897
p <.000
partial η2 = .339

F(2.868, 2374835) = 3.387
p = .022
partial η2 = .080

Post-hoc E-Free – E-Wired (p <.000)
E-Wizard – E-Wired (p <.000)
IFTTT – E-Wired (p <.000)

IFTTT – E-Wired (p = .031)

Table XIV. User Satisfaction Results: Technical vs. Non-Technical (the Highest x Value is the Best)

with post-hoc pairwise comparisons (Bonferroni corrected) were adopted to determine
whether there were statistically significant differences in these two dimensions.

User satisfaction with system was addressed through a semantic-differential scale
that required participants to judge the system on 12 pairs of adjectives describing satis-
faction in using the system. The questionnaire had a high level of internal consistency,
as determined by a Cronbach’s alpha of .940. The index of user satisfaction with system
was computed averaging the scores for the 12 items.

User satisfaction with created rules was assessed directly by a Likert-type item
asking participants to express their gratification on a 7 point-scale (from “not at all”
to “very much”) and indirectly by a percentage estimation of the number of tasks
accomplished correctly. The two variables are highly correlated (r = .498, p < .000),
thus indicating that the more tasks participants think they accomplished correctly, the
more satisfied they are with system performance. Consequently, the final index of user
satisfaction with created rules was computed multiplying the two scores.

Table XIII shows that E-Free, E-Wizard, and IFTTT were the systems most preferred
by participants. About satisfaction with created rules a significant difference emerged
only between IFTTT and E-Wired. Therefore, E-Wired in general was perceived as the
worst one.

We also investigated if the participants’ expertise and gender affected their sat-
isfaction with system and with created rules. Paired-sample t-tests were executed
considering technical vs. non-technical and male vs. female.

In case of participants’ expertise, with respect to the Satisfaction with system, the
average values reported in Table XIV show that there is a positive attitude of technical
users towards using IFTTT, while non-technical users prefer E-Free. There is only one

Table XV. User Satisfaction Results: Male vs. Female (the Highest x Value is the Best)

Table XVI. User Preference in Terms of Completeness, Easiness, and Usefulness
(the Lowest x Value is the Best)

Completeness Easiness Usefulness
System x̄ SD x̄ SD x̄ SD
E-Free 1.85 .95 1.80 .91 1.62 .93
E-Wizard 2.50 .96 2.45 .86 2.10 .90
E-Wired 2.88 1.16 3.25 1.01 3.20 .97
IFTTT 2.78 1.14 2.50 1.20 3.10 .81

Kendall’s test Kendall’s W = .128
χ2(3) = 15.33
p = .002

Kendall’s W = .211
χ2(3) = 25.32
p < .000

Kendall’s W = .357
χ2(3) = 42.895
p < .000

Post-hoc E-Free – E-Wired (p = .001)
E-Free – E-Wizard (p = .023)
E-Free – IFTTT (p = .001)

E-Free – E-Wired (p < .000)
E-Free – E-Wizard (p = .011)
E-Free – IFTTT (p = .019)
E-Wizard – E-Wired (p = .003)
IFTTT-E-Wired (p = .022)

E-Free – E-Wired (p < .000)
E-Free – E-Wizard (p = .042)
E-Free – IFTTT (p < .000)
E-Wizard – E-Wired (p < .000)
Wizard – IFTTT (p < .000)

significant difference between technical and non-technical users: The latter are more
satisfied with the E-Wizard system. The same trend emerged in the Satisfaction with
created rules, even if no significant differences were highlighted. In case of participants’
gender, no differences emerged in any case (Table XV).

6.6.2. User Ranking of Systems along Completeness, Easiness, and Usefulness. Participants
were asked to rank the four systems along three dimensions, i.e., completeness, eas-
iness, and usefulness. As shown in Table XVI, rankings were significant in all the
cases (see the Kendall’s W coefficient reported in the Test row of the table). Wilcoxon
signed-rank tests were used as post-hoc tests to determine which scores were signif-
icant. E-Free resulted as the favorite system in all the three dimensions, followed by
E-Wizard, IFTTT, and, last, E-Wired.

We also investigated if the participants’ background and gender affected the rank
along the three dimensions. For each system, Wilcoxon signed-rank tests were executed
with respect to each dimension, comparing technical vs. non-technical as well as male
vs. female participants. As confirmed by data and tests reported in Tables XVII and
Table VIII, neither participants’ background nor gender do affect their ranking of the
experimented systems.

About voting the best system, the result is E-Free = 27, E-Wizard = 8, IFTTT = 3,
and E-Wired = 2. Voting results are in line with the user preferences expressed in the
three rankings.

Table XVII. User Ranking Along Completeness, Easiness, and Usefulness: Technical vs. Non-Technical
(the Lowest x Value is the Best)

Table XVIII. User Ranking Along Completeness, Easiness, and Usefulness: Male vs. Female
(the Lowest x Value is the Best)

6.7. Threats to Validity

We now analyze some issues that may have threatened the validity of the comparative
study, also to highlight under which conditions the study design offers benefits that
can be exploited in other contexts, and under which circumstances it might fail.

6.7.1. Internal Validity. Internal validity can be threatened by some hidden factors com-
promising the achieved conclusions:

—Learning effect. In our experiment, this factor was minimized by counterbalancing
the systems and the experimental tasks order across the systems, both according to
a Latin Square design.

—Subject experience. It was alleviated by the fact that none of the subjects had any
experience with the experimented tools, as well as with TA tools in general.

—Subject-expectancy effects. Students are not the best participants for a user study
due to the subject-expectancy effect they can produce, i.e., a form of reactivity that
occurs when a research subject expects a given result and therefore unconsciously
affects the outcome. We mitigated this effect by masking details that can produce
bias. In particular, we presented the experiment to the participants in a way that
suggests that we had no stake in the outcome. For example, we introduced all the

experimental tools as already available web sites that we wanted to observe during
the creation of TA rules by users; furthermore, in order to foster the credibility of
this aspect, we developed our tools with a professional look-and-feel and we deployed
them on a remote Web server, so that the participants had to connect to a remote
URL to them, similarly to IFTTT.

—Method authorship. We eliminated the biases that different facilitators running the
experiment could introduce, as we had the same instructor for every session of
the study. In this way, we avoided any variability in the initial training as well as in
the way users had been observed.

—Information exchange. Since the study took place over 10 days, it is difficult to be
certain whether the involved subjects did not exchange any information. However,
participants were recruited from different classes and during exams period thus,
for many of them, it was difficult to know each other and to communicate. The
participants were asked to return all the material (e.g., the booklet) at the end of
each session. We asked participants coming from the same classes and that typically
study and travel together to perform the test in the same session.

—Understandability of the material. A pilot study with further three participants was
carried out to assess the understandability of experiment procedures and materials.

6.7.2. External Validity. External validity refers to the possible approximation of truth
of conclusions in the attempt to generalize the results of the study in different contexts.
With this respect, the main threats of our study are as follows:

—Users age and domain experience. Since the study participants were young students
not experienced with IoT and TA tools, we have to take into account two potential
limitations of the study results. The first one is the participants’ age that limits
the prediction of the tools benefits to older people. Thus, we can safely accept the
experiment results for digital natives [Prensky 2001] but further studies have to be
carried out including older people.

The second potential limitation is related to the participants’ domain experience:
In fact, they had not experience with IoT technology, as well as with TA tools. We
intentionally recruited inexperienced young people because we aimed to experiment
the composition paradigm with users that would potentially adopt such tools in the
next years, without affecting results on composition paradigms usability evaluation
due to prior users’ knowledge of other tools and IoT technologies. However, this crite-
rion can limit the generalizability of our results to end users of smart environments
that can have different behaviors and needs. This is the reason why, as described in
Section 7, we also performed a validation of EFESTO-Free by involving end users
expert in the configuration of home-automation systems.

