
Fast Direct Calibration of Interest Rate Derivatives Pricing
Models

Luca Sabbioni
luca.sabbioni@polimi.it
Politecnico di Milano

ISI Foundation

Marcello Restelli
marcello.restelli@polimi.it

Politecnico di Milano

Andrea Prampolini
andrea.prampolini@intesasanpaolo.com

Banca Intesa Sanpaolo

ABSTRACT
To price complex derivative instruments and to manage the associ-
ated financial risk, investment banks typically model the underlying
asset price dynamics using parametric stochastic models. Model
parameters are calibrated by fitting cross sections of option prices
on the relevant risk factors. It is fundamental for a calibration
method to be accurate and fast and, to this end, Deep Learning
techniques have attracted increasing attention in recent years. In
this paper, the aim is to propose a Neural Network based calibra-
tion of a pricing model, where learning is directly performed on
market data by using a non-trivial loss function, which includes
the financial model adopted. In particular, the model chosen is the
two-additive factor Gaussian Interest Rates model in a multi-curve
framework calibrated on at-the-money European swaptions. The
main advantage lies in the independence from an external calibra-
tor and in the calibration time, reduced from several seconds to
milliseconds, achieved by offloading the computational-intensive
tasks to an offline training process, while the online evaluation can
be performed in a considerably shorter time. Finally, the efficiency
of the proposed approach is tested in both a single-currency and a
multi-currency framework.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression.

KEYWORDS
Direct Financial Calibration, Artificial Neural Networks, Inverse
Problem, Pricing Models

ACM Reference Format:
Luca Sabbioni, Marcello Restelli, and Andrea Prampolini. 2020. Fast Direct
Calibration of Interest Rate Derivatives PricingModels. InACM International
Conference on AI in Finance (ICAIF ’20),October 15–16, 2020, New York, NY,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3383455.
3422534

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICAIF ’20, October 15–16, 2020, New York, NY, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7584-9/20/10. . . $15.00
https://doi.org/10.1145/3383455.3422534

1 INTRODUCTION
Over-the-counter interest rate derivatives (IRDs) represent one of
the deepest global markets, with a notional outstanding amount
estimated at around $500 trillion in 2019 [11]. Most of the liquidity is
concentrated in standardized swap and swap option (or “swaption”)
contracts, which are simple to evaluate. However, investment banks
are also active in tailor-made, more complex (“exotic”) IRDs, where
sophisticated mathematical models of interest rate dynamics are
used to price and manage the associated financial risk.

These models are typically parametric, i.e. they depend on a
set of parameters that must be optimized so that the models can
achieve an accurate fit to market data (prices of swaps and liquid
swaptions). This task is called calibration (or, in other frameworks,
inverse problem), and is relatively time-consuming for a business
where speed is of the essence. In this context, calibration approaches
based on Machine Learning [3, 10, 15–17, 21, 24, 29] are attracting
increasing attention as a faster alternative to more traditional root
searching algorithms. Moreover, fast calibration of interest rate
models is desirable for financial institutions beyond applications to
exotic IRDs: interest rates determine the discounting process for
computing the present value of future cash flows, and are thus a key
ingredient for modelling financial claims more generally. Within
our approach, the goal is to learn, through Feed Forward Neural
Networks trained on historical data, a mapping from the space of
swaption prices to the parameter space. In this way, as soon as new
prices are available, a set of parameters close to the optimal ones is
immediately provided; these new samples can also be considered
to refine the mapping in an online setting. In a similar fashion as in
[15], themain advantage is calibration speed, achieved by offloading
the computational-intensive tasks to an offline training process
while the online evaluation can be performed in a considerably
shorter time. However, unlike [15] and other Supervised Learning
techniques proposed in this context [19, 23], our approach does
not consider solutions provided by other external calibrators, but
relies only on market data and on the financial model taken into
account, thus reducing noise for approximations. As a consequence,
the target is not directly available and the loss function (Sections 2,
3) is not trivial: for this reason it differs from standard Supervised
Learning techniques. As in [16], the non-convexity of the objective
function leads to the presence of local minima, thus leading to the
need to consider global and local optimization algorithms (Section
5).

The proposed approach is evaluated (in Section 7) in a real frame-
work, where the chosen model is the two-additive factor Gaussian
model G2++ [7], calibrated on European-style at-the-money (ATM)
swaptions, both from a single-currency and from a multi-currency
dataset (presented in Section 4).

https://doi.org/10.1145/3383455.3422534
https://doi.org/10.1145/3383455.3422534
https://doi.org/10.1145/3383455.3422534


ICAIF ’20, October 15–16, 2020, New York, NY, USA Sabbioni et al.

2 CALIBRATION
2.1 Feedback function
In this section, we deal with the definition of the calibration problem,
without considering the details of the financial model𝑀 chosen. In
particular, we are interested in finding the best mapping between
the market data 𝑄 and its related set of model parameters Θ. We
consider the quote predicted by a pricing model as �̂�Θ (𝜏, b), where
𝜏 is used to denote the peculiar properties that identify the chosen
financial instrument (e.g., the maturity, the tenor, or the strike if
an option is not ATM), and b refers to exogenous factors, e.g., the
discount and forward curves.Often the dependence on b will be
omitted. The daily market data, for a specific day 𝑑 , consist of a
set 𝑇𝑑 of financial instruments to be calibrated. We can define the
following daily cost function:

𝜖 (Θ𝑑 , 𝑄𝑑 ) =
√∑
𝜏 ∈𝑇𝑑

𝛼𝜏 (�̂�Θ𝑑
(𝜏) −𝑄𝑑 (𝜏))2 , (1)

that is, the weighted Root Mean Squared Error between the pre-
dicted prices �̂�𝑑 and the related market values 𝑄𝑑 , where 𝛼𝜏 is a
specific weight chosen for every instrument 𝜏 in the set of daily
instruments 𝑇𝑑 .

