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ABSTRACT 

The design of cleaner and more sustainable combustion technologies represents nowadays a key task. Reliable 
numerical models, able to cope with a large variety of configurations, combustion processes and fueling mixtures are 
needed, especially for future applications in combustion monitoring and control, for thermal and environmental 
performances, which are of critical importance.  In this work, alternative, low-computational cost modelling tools for 
pollutants and thermal efficiency predictions, represented by Chemical Reactor Networks (CRN), are designed from 
Computational Fluid Dynamic (CFD) simulations assessing a novel methodology, by exploring new possibilities offered 
by Machine Learning (ML) algorithms. In particular, unsupervised learning approaches are employed, in order to extract 
the key features of the system flow-field, adopting advanced clustering algorithms, such as Local Principal Component 
Analysis (LPCA) and K-Means, thus providing an efficient and automatic identification of similar thermo-chemical state 
compartments in the computational domain. The identified zones are modelled in a post-processing phase as a network of 
interconnected chemical reactors, and detailed kinetic mechanisms are employed for low concentration pollutants 
predictions. The case study, a quasi-industrial, flameless-capable combustion furnace, fed with methane-hydrogen mixtures 
in different compositions at a nominal power of 15 kW, has been investigated numerically by performing 2D CFD 
simulations with reduced chemistry and subsequently CRN simulations has been carried out with detailed kinetics, adopting 
the aforementioned approach. Results are validated upon experimental data, in order to provide a novel methodology for 
CRN design applications, which can be suited for future GTs applications. 

INTRODUCTION 
 In the context of the energy transition, increasing attention needs to be paid to develop sustainable combustion 

technologies. A valid alternative for an efficient and clean energy conversion system is represented by micro Gas Turbines 
combined with non conventional combustion regimes, such as Moderate and Intense Low-oxygen Dilution (MILD) 
combustion (Cavaliere and de Joannon, 2004), thus providing high thermal efficiency, large fuel flexibility and low 
pollutants emissions (NOx, CO and Soot).  

MILD combustion, also referred to as Flameless (Wünning and Wünning, 1997) or Colorless Distributed Combustion 
(Arghode and Gupta, 2010) is achieved by means of preheating reactants above their self-ignition temperature and through 
a strong entrainment of inert combustion products within the reaction region, thus lowering the oxygen concentration at 
which combustion takes place, resulting in a suppression of temperature peaks, which in turn leads to the abatement of 
thermal pollutants, such as NOx, SOx and soot (Christo and Dally, 2005). The development of a Colorless Distributed 
Combustion (CDC) chamber for Gas Turbines application has been shown by (Arghode and Gupta, 2011), while (Zornek 
et al., 2015) have demonstrated experimentally the applicability of the flameless regime to a Turbec T100 to burn low-
calorific, biomass derived fuels with a consistent reduction in NOx and CO emissions.  
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In order to assist the design of such advanced technologies, reliable numerical models are required, especially for 
predicting low concentration pollutants, a crucial aspect in assessing environmental performances of combustion systems. 
Computational Fluid Dynamics (CFD) has been extensively used for modelling turbulent reacting flows, but predicting 
pollutants emissions still remains an open research challenge, due to computational cost limitations. In this framework, 
detailed kinetic mechanisms should be employed, in order to account for all the possible formation pathways of minor 
chemical species, thus leading to unfeasible computational costs associated with the high dimensionality of the problem, 
despite the constant increase in computational resources (Lu and Law, 2009). For this reason, alternative tools to model 
complex reactive systems, such as equivalent Chemical Reactor Networks (CRN), have increased their popularity in the 
combustion community, since they are capable of handling highly detailed chemical mechanisms, consisting of hundreds 
of species and thousands of reactions, while maintaining the computational requirements on an affordable level. Stemming 
from the theory proposed by Levenspiel (Levenspiel, 1997), complex reactive flows may be approximated by a series of 
interconnected, ideal chemical reactor models, namely Perfectly Stirred Reactors (PSR) and Plug Flow Reactors (PFR), 
reducing the problem to a 0-D or 1-D configuration, where equations for conservation of mass and species are solved only 
in few “blocks”, thus considerably lowering the number and the complexity of the equations to be solved, with respect to 
a CFD simulation with detailed kinetics. This modelling technique has been applied to industrial furnaces (Faravelli et al., 
2001) and burners (de Toni et al., 2013), showing its versatility towards different configurations. It has also been 
successfully applied to premixed combustion in gas turbines (Lee et al., 2011; Park et al., 2013). In this framework, several 
works (Hao, 2014; Lee et al., 2011; Nguyen, 2019; Nguyen et al., 2017; Novosselov et al., 2006) focused on the manual 
design of small-sized CRN of gas turbine combustors from CFD simulations carried out with simplified kinetics, in order 
to reduce the associated computational cost. The system domain is then arbitrarily divided into different zones, according 
to temperature, composition and velocity similarities, by observing the main flow-field features provided by CFD 
simulations, obtaining CRN models able to predict emissions (NO and CO) and thermal performances over a certain range 
of operating conditions (i.e. equivalence ratio). However, manually designing an equivalent CRN model is a time-
consuming and experience-required task, since an automatic and more systematic methodology to obtain a reduced and 
simple CRN model from CFD data is still missing, thus particularly relying on the user ability. 