—Tasks complexity. The tasks used for the study took inspiration from the most popular
rules created by the IFTTT community. We also extended some tasks in order to
accommodate more complex and real user’s needs, by including temporal and spatial
constraint, as well as logical operators. The possibility to consider tasks that are
more complex was limited by the experimented tools. Thus, the results obtained and
the design indications proposed are valid for a particular class of tasks, i.e., simple
ECA rules that include logical operators and temporal and spatial constraints.

—Comparison with other tools. In the comparative experiment, we considered only
IFTTT as baseline because the main goal of our comparison was to observe the limits
and advantages of the conceived EFESTO paradigms with respect to a tool that is
mature and popular among non-technical users. However, as reported in Section 2.2,
different TA tools are available other than IFTTT and we have no evidence about
the advantages of E-Free with respect to these tools. This is the reason why we are
going to perform new controlled experiments including other relevant tools.

6.7.3. Construct Validity. Construct validity might have been influenced by the measures
that we applied in the quantitative analysis and by the reliability of the questionnaire.
We alleviated the first threat by adopting measures, such as efficiency (e.g., time to
complete a task), that are commonly employed in user studies [Dix et al. 2003]. The
reliability of the questionnaire was tested by applying the Cronbach test to each set of
closed questions intended to measure subjective variables. As reported in the previous
section, the value obtained (.940) was higher than the acceptable minimum threshold
(>0.70) [Maxwell 2002].

6.7.4. Conclusion Validity. Conclusion validity refers to the validity of the statistical
tests applied. In our study, this was alleviated by applying the most common tests that
are employed in the empirical software engineering field [Juristo and Moreno 2010].

7. STUDY WITH HOME-AUTOMATION EXPERTS

After the comparison of the three prototypes, we performed a further study to take
into account the perspective of domain experts on how to improve TA tools in the
home-automation domain. We also evaluated if E-Free and the underlying Rule_5W
could represent a valid proposal in this direction. To this aim, we validated the E-Free
prototype with 15 experts of both IoT and home automation. E-Free was chosen because
in the comparative study it outperformed the other prototypes in terms of participants’
performances and satisfaction.

The new study consisted of two phases. The first one was a utilization study to eval-
uate user performances and satisfaction with E-Free. This first phase then fostered a
discussion that during the second phase was held in a focus group session: Utterances,
comments, and hints were gathered from the participants about usability and function-
alities of a TA tool in general, and about the adoption of E-Free in the home-automation
domain.

7.1. Participants and Design

We were able to recruit a total of 15 participants (9 female), aged between 25 and
34 years (x̄ = 28.8, SD = 2.42). More specifically, participants were 14 construction
engineers and 1 biomedical engineer. They were concluding at the “Politecnico di Mi-
lano” University an advanced (Post-Master) training course on smart technologies in
smart environments. The course, titled “Home Automation and Technology for Living
Environments,” was organized over 15 months (2.400 hours) and included a phase of
coaching and project work in a company of the home-automation sector. The course is
part of the SHELL Project – Cluster Smart Living Technologies.8 Participants were
rewarded with a 8GB USB memory stick.

In the first utilization study, each participant was asked to complete two training
tasks and three experimental tasks. In order to propose tasks that would be significant,
engaging, and able to stimulate home-automation end users, we involved a domain
expert. First, we asked the expert to use E-Free to perform some tasks (some of them
were those of the comparative study). Then, he was required to select the tasks, among
those just performed, that could be actually useful in the home-automation domain.
He was also invited to design further significant domain tasks. At the end, the three
following tasks were produced:

(1) If my Android Wear changes position to the address of my home between 8 and 10
p.m., then switch-on the home air conditioning and set 25◦C as temperature.

(2) If my smart bracelet detects that I’m waking-up between 7 and 8 a.m. or my smart
alarm clock rings, then open the roll-up shutters and switch-on the coffee maker.

8http://shell.smartlivingtech.it/.

(3) If my car changes position to the address of my home and I push the button of my
Android Wear, then open the garage door and switch-on the boiler.

The first two tasks were taken from the comparative study because they were very
similar to some tasks proposed by the expert; the third one was completely new.

To evaluate user satisfaction, the same questionnaire of the comparative experiment,
integrated with the SUS statements [Brooke 1996], was administered after the tasks
execution. We introduced the SUS statements because it is highly reliable [Bangor
et al. 2008], technology agnostic, and effective also for evaluating usability of modern
technology [Brooke 2013].

The utilization study was followed up by two focus groups (seven participants in the
first group). Participants were stimulated to discuss the following topics:

(1) Which scenarios in home-automation environments can benefit from the use of E–
Free. The goal was to identify specific and real situations so that future research on
TA tools applied to home automation can be more focused and driven by realistic
scenarios.

(2) Which aspects of UI and interaction can be improved. The goal was to identify
interface and interaction aspects that can impact on system usability.

(3) Which functionalities should be included/removed to make E-Free more compliant
to real contexts. The goal was to identify functionalities, possibly independent from
a specific composition paradigm, that foster the adoption of TA tools in real contexts.

7.2. Procedure

The entire study took place in a quiet and isolated room at the Politecnico di Milano
campus, where we installed the study apparatus (a laptop and a web camera) 30 min-
utes before the start. Two HCI researchers were involved in the study. In particular,
during the utilization study, one (facilitator) was in charge of introducing users to the
study and following them during the tasks accomplishment; the second one (observer)
took notes. During the focus groups, instead, one (facilitator) was in charge of stimu-
lating the discussion, the second one (observer) took notes. The entire study lasted 1
day (about 8 hours).

During the utilization study, each participant interacted for about 10 minutes for a
total of 4 hours (breaks included). They all followed the same procedure. First, each
participant was asked to sign a consent form. Then, the facilitator showed a quick
introduction about the use of E-Free. Then, the participant was provided with a list of
two training tasks during which they could ask for help, and three main tasks to be
performed alone. At the end, participants filled in the online questionnaire.

For the focus group session, in order not to have a too large group, we split par-
ticipants in two separate groups. Both the HCI researchers participated in the focus
groups. Participants sat around a table and were provided with pencil and sheets
in order to sketch their ideas. Each focus group lasted about 1 hour and was video
recorded.

7.3. Data Collection & Analysis

During the utilization study, we collected quantitative and qualitative data. Quantita-
tive data regarded user performances measured through time and number of clicks to
perform tasks. Qualitative data regarded user satisfaction measured through a ques-
tionnaire that included all questions already used during the comparative study and
the 10 statements of the SUS questionnaire.

During the focus groups, the observer took notes about the discussion; video and
audio of the discussion were also recorded. The set of collected notes was extended by
video and audio analysis, performed by two researchers that transcribed videos and

audios and independently double-checked some 85% of the material. The initial relia-
bility value was 80%, thus the researchers discussed the differences and reached a full
agreement. The transcripts were analyzed by thematic analysis following a semantic
approach. Themes were identified within the explicit or surface meaning of the data
[Braun and Clarke 2006a].

7.4. Results of the Utilization Study

Even if the actual goal of the utilization study was to introduce participants to the use
of a TA tool to foster the discussion in the following focus group, during this phase we
also collected data about user performances and satisfaction.

Regarding user performances, the average time participants spent for each task was
115 seconds (SD = 53.25), while the average number of clicks was 25 (SD = 11.58).
Because the tasks were similar but not identical to those assigned in the comparative
study, it is not possible to derive further information through the comparison of user
performance in the two studies.