The main idea is to immediately provide the set of parameters
Θ𝑑 once a new set of market values is available, without the need to
restart the calibration procedure from scratch. For this reason, we
considered the possibility of including the historical dataset in the
calibration process, so that Θ𝑑 is mapped through a Feed Forward
Neural Network (FFNN) [14]. In this way, the model parameters
depend directly on the set of market prices 𝑄𝑑 (or on its transfor-
mation, as done in Section 4.1), and a set of neural weights 𝝎, i.e.,
Θ𝑑 = 𝑓 (𝑄𝑑 ,𝝎).1 It is possible to consider the calibration problem
in terms of Supervised Learning, with the objective function being
the minimization, over the weight space Ω, of the empirical mean
of the cost functions over the historical dataset (the error):

min
𝜔 ∈Ω

1
𝐷

𝐷∑
𝑑=1

𝜖 (Θ𝑑 , 𝑄𝑑 ) = min
𝜔 ∈Ω

1
𝐷

𝐷∑
𝑑=1

𝜖 (𝑓 (𝑄𝑑 , 𝜔), 𝑄𝑑 ) . (2)

Since the input space of prices is large, the input features of the
FFNN are obtained by the Principal Component Analysis (PCA) [20]
to reduce the dimensionality of the problem. The results of this
process are shown in Section 4. Finally, as said in [16], the financial
calibration process can have more than one local optima; for this
reason, we implemented a two-fold calibration process: the first
one is a global search for a candidate neighbor of a global optimum,
while the second one is a local, gradient-based optimization process,
as described in Section 5.

2.2 Offline vs Online
As mentioned in the introduction, with our approach we can learn
the mapping 𝑄 → Θ by using the historical dataset (in our sim-
ulation, the training set), so that, as soon as new market data is
available, the related parameter can be predicted on the fly. This
approach is intended as offline learning. However, this might en-
tail two issues: the first is related to the non-stationarity of the
market; the similarity between market quotes decreases as time
1Dependence on exogenous market factors b is omitted here for simplicity.

passes. Consequently, the goodness of the fit may deteriorate over
time. The second issue is related to possible shocks, or changes in
market behavior; in this case, the accuracy of the mapping may
be lower, since market data can be placed in areas that have never
been seen in the historical dataset. Hence, we can think of updating
the calibrator: after having collected and evaluated a small batch
of new samples (e.g., a weekly batch), this can be included in the
training set so as to perform a local calibration with the overall,
increased dataset. If the predicted parameters are close enough to
the optimal ones, this latter procedure should be fast enough and
can avoid the possible drawback mentioned before. This can be
seen as an online setting, where learning dynamically adapts to new
patterns in market quotes. In this way, the training set becomes
larger and larger: on the one hand, it let us consider a larger part of
the state space; on the other, computational complexity increases
too. In order not to become unfeasible, the calibration can consider
a stochastic sampling of the daily samples to be considered at each
iteration.

3 PRICING MODEL: G2++
In this section, we define the parametric stochastic model that re-
quires calibration. In particular, we specify the dynamics of the
instantaneous, continuously compounded, annualized interest rate
(the “short rate”) as a two-additive factor Gaussian model (G2++).
The G2++ is equivalent to the popular two-factor Hull-White inter-
est rate model [7], which allows an easy-to-follow tractability of
pricing formulas; in addition, it reproduces market prices of many
vanilla swaptions with sufficient accuracy, thanks to its richer dis-
tributional properties compared to simpler models, such as Vasicek.

The G2++ model is defined by the following Stochastic Differen-
tial Equation:

Definition 3.1. Let Q be the Risk Neutral probability. A stochastic
process defined on a filtered probability space (Ω,ℱ, (ℱ𝑡 )𝑡 ,Q) is
said to be a 𝐺2 + + process if:

𝑟 (𝑡) = 𝑥 (𝑡) + 𝑦 (𝑡) + 𝜑 (𝑡), (3)

where 𝜑 : R→ R is a deterministic function such that 𝜑 (0) = 𝑟0;
the processes {𝑥 (𝑡) : 𝑡 ≥ 0} and {𝑦 (𝑡) : 𝑡 ≥ 0} satisfy

𝑑𝑥 (𝑡) = −𝑎𝑥 (𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑥 (𝑡) 𝑥 (0) = 0 (4)
𝑑𝑦 (𝑡) = −𝑏𝑦 (𝑡)𝑑𝑡 + [𝑑𝑊𝑦 (𝑡) 𝑦 (0) = 0, (5)

with 𝜎 ≥ 0, [ ≥ 0, and (𝑊𝑥 ,𝑊𝑦) being a two-dimensional Q-
Brownian Motion (BM) with instantaneous correlation 𝜌 ∈ [−1, 1]:

𝑑𝑊𝑥 (𝑡)𝑑𝑊𝑦 (𝑡) = 𝜌𝑑𝑡 . (6)

The parameters to be calibrated Θ = {𝑎, 𝑏, 𝜎, [, 𝜌} are five: 𝑎
and 𝑏 are called Mean Reversion Speeds (MRSs), 𝜎 and [ are the
volatilities (VOLs) and 𝜌 is the correlation between BM components.
This model presents two sources of randomness: one is usually
meant to drive short-term dynamics, the other is more important
in the long term.