Examples of automatically generated CRN from CFD data are available in literature. An integrated CFD-CRN 
procedure is firstly presented by Falcitelli (Falcitelli et al., 2002) and more recently improved by (Monaghan et al., 2012), 
(Cuoci et al., 2013) and (Stagni et al., 2014) with a fully coupled CFD-CRN approach for detailed pollutants formation 
analysis by post-processing CFD data with a kinetic post processor. Even though this approach has obtained remarkable 
results, its adoption aimed at obtaining also a spatial representation of minor chemical species, and the elevated number of 
reactors included (~103 – 104) only partially reduce the complexity of a CFD computational grid, and the CPU time 
associated with the solution of such a large network remains still high (~50 min) (Stagni et al., 2014) . 

What makes CRN modelling very appealing, is the possibility to use simple configurations to perform fast input-output 
kinetics calculations, in order to employ this tool for combustion monitoring and control applications. In this sense, a first 
example of a small-sized CRN of a jet stirred reactor to predict in real time lean blowout for gas turbines applications is 
presented by Kaluri (Kaluri et al., 2018) and improved by Gupta (Gupta et al., 2019) by building a CRN-based control 
system also able to prevent the blowout itself. However, even in this case the CRN has been manually designed by 
observing the general features of the flow-field from CFD simulations, and a procedure to automatically identify a simple 
network configuration from CFD data is still missing in literature, according to the authors’ knowledge,  thus limiting the 
use of CRN modelling only to experienced designers.  

In this framework, Machine Learning (ML) algorithms may represent an effective way to understand and extract flow-
field key features from CFD simulations data. ML is receveing increasing attention from the combustion community. 
Advanced statistical tools, such as Principal Component Analysis (PCA), have been used to identify lower-dimensional 
manifolds in turbulent reactive flows (Parente et al., 2009; Parente and Sutherland, 2013), moreover,  PCA in its local 
formulation (Local PCA), based on a local reconstruction error minimization, has also been used as an unsupervised 
clustering approach to partition thermo-chemical data for adaptive chemistry applications, to speed up CFD calculations 
(D’Alessio et al., 2020b, 2020a). In this context, post-processing CFD data by unsupervised clustering algorithms, such as 
K-Means or Local PCA (LPCA), can represent an effective solution for the identification of similar thermo-chemical state 
zones in computational domains, by grouping computational cells that exhibit similar temperature and chemical 
composition.  

The application of clustering algorithms for the extraction of CRN from CFD data is investigated in this work, to 
establish a novel and automatic methodlogy for the design of equivalent CRN models of simplified configurations. The 
objective is to develop new solutions for an efficient design of reduced-order and physics-based combustion models, which 
can be used for fast input-output predictions of thermal and environmental performances, providing a useful modelling tool 
for future applications in combustion processes optimization, real-time monitoring and control. 
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METHODOLOGY 
In this work, a novel methodology for the automatic extraction of equivalent CRN models from CFD data is presented, 