Regarding qualitative data, the questionnaire results allowed us to measure two
particular aspects, i.e., User satisfaction with system (x̄ = 5.58, SD = 0.72) and User
satisfaction with created rules (x̄ = 566.67, SD = 93.63). Being user satisfaction less
dependent by tasks than user performances, a t-test has been used to compare the sat-
isfaction results between the utilization and the comparative study. The test demon-
strated that no statistical differences emerged for the User satisfaction with system
(t(53) = .8954, p = .3746) and the User satisfaction with created rules (t(53) = 1.7085,
p = .0934). These results are encouraging as they highlight that also expert users, who
are typically more demanding with respect to the adopted technology and also like to
have full control on it, were satisfied in using E-Free for the accomplishments of tasks
typical of their domain.

The user satisfaction was also evaluated by means of the 10 SUS questions, which
gave us a more general indication about the perceived system usability and learnability.
The SUS global score was 73.1/100 (SD = 13.8), which is higher than the average SUS
scores (69.5) of one thousand studies reported in Bangor et al. [2009]. In addition,
according to Lewis and Sauro [2009], we split the overall SUS score into two factors,
i.e., System Learnability (considering statements #4 and #10) and System Usability (all
the other statements). The System Learnability score was 68.1 (SD = 22.6), whereas
the System Usability score was 74.3 (SD = 13.9). According to the SUS adjective
rating scales [Bangor et al. 2009], both the scores can be considered a very good result.
Besides providing an objective indication about the usability and learnability of the
tested system, SUS results can be used as benchmarks in the comparison of further
TA tools similar to E-Free.

7.5. Results of the Focus Groups

Through the discussion on scenarios we aimed to identify realistic home-automation
tasks that could benefit from the use of our TA tool. Such scenarios would be
fundamental for customizing the general methodology and the prototypes to the
home-automation domain. During the thematic analysis, we identified the following
categories of new emerged elements (examples of possible rules suggested by the
participants are provided):

—Security. “IF my position is far from my house THEN activate the system alarm”; “IF
a thief enters the house THEN switch on TV and lights”; “IF the time is between 09
p.m. and 06 p.m. THEN keep close the garage door and all the house doors.”

—Home assistance. “IF my smart bracelet detects an anomalous heartbeat THEN send
a message to my cardiologist”; “IF a proper device detects that an elderly falls down
THEN send a message to his sons.”

—Education for children. “IF the time is between 07 p.m. and 07 a.m. THEN disable
the TV in the children room.”

—Energy optimization. This was one of the most intriguing categories. In fact, today the
sources of green energy installed at home cannot send back to the energy factory the
surplus of produced energy, which is wasted, this because the energy networks are
built to have only a main direction, i.e., from the factory to the houses. A system like E-
Free can allow a smarter setting of energy production and consumption, for example,
a rule like “IF the energy production is more than the energy used in the home at
a certain moment THEN switch on the washing machine.” In addition, this energy
optimization can be set at different granularity levels. For example, in a building with
different apartments, the administrator can create rules to transfer/sell the surplus
energy of some houses to other houses. The same logic could be adopted by the energy
factory on a large scale and systems like E-free make easier its management.

The second part of the focus groups was about usability problems as we also wanted
to improve the usability of our tools taking into account the perspective of real users.
No critical problems emerged, but the participants highlighted different aspects that
could be improved. For example, users should be helped in the definition of spatial
constraints by an auto-complete function (as in Google Maps) or by using a map; it
should be possible to specify more details in the definition of temporal constraints, e.g.,
as in Google Calendar, a greater variety in defining recurring events/actions (all days,
certain days, weekly, etc.) should be allowed; icons should be used also for events and
actions to make more clear their meaning.

Finally, through the focus group we wanted to identify new functional requirements
that, independent of a specific composition paradigm, could facilitate the adoption of
TA platforms in the home-automation domain. Interesting missing functionalities were
highlighted. In the following, we list those that we consider important for TA tools and
also generalizable to further domains – not only home automation:

—Meta-rules would allow users to define rules that control rules. For example, a user
can have different states that determine different rules activation, e.g., at home,
out of home, in travel, at work. Each status can be associated with the activation/
deactivation of a set of rules. A meta-rule can be “IF my status is IN TRAVEL (e.g.,
from a date to another date of my calendar), activate rules X, Y, and deactivate rules
Z, W.”

—Warning mechanisms would alert users about possible dangerous rules. For example,
if a rule set the opening of the house doors, users should be alerted for the behavior
that can cause the involuntary opening of doors.

—Rule debug would help users to simulate and foresee rule behavior under different
conditions.

—Rules conflict identification would support users of a smart environment (e.g., wife,
husband, and children) to identify the rules that affect the same smart objects and
that can create potential conflicts (e.g., two rules created by the wife and the husband
to switch on/off the washing machine but with different conflicting conditions).

—Service recommendations would be important to guide the rule composition, helping
users be aware of useful services that they could not know.

—Different complexity levels would accommodate different user skills and attitudes.
For example, an advanced modality should be available for skilled users to allow a
more powerful rule customization (e.g., more detailed conditions or more expressive
logic connections).

—Multiple object management would allow users to manage multiple instances of
the same objects in each account. E-Free, as well as most TA tools, typically allow
managing only one smart object per account.

—Access management policies would allow defining restrictions on the object access by
the home users. For example, children should not access the configuration of smart
cooking, garage doors, and in general those smart objects dangerous for them or for
the home security.

Summing up, home-automation experts found E-Free and the Rule_5W model sat-
isfactory for accomplishing their configuration activities. In particular, questionnaire
results and focus group discussions confirmed the usefulness also for expert users
of temporal and spatial constraints, which are the characterizing feature introduced
by the Rule_5W model. Furthermore, experts provided valuable hints for identifying
interesting directions for our research.

8. SUMMARY OF RESULTS AND DESIGN IMPLICATIONS

The comparative study allowed us to identify some characteristics that composition
paradigms for TA tools should feature to be adequate for end users who are not experts
in programming. It also allowed us to assess the adequateness of the Rule_5W model.
The successive validation study confirmed the usefulness and adequateness of the E-
Free composition paradigm and of the Rule_5W model and it also showed that they
are valid with respect to the skills of expert users. Additionally, the validation study
allowed us to identify further features that can satisfy the needs and preferences of
home-automation experts. In the following, we summarize the main findings of the
studies and discuss some design implications.

Expressive power does not downgrade user performance and satisfaction. In relation
to the user performance assessed in the comparative study, E-Free clearly emerged
as the most promising composition paradigm. In particular, when using E-Free for
creating rules, the users always took significantly less time than when using the other
systems. This was true for simple rules (RS1, RS2) as well as for more expressive
rules (RS3, RS4) exploiting the extra-elements introduced by the Rule_5W model. It
is exactly rule expressivity that helped us identify the lacks of the other composition
paradigms. For example, IFTTT does not support the occurrence in a rule of multiple
events. IFTTT was indeed conceived for creating very simple rules, not allowing the
inclusion of logical operators for concatenating multiple events and actions and of
conditions to constraint rule activation. In IFTTT, composite behavior can be achieved
through the creation of multiple rules, each one focusing on one single event and one
single action. This modus operandi negatively impacts on the user performances. We
are aware that the simplicity of IFTTT rules is a fundamental factor for the success of
this platform. However, we believe that more expressive composition paradigms, as the
ones that can be defined on top of our Rule_5W model, are fundamental to empower
end users to create meaningful services.

The comparative study also allowed us to understand that end users can master
more complex rules if adequate interaction paradigms are provided. In particular,
the study highlighted that E-Free is the system that the users preferred most along
all the satisfaction dimensions (results achieved, completeness, ease of use, and use-
fulness). Moreover, the comparison between technical and non-technical users along
performance and satisfaction in general highlighted that the interaction with all the
four systems is not influenced by the user expertise. The lack of significant differences
between the two groups enforces our belief that more expressive paradigms still result
adequate for non-technical users, even if the specification of rules is more complex.