In this paper, the deterministic shift 𝜑 (𝑡) is considered as known,
but twofold; indeed, we are considering a multi-curve framework,
adopted in the standard market practice [4, 6], which properly takes
into account two different curves to forecast and discount cash flows.
Hence, through a daily bootstrap procedure from market curves



Fast Direct Calibration of Interest Rate Derivatives Pricing Models ICAIF ’20, October 15–16, 2020, New York, NY, USA

(Overnight Indexed Swaps for discounting, and EURIBOR 6m for
forwarding), we can build two different shift curves: 𝜑𝑑 (𝑡) for the
discounting case, 𝜑𝐹 (𝑡) for the forwarding case. Actually, what is
used is their related terms Φ(𝑡,𝑇 ) = 𝑒−

∫ 𝑇

𝑡
𝜑 (𝑠)𝑑𝑠 , split into Φ𝑑 or

Φ𝐹 . To generate a realistic calibration, the financial instruments
necessary to build the dataset must be liquid and easily tractable
under the chosen model. The simplest and most liquid derivative
having interest rates as underlying are the European I.R. Swaptions.
In particular, we will consider ATM Payer Swaptions, whose tenor
and maturity are defined in the contracts (hence, they are specified
by 𝜏 ), and the consequent cash flows of the (quarterly) payments in
the fixed leg are denoted by the set Γ. The arbitrage-free pricing
formula of I.R. Swaptions according to the G2++ model can be
synthesized as in Equation 7, which is equal to Theorem 4.2.3 in [7],
with a slight modification to take into account the shift term:

�̂�Θ (𝜏) =
∫ ∞

−∞
𝑓𝑋 (𝑥)

∑
𝛾 ∈Γ

𝜓𝛾 (𝑥 .𝑦 (𝑥))𝑑𝑥, (7)

where 𝑓𝑋 (𝑥) is a Gaussian distribution having known explicit mean
`𝑥 and variance 𝜎𝑥 evaluated in 𝑥 , 𝜓 𝑗 is an explicit function, and
𝑦 (𝑥) is the unique solution of an equation in the following form:∑

𝛾 ∈Γ
𝑐𝛾𝑒

−𝛼𝛾𝑥−𝛽𝛾 𝑦 (𝑥) = 0, (8)

where 𝑐𝛾 , 𝛼𝛾 , and 𝛽𝛾 are explicit coefficients. The first approxima-
tion to Equation (7) is obtained by discretizing the distribution by
means of the Gauss-Hermite quadrature [28]: by taking a set of
nodes {𝑥^ } and related weights {𝜔^ }, the adopted pricing formula
becomes:

�̂�Θ (𝜏) ≈
1
√
𝜋

𝐾∑̂
=1
𝜔^

∑
𝛾 ∈Γ

𝜓𝛾
(√

2𝜎𝑥𝑥^ + `𝑥 , 𝑦 (
√
2𝜎𝑥𝑥^ + `𝑥 )

)
. (9)

The major problem related to the computation of these prices is
that, for each day 𝑑 in the training set, for each swaption considered
(denoted with 𝜏), and for each quadrature node 𝑥^ , the solution of
Equation (8) must be computed. This is the real bottleneck in the
computational times of the calibration approach. In order to speed
up the computation, the solution adopted consists, first of all, in
the adoption of the Halley’s algorithm, which in this case is easy
to perform and achieves a cubic convergence [1], but above all in a
massive parallelization by preforming pricing on GPU, where each
block consists in a reference date, where the single swaptions are
priced in each kernel.

4 DATASET AND PREPROCESSING
4.1 Single currency
First, we consider the single currency framework. The dataset is
composed of Swaptions expressed in €, with a range of 17 possible
expiries (from 1M to 30Y) and 14 possible tenors (1Y to 30Y), for a
total of 238 combinations per day. Each daily sample (1420 samples,
from 2013-28-06 to 2019-11-01) is provided with three 14x17 matri-
ces: market prices, implied volatilities, and vega. However, there is
no need to consider every single value (total of 714 per daily sample)
as input for the neural network, because many features are highly
correlated and there is the risk of adding unnecessary complexity

(a) prices (b) Imp. volatilities (c) Vegas

Figure 1: Correlation of the 2Mx3Y swaption with the other
swaptions in the matrix (cell 2x3).

to the architecture. Indeed, it is possible to verify that the price
with a specified tenor and expiry, corresponding to a specific value
in the matrix, is highly correlated to the closest cells. This is due
to the fact that close swaptions have similar tenors and expiries,
and that the related cash flows exchanged between the counterpar-
ties are located at similar time intervals. While moving away from
the considered swaption, the correlation decreases, assuming also
strong negative correlations. This behavior is clearly depicted in
Figure 1a, where the correlation matrix is the one related to the
price of the swaption with 2 months as expiry and with a tenor
of 3 years. As far as volatilities are concerned, it is possible to de-
tect two groups of swaptions: the former collects swaptions with
lower expiries and tenors (upper left corner in Figure 1b); the other
swaptions are in the latter group. The swaptions in the same group
are strongly correlated to each other; on the other hand, the two
groups have a poor, negative correlation. Finally, the correlation
matrix of the vegas presented in Figure 1c shows that all swaptions
have generally high correlations.

As a consequence, the training samples are preprocessed with
a dimensionality reduction procedure, namely the Principal Com-
ponent Analysis (PCA [18]), an unsupervised learning technique
that looks for a projection of the data onto a lower-dimensional
linear space in such a way to minimize the loss of information, i.e.,
to maximize the variance of the projected data. The PCA process
selected 12 components that account for over 99% of the explained
variance, which is retained with over 75% in the first component,
which leverages the differences of short-term and long-term swap-
tions in terms of prices and implied volatilities. The vega, instead,
does not add information to the dataset. Hence, these new features
are the ones included as input for the Neural Network. The same
projection is applied in the test set, even if eventual changes in the
underlying distribution of market data might result in a slow degra-
dation of the efficiency of the process. We consider the possibility
to apply PCA-based change detection techniques [22] for future
works, in order to identify shifts in the distribution and to repeat
the calibration accordingly.

