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ABSTRACT 

Background and objective 
Chronic Kidney Disease (CKD) is a condition characterized by a 

progressive loss of kidney function over time caused by many diseases. 

The most effective weapons against CKD are early diagnosis and 

treatment, which in most of the cases can only postpone the onset of 

complete kidney failure. The CKD grading system is classified based on 

the estimated Glomerular Filtration Rate (eGFR), and it helps to stratify 

patients for risk, follow up and management planning. This study aims 

to effectively predict how soon a CKD patient will need to be dialyzed, 

thus allowing personalized care and strategic planning of treatment. 

Methods 
To accurately predict the time frame within which a CKD patient will 

necessarily have to be dialyzed, a computational model based on a 

supervised machine learning approach is developed. Many techniques, 

regarding both information extraction and model training phases, are 

compared in order to understand which approaches are most effective. 

The different models compared are trained on the data extracted from 

the Electronic Medical Records of the Vimercate Hospital.  

Results 
As final model, we propose a set of Extremely Randomized Trees 

classifiers considering 27 features, including creatinine level, urea, red 

blood cells count, eGFR trend (which is not even the most important), 

age and associated comorbidities. In predicting the occurrence of 

complete renal failure within the next year rather than later, it obtains 

a test accuracy of 94%, specificity of 91% and sensitivity of 96%. More 

and shorter time-frame intervals, up to 6 months of granularity, can be 

specified without relevantly worsening the model performance. 

Conclusions 

The developed computational model provides nephrologists with a 

great support in predicting the patient’s clinical pathway. The model 

promising results, coupled with the knowledge and experience of the 

clinicians, can effectively lead to better personalized care and strategic 

planning of both patient’s needs and hospital resources.  
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1 Introduction  

The Chronic Kidney Disease (CKD) is a generic condition for several 

diseases that affect the kidneys, and it generally means permanent and 

progressive damage to kidneys, until to end-stage renal disease [1]. It 

affects 12%-14% of people worldwide and its related care costs 

represent an important percentage of the total health expenditure. 

According to the Center for Disease Control and Prevention (CDC), 

Chronic Kidney Disease affects approximately 1 in 7 adults, or an 

estimated 30 million Americans, consisting in annual national care cost 

over 32 billion of dollars [2].  Several are the possible causes of onset 

and rapid evolution of CKD, including diabetes, high blood pressure, or 

previous episodes in the family history [3]. Prevention and early 

detection of CKD allow appropriate treatment and are the main factors 

against the disease, which however, in most of the cases, can only 

postpone the onset of complete kidney failure.  

To highlight the presence of CKD and assess the kidney functionalities, 

the estimated Glomerular Filtration Rate (eGFR) is computed. It forms 

the basis of CKD staging, helps stratifying patients and is useful for 

planning their follow-up and management [4] (see Figure 1 for details 

about CKD staging). The eGFR is a mathematically derived score based 

on patient’s serum creatinine level, age, sex and race; it is usually 

computed by the laboratory that analyzes the patient’s blood sample 

and reported with the serum creatinine result. Several recognized and 

well validated formulas have been used for this purpose, including the 

Modification of Diet in Renal Disease (MDRD) and Chronic Kidney 

Disease Epidemiology Collaboration (CKD-EPI) equations [5]. 

 
Figure 1: Chronic Kidney Disease (CKD) classification based on 

Glomerular Filtration Rate (GFR) and Albumin-Creatinine Ratio (ACR). 

However, it is important to bear in mind several pitfalls and cautions 

when interpreting the eGFR. First of all, it is only an estimate of kidney 

function and a relevant error is possible. Therefore, when assessing the 

CKD advancement, clinicians should be careful in interpreting the 

results and they should consider also other patient-related factors, 

relying also on eGFR multiple evaluations and overall trend, rather than 
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on the single observation of the latter one [6]. Furthermore, from a 

clinical point of view, it is currently very complex, if not impossible, to 

estimate adequately and sufficiently in advance when a patient with 

CKD will necessarily have to be dialyzed; whereas, it would be very 

useful for clinicians and patients to have a reasonable indication that 

such an event will happen within the next 6 or 12 months, or more. 

The ability to develop mathematical models to categorize items based 

on the statistical analysis of data has made machine learning (ML) 

obtaining considerable success in medical diagnosis, with a strong 

growth of diagnostic questions for which ML algorithms are designed 

[7]. This has certainly been assisted by the digital revolution of the last 

few years, which made possible to record and archive various types of 

clinical data, made easily available and usable in digital format [8]. 

Examples of ML models in medical diagnosis can be found in the work 

of Lee et al. [9], where Conditional Inference Survival Forests and 

Random Survival Forests are employed for risk stratification of 

patients with type 2 diabetes for acute myocardial infarction and 

sudden cardiac death, or in the study of JoonNyoung et al. [10], where 

they show that ML algorithms can improve the prediction of long-term 

outcomes in ischemic stroke patients. Other examples are the studies 

of Senders et al. [11] for the prediction of survival in glioblastoma 

patients, or of Tse et al. [12] for the risk stratification in heart failure. 

Finally, Lee et al. [13] show that ML techniques can significantly 

improve overall risk stratification performance. 