Wired paradigms downgrade user performance and satisfaction – even for technical
users. The comparative study revealed that wired paradigms, as the one implemented
in the E-Wired prototype, downgrade both user performance and satisfaction. This re-
sult is in line with some findings already reported in literature. Wired paradigms have
been largely used in the field of Web services and smart object composition [Blackstock
and Lea 2012; Guinard et al. 2011; JS_Foundation 2016]. Graphs are good candidates
to represent the flow of parameters (the edges) that are generated by events to trigger
the activation of different services and objects (the nodes). This notation fits very well
the mental model of expert programmers, who are used to adopt graphs for repre-
senting the semantics of programs. In addition, wired notations are fruitfully used to
support the tailoring of component-based applications at run-time [Wulf et al. 2008].
However, this notation introduces severe problems when non-expert users need to pro-
gram web-service behaviors [Namoun et al. 2010a]. In our study, we also found that
the performance with E-Wired was not influenced by the user expertise as there are no
significant differences between technical and non-technical users. We can say there-
fore that even technical users, who should be acquainted with wired notations, perform
better and are more satisfied if using other interaction paradigms.

Rules under creation need adequate representations highlighting the composing ele-
ments. Another relevant result regarding the user performance is that the rule repre-
sentation in IFTTT induces the users to judge as wrong rules that instead are correct.
In other words, users are not in control of the rule definition task. The study reported
in Cabitza et al. [2016] already highlighted the need for clear descriptions, to let users
understand the effect of their created rules without being forced to activate them on
real objects. As already discussed in Section 6.5.4, to identify possible reasons of the
low performance of IFTTT, we compared step by step the E-Wizard and the IFTTT
paradigm. We purposely kept E-Wizard similar to IFTTT, as we wanted to analyze the
impact of the new operators. In both the systems, the rule elements are incrementally
visualized as soon as they are selected or defined. The only difference between the
two paradigms is a “synthesis” of the created rule expressed in natural language that
IFTTT displays at the end of the process. We already planned further studies to assess
whether this is the element that actually downgrades the expressiveness of rule rep-
resentation. However, our hypothesis is that (i) the synthesis forces the users to jump
to a rule representation that is different from the one adopted during rule creation,
and (ii) the new representation does not highlight adequately the details of events and
actions that the users specify during rule creation.

Not imposing any specific order on the composition steps improves user’s performance
and satisfaction. The improved performance and the higher satisfaction of E-Free
emerged in the comparative study are due to the very difference of this paradigm with
respect to the others: The freedom that it leaves to the users, who can define events and
actions without being forced to follow a specific order. This finding is coherent with the
results of the study discussed in Lucci and Paternò [2015]: By comparing some TA tools,
the study highlighted that the composition paradigm should not impose any temporal
constraint regarding what to specify first. In addition to this result, in our study, we
observed that the absence of constraints on the order of element specification allows
the user to explore “freely” the available elements, and this, in turn, improves their
understanding of what elements can be composed and how, and their performance. In
other words, even if it can appear as a paradox, the absence of constraints helps users
be in control.

It is worth noticing that in the comparative study a slightly higher preference
for IFTTT emerged for non-technical users. The observation of participants during
the study made evident that non-technical users are more acquainted with wizard

procedures, which are, for example, used for installing software or configuring ser-
vices. Therefore, they did not get disturbed by the extra steps needed to configure a
rule with IFTTT, being them aware that wizards sometimes propose steps that are
useless in a specific situation and that can be simply skipped without influencing the
correctness of the final result.

Offering assistance mechanisms can reduce the occurrence of errors. In order to facil-
itate rule definition, assistance mechanisms can be used to guide users in discovering
elements made available by the platform and help them define sound and correct rules.
As emerged from the validation study involving home-automation experts, users would
appreciate having a set of pre-defined rules, and also meta-rules corresponding to typ-
ical scenarios of use. In other words, especially when users need to repeatedly define
similar rules, they could benefit from the availability of pre-defined system configura-
tions, which can then be customized according to the actual situational needs. Also,
users would benefit from recommendations helping them discover the services that
can be exploited for rule definition. These findings are in line with some choices at the
basis of the IFTTT paradigm, which offers pre-configured recipes. As already discussed
in the previous sections, these pre-defined recipes especially determined the IFTTT
success. The findings are also in line with the results of previous studies on mashup
composition paradigms, which showed that users find helpful any kind of assistance
that the system is able to provide during the composition process [Cappiello et al. 2011;
Namoun et al. 2010b].

Expert users, probably due to their awareness of the consequences of wrong rule
definition, also highlighted the need to be assisted by debugging mechanisms to identify
errors and possible rules conflicts. This aspect was also recently discussed in other
independent studies (see, for example, Fogli et al. [2016b]).

Meta-design can help adopting proper abstractions hiding technical details. When
comparing the user performances along the type of services (smart object vs. Web ser-
vice), we found that the number of parameters to be set up for Web services negatively
influences the user performance and satisfaction. This is in line with some findings re-
ported in Lucci and Paternò [2015], where the authors state that an excessive number
of service properties to choose from makes it difficult to identify the right one. With this
respect, we believe that a meta-design approach can help pre-configuring the resources
to be composed by the end users, so that to avoid unnecessary complexity. Meta-design
indeed prescribes involving domain and/or technology experts to customize the system
for its initial use by the end users [Ardito et al. 2014b; Cabitza et al. 2014a, 2014b;
Fischer et al. 2004]. In a smart-object composition scenario, domain experts can exploit
their domain knowledge to select those properties of objects and Web services that are
really useful for the end users [Cabitza et al. 2014b]. Expert programmers can then
define techniques for accessing services, based on adequate “adapters” and service de-
scriptors that provide the logic to mediate between the whole set of properties natively
provided by the resources and the set of properties to be exposed to the end users.

Supporting different complexity levels could accommodate the attitudes and prefer-
ences of different classes of users. Another ingredient emerged in the validation study
relates to accommodating different users’ skills and attitudes and also varying compo-
sition contexts. Different “composition styles” can be offered to reflect different users’
needs and skills. For example, as discussed above, users should be provided with totally
pre-defined rule configurations, or at the other extreme should be enabled to define by
themselves, even by writing code, articulated conditions, and logic connections between
different services. This is in line with previous, well-known findings reported in litera-
ture, which say that users should be provided with different abstraction levels [Green
and Petre 1996] to ensure a “gentle slope of difficulty” [Lieberman et al. 2006b].

Supporting domain specificity can help accommodate variable user needs. The re-
sults of the comparative study indicate that E-Free is the most suitable composition
paradigm. However, since notations are adequate if they really meet the characteristics
and the background of the end users, we believe that it is important to rely on flexible
platform architectures that can be easily adapted to address varying needs. In other
words, it is important to foster domain-specificity, a quality that is fundamental in EUD
platforms [Casati 2011]. In order to allow end users to understand the possibilities of-
fered by the platform and to make sense of the services and objects that are available
for composition, it is indeed important to restrict the platform to a well-defined do-
main, represented through adequate notations the users are comfortable with. As we
will illustrate in Section 9, to address this requirement, TA platforms should privilege
separation of concerns. The interaction layer, which manages the visual composition
of rules by end users, should be kept independent of the other platform components.
Through the adoption of different interaction paradigms is therefore possible to accom-
modate the needs and the background of specific users’ communities.

9. PLATFORM ARCHITECTURE

In this section, we illustrate the organization of the platform that we designed for
the definition and execution of ECA rules9 and that facilitated the generation of the
prototypes exploited during the user studies. By presenting the platform architecture,
we aim to facilitate the replicability of our studies and to show how an adequate
organization of TA platforms can enable customizability with respect to varying users
and usage domains.

