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Abstract: The increasing integration of renewable energy sources into the existing energy supply
structure is challenging due to the intermittency typical of these energy sources, which implies
problems of reliability and scheduling of grid operation. Concerning solar energy, the solar forecast
tool predicts the photovoltaic (PV) power production and therefore permits a more efficient grid
management. In this paper, the combination of clustering techniques and ANNs (Artificial Neural
Networks) for day-ahead PV power forecast is analyzed. Clustering techniques are exploited to
divide a dataset into different classes of days with similar weather conditions. Then, a dedicated
ANN is developed for every group. The main goal is to assess the forecast improvement determined
by the combination of ANNs and dataset clustering methods. Different combinations are compared
on a real case study: a PV facility in SolarTechLAB, in Politecnico di Milano.

Keywords: power forecast; photovoltaic; artificial neural network; clustering; clearness index; k-
means; classification; random forest

1. Introduction

The ongoing energy transition is progressively redefining structure and arrangement
of the current energy system. A crucial challenge is represented by the large penetration of
RES (Renewable Energy Sources) into the existing power supply structure. A grid operator
should be able to ensure the balance between the electricity production and consumption
any moment, accommodating expected and unexpected changes on both sides. RES have
dynamic nature and large variability depending on geographical locations and weather
conditions. For instance, concerning PV (photovoltaic) plants, the power output depends on
several meteorological variables such as solar irradiance, air temperature, cloud variation,
wind speed and so on, intrinsically intermittent and non-controllable: these aspects imply
problems of reliability, stability, and scheduling of the power supply structure [1].

Reliable forecast tools allow the prediction of the expected power production and its
fluctuations, leading to a more efficient grid management [2]: for this reason, power forecast
research field is presently receiving unprecedent attention from the scientific community.
The current work is focused specifically on day-ahead PV power forecast.

According to literature, solar forecast methods can be categorized in: statistical meth-
ods, physical methods, Machine Learning (ML) methods and hybrid methods [2–4]. Statisti-
cal methods are capable, given a time series of historical data, to reconstruct the relationship
between solar irradiance or PV power output and meteorological parameters. Moreover,
they do not require physical knowledge about a system to model it [3]. Physical methods,
mainly consisting of Numerical Weather Predictions (NWP), model the interactions be-
tween solar radiation and atmospheric components by means of differential equations and
do not require historical data [5,6]. ML methods mimics the capability of human brain to
learn from experience and can solve even problems which cannot be represented explicitly.
As with statistical methods, to perform a prediction, they require historical data but not
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physical knowledge of the modeled system [2]. Artificial Neural Networks (ANNs) are a
ML method commonly involved in PV power forecast. Finally, hybrid methods consist of
combinations between other forecast methods, with the purpose of solving the weaknesses
of individual ones and benefiting from their advantages [7,8].

In the current work, as forecast models, several combinations between ANNs and clus-
tering techniques are proposed. Clustering is an unsupervised machine learning technique
that allows the partitioning of a dataset into groups of samples presenting similarities [9,10].
In the following, different clustering criteria are applied to divide the days in a dataset
into different classes according to their weather conditions. Once a partition is defined, a
specific ANN is developed for every cluster: each ANN is trained using only samples be-
longing to a certain cluster and is used to forecast PV power production only in the weather
conditions typical of that cluster. The similarity between PV power curves registered in
similar weather conditions is therefore exploited to construct optimized forecast models.

The aim of this paper is to assess whether it possible to improve the training of artificial
neural networks for day-ahead PV power forecast by dividing a dataset through clustering
techniques and, in the case of a positive answer, to identify the best-performing dataset
partition in terms of forecast accuracy between the proposed ones.

2. Case Study and Procedure

Different combinations between clustering techniques and artificial neural networks
are tested, validated, and compared on a real case study: a PV facility in SolarTechLAB, at
Politecnico di Milano [11]. However, the proposed procedure is valid for PV plants of all
sizes. The available dataset contains historical data about measured power and predicted
weather parameters, namely temperature, global horizontal irradiance, global plane-of-
array irradiance and wind speed. The predicted weather parameters are provided as input
to the proposed prediction models, whose output is compared with the measured power
data to assess the forecast performance. Data are recorded on an hourly basis for a total
amount of 840 days in the time span comprised between January 2017 and September 2020.

The overall PV power forecast process can be summarized as the iterative multi-
step procedure represented in Figure 1. In the following, details about every single step
are provided.