Regarding nephrological diseases, ML applications are currently being 

tested to improve the life of patients with CKD and to reduce treatment 

costs [14]. The main objectives of these applications are early detection 

and study of the evolution of CKD. Focusing on the second task, Norouzi 

et al. [15] proposed an adaptive neurofuzzy inference system that can 

accurately predict the GFR variations. Features such as weight, 

diastolic blood pressure, diabetes mellitus as underlying disease, and 

current eGFR showed significant correlation with GFR variations. With 

a different approach, Agarwal and Shah [16] tried to characterize the 

CKD progression patterns using clustering techniques. They 

demonstrated how two sub-groups of patients that display distinct 

patterns of disease progression may be compared on clinical attributes 

that correspond to the maximum difference in progression patterns. 

Recently, in the study of Makino et al. [17] big data machine learning 

techniques are used to predict the progression of diabetic kidney 

disease. Specifically, the authors apply both deep learning approaches 

to extract time-series data patterns from an Electronic Medical Record 

(EMR) and natural language processing techniques over textual data to 

extract patient’s diagnosis and treatment information. These 

techniques were used to develop a binary classifier predicting 

aggravation or not of the GFR in a 6-month time spam with an overall 

accuracy of 70%. These studies set the basis for the analysis of the 

progression of CKD through machine learning approaches, but they fail 

in answering the important question that clinicians are most concerned 

about: “given a patient affected by CKD, how soon will he/she necessarily 

have to be dialyzed?” 

In the study here discussed, we directly define, as a target of our 

computational prediction, the number of months within which the 

beginning of the alternative dialysis treatment would be required for a 

CKD patient. Then, using a supervised machine learning approach, a 

computational model, trained on the available data stored in the EMR 

of a hospital, is developed to accurately predict this interval of time. 

Thanks to it, clinicians can plan more effectively the next clinical 

encounter, scheduling it within a shorter or longer period of time, 

paying more attention to patients at higher risk. The resources used by 

the hospital (in terms of staff, department crowding, exam 

prescription, etc.) and the time and energy of the patient undergoing 

the clinical encounters can be remarkably optimized. The beginning of 

the dialysis treatment itself can be planned in advance with precision, 

allowing both clinicians and patients to organize themselves in the 

most appropriate manner. Additionally, the study allows better 

understanding of what are the clinical and physiological characteristics 

of the patient that most determine the speed of the CKD progression. 

The work has been developed in strict collaboration with the Vimercate 

Hospital’s nephrologists, who contributed to all its phases, from the 

initial formulation of the diagnostic problem to be addressed, to the 

discussion of the results in order to verify their consistency.   

2 Material and methods  

In this Section we describe the steps followed to effectively develop our 

computational model, able to predict the time frame within which the 

beginning of the alternative dialysis treatment will be required for a 

CKD patient. First, the target variable for the supervised learning 

approach is defined. Then, the feature extraction and engineering, done 

over the considered information in order to build the dataset used for 

training and comparison of the supervised algorithms evaluated, is 

described. Finally, we briefly discuss how missing values are handled, 

how the feature selection is performed, and which machine learning 

approaches are employed and compared, including both classification 

and regression ones, as well as the different algorithms tested.  

2.1 Addressed medical question and patient selection  
We focus our study on the evolution of CKD between the G4 stage (or 

almost G4) and the beginning of the dialysis treatment, thus 

disregarding the previous staging cases G1, G2, G3a and partially G3b 

(Figure 1). This choice was taken following the discussions with the 

clinicians: the time interval between the first stages G1, G2 and G3 and 

the final stage is generally too wide, and it is complicated or even 

useless to start planning possible dialysis sessions since the first CKD 

stages. Furthermore, a patient in stage G4 is typically under clinical 

observation from an interval of time that allows having access to 

relevant data such as the trend of eGFR in the previous months or years, 

most recent laboratory test results and their trend, general state of 

health of the patient, etc.; thus, it is possible to better profile him/her. 

Therefore, the medical question we want to answer can be formulated 

in this way: "given a patient affected by CKD in stage G4 or almost 

(i.e., ending of G3b), how soon will he/she necessarily be dialyzed?"  

For this study we consider all patients in the Vimercate Hospital EMR 

in stage G4 or close (with an eGFR test value below 35 ml / min / 1.73 

m2) and who were subsequently dialyzed. The target variable (from 

now on named ‘months until dialysis’) is defined as the elapsed number 

of months between a patient's clinical encounter and the beginning of 

his/her dialysis treatment. Chronic Kidney Disease and Acute Kidney 

Disease cases are differentiated, discarding the latter ones because 

they are not useful for the study purpose. Eventually, 906 distinct 

patients have been selected; we retrieved their data regarding 4,266 

patient’s eGFR measurements (with four or more measurements per 

patient) from different clinical encounters, with the associated date 

(defined from now on ‘last observation date’), and the corresponding 

beginning of the dialysis session, with the relative date. 

2.2 Considered data and their extraction 
To answer the defined medical question, the data collected in the 

Vimercate Hospital EMR system since the early 2000s is considered. 