In our research, building prototypes offering different composition paradigms was
facilitated by the modularity of our platform, and especially by the decoupling between
the interaction layer and the other platform modules. Software design patterns, first
of all the MVC (Model-View-Controller), already address this separation of concerns.
In our work, however, the emphasis is not on programming practices to facilitate the
development and maintenance of an interactive system; rather we want to stress the
possibility to adapt easily the composition paradigm offered by the platform, to comply
with domain-specific requirements. It is indeed important to restrict the platform to a
well-defined domain the user is comfortable with. That is, it is important to develop
a general platform that can be, however, easily customized as far as the provided
composition metaphor is concerned [Ardito et al. 2014b].

9.1. Platform Organization

The platform inherits some modules for service invocation and management already
developed in the EFESTO mashup framework [Desolda et al. 2016]. The focus of the
new implementation, which we will call E-5W in the sequel, is, however, on the Rule
Engine. As reported in Figure 11, the E-5W platform is organized in three layers, each
one managing a separate aspect.

The Interaction Layer is the system client that manages the UI through which the
users can create task-automation rules. In addition, it implements two modules, the
Service Builder and the Rule Generator. The first one is in charge of materializing
in the UI the list of attributes of registered services, as resulting from the Service
Descriptor repository. Thus, it is invoked each time users need to add an event or an
action to the rule. The UI layer is in principle agnostic to the registered services; to
build the visualization of available services, the Service Builder requests to the Service

9A demo video, showing the prototype at work for the definition of task automation rules, is available at
https://www.dropbox.com/s/nb4v1v6ompe9vey/EFESTO-Free.mp4?dl=0.

Fig. 11. Overall organization of the platform architecture and structure of the rule engine.

Engine the JSON file containing the list of available services, each of them described
by attributes like name, events, actions, and thumbnail URL.

The Rule Generator is an interpreter that translates the user visual actions for rule
creation into a JSON specification that describes the rule in terms of events, actions,
logical operators, and spatial and temporal constraints (see Figure 12). It is worth
remarking that the when part of the rule is codified according to the syntax provided
by Quartz Job Scheduler,10 a job scheduling JAVA library implemented in our platform
to manage the rule scheduling.

At the server side, the Logic Layer manages rules and services by means of, respec-
tively, the Rule Engine and the Service Engine modules. The first one receives the rule

10https://www.quartz-scheduler.org/.

Fig. 12. (a) JSON descriptor of a rule with two causes and two actions and (b) its graphical representation
in the E-Free system.

Fig. 13. Event-driven paradigm for service coupling definition and rule execution.

JSON file from the client (from the Rule Generator module) and instantiates the rule
object based on a publish-subscribe, event-action model [Cappiello et al. 2015; Cappiello
et al. 2011] (see Figure 13). This model is natively managed and handled by a Java
Spring class.11 Each rule object is characterized by a set of Publisher services, each of

11ThreadPoolTaskScheduler (http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springfra
mework/scheduling/concurrent/ThreadPoolTaskScheduler.html).

http:sol;sol;docs.spring.iosol;spring-frameworksol;docssol;currentsol;javadoc-apisol;orgsol;springframeworksol;schedulingsol;concurrentsol;ThreadPoolTaskScheduler.html.
http:sol;sol;docs.spring.iosol;spring-frameworksol;docssol;currentsol;javadoc-apisol;orgsol;springframeworksol;schedulingsol;concurrentsol;ThreadPoolTaskScheduler.html.

them associated with an event that can be complemented with temporal and spatial
constraints, and by a set of Subscriber services, each of them associated to an action
that can be complemented with temporal and spatial constraints. Moreover, details
about the logical operators used among events or actions are stored in the rule object.

The Rule Engine acts as an event bus that mediates the communication between
the different components. Components are decoupled: They do not need to be explic-
itly aware of each other or be blocked waiting for events from other components. The
Rule Engine checks every N minutes (3 minutes of sample rate in our systems) if the
publisher events are triggered (all of them or just one of them depending on the log-
ical operator chosen, respectively, AND or OR). This check is performed by a listener
associated to the rule. If the events are triggered, the Rule Engine controls if there are
temporal and spatial constraints on the events and, in case, if they are satisfied. If the
events meet all the conditions, the Rule Engine runs all the subscribed actions associ-
ated with the rule or schedules the action execution according to the when constraint
(see Figure 13).

It is worth noting that the current platform prototype provides a default sample
rate that can be also customized by the users when they configure their profile. We,
however, adopt a more specific policy to manage the execution of rules that require
checking events in specific time intervals. In this case, the sample rate is not the one
defined by default (or by the user), but it is defined automatically taking into account
the time interval specified in the rule. In this way, we also optimize the exploita-
tion of resources, since rule checks are performed only in a pertinent time interval,
avoiding useless checks out of that interval. Similar strategies are adopted for other
sensible cases, e.g., precise-time constraints or multiple events with multiple time in-
tervals. In all these cases, the rule engine identifies pertinent time intervals for rule
checking.

The Service Layer is located at the server side and stores service and rule descriptors
by using JSON files. A service descriptor contains all the information useful to query an
API and contributes to decouple the registered services from the rest of the platform.
It is created when a new object is added into the platform. For the implementation
of the current prototype, we decided to consider only the RESTful technology since
it is widely adopted by the majority of Web API and smart object providers. However,
different technology can be easily accommodated as the EFESTO service layer [Desolda
et al. 2016] is structured so that different types of adapters can be plugged in to
manage the access to different API technologies. Alternatively, without developing
further adapters, it is possible to adopt a dedicated middleware, as, for example, Azure
IoT Suite,12 to mediate the access to additional service technologies [Li et al. 2015].
The platform is indeed open and each layer can be also implemented by external
services.

An example of service descriptor is provided in Figure 14. It is divided into two
main sections: header and body. The attributes name and url in the header specify,
respectively, the service name and the API documentation URL. The body section
includes a set of attributes (appID, appSecret, restUri, redirectUri, tokenExpiredCode,
authentication) that the Service Engine uses to invoke the API. Moreover, the functions
JSON array contains a list of events and actions, each of them characterized by the
attributes type, name, path, method, and response, which are respectively the type of
function (event or action), the event/action name displayed to the users in the UI, the
event/action path chained to the restUri URL to invoke the event/action, the type of
API call (e.g., GET, POST), and the provider response format (e.g., JSON, XML).

12https://www.microsoft.com/en/server-cloud/internet-of-things/azure-iot-suite.aspx.

Fig. 14. Service descriptor of the bracelet smart object.

9.2. Layer Decoupling for Domain-Specificity

The three layers illustrated above are strongly separated from each other, thus each
element of the visual paradigm, the policy for rule management, and the service tech-
nology as well can be modified without impacting on the others. In particular, the
separation of the UI layer from the other two layers allowed us to develop the three
different E-5W composition paradigms by acting exclusively at the Interaction level.
All the applications, however, exploit the same Logic and Service Layers. This separa-
tion of concerns also enables the definition of multiple front-ends addressing different
execution platforms, i.e., different devices. The interaction layer, indeed, mainly acts
as an interpreter of models that specify the rules. As already discussed in Ardito et al.
[2014b] and Cappiello et al. [2015], such logic can be replicated also in form of apps
running on mobile devices. This feature is in line with the findings reported in Cabitza
et al. [2016], which highlight the need of multi-platform (i.e., Web-based, Android, iOS)
tools supporting EUD for IoT.