representing a first step for future GTs applications. In particular, a numerical CFD campaign has been performed on a 
quasi-industrial MILD combustion furnace (Ferrarotti et al., 2017), operating at a nominal power of 15 kW and fueled with 
CH4 – H2 mixtures in variable proportion, with an equivalence ratio of 0.8. The CFD data have been post-processed by 
applying clustering algorithms, namely K-Means and Local PCA, to identify different zones in the domain by partitioning 
computational cells showing similar characteristic in terms of temperature and chemical composition. The identified 
compartments are then modeled as a network of Perfectly Stirred Reactors (PSR) by calculating their volume and the mass 
flowrates exchanged between clusters. The mass flowrates exchanged across the identified compartments are meant to 
represent the connections between the reactors, thus schematically approximating the complex flow-field of the original 
system. Results are then exported for detailed kinetic calculations using Chemkin Pro®, and the reactor network is solved. 
A sensitivity analysis with the number of clusters (or reactors) has been performed on a single case, e.g. a fixed fuel 
composition. The most accurate network has been tested on all the cases available, to observe the level of generalization 
of this approach, employing different kinetic mechanisms, to assess also the effect of the chosen kinetics. Finally, objective 
criteria to determine an a priori number of reactors, for each available case have been tested, relying on clustering 
evaluation indexes. Results are then validated upon experimental data available from previous works (Ferrarotti et al., 
2018; Ferrarotti, 2020). 

Case study 
The furnace analysed in this paper is schematically represented in Figure 1. The stainless steel combustion chamber 

has a cubic internal section of 700mm on each side and it is well insulated with a layer of ceramic fiberboards of 200mm 
thick (2). The furnace has a global nominal power of 20 kW and it is equipped with a finned heat exchanger (1) to recover 
heat from the flue gases. Fuel and air are preheated through the recuperative heat exchanger and injected co-axially at the 
bottom-center of the chamber (3). The internal recirculation of flue gases, necessary to achieve MILD regime, is guaranteed 
by the high velocity jet. Moreover, 4 finned air-cooling tubes (4) are present, which allow for flexible variation of extracted 
heat from the system, thus simulating an external load. For experimental measurements, an air-cooled suction pyrometer 
equipped with a 1.5 mm diameter N-type thermocouple (Nicrosil/ Nisil) is used to measure the in-flame temperature 
profiles, while the temperature of the furnace Tf (5) and the temperature of the flue gases Tfg (6) are measured by two 
shielded N-type thermocouples with the position showed in Figure 1. Finally, exhaust gas composition is measured with 
electrochemical sensors with nominal accuracies for CO (±2 ppm), NO (±5 ppm), NO2 (±5 ppm), and O2 (±0.8% of 
reading) and with a non-dispersive infrared (NDIR) sensor for CO2 (±1% of reading + 0.3%). The experimental campaign 
showed in this paper is already available from previous works (Ferrarotti et al., 2018, Ferrarotti, 2020). 
 

 
Figure 1: Schematic representation of the MILD combustion furnace: (left) front section (right) view 

from top 

CFD Numerical model 
In order to provide the required data for subsequent CRN design, CFD simulations of the experimental cases 

investigated have been performed. In particular, Reynolds-Averaged Navier-Stokes (RANS) equations are solved on a 2-
dimensional grid, since it has been observed that 2-dimensional domains are able to preserve spatial cell connectivity when 
clustering algorithms are applied.  

To model turbulence, the standard 𝑘 − 𝜖 model was employed. For chemistry, the Kee chemical mechanism, 
comprising 17 species and 34 chemical reactions, was chosen, representing a trade-off between chemistry details and 
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computational cost. Special attention needs to be paid to Turbulence-Chemistry Interactions (TCI) modelling, since it is 
known that in MILD regime, due to the diffuse and slowered combustion kinetics, induced by the oxygen dilution, chemical 
and turbulent mixing timescales become comparable (Lewandowski et al., 2020), thus making the hypothesis of infinitely 
fast kinetics not suitable for this regime. For this reason, the Partially Stirred Reactor (PaSR) (Zhiyi et al., 2017) model 
was employed, to correctly account for both chemical and mixing timescales. In the PaSR model, the computational cell is 
divided into a reactive and a non reactive part, and the final species concentration of the cell is determined by the mass 
exchanged from the two zones, driven by turbulence. In particular, the mass fraction of the reactive zone with respect to 
the computational cell is calculated as: 

κ	= τC
τmix+τC

     (1)  

where 𝜏! and 𝜏"#$ are the chemical and mixing timescales, respectively, that can be estimated in different ways. In this 
work, the approach used on the same case study, from (Ferrarotti et al., 2018), has been employed, with the static version 
for 𝜏"#$ evaluation, with the model constant 𝐶"#$ = 0.5 (Ferrarotti et al., 2019; Li et al., 2018). 