Data from different databases of the hospital infrastructure is 

integrated and information from both structured data and 

unstructured textual medical reports is extracted. 
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2.2.1 Structured information from EMR querying  

Several patient’s structured data are extracted from the hospital EMR, 

including age (calculated as the difference in years between the 

patient’s date of birth and the last observation date) and eGFR values. 

For the analysis of the patient’s eGFR trend, the most recent value and 

the mean and standard deviation of the eGFR values are considered, 

both over the last 4 months and the last year of observation. Other 

clinically relevant blood, urine and general laboratory tests are 

considered as well, and for each of them the most recent value 

preceding or referring to the last observation date and the mean and 

standard deviation of the values in the last 4 months of observation are 

retrieved. 

2.2.2 Unstructured information from medical report text mining 

For each considered patient, the most recent textual medical report 

preceding or referring to the last observation date is retrieved, and 

from it a lot of relevant information is extracted, such as whether: 

● the patient is diabetic, anemic, obese, or he/she has 

hypertension episodes or other associated pathologies, 

● in the patient’s family there have been cases of diabetes, 

cardiopathy, or hypertension episodes, 

● the patient has kidney stones, or a solitary kidney, 

● the patient is a smoker, or he/she used to smoke, 

● the patient had a renal transplant. 
To extract this information, we use simple text mining techniques 

based on keywords and regular expression matching. When checking if 

in the text there is a specific condition, first a vocabulary is defined, 

consisting in a set of keywords composed by the name of the condition 

(e.g., ’diabetes’) and a list of synonyms (e.g., ’high blood sugar’, ’high 

glycosuria’, ’hyperglycemia’, ...). Then stemming, a common procedure 

in text mining that consists in extracting the base or root form of a 

word, is applied to these keywords in order to improve their recall. 

Finally, through pattern matching, the presence in the text of any of the 

stemmed keywords is checked, paying attention that they are not 

negated (it is common to find sentences like “the patient does not have 

diabetes”, “hypertension: absent/not present”, etc.). Moreover, always 

through pattern matching, the cases when the condition refers to the 

patient himself/herself or to a member of the family are differentiated. 

For the cases where only one or more synonyms, but not the name of 

the condition, are automatically found, the medical report is manually 

checked to confirm or discard the condition (e.g., diabetes) as 

associated with the patient.  

2.3 Extracted data preprocessing  
The extracted dataset is split into training set (with about 75% of the 

patient’s clinical encounters) and test set (regarding the remaining 

25% of encounters) in a stratified manner (i.e., keeping a similar 

distribution of both target variable and input features between training 

and test set), using the Scikit-learn Python library [18]. 

From the training set, the features with more than 40% of missing 

values and the clinical encounters with at least half of the features 

missing (less than 9% of the cases in the training set) are discarded. 

Then, the remaining missing values are imputed simply with the mean 

of the values of their feature in the training set; we consider this 

adequate since no evident relation exists between the missing value 

distribution of an input feature and the target variable, or the other 

input variables. The exact same imputation procedure is applied also to 

the test set, but with the mean of the values in the training set. 

2.4 Feature selection 
To reduce the probability of overfitting and improve the generalization 

capabilities of predictive algorithms, a feature selection over the initial 

set of input variables is advised. Reducing the number of variables used 

for training has also the advantage of lowering the amount of 

information needed by an algorithm to perform the prediction, thus 

making the obtained computational models more usable.  

We perform backward feature elimination, a recursive feature 

selection that, starting from the original set of variables, eliminates one 

feature at the time until lowering the performance of the considered 

prediction model. The selected feature subset is retrieved by 

performing the mentioned procedure over the initial best performing 

model. Therefore, in selecting the features to eliminate first, the feature 

ranking of the initial best performing model and the correlation 

ranking of these features are taken into account, starting to drop out 

the variables that show small importance for the model and/or low 

correlation with the target variable.  

2.5 Approaches and algorithms compared 

To predict when the alternative dialysis treatment will be required, we 

approach the problem with two different machine learning supervised 

techniques: classification and regression. 

Using a classification approach, a priori we define default intervals of 

months and then the different trained algorithms are compared 

through common classification performance metrics, including overall 

accuracy, precision, recall and F1-score, obtained by 10-fold cross-

validation. Eventually, also confusion matrices are used to analyze false 

positive, false negative, true positive, and true negative classifications. 

These metrics allow understanding how well a model discriminates 

between cases belonging to one class or another, but in the case of 

misprediction of an instance it is difficult to say if the model 

misclassified it because it was difficult to be classified or because the 

model was completely wrong.  

On the other hand, addressing the problem as a regression and trying 

to predict the exact number of months within which the patient will 

need to be dialyzed allows analyzing the trained models also with other 

metrics, such as the Mean Square Error (MSE) or Root Mean Square 

Error (RMSE), which provide further information on the model ability 

to predict the cases.  