10. CONCLUSIONS

In this article, we presented our perspective on the EUD for the IoT, by showing
how the definition of rich rules for smart object composition can be mastered by end
users. This perspective mainly derived from user studies in which we analyzed the
performance and satisfaction of a sample of users interacting with three prototypes of
task-automation systems that we developed, and with IFTTT, one of the most popular
platforms freely available online. Our prototypes are grounded on a new model for
rule specification that includes a rich set of operators for coupling multiple events
and defining temporal and spatial constraints on rule activation. Such prototypes take
advantage of the experience that we gained in the last years in the development of EUD
platforms for the mashup of heterogeneous Web resources. Smart object composition,
indeed, has several commonalities with Web API mashups, being smart objects very
often controlled and configured through remote Web services.

The findings of the performed studies highlighted some features of composition
paradigms that have to suit the expertise of end users. We also gained useful in-
sights on how to organize a supporting composition platform so that to privilege the
adaptability of the adopted interaction paradigm to accommodate domain-specific re-
quirements. Although the study allowed us to identify a candidate paradigm among
those analyzed, we are aware that this paradigm cannot be considered the only pos-
sible solution, and that it would require adaptations when adopted in specific usage
domains. With this respect, our current work is devoted to analyze the advantages and
the limits of the best-evaluated composition paradigm in Home Automation and Am-
bient Assisted Living (AAL) scenarios. As reported in this paper, we already conducted
some preliminary studies with home-automation experts. Inspired by the results of the
focus group results performed with home-automation experts, we are planning longi-
tudinal and field studies with other users’ categories, e.g., non-frail elderly who need
to be supported in an independent lifestyle and health preservation.

Of course, we are aware that many aspects need to be considered to achieve full-
fledged platforms for the EUD of IoT systems. Besides introducing more sophisticated
strategies for rule execution (e.g., managing rule execution at “relative time” with
respect to the occurrence of past events), we want more in general to focus on the
interoperability of connected devices. This is a problem that now limits the diffusion of
IoT systems, and that is the object of many research projects. We are now investigating
the adoption of ontologies to define a common ground for the communication among
heterogeneous devices. We are also investigating different approaches for the detection
and processing of events from sensor data, an aspect that is fundamental for the
robustness of the platform. With this respect, we are considering pros and cons of
Complex Event Processing engines versus specific data stream query languages.

As far as the composition paradigm is concerned, we plan to further develop the E-
Free prototype by taking into account the suggestions coming from the conducted user
studies. We also want to improve the user control on rule execution. We will therefore
focus on the visualization of the data generated and consumed by the different objects.
The aim is to let the users understand, thus control, the system behavior (i.e., “what
happens if I define a given rule”), to, in turn, improve the overall understanding of the
rule definition process.

To extend the capability of the platform to support EUD, we are also planning to
introduce collaboration features, to let different stakeholder to cooperate for the defini-
tion of a smart space. These features are very interesting in domains that require the
involvement of different stakeholders, such as the AAL for non-frail elderly we are cur-
rently focusing on. In our past research, we already defined a collaborative composition
paradigm and some architectural extensions for the EFESTO platform [Ardito et al.

2014a; Matera et al. 2013]. We will revise the achieved results to define customizations
that are sensible to the specific domain.

Our future work will also consider the addition and the initial configuration of new
objects into smart environments by non-technical users. Actually, our current prototype
requires the intervention of expert programmers to define JSON-based object descrip-
tors. We would like to understand whether EUD practices would (at least partially)
enable non-technical users to perform this activity. This implies the identification of a
“component model,” i.e., a set of conceptual elements abstracting the underlying tech-
nology, which can mediate between the technical features to be addressed to program
smart objects (the components) and the interaction layer supporting the customization
of objects by means of high-level constructs.

Finally, it would be very interesting exploring alternative paradigms to allow users
to configure smart object by means of their physicality, thus designing mechanisms
based on object proximity as well as on hand and body gestures.

ACKNOWLEDGMENTS

We are grateful to Prof. Maria Francesca Costabile for her valuable and constant support. We also thank
Prof. Rosa Lanzilotti for providing useful suggestions about the experimental study. Finally, we deeply thank
the students of the SHELL post-master program for the hints they were able to provide for improving the
composition paradigm.

REFERENCES

Apiant Inc. 2016. We wired web. Retrieved from https://wewiredweb.com/.
C. Ardito, P. Bottoni, M. F. Costabile, G. Desolda, M. Matera, and M. Picozzi. 2014a. Creation and use

of service-based distributed interactive workspaces. Journal of Visual Languages & Computing 25, 6,
717–726.

C. Ardito, P. Buono, M. F. Costabile, R. Lanzilotti, and A. Piccinno. 2012a. End users as co-designers of their
own tools and products. Journal of Visual Languages & Computing 23, 2, 78–90.

C. Ardito, M. F. Costabile, G. Desolda, R. Lanzilotti, M. Matera, A. Piccinno, and M. Picozzi. 2014b. User-
driven visual composition of service-based interactive spaces. Journal of Visual Languages & Computing
25, 4, 278–296.

C. Ardito, M. F. Costabile, G. Desolda, R. Lanzilotti, M. Matera, and M. Picozzi. 2014c. Visual composition of
data sources by end users. In Proceedings of the International Conference on Advanced Visual Interfaces
(AVI’14). ACM, New York, NY, 257–260.

C. Ardito, M. F. Costabile, G. Desolda, M. Matera, A. Piccinno, and M. Picozzi. 2012b. Composition of
situational interactive spaces by end users: A case for cultural heritage. In Proceedings of the Nordic
Conference on Human-Computer Interaction (NordiCHI’12). ACM, New York, NY, 79–88.

Atooma. 2016. Atooma mobile app. Retrieved from https://www.atooma.com/.
L. Atzori, A. Iera, and G. Morabito. 2010. The internet of things: A survey. International Journal of Computer

and Computer Networks 54, 15, 2787–2805.
A. Bangor, P. Kortum, and J. Miller. 2008. The system usability scale (SUS): An empirical evaluation.

International Journal of Human-Computer Interaction 24, 6, 574–594.
A. Bangor, P. Kortum, and J. Miller. 2009. Determining what individual SUS scores mean: Adding an adjective

rating scale. Journal of Usability Studies 4, 3, 114–123.
B. R. Barricelli and S. Valtolina. 2015. Designing for end-user development in the internet of things. In

International Symposium on End-User Development (IS-EUD’15), Lecture Notes in Computer Science,
Vol. 9083, Cham, P. Dı́az, V. Pipek, C. Ardito, C. Jensen, I. Aedo and A. Boden (Eds.). Springer, 9–24.

C. Beckmann and A. Dey. 2003. Siteview: Tangibly programming active environments with predictive visu-
alization. In Adjunt Proceedings of the Conference on Ubiquitous Computing (UbiComp’03). 167–168.
Available at: http://www.ubicomp.org/ubicomp2003/adjunct_proceedings/proceedings.pdf.

A. Bellucci, I. Aedo, and P. Dı́az. 2014a. ECCE toolkit: Prototyping ubicomp device ecologies. In Proceedings
of the International Conference on Advanced Visual Interfaces (AVI’14). ACM, New York, NY, 339–340.

A. Bellucci, P. Dı́az, I. Aedo, and A. Malizia. 2014b. Prototyping device ecologies: physical to digital and vicev-
ersa. In Proceedings of the International Conference on Tangible, Embedded and Embodied Interaction
(TEI’14). ACM, New York, NY, 373–376.

http://www.ubicomp.org/ubicomp2003/adjunct_proceedings/proceedings.pdf

M. Blackstock and R. Lea. 2012. IoT mashups with the WoTKit. In Proceedings of the Conference on the
Internet of Things (IOT’12). IEEE Xplore, 159–166.