4.2 Multiple currencies
In a second instance, we consider a multi-currency framework,
where we consider a dataset with four currencies, EUR, USD, CAD,
and CHF, sharing the same mapping of the G2++ model parame-
ters.2 In order to have a homogeneous dataset, we only consider the
common expiry/tenor pairs for the calibration, obtaining a 10x10
2The exogenous factors b , as the forward and discount curves, differ for each currency.



ICAIF ’20, October 15–16, 2020, New York, NY, USA Sabbioni et al.

(a) prices (b) Implied volatilities

Figure 2: Correlation matrices of the 3Yx6Y swaptions of
four different currencies. Each row corresponds to the cor-
relations of the 3x6 swaption in a specific currency with re-
spect to the others. Each column specifies the currency of
the dataset with which the swaptions are being compared.

swaption matrix per currency. The same issues described for the
single-currency also apply in this case, but nowwe can also consider
the cross-currency correlations. Since it is not possible to show the
correlation matrix of the overall dataset, some particular features
have been selected as an example. In particular, the swaption with
a couple expiry/tenor of 3 and 6 years has been chosen for each
currency. In Figure 1 it is possible to see the correlation of prices and
volatilities of this swaption expressed in different currencies with
the features of each dataset. By focusing on the diagonal matrices
on the figure related to prices (Figure 2a), it is possible to verify
what was already underlined: within the same currency, closer
swaptions have higher correlations (3x6 swaption is placed in the
middle of the matrices), except for CHF, where all swaptions are
almost linearly correlated. The cross-correlation patterns suggest
that the CAD and USD markets are highly correlated. Milder corre-
lations hold when comparing these currencies with the EUR prices.
It is noticeable that the correlation of the 3x6 EUR swaption price
with all those in the CHF market is almost zero, while it becomes
strongly negative when taking the CAD and USD swaptions into
account. Figure 2b shows not only that the division of volatilities
into two groups (short-term and long-term swaptions) still holds,
but also that it is extended to a multi-currency framework. Again,
the CHF market behaves differently. A similar consideration can be
done for the vegas, with a generalized higher correlation between
all swaptions. The PCA procedure has been also performed in this
case with similar results.

5 ALGORITHM
In this section, we define the optimization algorithms adopted. As
explained in [16], local optimization methods can result in an un-
derperformance for calibration, since financial models are far from
being convex and usually show multiple local minima. Hence, our
calibration consists in the application of two sequential procedures:
the first is a global, random-search method (Cross Entropy, CE) and,
once a candidate neighborhood of the global optima is found, the
well-known gradient-based algorithm, BFGS, is executed.

The CE method [26] is an optimization algorithm, based on
Monte Carlo simulations. It is usually used to find the global mini-
mum of noisy functions. The customized version of our algorithm
simply consists of randomly sampling new parametrizations from

a Gaussian distribution and the ones resulting in the best perfor-
mance are selected; the empirical mean and variance are computed
to update the Gaussian distribution for the next generation of sam-
ples. The algorithm stops when the variance of the best samples
(across all the iterations) is below a certain threshold, which means
that they are focused in a neighborhood of a candidate global mini-
mum. This specific procedure, in the general idea, is similar to the
sampling procedure followed in [16].

Once this global search ends, local calibration can be applied
thanks to the well-known BFGS algorithm [8, 12, 27], a gradient-
based algorithm in which an approximation of the inverse of the
Hessian is used, as to include curvature information and accelerate
the convergence.3 Here it is possible to understand the main dif-
ference with the usual supervised learning techniques involving
neural networks: in order to perform backpropagation, the main
issue is that the loss function is not trivial since there is no direct
supervision; in our case, we do not have a distance measure with
respect to the optimal set of parameters, but a measure of the finan-
cial model error w.r.t. market data. However, it is still possible to
compute the gradient, leveraging the independence of the calibrator
from the interest rate model. This means that the model can be
replaced without changing the general structure of the calibrator;
furthermore, if the model is differentiable, it is possible to decom-
pose the gradient of the daily cost function 𝜖 (Θ𝑑 , 𝑄𝑑 ) defined in
Equation 1, w.r.t. to a general network weight 𝜔 by means of the
chain rule:

𝜕𝜖 (Θ𝑑 , 𝑄𝑑 )
𝜕𝜔

=
∑
\ ∈Θ𝑑

𝜕𝜖 (Θ𝑑 , 𝑄𝑑 )
𝜕\

𝜕\

𝜕𝜔
, (10)

where

𝜕𝜖 (Θ𝑑 , 𝑄𝑑 )
𝜕\

=

∑
𝜏 ∈𝑇𝑑 𝛼𝜏

(
�̂�Θ𝑑

(𝜏) −𝑄𝑑 (𝜏)
)2
𝜕\ �̂�Θ𝑑

(𝜏)
𝜖 (Θ𝑑 , 𝑄𝑑 )

. (11)

In practice, in Equation (10) the structure of the calibrator is split
into two components: the first is related only to the financial model
adopted and consists, as expressed in Equation 11, in the computa-
tion of the Jacobian of the model prices w.r.t. the parameters chosen;
the second component is related only to the network architecture,
following the usual backpropagation, and is independent of the
model M adopted.