To compare classification models with regression ones and understand 

which approach works better for our problem, we assign the output of 

a regression model to a class by performing different discretizations 

depending on the number of classes considered, such as:  

𝑐𝑙𝑎𝑠𝑠 = {
′within 1 year′, 𝑖𝑓 predicted months < 12

′𝑎𝑓𝑡𝑒𝑟 1 𝑦𝑒𝑎𝑟′, 𝑖𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑠 ≥ 12
 

for two classes, or defining more intervals of months (more classes):  

𝑐𝑙𝑎𝑠𝑠 =  {

1𝑠𝑡, 𝑖𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑠 <  6            
 2𝑛𝑑, 𝑖𝑓 6 ≤  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑠 <  18
3𝑟𝑑, 𝑖𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑠 ≥  18         

 

for three classes, or for four classes as follows: 

𝑐𝑙𝑎𝑠𝑠 = {

1𝑠𝑡, 𝑖𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑠 <  6                
2𝑛𝑑, 𝑖𝑓 6 ≤ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑠 <  14   
3𝑟𝑑, 𝑖𝑓 14 ≤  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑠 <  24
4𝑡ℎ, 𝑖𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑠 ≥  24             

 

Regarding the compared algorithms, using the open source Scikit-

Learn Python library for machine learning [18], we focus on:  

● Logistic Regression, a simple but effective binary classifier 

providing a useful baseline, 

● Decision Trees (DT), an intuitive but powerful algorithm that 

effectively manages highly correlated features, 



 

 

4 

Supervised machine learning for the assessment of Chronic Kidney Disease advancement 

 

 

 

● Random Forest, Extremely Randomized Trees and Gradient Tree 

Boosting, DT ensemble techniques that aim to improve the 

performance of a single DT, 

● (Fully connected) Neural Networks, known for achieving the 

best performances in a variety of different problems, if enough 

training data are provided. 
All these algorithms can be used both for regression and classification. 

Parameter tuning has been applied through cross-validation for 

selecting the hyperparameters of the different algorithms (i.e., 

max_depth of the Decision Trees, number of trees in the used 

ensembles, number of layers in the Neural Networks). Binary trees 

(order = 2) have been used for the Decision Trees algorithm and its 

ensembles, while the Gini index has been used as splitting criteria to 

evaluate the best feature to be used in each node of the tree. The 

hyperparameter max_depth is used as stopping criteria for the Decision 

Trees algorithm; for the algorithms of ensemble of decision trees 

instead, no stopping criteria is specified. 

3 Results 

3.1 The dataset 

The considered patients’ data extracted from the Vimercate Hospital 

EMR regard 58 different clinical features (not considering the ones 

discarded during data preprocessing) listed in Table 1; they are used 

for the development of our computational model as input variables, 

together with the target variable ‘months until dialysis’, which indicates 

the number of months up to the occurrence of the complete renal 

failure with consequent beginning of the dialysis treatment.  

Table 1: List of the 58 clinical features considered; the 27 selected for 

model development are in bold. 
Not selected features Selected features  

aspartate aminotransferase delta age 

cardiopathic family anemic 

cataract aspartate aminotransferase 

chlorine delta cardiopathic 

cirrhosis chlorine 

corpuscular hemoglobin 

concentration 
creatinine 

corpuscular hemoglobin 

concentration delta 
creatinine delta 

diabetic family diabetic 

ex smoker erythrocytes 

glucose erythrocytes delta 

glucose delta GFR delta last 4 months 

hematocrit delta GFR delta last year 

hemoglobin delta GFR standard deviation last 4 months 

hypercholesterolemia GFR standard deviation last year 

Hypertension episodes family hematocrit 

hyperthyroid hemoglobin 

kidney stones hypertension episodes 

leukocytes last GFR 

leukocytes average male 

leukocytes delta mean corpuscular hemoglobin 

mean corpuscular hemoglobin delta mean corpuscular volume 

mean corpuscular volume delta potassium 

obese sodium 

potassium delta specific gravity standard deviation 

smoker urate 

sodium delta urea 

solitary kidney urea delta 

specific gravity  

specific gravity delta  

transplanted  

urate delta  

After data preprocessing, the training set is composed of 2,911 clinical 

encounters; out of these encounters, 74% are related to patients with 

hypertension episodes, 68% regard male patients, 58% refer to the 

beginning of the dialysis treatment within 1 year, 41% are associated 

with diabetic patients, 30% with anemic patients, 25% refer to 

cardiopathic patients, 17% to patients with kidney stones, 8% are 

associated with obese patients, 7% with patients who previously had a 

kidney transplant, 3% with patients with a solitary kidney and 3% with 

patients suffering of hypercholesterolemia. The average patients’ age is 

68 years. Thanks to the stratified sampling used to extract the test set, 

it presents a distribution very similar to the training set one. The 

number and percentage of samples for each class are reported in    

Table 2 both for the training set and the test set. 

Table 2: Number and percentage of samples of each defined class. 

N. of 
classes 

Class 
Training set samples Test set samples 

Count Percentage Count Percentage 

2 classes 
1st 1,717 58.98% 619 58.01% 

2nd 1,194 41.02% 448 41.99% 

3 classes 

1st 1,164 39.99% 435 40.76% 

2nd 934 32.09% 340 31.87% 

3rd 813 27.92% 292 27.37% 

4 classes 

1st 1,164 39.99% 435 40.77% 

2nd 707 24.29% 255 23.90% 

3rd 454 15.60% 139 13.03% 

4th 586 20.12% 238 22.31% 

Figure 2 shows the distribution of the target variable in the training set. 