A. F. Blackwell, J. A. Rode, and E. F. Toye. 2009. How do we program the home? Gender, attention investment,
and the psychology of programming at home. Interantional Journal of Human-Computer Studies 67, 4,
324–341.

V. Braun and V. Clarke. 2006a. Using thematic analysis Psychology Qualitative Research in Psychology 3, 2,
77–101.

V. Braun and V. Clarke. 2006b. Using thematic analysis in psychology. Qualitative Research in Psychology 3,
2, 77–101.

J. Brooke. 1996. SUS-A quick and dirty usability scale. Usability Evaluation in Industry 189(194), 4–7.
J. Brooke. 2013. SUS: A retrospective. Journal of Usability Studies 8, 2, 29–40.
M. Burnett and T. Kulesza. 2015. End-user development in internet of things: We the people. In Proceedings

of the Workshop on End User Development in the Internet of Things Era - CHI’15 (EUDITE’15).
F. Cabitza, D. Fogli, R. Lanzilotti, and A. Piccinno. 2016. Rule-based tools for the configuration of ambient

intelligence systems: A comparative user study. Multimedia Tools and Applications 75(248), 1–21.
F. Cabitza, D. Fogli, and A. Piccinno. 2014a. “Each to his own”: Distinguishing activities, roles and artifacts in

EUD practices. In Smart Organizations and Smart Artifacts, Lecture Notes in Information Systems and
Organisation, Vol. 7, Cham, L. Caporarello, B. Di Martino and M. Martinez (Eds.). Springer, 193–205.

F. Cabitza, D. Fogli, and A. Piccinno. 2014b. Fostering participation and co-evolution in sentient multimedia
systems. Journal of Visual Languages & Computing 25, 6, 684–694.

C. Cappiello, M. Matera, and M. Picozzi. 2015. A UI-Centric approach for the end-user development of
multidevice mashups. ACM Transactions on the Web 9, 3, 1–40.

C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, and C. Francalanci. 2011. DashMash: A
mashup environment for end user development. In Web Engineering (ICWE’11), Lecture Notes in Com-
puter Science, Vol. 6757, S. Auer, O. Dı́az and G. Papadopoulos (Eds.). Springer, Berlin, 152–166.

F. Casati. 2011. How end-user development will save composition technologies from their continuing failures.
In Proceedings of the International Symposium on End-User Development (Is-EUD’11), Lecture Notes
in Computer Science, Vol. 6654, M. F. Costabile, Y. Dittrich, G. Fischer and A. Piccinno (Eds.). Springer,
Berlin, 4–6.

F. Casati, S. Castano, and M. Fugini. 2001. Managing workflow authorization constraints through active
database technology. Information Systems Frontiers 3, 3, 319–338.

S. Ceri, F. Daniel, M. Matera, and F. M. Facca. 2007. Model-driven development of context-aware web
applications. ACM Transactions on Internet Technology 7, 1, 2.

M. Coronado and C. A. Iglesias. 2016. Task automation services: Automation for the masses. IEEE Internet
Computing 20, 1, 52–58.

M. F. Costabile, D. Fogli, P. Mussio, and A. Piccinno. 2007. Visual interactive systems for end-user devel-
opment: A model-based design methodology. IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans 37, 6, 1029–1046.

J. Coutaz and J. L. Crowley. 2015. Learning about end-user development for smart homes by eating our own
dog food. In Proceedings of the Workshop on End User Development in the Internet of Things Era - CHI’15
(EUDITE’15).

F. Daniel and M. Matera. 2014. Mashups - Concepts, Models and Architectures. Springer.
F. Daniel, M. Matera, and G. Pozzi. 2008. Managing runtime adaptivity through active rules: The bellerofonte

framework. Journal of Web Engineering 7, 3, 179–199.
F. Daniel, M. Matera, and M. Weiss. 2011. Next in mashup development: User-created apps on the web. IT

Professional Magazine 13, 5, 22.
F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera, and R. Saint-Paul. 2007. Understanding UI integration:

A survey of problems, technologies, and opportunities. IEEE Internet Computing 11, 3, 59–66.
A. De Angeli, M. Matera, M. F. Costabile, F. Garzotto, and P. Paolini. 2003. On the advantages of a systematic

inspection for evaluating hypermedia usability. International Journal of Human–Computer Interaction
15, 3, 315–335.

G. Desolda. 2015. Enhancing workspace composition by exploiting linked open data as a polymorphic data
source. In Intelligent Interactive Multimedia Systems and Services (KES-IIMSS’15), Smart Innovation,
Systems and Technologies, Vol. 40, Cham, E. Damiani, J. R. Howlett, C. L. Jain, L. Gallo and G. De
Pietro (Eds.). Springer, 97–108.

G. Desolda, C. Ardito, and M. Matera. 2016. EFESTO: A platform for the end-user development of interactive
workspaces for data exploration. In Rapid Mashup Development Tools (ICWE’15), Communications in
Computer and Information Science, Vol. 591, F. Daniel and C. Pautasso (Eds.). Springer, 63–81.

A. Dix, J. E. Finlay, G. D. Abowd, and R. Beale. 2003. Human-Computer Interaction (3rd Edition). Prentice-
Hall, Inc.

G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan. 2009. Event-based systems: Opportunities and challenges
at exascale. In Proceedings of the ACM International Conference on Distributed Event-Based Systems
(DEBS’09). ACM, New York, NY, 1–10.

Crafty Apps EU. 2016. Tasker. Retrieved from http://tasker.dinglisch.net/index.html.
G. Fischer. 2009. End-user development and meta-design: Foundations for cultures of participation. In

Proceedings of the International Symposium on End-User Development (Is-EUD’09), Lecture Notes in
Computer Science, Vol. 5435, V. Pipek, M. B. Rosson, B. De Ruyter, and V. Wulf (Eds.). Springer, Berlin,
3–14.

G. Fischer, E. Giaccardi, Y. Ye, A. Sutcliffe, and N. Mehandjiev. 2004. Meta-design: A manifesto for end-user
development. Communications of the ACM 47, 9, 33–37.

D. Fogli, R. Lanzilotti, and A. Piccinno. 2016a. End-user development tools for the smart home: A system-
atic literature review. In Distributed, Ambient and Pervasive Interactions (DAPI’16), Lecture Notes in
Computer Science, Vol. 9749, Cham, N. Streitz and P. Markopoulos (Eds.). Springer, 69–79.

D. Fogli, R. Lanzilotti, A. Piccinno, and P. Tosi. 2016b. AmI@Home: A game-based collaborative system for
smart home configuration. In Proceedings of the International Conference on Advanced Visual Interfaces
(AVI’16). ACM, New York, NY, 308–309.

D. Fogli and A. Piccinno. 2013. Co-evolution of end-user developers and systems in multi-tiered proxy design
problems. In End-User Development (Is-EUD’13), Lecture Notes in Computer Science, Vol. 7897, Y.
Dittrich, M. Burnett, A. Mørch and D. Redmiles (Eds.). Springer, Berlin, 153–168.

G. Ghiani, M. Manca, and F. Paternò. 2015. Authoring context-dependent cross-device user interfaces based
on trigger/action rules. In Proceedings of the International Conference on Mobile and Ubiquitous Multi-
media (MUM’15). ACM, New York, NY, 313–322.

elastic.io GMBH. 2016. elastic.io. Retrieved from http://www.elastic.io/.
T. R. G. Green and M. Petre. 1996. Usability analysis of visual programming environments: A “cognitive

dimensions” framework. Journal of Visual Languages & Computing 7, 2, 131–174.
LAB at Rockwell Group. 2016. Spacebrew. Retrieved from http://docs.spacebrew.cc/.
D. Guinard, V. Trifa, F. Mattern, and E. Wilde. 2011. From the internet of things to the web of things:

Resource-oriented architecture and best practices. In Architecting the Internet of Things, Berlin, D.
Uckelmann, M. Harrison and F. Michahelles (Eds.). Springer, 97–129.