As for the choice of the G2++ model we adopted, it is possible to
compute all the derivatives of the predicted prices in Equation (7)
w.r.t. the model parameters, with the same approximations adopted
in Equation (9) and using the implicit function theorem to obtain
the derivatives of the solution 𝑦 (𝑥). As a consequence, the compu-
tational complexity related to pricing is inherited for the gradient
computation; consequently, this procedure is parallelized and per-
formed on GPU, too.4

6 RELATEDWORKS
In literature, there is a plethora of recent research regarding neural
network applications on the prediction of market values, usually

3We are considering the full gradient computed over the whole training set; however,
it is possible to consider also the stochastic gradient in the case of large datasets.
4Another possibility for computing the gradient, not implemented in this paper, can
be the automatic differentiation that a tensor-based platform can provide.



Fast Direct Calibration of Interest Rate Derivatives Pricing Models ICAIF ’20, October 15–16, 2020, New York, NY, USA

in the form of implied volatilities, or their parametric represen-
tation [2, 5, 17, 19, 21]. In other cases, the goal is to find, using
ANNs or CNNs, a proxy of a model, or some properties related
to the samples generated by a learned model [17, 24, 29]. The pi-
oneering work in financial inverse calibration is [15], which has
some common points to our approach. Hernandez was the first one,
up to our knowledge, to consider a neural network approach for
financial calibration. However, the structure of the problem is set
up as a standard supervised learning problem, since the dataset
used for training contains as target variables the model parame-
ters already obtained through external calibrations, such as the
Levenberg-Marquardt local optimizer [25]; for this reason, we de-
note this approach as “indirect" calibration. These parameters are
then fitted by the network through local optimization algorithms
[15] or global methodologies [16] to avoid local minima. This frame-
work is interesting, since it allows replacing the standard calibrator
through transformations over the historical calibrated dataset: in
this way it is possible to perform immediate evaluations over new
market data. One of the major drawbacks of this approach is the
fact that, in this way, the neural network is only used as a proxy
for the external calibrator, reflecting its limitations: hence, added
to the intrinsic model error, there is the external calibration error
that cannot be neglected. In this paper, as shown in Section 5, we
consider a “direct" calibration, consisting in the adoption of a global
optimization, which is then followed by a local calibration that
leverages the properties of the financial model chosen, which were
ignored in the works mentioned above. Another drawback in [15]
and [16], consist in the fact that it is not possible to consider an
online calibration without starting the external optimization from
the new samples, undermining some of the advantages of the work.
In the framework of indirect calibration, other authors proposed
similar applications on different models [10]. An interesting work
in this context is [3], in which the optimization is twofold: since
the major computation efforts in financial calibration lie in pricing
(i.e., in the computation of 𝑄 (Θ, 𝜏, b)), the authors propose to learn,
in a first instance, a neural approximation of the pricing model;
then, similarly to [15], another calibration is performed to learn the
inverse mapping by using the learned proxy. This work is intrigu-
ing, but the proposed approach is still dependent on an external
calibrator and its errors might be propagated and increased in the
proxy, as in [23], in which a similar idea is proposed, by dynami-
cally training different layers of a single neural network. Finally,
as shown in [19], there is another major drawback in replacing the
pricing model with its proxy consists in the possible violation of
no-arbitrage conditions in the prices predicted from an ANN.

7 NUMERICAL SIMULATION
In this section, we provide the results of applying the calibration
procedure. In the first subsection, we discuss the results obtained
over the single currency calibration, with the dataset explained
in Section 4.1. In a second instance, we consider a multi-currency
scenario. In all cases, the neural network considered is composed
of two hidden layers; the activation function adopted is the hy-
perbolic tangent. The coefficient 𝐾 in Equation (9) is empirically
set to 20, and the weight 𝛼𝜏 related to Equation (1) is set as the
squared inverse vega of each swaption [13]. As for the details of the

Table 1: Train and validation error obtained by using differ-
ent hidden neurons per hidden layer [mean ± std on 5 runs].

Neurons Train error Validation error

3 0.3799 ± 0.0181 0.5426 ± 0.0714
5 0.3526 ± 0.0012 0.4907 ± 0.0382
8 0.3497 ± 0.0008 0.5290 ± 0.0262
10 0.3491 ± 0.0003 0.5606 ± 0.0531
20 0.3482 ± 0.0008 0.5822 ± 0.0430
30 0.3486 ± 0.0012 1.0970 ± 0.0793

algorithms, CE collects 100 samples each time and computes the
mean and variance for the best time for each iteration, plus the best
3 obtained over all iterations. CE stops when the sample variance
is below 0.3, while BFGS stops when the gradient norm is below
10−6 or after 250 iterations.

The neural architecture (with different numbers of neurons) is
built by considering the sigmoid for the hidden layers and the
hyperbolic tangent for the output layer as activation function, with
a different reshaping for every final parameter, in order to set a
fixed range of possible values, such as [-1,1] for the correlation and
positive values for the volatilities. The Mean Reversion Speeds are
not constrained to positive values.

7.1 Validation
In order to optimize the number of neurons per hidden layer, we
first performed a validation phase on the single currency scenario:
by using 40% of the dataset as a training set, and the subsequent 20%
as a validation set, we performed 5 different runs of the calibration
process for each one of the considered possibilities. The overall
feedback, with average values and standard deviations, is shown
in Table 1. In particular, it is possible to see that, as expected, very
small architectures are not sufficient to properly build the desired
mapping; on the other side, from only 5 neurons per layer, the
training error does not change too much, which means that the
daily error is close to the model error; however, it is possible to
see the overfitting effect in validation. With 30 or more neurons,
calibration starts to become more difficult for CE: due to the higher
dimensionality of the weight space, it becomes easier for the pro-
cedure to get stuck in local optima: in order to avoid this issue,
the number of samples collected per iteration should be increased,
resulting in very long computational times. Hence, we continued
our experiments by using only 5 neurons.