Figure 1. Proposed forecast procedure.
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2.1. Clustering Phase

In the clustering phase, to obtain a proper partition, the daily clearness index (Kt)
is employed in clustering as meaningful parameter for day type estimation [12–14]. It is
defined as:

Kt = G/G0 (1)

In the equation, G is the daily global horizontal irradiation, while G0 represents the corre-
sponding daily extraterrestrial horizontal irradiation. Hence, Kt is a dimensionless quantity
employed in day type clustering thanks to its capability to remove the seasonal depen-
dence from solar irradiation, isolating the information content about weather conditions [9].
Large values of clearness index indicate clear sky conditions, while low values represent
overcast sky conditions. Starting from the previously described dataset, the Kt value for
each day is computed by means of the same procedure applied by ESRA (European Solar
Radiation Atlas) [15].

Then, four different dataset division criteria are proposed, namely: FT-A, FT-B, KM-3,
and KM-2. All the approaches are based on the clearness index Kt and, as previously men-
tioned, aim to divide the dataset in classes according to weather conditions of single days.

FT-A (Fixed Threshold set A) and FT-B (Fixed Threshold set B) are not properly
clustering algorithms, but they perform a partition relying of fixed threshold values of
clearness index defined in scientific literature [16,17]. In detail, they divide the dataset in
three different weather classes based on the thresholds summarized Table 1.

Table 1. Clearness index partition.

Weather Conditions FT-A FT-B

Sunny Kt > 0.45 Kt > 0.65
Partially cloudy 0.25 < Kt < 0.45 0.35 < Kt < 0.65
Cloudy Kt < 0.25 Kt < 0.35

Both KM-3 and KM-2 are based on the k-means clustering algorithm. The choice of
k-means instead of other possible clustering algorithms is related to its simplicity in imple-
mentation and its efficiency. It is worth noticing that the application of k-means algorithm
based on a single parameter (i.e., the clearness index) corresponds to a fixed-thresholds-based
partition where the thresholds are set automatically by the algorithm instead of by an external
intervention (as in FT-A and FT-B). The difference between KM-3 and KM-2 consists of the
choice of the number of clusters (K). KM-3 adopts K = 3 for a homogeneous comparison
with the fixed-thresholds-based approaches (i.e., FT-A and FT-B). KM-2 exploits some proper
indexes to select the best possible dataset partition in terms of clustering quality, namely:
Silhouette index, Davies-Bouldin index and Calinski–Harabasz index.

Given a generic dataset X = {X1, X2, . . . , XN}, containing N elements and partitioned
into K clusters C = {C1, C2, . . . , CK}, these indexes can be computed as follows.

The Silhouette index [18] (computed as global value) is defined as:

S(C) =
1
N
·

K

∑
j=1

1
mj
·

mj

∑
i=1

bj
i − aj

i

max{aj
i , bj

i}
(2)

In the equation: mj is the number of elements in the generic cluster Cj; aj
i is the average

distance between the ith element in the cluster Cj and the other elements in the same cluster;

bj
i is the minimum average distance between the ith element in the cluster Cj and all the

elements belonging to clusters Ck, with k = {1, 2, . . . , K} and k 6= j. The optimal number of
clusters is the one that maximizes the value of Silhouette index.
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The Davies-Bouldin index [18] is defined as:

DB(C) =
1
K
·

K

∑
i=1

max
i 6=j

∆(Ci)− ∆(Cj)

δ(Ci, Cj)
(3)

In the equation: ∆(Ci) is the within-cluster distance; δ(Ci, Cj) is the between cluster distance.
The optimal clustering solution is the one that minimizes the Davies-Bouldin index value.

The Calinski–Harabasz index [19] is defined as:

CH(C) = ∑K
i=1 mi · ||Gi − G||2

∑K
i=1 ∑X∈Ci

||X− Gi||2
· N − K

K− 1
(4)

In the equation: mi is the number of elements in the cluster Ci; Gi is the barycentre of
the cluster Ci (in the case of k-means clustering, it corresponds to the centroid); and G is
the barycentre of the entire dataset (the overall mean of the data). The optimal clustering
solution is the one that maximizes the value of Calinski–Harabasz index.

These indexes are computed in function of different numbers of clusters and, applying
a majority voting procedure, K = 2 is selected as the optimal dataset partition.

2.2. Extraction Phase

The extraction phase corresponds to the extraction of a test day, consisting of 24 consec-
utive hourly samples, from the initial dataset. This day constitutes the test set on which the
prediction performance is computed. The cluster of origin of the extracted day is assumed
to be unknown, as it would be in a real day-ahead power forecast. For a complete and
reliable prediction performance assessment, all days available in the dataset are extracted
one by one in different iterations.

2.3. Classification Phase

In the classification phase, the most suitable cluster for the test day is identified. Once
labeled, the test day is assigned to the proper ANN, which perform the power prediction
in the test day weather conditions. Therefore, this phase represents an additional step with
respect to the single-network-based forecast, where the inputs are directly provided to the
unique ANN available. As classifier, the random forest model is chosen, among all the
possible algorithms, thanks to its flexibility, fast implementation, and easy tuning [20]. The
classifier optimization consists of a proper selection of number of trees and input features
based on out-of-bag classification error. The optimal configuration consists of a structure
with 60 trees that takes global horizontal irradiance and global plane-of-array irradiance as
input features.