It can be noticed that it is skewed on the left, with 95% of the 

considered encounters occurring no more than 47 months (about 4 

years) before dialysis. Hence, we focus the analysis and predictions on 

the first 3-4 years following the considered medical check. 

 

 
Figure 2: Target variable distribution in the training data set. 

3.2 Evaluation of approaches and algorithms 

We evaluated the considered algorithms using both classification and 

regression approaches, as well as different feature sets. Table 3 reports 

the cross-validation performances in predicting the time to dialysis 

using binary (within one year or later) classification algorithms trained 

with all 58 input variables, or with only the features selected through 

backward feature elimination on the initial best performing algorithm, 

i.e., the Extremely Randomized Trees classifier (27 in total, in bold in 

Table 1) and when not considering the aggregated features (mean and 

standard deviation of laboratory test results), or when disregarding 

information extracted from textual medical reports. Similarly, Table 4 

reports the cross-validation performances when predicting directly the 

time to dialysis using regression algorithms instead.  

Comparing Table 3 and Table 4 it can be noticed that using a 

classification approach to the problem leads to better results than with 

a regression approach (also when defining more than 2 classes, see 

Table 5 and Table 6). This is probably due to the high difficulty of 
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directly predicting the exact number of months until the dialysis; in 

fact, even the best regression model has a cross-validation RMSE of 

about 7 months. Therefore, we focus on the classification approach.  

It can be also noticed that considering only the selected 27 features 

(rather than using all features) does not worsen the overall 

performance of the classification algorithms, except for the Neural 

Networks, which however have worse performances than any of the 

ensemble classifiers considered. Conversely, when omitting aggregated 

features or information from textual medical reports, the algorithms 

perform remarkably worse. This proves the effectiveness of the feature 

engineering and feature extraction techniques that we employed. Using 

the text mining algorithm adopted for extracting structured 

information from textual medical reports resulted in a simple, but 

effective, approach. We also considered the procedure of deducing the 

patient’s comorbidities from the structured pharmacotherapy 

information by using the Anatomical Therapeutic Chemical (ATC) 

Classification System [19]. ATC identifies the main anatomical group 

and the main therapeutic group which the patient administered drug 

refers to. However, using the ATC code it is not possible to uniquely 

trace back the patient’s clinical conditions (a specific drug can be 

administered for different pathologies). Conversely, using text mining 

techniques it is possible to remarkably improve precision and recall in 

retrieving these pathologies. Moreover, other information such as 

whether the patient is a smoker, or he/she has cirrhosis, solitary 

kidney, or kidney stones and the clinical family history could not be 

retrieved without text mining or more sophisticated, but difficult to 

implement, natural language processing techniques.  

Table 5 shows the cross-validation performances in the time to dialysis 

prediction of the considered classification algorithms when using the 

27 features selected and considering the defined 3 or 4 classes, i.e., 

month intervals. Notice that the algorithm performances do not 

decrease considerably with respect to the binary classification ones, 

suggesting the possibility to predict the beginning of the dialysis 

session with more granularity. Clearly, the shorter the specified 

intervals, the more error-prone the algorithms are, but the right trade-

off can be found. Finally, Table 3 and Table 5 show that, independently 

on the number of specified classes, the best performing algorithms are 

the ones using an ensemble of decision trees. Particularly, the 

Extremely Randomized Trees (shortly ExtraTrees) classifier is the best 

Table 3: Comparison of cross-validation performances of binary 

classification algorithms using different sets of features. 

Classifier Feature set 
Cross-validation 

Accuracy Precision Recall F1-score 

Decision 

Trees 

All features 0.84 ± 0.01 0.85 0.85 0.85 

Selected 

features 
0.84 ± 0.01 0.85 0.85 0.85 

No aggregated 

features 
0.81 ± 0.02 0.78 0.78 0.78 

No textual 

reports 
0.82 ± 0.02 0.80 0.80 0.80 

Random 

Forest 

All features 0.91 ± 0.01 0.93 0.93 0.93 

Selected 

features 
0.91 ± 0.02 0.94 0.94 0.94 

No aggregated 

features 
0.88 ± 0.01 0.86 0.86 0.86 

No textual 

reports 
0.90 ± 0.01 0.91 0.90 0.90 

Extremely 

Randomized 

Trees 

All features 0.94 ± 0.01 0.93 0.93 0.93 

Selected 

features 
0.94 ± 0.01 0.95 0.95 0.95 

No aggregated 

features 
0.90 ± 0.02 0.92 0.92 0.92 

No textual 

reports 
0.91 ± 0.01 0.92 0.92 0.92 

Gradient 

Tree 

Boosting 

All features 0.93 ± 0.01 0.92 0.92 0.92 

Selected 

features 
0.93 ± 0.01 0.94 0.94 0.94 

No aggregated 

features 
0.89 ± 0.02 0.89 0.89 0.88 

No textual 

reports 
0.91 ± 0.02 0.89 0.89 0.89 

Neural 

Networks 

All features 0.90 ± 0.01 0.90 0.90 0.90 

Selected 

features 
0.88 ± 0.02 0.89 0.89 0.89 

No aggregated 

features 
0.81 ± 0.02 0.85 0.85 0.85 

No textual 

reports 
0.82 ± 0.02 0.84 0.84 0.84 

Logistic 

Regression 

All features 0.73 ± 0.02 0.75 0.75 0.75 

Selected 

features 
0.74 ± 0.02 0.74 0.72 0.73 

No aggregated 

features 
0.71 ± 0.02 0.66 0.66 0.66 

No textual 

reports 
0.71 ± 0.02 0.71 0.71 0.71 

 

Table 4: Comparison of cross-validation performances of regression 

algorithms using different sets of features. 