After validation, we considered a calibration with a split in the
dataset, where 60% is used as the training set. Another 20% builds
the online set: as explained in Section 2.2, one new daily sample is
considered iteratively; after the evaluation of the daily feedback,
it is added to the training set and then BFGS is performed again,
with a maximum number of iterations equal to 150.

The same validation procedure was performed for the multi-
currency case. However, since each currency has the swaption
market values expressed in its own currency, the region of the
state space included in the dataset is larger; hence, as shown in
Table 2, more hidden neurons are needed to represent the mapping.
The issue related to the convergence to local minima with larger



ICAIF ’20, October 15–16, 2020, New York, NY, USA Sabbioni et al.

Table 2: Train and validation error, multi-currency case
[mean ± std on 5 runs, 2 hidden layers].

Neurons Train error Validation error

5 0.35299 ± 0.1497 0.41790 ± 0.1224
10 0.31133 ± 0.0585 0.38520 ± 0.0717
20 0.28495 ± 0.0286 0.36751 ± 0.0523
30 0.33382 ± 0.0415 0.44688 ± 0.0761
40 0.50499 ± 0.0974 0.56397 ± 0.0910

networks here is amplified, thus having large train errors, especially
with 40 neurons per layer. By looking at the results, we used 20
neurons per hidden layer to perform the final (and online) training.

7.2 Single currency
In this section, we deal with the calibration in the single currency
setting shown in Section 4.1 and using 5 neurons per hidden layer.
After training on 60% of the historical dataset, we first evaluated
the feedback on the remaining part of the dataset, then simulated
the online calibration: we iteratively considered 5 the next new
daily samples and added them to the training set, thus updating the
weights by performing only the local calibration with a maximum
of 50 gradient steps. The online procedure is stopped when the
overall training set contains 80% of the entire dataset, while the
remainder is used for testing purposes.

The results in Figure 3 show the curves of the five model parame-
ters and the related daily feedback. In particular,the Mean Reversion
Speeds of the two processes defining G2++ model (𝑎 and 𝑏) have
a different order of magnitude. On the other hand, the volatilities
(𝜎, [) are in a similar range of values. At last, there is always a
strong negative correlation between the Brownian Motions, espe-
cially since 2015. As a consequence, it is possible to interpret that
the processes 𝑥 (𝑡) and 𝑦 (𝑡) have the same amplitude of random
noise, with opposite directions and a different mean reverting reac-
tion: one component has a stronger force that drives the dynamics
back to its mean, while the other one is milder as if one process
is driving the short-term dynamics, in contrast to the long-term
process. It is possible to see that the patterns of the MRSs and their
related volatilities are similar: indeed 𝑎 and 𝜎 show a correlation of
69% and [ have a correlation of 70% with 𝑏, which shows different
behaviors through time.

Feedback and online adaptation. By looking at the results
of the offline calibration, some considerations can be made with
regards to the daily feedback, shown in the last plot in Figure 3: even
if the gain w.r.t. a simpler model like Vasicek is clear (the results are
obtained through Levenberg-Marquardt algorithm [25]), we can see
that there is a degradation in time of the out-of-sample performance.
However, by considering the online calibration, it is possible to
reduce this effect and get a better fit on out-of-sample data. This
is mainly due to the auto-correlation between the series of market
values: the market trend slowly moves to unseen regions of the
state space and online calibration can improve the fit in those areas.
However, there is still a loss of information obtained from PCA:
this transformation is performed by considering the most useful

Table 3: Train and Test error obtained by using direct cali-
bration (ours) and indirect, once the best model parameters
are given from an “oracle" [mean ± std on 5 runs].

Method Neurons per layer Train error Test error

Oracle 0.3629 0.4272
Indirect 5 0.5017 ± 0.0380 0.8172 ± 0.0663
Indirect 20 0.4334 ± 0.0362 0.4953 ± 0.0280
Indirect 100 0.4226 ± 0.0203 0.5771 ± 0.0513
Direct 5 0.3699 ± 0.0026 0.5064 ± 0.0140

pieces of information of the training set, hence it might lose some
relevant features in the new samples, nor it is possible to simply
change the transformation without restarting the calibration. In
order to better understand the effects of time and trends in market
behavior with online learning, we performed the same training
process by considering a new dataset, in which the daily samples
are shuffled (hence there is no day-to-day correlation). In this case,
there is only a small gain between offline and online calibration,
due to the sole inclusion in the dataset of more samples. This gain
is negligible when compared to the one obtained with the actual
online calibration on the ordered dataset, as shown in Figure 4.

Computational times. As specified in Section 1, the main ad-
vantage of such calibration consists in the time needed to return a
new set of parameters once a set of market data is provided. Indeed,
the day-by-day calibration, performed with standard techniques
(L-BFGS-B [9]), takes on average 19 seconds per daily set of market
data. Instead, in our case the evaluation simply consists in providing
the output of a trained neural network, which is several order of
magnitude faster since, on average, it takes 1.2 · 10−3 seconds. This
is due to the fact that the training time is performed offline, thus
not affecting the real-time operations in the desks. The overall com-
putational time for training the network amounts to 190 minutes,
which is in any case faster than the total time needed to perform
the daily calibration on the training set (for a total of 285 minutes).

Direct and indirect calibration: comparison. In Table 3 we
compare our direct approach with the indirect calibration, where
the cost function is measured as quadratic loss w.r.t. the best param-
eters for each daily sample (oracle). In general, direct calibration
performs better, especially when considering the same network
architecture (although, indirect calibration with 20 neurons for
both the hidden layers obtains better test results with no statistical
evidence). This is due to the fact that the goal of indirect calibration
is to obtain outputs which are closer to the given target: however,
since the pricing function is not regular, this might still lead to
achieve feedbacks which are far from the optimum.