The mean source term for RANS equation closure is given by a mass transfer between the reactive and the non reactive 
part of the cell, as follows: 

ωi+  = κ 
ρ ,Yi*-Yi0-

τ*
    (2) 

where 𝜌 is the mixture density and 𝜏∗ represents the residence time in the reactive zone, which is modelled as an ideal 
reactor, evolving from 𝑌#& (nass fraction of i-th species in the non-reactive zone) to 𝑌#∗ (mass fraction of the i-th species in 
the reactive zone), following a time-splitting approach: 

dYi
*

dt
= ωi

*̇

ρ
     (3)  

Clustering CFD data 
Temperature and chemical composition data available from a single CFD simulation, representing the value of state 

variables in each computational cell, are exported, and we can indicate as 𝐱𝐣 the vector of length n)*+ containing the data 
in the i-th cell, that may also be referred to as the i-th observation in the dataset. The data matrix X will be formed by 
stacking in rows the available observations, thus having n,-. rows (number of observations) and n)*+ columns.  The data 
needs to be pre-processed, by performing centering and/or scaling according to statistics criteria, and, subsequently, a 
clustering algorithm is applied, by partitioning the observations into a user-defined number of clusters, following an 
unsupervised learning approach. 

Data pre-processing 
When dealing with multi-variate dataset, it is a good practice to standardize the data before applying any clustering 

algorithm. In particular, to the i-th variable of each observation the mean value of the i-th variable of all the observations 
is subtracted, in order to center the data (centering). Subsequently, each centered observation needs to be divided by a 
scaling value (scaling), according to the chosen criteria, in order to normalize raw variables, that usually may show very 
different values and scales between each other. The process of centering and scaling the i-th variable of the j-th observation 
can be indicated as shown in eq. 6: 

x2i,j=
xi,j-x3i,j

di
   (6) 

𝑑# represents the scaling factor, which can be obtained following different criteria available in statistics (Parente and 
Sutherland, 2013). In this work, the autoscale criterium has been used, which means that 𝑑# is calculated as the standard 
deviation of the i-th variable considering all the observations. 
 

Data clustering 
Once the data have been pre-processed, a clustering algorithm can be applied, following an unsupervised approach. 

K-Means is a popular algorithm (Lloyd, 1982) which aims to group the observations in k partitions by finding the best 𝜇/, 
or cluster centroids, according to the following minimization problem: 

min
μj
66 78xj-μj87

2
   (7)

xj∈Cj

k

j=1
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where 𝐶/ denotes the subdomain of data belonging to the j-th cluster, so that the sum of within-clusters Euclidean distances 
is minimized. The minimization is not solved as a pure optimization problem, but it is indirectly solved following an 
heuristic algorithm, described below: 
 

1. The k-means cluster centroids are initialized and the Euclidean distance between each observation to each 
centroids is computed 

2. Each observation is labelled with the corresponding cluster index that minimize the Euclidean distance 
3. The means of all the observations in each cluster are computed, thus updating the cluster centroids. The distance 

is calculated again between the observations and the updated centroids values, and step (2) is repeated 
4. The steps 2 and 3 are repeated until convergence is reached 

 
Local Principal Component Analysis (LPCA), on the other hand, is an unsupervised learning approach that also involves 
dimensionality reduction and it is based on the minimization of a local reconstruction error: 

ϵr=;xi
p-xi;   (8)  

where 𝑥#
1 is the reconstructed observation from the p-truncated dimensional space obtained by performing PCA (Kambhatla 

and Leen, 1997). The original, centered and scaled, data matrix 𝑿 ∈ ℝ𝒏𝒗𝒂𝒓 is partitioned in k clusters, and in each cluster 
PCA is performed, thus finding k reduced basis of Local Principal Components (LPCs) 𝑨/ ∈ 	ℝ1 with p < nvar. At this 
point, for each observation it is possible to iteratively compute k local reconstruction errors, and label the observation with 
the cluster index for which the reconstruction error is minimum. The algorithm proceeds as follows: 
 

1. Initialization of the centroids 
2. Partition each observation according to equation (8) 
3. The cluster centroids are updated according to the new partition 
4. PCA is performed in each cluster 

 
The steps from 2 to 4 are repeated until a convergence criteria is met: in this case until the global mean reconstruction error 
is below a fixed threshold and/or the cluster centroids no longer change. 