Regressor Feature set 

Cross-validation 

RMSE Accuracy Precision Recall F1-score 

 

Decision 

Trees 

All 

features 
12.03 ± 1.46 0.81 ± 0.02 0.82 0.82 0.82 

Selected 

features 
11.32 ± 1.31 0.78 ± 0.03 0.79 0.79 0.79 

No aggregated 

features 
13.52 ± 0.97 0.79 ± 0.01 0.80 0.80 0.80 

No textual 

reports 
12.46 ± 1.05 0.80 ± 0.02 0.81 0.81 0.81 

 

Random 

Forest 

All 

features 
8.05 ± 0.77 0.86 ± 0.01 0.86 0.86 0.86 

Selected 

features 
8.12 ± 0.88 0.86 ± 0.01 0.85 0.85 0.85 

No aggregated 

features 
9.03 ± 0.99 0.83 ± 0.01 0.83 0.83 0.83 

No textual 

reports 
8.75 ± 0.64 0.85 ± 0.02 0.83 0.83 0.83 

 

Extremely 

Randomized 

Trees 

All 

features 
6.99 ± 0.87 0.90 ± 0.02 0.91 0.91 0.91 

Selected 

features 
7.28 ± 0.89 0.89 ± 0.02 0.89 0.89 0.89 

No aggregated 

features 
9.03 ± 0.99 0.83 ± 0.01 0.83 0.83 0.83 

No textual 

reports 
8.05 ± 0.94 0.87 ± 0.02 0.87 0.87 0.87 

 

Gradient Tree 

Boosting 

All 

features 
7.42 ± 0.86 0.85 ± 0.01 0.83 0.83 0.83 

Selected 

features 
7.54 ± 1.27 0.85 ± 0.02 0.86 0.86 0.86 

No aggregated 

features 
8.53 ± 0.59 0.82 ± 0.02 0.79 0.79 0.79 

No textual 

reports 
7.86 ± 0.69 0.85 ± 0.02 0.84 0.84 0.84 

Neural 

Networks 

All 

features 
11.57 ± 5.99 0.85 ± 0.02 0.86 0.86 0.86 

Selected 

features 
11.96 ± 5.99 0.80 ± 0.02 0.84 0.84 0.84 

No aggregated 

features 
13.62 ± 4.26 0.73 ± 0.03 0.81 0.81 0.81 

No textual 

reports 
13.47 ± 4.26 0.74 ± 0.03 0.81 0.81 0.81 
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performing one for all number of classes considered, both in terms of 

accuracy and F1-score. Thus, we select the ExtraTrees classification 

algorithm for the time to dialysis prediction. In the next Section, we 

report its performances computed on the unseen test set. As for the 

number of trees used as hyperparameter in the ExtraTrees classifier, 

cross-validation shows that the best performance is obtained with 180 

trees. Similarly, the optimal number of trees for the Random Forest 

classifier is 250. For the Decision Trees algorithm instead, the best 

performance is obtained with max_depth equal to 15 and the generated 

tree has about 320 leaves. 

Table 5: Comparison of cross-validation performances of classification 

algorithms using the 27 features selected and the 3 or 4 classes defined. 

Classifier 
N. of 

Classes 
Accuracy Precision Recall F1-score 

Decision 

Trees 

3 0.76 ± 0.03 0.79 0.79 0.79 

4 0.75 ± 0.03 0.76 0.76 0.76 

Random 

Forest 

3 0.87 ± 0.01 0.89 0.89 0.89 

4 0.85 ± 0.03 0.89 0.89 0.89 

Extremely 

Randomized 

Trees 

3 0.90 ± 0.02 0.92 0.92 0.92 

4 0.89 ± 0.02 0.90 0.90 0.90 

Gradient 

Tree 

Boosting 

3 0.86 ± 0.01 0.88 0.88 0.88 

4 0.81 ± 0.02 0.88 0.88 0.88 

Neural 

Networks 

3 0.84 ± 0.02 0.87 0.87 0.87 

4 0.82 ± 0.02 0.86 0.86 0.86 

 

Regarding Table 6, indeed the RMSE remains the one in Table 4; what 

changes are the classification metrics, according to the discretization 

formula used to map the continuous predictions to the discrete output 

(i.e., the corresponding classes). 

Table 6: Comparison of cross-validation performances of regression 

algorithms using the 27 features selected and the mapping to the 3 or 

4 classes defined. 