2.4. Prediction Phase

Lastly, in the prediction step, different neural networks are developed to predict the
PV power output in the extracted test days. Two different approaches are adopted, namely
NN-Clust and NN-Std.

NN-Clust represents the clustering-based approach. In this approach, only days
belonging to the same cluster of the test day are used or the training of each ANN. Then,
the trained ANN predicts PV power output for the test day, characterized by weather
conditions similar to those of samples involved in training. For the training of each
ANN, 10% of samples contained in a given cluster is randomly extracted as validation
set, while the remaining 90% constitutes the training set. Moreover, an ensemble of 10
independent trials is implemented to enhance the generalization capability of the model.
To optimize the hidden layer size, a sensitivity analysis is carried out for every ANN
corresponding to a different cluster. In practical terms, the sensitivity analysis studies the
trade-off between performance and computational cost, analyzing the value of the Mean
Square Error in function of a variable number of hidden neurons. The predicted weather
parameters available in the dataset, namely temperature, global horizontal irradiance, and



Eng. Proc. 2021, 5, 16 5 of 9

global plane-of-array irradiance and wind speed, are provided as input features to all
the networks.

On the other hand, NN-Std represents the most common forecast approach in scientific
literature, involving a single neural network, and it is developed for comparison with the
previously described clustering-based approach. For the sake of a fair comparison, NN-Std
must present several similarities with NN-Clust: same number of neurons in the hidden
layer, same input features and same days predicted as test. The crucial difference between
NN-Clust and NN-Std is that the latter is trained with days extracted from all clusters.

3. Error Metrics

Given a forecast output P and an observed output P̂ several error metrics are defined
and adopted in this work for performance evaluation.

The Normalized Mean Absolute Error (NMAE) estimates the average magnitude of
the errors for a set of N predictions divided by the plant net capacity C:

NMAE% =
1
N
·

N

∑
h=1

Ph − P̂h
C

· 100 (5)

The Root Mean Square Error (RMSE) is computed using the square of the difference
between observed and predicted values, and therefore penalizes large gaps:

RMSE =

√√√√ 1
N
·

N

∑
h=1

(Ph − P̂h)2 (6)

The normalized Root Mean Square Error (nRMSE) corresponds to the ratio between
RMSE and the maximum observed power output in the considered time frame:

nRMSE% =
RMSE

max(Ph)
· 100 (7)

The Weighted Mean Absolute Error (WMAE) is based on the total energy production:

WMAE% =
∑N

h=1 |Ph − P̂h|
∑N

h=1 Ph
(8)

Finally, the Envelope-weighted Mean Absolute Error (EMAE), introduced in [21], aims
to provide a measure of forecast accuracy in the interval between 0% and 100%:

EMAE% =
∑N

h=1 |Ph − P̂h|
∑N

h=1 max(Ph, P̂h))
(9)

4. Results and Discussion

The groups identified by the different dataset partitioning methods proposed are
different and quite unbalanced in terms of numerosity, as reported in Table 2. In general,
the cluster corresponding to sunny conditions is the largest while the others, in comparison,
contain much less elements. The only exception is represented by FT-B, providing a
more homogeneous grouping where sunny days and partially cloudy days clusters have
comparable size. The numerosity of a cluster is relevant by the point of view of the forecast:
ANNs trained using too few elements could present poor generalization performance.

Concerning the forecast accuracy, several comparisons are performed. First, the
NN-Clust models developed are compared to the corresponding NN-Std to evaluate
the performance enhancement allowed by the proposed methodology. The performance
improvements computed according to all the evaluation metrics are reported in Table 3.
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Table 2. Clusters numerosity with different partitions.

Weather Conditions FT-A FT-B KM-3 KM-2

Sunny days 641 339 511 618
Partially cloudy days 125 369 193 -
Cloudy days 74 132 136 222

Total 840 840 840 840

Table 3. Performance improvement given by NN-Clust with respect to NN-Std.

Method Cluster ∆NMAE ∆RMSE ∆nRMSE ∆WMAE ∆EMAE

KM-3 3 6.0% 3.9% 7.9% 7.0% 4.2%
KM-2 2 4.6% 1.9% 6.5% 6.0% 3.4%
FT-A 3 3.9% 2.0% 5.4% 5.2% 3.2%
FT-B 3 5.8% 3.3% 7.1% 6.1% 3.9%

Independently from the error metric and the dataset partition considered, the ap-
proach involving clustering (i.e., NN-Clust) outperforms the one based on a single-network
prediction (i.e., NN-Std). The largest improvement recorded consists of an error reduction
of 7.9% in nRMSE with KM-3, while smallest one consists of an error reduction of 1.9% in
RMSE with KM-2. Therefore, weather type clustering is demonstrated to be effective and
beneficial when combined to ANN with the goal to optimize their training.