CRN modelling 
Once the clustering has been performed, it is possible to visualize the different clusters as the identified zones in the 

computational domain that exhibit similar thermo-chemical characteristic. A typical output resulting from applying 
clustering to CFD data is represented in Figure 3.  

 

 
Figure 2: A typical visualization on the CFD domain of a clustering output 

 
The volume of each cluster is calculated by summing the individual volumes of the cells belonging to that cluster. The 

mass flowrates across neighbors clusters are then retrieved from the CFD simulation. Results are exported in Chemkin 
Pro®, creating a network of Perfectly Stirred Reactors with the same volume obtained by the clustering and assigning the 
connections according to the computed mass flowrates. The choice of using only PSRs is justified by the small volume of 
the in-flame reactors, which is obtained by the clustering. To account for initial incomplete mixing of the reactants, the 
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cluster representing the injection zone is modelled as a PSR with an infinitesimal volume, thus working as a mixer, since 
the residence time is too low and ignition cannot take place. The boundary conditions are then specified, namely inlets, 
outlet and heat losses, which are estimated from the experiments and arbitrarily assigned to the largest post-flame reactor, 
while assuming the other reactors adiabatic. Once a detailed kinetic mechanism is specified, including all the minor 
pollutants, the network (mass and energy conservation equations) can be finally solved by the global solver of Chemkin 
Pro®, which ensure rapid convergence (~10 s).  

RESULTS 

CFD results 
CFD results are shown in Figure 4. Results are in good agreement with experimental data, even though a mismatch is 

observed in the cases corresponding to Figure 4 (b)  and 4 (e). Regarding the case in Figure 4 (b), an explaination can be 
related to the fact that a slight addiction of hydrogen can greatly affect the position of the reactive zone, and in that specific 
case can result in a transition from a pure MILD to a partially flame regime, thus being difficult to predict correctly. As for 
the case in Figure 4 (e), the mismatch is probably due to the model constant, which may overestimates the reactive zone. 

 

 
Figure 3: Comparison between the experimental and the CFD flame temperature profile 

Chemical Reactor Network results 
First, the effect of the clustering algorithm and the main clustering set-up parameter, namely the number of clusters 

chosen, needs to be assessed both in a qualitative and quantitative manner, by observing the physical shape of the resulting 
clustering output and by comparing the predictions of temperature and NO emissions of the extracted network with 
experimental data. Attention is focused on a single experimental case, namely the 75% H2 – 25% CH4 mixture, and a 
sensitivity analysis with the number of reactors and the clustering algorithms employed, namely K-Means and LPCA, is 
performed in order to assess their impact on the predictions. The GRI 3.0 (Smith et al., 2021) mechanism has been used at 
this stage. Then, the network which showed better agreements with experimental values, was used to simulate all the 
experimental cases, to assess the level of generalization of this CRN approach. The effect of the kinetic mechanism 
employed was evaluated at this stage, by performing simulations with three different chemical mechanisms: the GRI 3.0, 
GRI 2.11 (C.T. Bowman et al., 2021) and the POLIMI C1-C3 (RANZI et al., 2014). Finally, since an objective criteria to 
efficiently select a reasonable a priori number of cluster is needed, to have a more systematic CRN design process, a 
network was extracted on every case available, by choosing the number of clusters which optimizes clustering evaluation 
indexes available in literature (Davies and Bouldin, 1979). 

Effect of clustering parameters  
The K-Means and the LPCA clustering algorithm were used to cluster the computational domain of the 75% H2 – 25% 

CH4 mixture, by using 5, 8 and 11 clusters, since we want to maintain a very low amout of units, to speed up the calculations. 
The GRI 3.0 chemical mechanism was employed and the network was solved with Chemkin ProÒ. Predictions of outlet 
temperature, maximum temperature and NO are compared with experimental values. Results are reported in Table 1. We 
can observe that increasing the number of reactors employed also results in increased accuracy, meaning that the flow-field 
is better represented by the augmented network structure, since more features of the flow-field itself are included. 
Regarding the algorithms, Local PCA shows better predictions with respect to K-Means, and it is able to match very closely 
experimental results in the 11 reactors case. This can be explained by observing the typical clustering output differences in 
Figure 3, where the Local PCA seems to better capture the flame extension, resulting in a correct prediction of the residence 
time spent by the mixture in the reactive zone, which is of key importance for pollutants emission characterization. The 
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maximum temperature appears a very sensitive parameter, which closely depends by the recirculation and the residence 
time in the ignition reactor, values that are changing when clustering parameters are modified. 