Regressor 
N. of 

Classes 
Accuracy Precision Recall F1-score 

Decision 

Trees 

3 0.71 ± 0.02 0.71 0.71 0.71 

4 0.68 ± 0.03 0.70 0.69 0.69 

Random 

Forest 

3 0.71 ± 0.03 0.76 0.71 0.71 

4 0.66 ± 0.02 0.76 0.65 0.66 

Extremely 

Randomized 

Trees 

3 0.79 ± 0.03 0.80 0.75 0.76 

4 0.75 ± 0.03 0.78 0.75 0.75 

Gradient 

Tree 

Boosting 

3 0.72 ± 0.02 0.76 0.71 0.72 

4 0.68 ± 0.02 0.69 0.66 0.66 

Neural 

Networks 

3 0.72 ± 0.02 0.74 0.74 0.74 

4 0.67 ± 0.03 0.68 0.65 0.66 

 

3.3 Extremely Randomized Trees classifier models 

The performances of the ExtraTrees classifier using the 27 selected 

features when applied on the test set are reported in Table 7; they are 

equivalent to the ones obtained for the same classifier during cross-

validation, showing that the chosen models are not overfitted. 

Table 7: Performances of the proposed models (ExtraTrees classifiers) 

obtained on the unseen test set using the 27 selected features. 
N. of 

Classes 
Accuracy Precision Recall  F1-score Specificity 

2 0.94 0.96 0.96 0.93 0.91 

3 0.91 0.93 0.93 0.93 0.91 

4 0.87 0.90 0.89 0.89 0.87 

 

The confusion matrices of the proposed models are shown in Figure 3, 

Figure 4 and Figure 5, where the precision and recall in predicting each 

specific class are also reported. These matrices show that the models 

manage to correctly classify the great majority of the test set new cases, 

with greater precision for the classes at the extremes of the overall time 

interval considered for the prediction (i.e., the ones closest or most 

distant in time) and with slightly less precision for the intermediate 

classes, where some cases are classified in the adjacent classes; this is 

well adequate for the intended clinical purposes of personalized care. 

 
Figure 3: Confusion matrix of the ExtraTrees binary model. 

 

 
Figure 4: Confusion matrix of the ExtraTrees model with 3 classes. 

 

 
Figure 5: Confusion matrix of the ExtraTrees model with 4 classes. 

 

3.4 Implementation and dataset availability 

At [20], the collected dataset used for the analysis, together with the 

Python code for computing an overview of the dataset and for training 

and testing the proposed computational models, and the developed 

computational models for their direct use are publicly available. 

3.5 Relevant factors for the dialysis onset 

To identify the selected features most relevant in predicting the time to 

dialysis of CKD patients, we compute both the feature importance 

ranking, based on the feature coefficients of the ExtraTrees binary 

classifier (Figure 6), and the feature correlation ranking with the target 

variable ‘months until dialysis’ (Figure 7). The former one helps 

identifying which features are more relevant for the prediction 

according to the proposed binary model. Instead, the latter one is based 

on the value of the Pearson’s correlation coefficients computed over the 

training data set; in Figure 7 we report them, with in dark red the 

features resulting inversely correlated with the target variable (i.e., 

representing factors associated with a rapid onset of renal failure) and 

in light blue the features directly correlated with the target variable.  

Figure 7 shows that the last observed values of creatinine and urea are 

the features most correlated, and inversely, with the target variable; 

thus, they are associated with a rapid onset of complete renal failure. 
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Creatinine is a chemical waste produced in the muscles and filtered by 

the kidneys. If the kidneys are not functioning properly, the amount of 

creatinine in the blood increases. Thus, as our study shows, the level of 

creatinine in the blood is a reliable indicator of kidney’s functionality. 

Similar considerations can be done for urea, as well as ’creatinine 

delta’ and ’urea delta’, both the latter ones computed as the difference 

between their last test result observed and the mean of their previous 

test results over the last 4 months of observation. The increase of these 

delta values means that the values of creatinine and urea increased 

from their last clinical check, highlighting a rapid degradation of the 

renal function; the opposite indicates their decrease. The same 

reasoning applies to ’GFR delta last 4 months’ and, even if less 

correlated, to ’GFR delta last year’, both computed in the opposite way, 

i.e., as the difference between the mean of the previous results and the 

last observed test result; thus, a big positive delta value means that the 

eGFR remarkably decreased in the last period, the opposite for a 

negative delta value. The last value of GFR (last GFR) is an important 

indicator and, as expected, it results directly correlated to a wider time 

span before the necessary start of the dialysis treatment. These 

features, overall, occupy a high ranking position also in Figure 6. 

 
Figure 6: Feature importance ranking of the ExtraTrees binary model. 

 

Other variables associated with slower advancement of the disease are 

the last observations of erythrocytes, hematocrit and hemoglobin, 

which are indicators of the quantity and percentage of red blood cells 

in the body and are linked to the general well-being of the patient. Both 

the feature ranking and the correlation analysis show that another 

important factor is the standard deviation of specific gravity (a urine 

test that compares the density of urine with the density of water). 