7.3 Multi currency
In the multi-currency scenario introduced in Section 4.2, the dataset
is made of approximately 945 business days per currency, fromMay
2015 to Jan 2019. The calibration process is the same as in the single
currency, but this time, as reported in Table 2, the chosen network
is built with 20 hidden neurons per hidden layer, since the space
to learn the mapping is broader. There are some considerations



Fast Direct Calibration of Interest Rate Derivatives Pricing Models ICAIF ’20, October 15–16, 2020, New York, NY, USA

1

2

3

4

5
·10−2

a

MRSpeed1

0.6

0.8

1

1.2

1.4

1.6
·10−2

σ

Vol1

−1

−0.95

−0.9

−0.85

ρ

Correlation

20
13

-06

20
14

-08

20
15

-09

20
16

-10

20
17

-11

20
19

-01

0.5

1

1.5

2

b

MRSpeed2

20
13

-06

20
14

-08

20
15

-09

20
16

-10

20
17

-11

20
19

-01

1

2

3

·10−2

η

Vol2

20
13

-06

20
14

-08

20
15

-09

20
16

-10

20
17

-11

20
19

-01

0.5

1

1.5

ε d

Feedback

Figure 3: Calibration on the € dataset. The first five plots show the behavior of the G2++ parameters, while the last one illus-
trates the daily feedback. The dense teal curve represents the offline calibration (trained up to the red line). The dotted brown
line denotes the online calibration, starting from the red vertical line up to the black line (and then tested) with a batch size
of 5 daily samples. The magenta dashed line represents the daily error obtained from the calibration of the Vasicek model.

shuffled historical

900 1,000 1,100 1,200 1,300 1,400

0

0.2

0.4

sample

on
lin

e
ga

in
ra

tio

Figure 4: Daily Feedback relative gain obtained with on-
line calibration: comparison between using the dataset with
chronological order (historical) and shuffled daily samples.
The vertical black line denotes the end of the online phase.

to make upon this setting: first of all, the subset of swaptions 𝑇𝑑
considered is composed of the most liquid ones; hence, the daily
feedback curve for EUR depicted in Figure 5is lower than the single-
currency one, because the RMSE is computed from a smaller set.
As a consequence, the excluded swaptions are the least liquid ones,
with higher uncertainties in market behavior, hence the noise in the
measures is reduced and the same holds for the degradation in the
test set. In Figure 6 it is possible to see that the parameters detected
for the different currencies behave in a similar way and suggest
similar dynamic properties. However, there are some differences
in the EUR curve w.r.t. the single-currency framework: the most
important one is the presence of a negative Mean Reversion Speed,
which, in the previous case, was not detected.

8 CONCLUSIONS AND FUTUREWORKS
Improving calibration speed of stochastic interest rate models can
be valuable for investment banks and more generally for agents
in the derivatives market. In this work, we propose a black-box
calibration of a two-factor interest rate model (G2++) in a multi-
curve setting, consisting of a FeedForward Neural Network which is
independent of external calibrators, as it learns directly frommarket
data by means of the financial model (differently from state of the
art NN-based calibration methods). The combination of a global
(stochastic) and a local (gradient-based) optimization algorithm is
proposed, along with the parallel implementation on GPU, which
provides a significant speed up. Training can be performed offline
by using the historical dataset, while small improvements can be
obtained online. Finally, the approach is evaluated in two scenarios,
which consider a single-currency, and a multi-currency framework.

In future works, we will consider the possibility to apply change
detection techniques [22] to trigger online updates or to restart
PCAprojection.Moreover, the calibration task in themulti-currency
setting will be extended to include a consistent specification for
foreign exchange rate dynamics, in order to achieve fast calibration
of a fully specified cross-currency derivatives pricing model.

ACKNOWLEDGEMENTS
The research was conducted under a cooperative agreement be-
tween ISI Foundation, Intesa Sanpaolo IMI Corporate & Investment
Banking Division and Intesa Sanpaolo Innovation Center.

REFERENCES
[1] G Alefeld. 1981. On the convergence of Halley’s Method. The American Mathe-

matical Monthly 88, 7 (1981), 530–536.
[2] Panayiotis C Andreou, Chris Charalambous, and Spiros H Martzoukos. 2010.

Generalized parameter functions for option pricing. Journal of banking & finance
34, 3 (2010), 633–646.



ICAIF ’20, October 15–16, 2020, New York, NY, USA Sabbioni et al.

20
15

-5

20
16

-4

20
17

-3

20
18

-2

20
19

-1

0

0.5

1

ε d

EUR daily feedback

20
15

-5

20
16

-4

20
17

-3

20
18

-2

20
19

-1

0

0.5

1

CAD daily feedback

20
15

-5

20
16

-4

20
17

-3

20
18

-2

20
19

-1

0

0.5

1

USD daily feedback

20
15

-5

20
16

-4

20
17

-3

20
18

-2

20
19

-1

0

0.2

0.4

0.6

0.8

CHF daily feedback

Figure 5: Multi-currency offline calibration: comparison of G2++ offline daily error (solid line) with Vasicek daily error (ma-
genta dotted line). The red vertical line defines the train/test split.