Then, a comparison between different dataset partitioning criteria, always in terms of
prediction performance, is carried out and visually represented in Figure 2. The spider-
web chart is represented normalizing all the error metrics, i.e., dividing them by the
corresponding maximum recorded value.

Figure 2. Comparisons between different partitioning methods.

Comparing all the approaches that divide the dataset in 3 clusters, it is observed that
the clustering-based approach, i.e., KM-3, outperform both FT-B and FT-A, based on fixed
threshold values of clearness index. Therefore, at equal number of clusters identified, the
clustering-based methods exhibit better performance.

On the other hand, comparing the clustering-based approaches, i.e., KM-3 and KM-2,
four error metrics out of five highlight the superiority of clustering method KM-3, even if
the error reduction allowed with respect to KM-2 is always limited. This means that the
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optimal dataset partition in terms of clustering quality does not necessarily imply the best
prediction performance of the forecast model.

Among all the dataset partitioning methods considered, KM-3 reveals to be the best-
performing one by the point of view of forecast accuracy.

Lastly, the “best” and “worst” days in terms of forecast performance, corresponding
respectively to minimum and maximum recorded values of EMAE, are extracted and
analyzed for each cluster identified by KM-3, i.e., the best-performing partitioning criterion.
For these days, the actual power curve (Pm) and the ones forecast by NN-Clust and NN-Std
approaches are depicted and compared in Figure 3.
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Figure 3. Forecast and actual power curves in: “best” (a) and “worst” (b) sunny days, “best” (c) and “worst” (d) partially
cloudy days, and “best” (e) and “worst” (f) cloudy days.
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In the “best” case for sunny days, both NN-Clust and NN-Std approaches accurately
approximate the smooth power curve typical of sunny days. The “best” partially cloudy
day presents an actual power trend not as smooth as a typical sunny day, but not even
much irregular. Indeed, this day shows one of the highest clearness index value (0.53)
among the partially cloudy days cluster. The forecast curves accurately approximate the
actual one except for a small region around the central hours of the day, where NN-Clust
clearly outperforms NN-Std. The “best” cloudy day presents the irregular PV power trend
typical of overcast sky conditions. NN-Clust outperforms NN-Std in terms of forecast error,
but both models are capable of accurately approximating the actual trend.

The “worst” days always correspond to errors in weather forecast, when the real weather
characteristics of a given day turned out to be completely different from the expected ones. In
this condition, the forecast power either strongly overestimate or underestimate the measured
one. It is, therefore, observed that with inaccurately predicted weather parameters in input to
an ANN, the forecast performance exhibits a heavy deterioration.

5. Conclusions

With the increasing RES penetration in the energy mix, reliable forecast tools allow
the prediction of the expected power production and its fluctuations, leading to a more
efficient grid management. The current work focuses on PV power output prediction
and proposes several combinations of ANNs and clustering techniques for an enhanced
day-ahead forecast. The aim of this work is to assess whether it possible to improve
the training of artificial neural networks for day-ahead PV power forecast by dividing a
dataset through clustering techniques and, in the case of a positive answer, to identify the
best-performing dataset partition in terms of forecast accuracy between the proposed ones.
The methodologies proposed are tested and validated on a real case study, a PV facility
located in Politecnico di Milano, the SolarTechLAB.

The conclusions drawn from the analysis of the results are summarized in the following:

• The proposed procedure, based on a day type clustering according to weather con-
ditions, is beneficial for ANNs training. Indeed, the performance obtained with
clustering-based approaches always outperform those of their non-clustering-based
counterpart. The NN-Clust (clustering-based) approach based on KM-3, i.e., the best-
performing combination, presents an improvement of 4.2% in EMAE with respect to
the corresponding NN-Std (non-clustering-based) approach.

• Comparing all the approaches identifying a constant number of clusters (i.e., FT-A,
FT-B and KM-3, identifying K = 3 clusters), it is observed that the clustering-based
partition is more effective than clearness-index-fixed-threshold-based ones in terms of
forecast performance.

• Comparing the clustering-based approaches (i.e., KM-3 and KM-2), it is observed that
the optimal dataset partition in terms of cluster quality do not necessarily lead to the
best forecast result. Therefore, a partition showing good scores according to a quality
evaluation criterion do not necessarily imply a good effectiveness in an application.

• The forecast performance is strongly influenced by the inaccuracies in weather param-
eters prediction, which can heavily affect the final result.
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