IBM. 2016. WebSphereJRules. Retrieved from https://www-01.ibm.com/software/integration/business-rule-
management/jrules-family/.

IFTTT. 2016. IFTTT. Retrieved from https://ifttt.com/.
WigWag Inc. 2016. WigWag Smart Home. Retrieved from http://www.wigwag.com/.
Zapier Inc. 2016. Zapier. Retrieved from https://zapier.com/.
W. Jennifer and C. Stefano. 1996. Active Database Systems: Triggers and Rules for Advanced Database

Processing. Morgan Kaufmann.
JS_Foundation. 2016. Node-RED. Retrieved from http://nodered.org/.
N. Juristo and A. M. Moreno. 2010. Basics of Software Engineering Experimentation. Springer.
T. Kubitza and A. Schmidt. 2015. Towards a toolkit for the rapid creation of smart environments. In In-

ternational Symposium on End-User Development (IS-EUD’15), Lecture Notes in Computer Science,
Vol. 9083, Cham, P. Dı́az, V. Pipek, C. Ardito, C. Jensen, I. Aedo and A. Boden (Eds.). Springer, 230–235.

J. Lewis and J. Sauro. 2009. The factor structure of the system usability scale. In Human Centered Design
(HCD’09), M. Kurosu (Ed.), Lecture notes in computer science, Vol. 5619. Springer, Berlin, 94–103.

S. Li, L. Xu, and S. Zhao. 2015. The internet of things: A survey. Information Systems Frontiers 17, 2, 243–259.
H. Lieberman, F. Paternò, M. Klann, and V. Wulf. 2006a. End-user development: An emerging paradigm. In

End User Development, Human-Computer Interaction Series, Vol. 9, H. Lieberman, F. Paternò and V.
Wulf (Eds.). Springer, The Netherlands, 1–8.

H. Lieberman, F. Paternò, and V. Wulf. 2006b. End User Development. Springer.
Itrios LLC. 2016. itDuzzit. Retrieved from http://cloud.itduzzit.com/.
SmarterApps Ltd. 2016. AutomateIt - Smart Automation. Retrieved from http://automateitapp.com/.
G. Lucci and F. Paternò. 2015. Analysing how users prefer to model contextual event-action behaviours

in their smartphones. In Proceedings of the International Symposium on End-User Development (IS-
EUD’15), Lecture Notes in Computer Science, Vol. 9083, Cham, P. Dı́az, V. Pipek, C. Ardito, C. Jensen,
I. Aedo and A. Boden (Eds.). Springer, 186–191.

N. Marquardt, K. Hinckley, and S. Greenberg. 2012. Cross-device interaction via micro-mobility and f-
formations. In Proceedings of the ACM Symposium on User Interface Software and Technology (UIST’12).
ACM, New York, NY, 13–22.

M. Matera, M. Picozzi, M. Pini, and M. Tonazzo. 2013. PEUDOM: A mashup platform for the end user de-
velopment of common information spaces. In Web Engineering - ICWE 2013. Lecture Notes in Computer
Science, Vol. 7977. Springer, 494–497.

K. Maxwell. 2002. Applied Statistics for Software Managers. Prentice Hall.
M. R. Morris, A. Danielescu, S. Drucker, D. Fisher, B. Lee, M. C. Schraefel, and J. O. Wobbrock. 2014. Reducing

legacy bias in gesture elicitation studies. Interactions 21, 3, 40–45.
A. Namoun, T. Nestler, and A. Angeli. 2010a. Conceptual and usability issues in the composable web of

software services. In International Conference on Web Engineering - ICWE 2010 Workshops - Revised
Selected Papers, Lecture Notes in Computer Science, Vol. 6385, F. Daniel and F. M. Facca (Eds.). Springer,
Berlin, 396–407.

A. Namoun, T. Nestler, and A. De Angeli. 2010b. Service composition for non-programmers: Prospects,
problems, and design recommendations. In Proceedings of the IEEE European Conference on Web Services
(ECOWS’10). IEEE Computer Society, Washington, DC, 123–130.

OpenRules, Inc. 2016. OpenRules Business Rules - Time to Excel. Retrieved from http://openrules.com/
ruleengine.htm.

J. F. Pane, C. A. Ratanamahatana, and B. A. Myers. 2001. Studying the language and structure in non-
programmers’ solutions to programming problems. International Journal of Human-Computer Studies
54, 2, 237–264.

M. Prensky. 2001. Digital natives, digital immigrants part 1. On the Horizon 9, 5, 1–6.
Red Hat Inc. 2016. Drools. Retrieved from http://www.drools.org/.
J. A. Rode, E. F. Toye, and A. F. Blackwell. 2004. The fuzzy felt ethnography—understanding the programming

patterns of domestic appliances. Personal Ubiquitous Comput. 8, 3–4, 161–176.
Y. Rogers, H. Sharp, and J. Preece. 2015. Interaction Design: Beyond Human - Computer Interaction. Wiley.
M. B. Rosson and J. M. Carroll. 2003. Scenario-based design. In The Human-computer Interaction Handbook,

A. J. Julie and S. Andrew (Eds.). L. Erlbaum Associates Inc., 1032–1050.
D. Tetteroo, P. Markopoulos, S. Valtolina, F. Paternò, V. Pipek, and M. Burnett. 2015. End-user development

in the internet of things era. In Proceedings of the CHI’15 Extended Abstracts on Human Factors in
Computing Systems (EUDITE’15). ACM, New York, NY, 2405–2408.

D. Tetteroo, I. Soute, and P. Markopoulos. 2013. Five key challenges in end-user development for tangible and
embodied interaction. In Proceedings of the ACM International Conference on Multimodal Interaction
(ICMI’13). ACM, New York, NY, 247–254.

B. Ur, E. Mcmanus, M. P. Y. Ho, and M. L. Littman. 2014. Practical trigger-action programming in the smart
home. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’14).
ACM, New York, NY, 803–812.

S. Voida, M. Podlaseck, R. Kjeldsen, and C. Pinhanez. 2005. A study on the manipulation of 2D objects in
a projector/camera-based augmented reality environment. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI’05). ACM, New York, NY, 611–620.

U. Wajid, A. Namoun, and N. Mehandjiev. 2011. Alternative representations for end user composition of
service-based systems. In End-User Development (Is-EUD’11), Lecture Notes in Computer Science,
Vol. 6654, M. F. Costabile, Y. Dittrich, G. Fischer and A. Piccinno (Eds.), Springer, Berlin, 53–66.

wot.io. 2016. Bip.io. Retrieved from https://bip.io/.
V. Wulf, V. Pipek, and M. Won. 2008. Component-based tailorability: Enabling highly flexible software

applications. International Journal of Human-Computer Studies 66, 1, 1–22.
M. Zancanaro, E. Not, D. Petrelli, M. Marshall, T. Van Dijk, M. Risseeuw, D. Van Dijk, A. Venturini, D.

Cavada, and T. Kubitza. 2015. Recipes for tangible and embodied visit experiences. In Proceedings of the
Museums and the Web Conference (MW’15). Museums and the Web.

N. Zang and M. B. Rosson. 2008. What’s in a mashup? And why? Studying the perceptions of web-active
end users. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VLHCC’08), IEEE Computer Society, Washington, DC, 31–38.

Zipato. 2016. Zipato. Retrieved from https://www.zipato.com/.

http:sol;sol;openrules.comsol;ruleengine.htm.
http:sol;sol;openrules.comsol;ruleengine.htm.