 
Table 1: Results of different networks extracted on the 75% H2 case using K-Means and Local PCA 

with different number of reactors 
 K-Means 

Variable Exp value 5 reactors 8 reactors 11 reactors 
Outlet temperature [K] 1255 ± 20 1281 1275 1275 
Max temperature [K] 1837 ± 20 1753 1787 1944 

Outlet NO [ppm] 35.6 ± 5 2.1 10.7 22.1 
Local PCA 

Variable Exp value 5 reactors 8 reactors 11 reactors 
Outlet temperature [K] 1255 ± 20 1275 1275 1275 
Max temperature [K] 1837 ± 20 1524 2041 1981 

Outlet NO [ppm] 35.6 ± 5 3.2 51.7 36.3 
 

Network generalization 
The most accurate network identified before (LPCA, 11 reactors) was applied to all the experimental cases available, 

to determine to which extent a CRN generated on a certain case can generalize a wide range of operating conditions. 
Different chemical mechanisms were employed at this stage, to assess also the effect of chemical kinetics on the obtained 
results. Indeed,  considering the composition variability of the fuel mixtures, the properties of the chemical mechanisms 
can play a major role. 

Results in Figure 5, are showing that the CRN extracted on the 75% H2 mixture provides good predictions in closeby 
conditions but it fails to capture the combustion features of mixtures richer in CH4. This is due to changes in the flow-field 
occurring at different fuel compositions, which cannot be captured completely by one representative case, highlighting the 
case-specific nature of the CRN approach. 

 
Figure 4: Results from the CRN generated on the 75% H2 case on all the cases, by using different 

chemical mechanisms 

Network extracted optimizing clustering evaluation indexes 
To assess the impact of quantitative metric on the a priori determination of the number of clusters, a single CRN was 

extracted for each experimental point, optimising, for each case, the Davies-Bouldin index (DB) (Davies and Bouldin, 
1979). The DB index is calculated as the ratio of within-cluster and between-cluster distance in the data space: 

𝐷𝐵	 = 3
4
	∑ 𝑚𝑎𝑥

/5#
F𝐷#,/G	4

#73 (9) 

where 𝐷#,/ is the within-to-between cluster distance ratio for the i-th and j-th clusters, or in other terms: 

Di,j=
di++dj+

di,j
   (10) 



 

8 

In Eq 10, 𝑑8+  and 𝑑9+ 	are the average distances between each point in the i-th and j-th cluster and the centroid of i-th and j-th 
cluster, respectively, while 𝑑#,/ is the Euclidean distance between the i-th and j-th cluster centroids.  

For each experimental case, a parametric study varying the number of clusters using LPCA was performed. Then, the 
number of clusters minimising the DB index was chosen, and a network with that number of clusters was extracted and 
simulated,. Results are reported in Figure 6. 

 
Figure 5: Results of CRN extracted for each single case by minimizing the Davies-Bouldin index 
 
Figure 6  shows that results improved with respect to using a single network to predict the whole case set. The variation 

of the DB index with the number of clusters along the different cases is reported in Figure 7. 

 
Figure 6: DB index variation with the number of clusters, along the different cases 

 
We can see that no substantial variation of this index appears in varying the number of clusters in the range of fuel 
composition investigated, except from the case with pure H2. This means that increasing the number of cluters does not 
greatly affect the clustering structure and explains the little sensitivity to predictions for the case with 75% H2. However, 
the DB index can be very useful to reveal substantial changes in the clustering effectiveness, as with the case with 100% 
H2, since going from 9 to 10 clusters results in a great increase of the index value, meaning that the cells are not yet grouped 
in an afficient way, which can also be non-optimal for CRN applications. 

CONCLUSIONS 
In this work, a novel methodology is presented for the extraction of Chemical Reactor Networks from CFD data using 

unsupervised clustering algorithms. The effect of clustering settings and parameters on the CRN output results is discussed, 
and simulations with CRN and detailed kinetics are performed. A possible a priori criterion for the identification of the 
optimal number of clusters is also illustrated. 

Predictions of temperature and low concentration pollutants (NO) obtained from CRN appears in good agreement with 
experimental values. Special attention needs to be paid to the computational time required to solve the networks, which is 
very small (~10 s), making the whole CRN design process and modelling very appealing for control and optimisation 
applications.  
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