EUR
CAD
USD
CHF−4

−2

0

2

4

·10−2

a

MRSpeed1

0.4

0.6

0.8

1

1.2

·10−2

σ

Vol1

20
15

-5

20
16

-4

20
17

-3

20
18

-2

20
19

-1

0.5

1

b

MRSpeed2

20
15

-5

20
16

-4

20
17

-3

20
18

-2

20
19

-1
1

1.5

2
·10−2

η

Vol2

20
15

-5

20
16

-4

20
17

-3

20
18

-2

20
19

-1

−1

−0.9

−0.8

−0.7

ρ

Correlation

Figure 6: Multi-currency offline calibration: patterns of G2++ parameters (one point every 30 calibrated dates).

[3] Christian Bayer, Blanka Horvath, Aitor Muguruza, Benjamin Stemper, and Mehdi
Tomas. 2019. On deep calibration of (rough) stochastic volatility models. arXiv
preprint arXiv:1908.08806 (2019).

[4] Marco Bianchetti. 2008. Two Curves, One Price :Pricing & Hedging Interest Rate
Derivatives Decoupling Forwarding and Discounting Yield Curves. MPRA Paper
22022. University Library of Munich, Germany. https://ideas.repec.org/p/pra/
mprapa/22022.html

[5] Daniel Alexandre Bloch. 2019. Neural Networks Based Dynamic Implied Volatility
Surface. Available at SSRN 3492662 (2019).

[6] D. Brigo and F. Mercurio. 1998. On Deterministic Shift Extensions of Short-Rate
Models. Internal Report, Banca IMI, Milan.

[7] D. Brigo and F. Mercurio. 2001. Interest Rate Models - Theory and Practice. Springer-
Verlag.

[8] Charles George Broyden. 1970. The convergence of a class of double-rank
minimization algorithms 1. general considerations. IMA Journal of Applied
Mathematics 6, 1 (1970), 76–90.

[9] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A limited
memory algorithm for bound constrained optimization. SIAM Journal on scientific
computing 16, 5 (1995), 1190–1208.

[10] Georgi Dimitroff, Dirk Roeder, and Christian P Fries. 2018. Volatility model
calibration with convolutional neural networks. Available at SSRN 3252432
(2018).

[11] Bank for Internation Settlements. 2020. OTC derivatives outstanding statistics.
https://www.bis.org/statistics/derstats.htm

[12] Donald Goldfarb. 1970. A family of variable-metricmethods derived by variational
means. Mathematics of computation 24, 109 (1970), 23–26.

[13] Wolfgang Karl Härdle, Cathy Yi-Hsuan Chen, and Ludger Overbeck. 2017. Applied
quantitative finance. Springer.

[14] Simon S. Haykin. 2009. Neural networks and learning machines (third ed.). Pearson
Education, Upper Saddle River, NJ.

[15] Andres Hernandez. 2016. Model calibration with neural networks. Available at
SSRN 2812140 (2016).

[16] Andres Hernandez. 2017. Model Calibration: Global Optimizer vs. Neural Net-
work. Neural Network (July 3, 2017) (2017).

[17] Blanka Horvath, Aitor Muguruza, and Mehdi Tomas. 2019. Deep learning volatil-
ity. Available at SSRN 3322085 (2019).

[18] H. Hotelling. 1933. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology.

[19] Andrey Itkin. 2019. Deep learning calibration of option pricing models: some
pitfalls and solutions. arXiv preprint arXiv:1906.03507 (2019).

[20] Ian T Jolliffe. 1986. Principal components in regression analysis. In Principal
component analysis. Springer, 129–155.

[21] Joerg Kienitz, Sarp Kaya Acar, Qian Liang, and Nikolai Nowaczyk. 2019. Deep
Option Pricing-Term Structure Models. Available at SSRN 3498398 (2019).

[22] Ludmila I Kuncheva and William J Faithfull. 2013. PCA feature extraction for
change detection in multidimensional unlabeled data. IEEE transactions on neural
networks and learning systems 25, 1 (2013), 69–80.

[23] Shuaiqiang Liu, Anastasia Borovykh, Lech A Grzelak, and Cornelis W Oosterlee.
2019. A neural network-based framework for financial model calibration. Journal
of Mathematics in Industry 9, 1 (2019), 9.

[24] William A McGhee. 2018. An artificial neural network representation of the
SABR stochastic volatility model. Available at SSRN 3288882 (2018).

[25] Jorge J Moré. 1978. The Levenberg-Marquardt algorithm: implementation and
theory. In Numerical analysis. Springer, 105–116.

[26] Reuven Y Rubinstein and Dirk P Kroese. 2013. The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation and machine
learning. Springer Science & Business Media.

[27] David F Shanno. 1970. Conditioning of quasi-Newton methods for function
minimization. Mathematics of computation 24, 111 (1970), 647–656.

[28] NM Steen, GD Byrne, and EM Gelbard. 1969. Gaussian Quadratures for the
Integrals

∫ ∞
0 𝑒−𝑥

2
𝑓 (𝑥)𝑑𝑥 and

∫ 𝑏

0 𝑒−𝑥
2
𝑓 (𝑥)𝑑𝑥 . Math. Comp. (1969), 661–671.

[29] Henry Stone. 2019. Calibrating rough volatility models: a convolutional neural
network approach. Quantitative Finance (2019), 1–14.

https://ideas.repec.org/p/pra/mprapa/22022.html
https://ideas.repec.org/p/pra/mprapa/22022.html
https://www.bis.org/statistics/derstats.htm

	Abstract
	1 Introduction
	2 Calibration
	2.1 Feedback function
	2.2 Offline vs Online

	3 Pricing Model: G2++
	4 Dataset and Preprocessing
	4.1 Single currency
	4.2 Multiple currencies

	5 Algorithm
	6 Related Works
	7 Numerical Simulation
	7.1 Validation
	7.2 Single currency
	7.3 Multi currency

	8 Conclusions and Future Works
	References