Interestingly, the binary features ’diabetic’, ’cardiopathic’, and 

’hypertension episodes’ occupy a higher position in the correlation 

ranking with respect to their position in the feature importance 

ranking. Their low position in the feature ranking can be explained by 

the intrinsic nature of these variables: Decision Trees algorithms 

intrinsically perform feature selection by selecting the appropriate 

branch split points through the information gain, or Gini index criteria; 

their basic idea is that the more often a feature is used in the split points 

of a tree, the more important that feature is. Therefore, continuous 

variables that can be discretized and used for splitting several times are 

better ranked than binary variables that can be used for splitting only 

once. As known, the presence of such comorbidities worsens the 

general well-being of the patient; from Figure 7, where these features 

are shown in red, we can deduce that people affected by these 

pathologies are more prone to rapid worsening of kidney 

functionalities. These results are confirmed by previous medical 

investigations showing that the CKD incidence increases in people 

affected by diabetes, high blood pressure, or other comorbidities [3, 4, 

15, 21]. Our results confirm also that an advanced age is related to a 

rapid worsening of renal conditions [3, 4, 21]. Finally, the potassium, 

sodium, and anemic features do not seem to have a strong impact on 

the prediction of the dialysis onset. The scarce relevance of the binary 

variable 'anemic' can be explained by the fact that the presence or 

absence of anemia per se is less important than the actual degree of 

anemia, expressed by the laboratory results of the hematocrit and 

erythrocyte levels. Our results are also in line with the medical 

literature and the opinion of the Nephrologists who supervised the 

study. 

 
Figure 7: Correlation ranking of the selected features with the target 

variable ‘months until dialysis’. 

 

4 Discussion  

The conducted study shows that several factors influence the CKD 

progression rate. The ones resulted more important for predicting the 

dialysis onset include, in addition to the patient’s age and main 

comorbidities, recent observations on the trends of the amount of 

creatinine, urea and red cells in the blood, urine specific gravity and 

eGFR. Interestingly, the latter one does not even appear to be the most 

important.  

The developed computational method is meant to enable clinicians to 

reliably estimate in advance by when the dialysis treatment will be 

necessary for a patient; additionally, it allows specifying different levels 

of granularity for the target time interval estimation, corresponding to 

different reliability levels. This is achieved by training the ExtraTrees 

classification algorithm multiple times with an increasing number of 

predefined classes, eventually providing different classification models 

to be used for different numbers of classes; the appropriate model is 

then used according to the granularity specified by the clinician.  

The availability of our method allows best planning of the next clinical 

check or of the beginning of the dialysis treatment, prioritizing the 

controls of patients at risk and allowing clinicians and end-staging 

patients to organize themselves in the most appropriate manner. 

Furthermore, it provides more information on the CKD progression of 

a specific patient, by analyzing how the computational predictions 

change from a clinical check to the subsequent ones with respect to the 

administered treatment, the lifestyle, or the diet of the patient. 
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Regarding the different machine learning approaches evaluated, 

tackling our problem with a classification approach leads to better 

results than when using a regression approach. Focusing on 

classification algorithms, ensemble techniques based on decision trees 

are the key to achieve good results in the addressed problem. First, 

given the possible limited size of the data set, it is important to avoid 

overfitting, which ensemble methods can help eluding. Second, since 

the interpretation of results is a critical aspect in the clinical context, 

decision trees are intuitive and explainable algorithms, therefore 

preferable to more complex computational architectures. 
Regarding the feature engineering phase, the obtained results show 

that the last observed values and their simple aggregation statistics, 

such as mean, trend and standard deviation, allow describing reliably 

the clinical status of a patient with a limited number of attributes; these 

allow generating much simpler and more understandable models, 

avoiding the use of more complex computational architectures such as 

recurrent neural networks. The latter ones are commonly used for 

effective pattern analysis of time series, but they require much more 

data, often not available in a clinical context.  

The obtained results also show that even simple text mining 

techniques, based primarily on keyword search in the patient’s textual 

medical history, allow extracting relevant patient information that 

would otherwise be impossible to retrieve, because not present in a 

structured form within a hospital database. 

We are aware of the limitations of the developed predictive models, 

since the study is carried out in a single Center and is not reevaluated 

yet using data sets from EMRs of other Institutions. For example, the 

population we consider for the analysis is composed only of people of 

Caucasian ethnicity, but the medical literature suggests that the 

ethnicity could be another important factor in the CKD development. 

Unfortunately, it is difficult to find public datasets adequate for our 

purpose, since the analysis of the CKD evolution still needs to be 

deepened. Furthermore, the overall accuracy of the defined model may 

be improved considering other relevant information, such as patient’s 

level of proteinuria, diet, body mass index (BMI), drug therapy, or the 

assessment scales compiled by physicians or nurses, which were not 

available or had an excessive percentage of missing entries for the 

conducted study. 

We have integrated the developed computational models in the 

Vimercate Hospital informatics infrastructure to further evaluate 

them; the goal is a long-term prospective study aimed at assessing the 

improved diagnostic accuracy of the clinicians when coupling their 

experience and knowledge to the use of such models. 

5 Conclusions 

The current assessment scales of CKD progression, mainly based on 

eGFR and already proven to be ineffective for predicting in advance 

when a CKD patient will necessarily have to be dialyzed, can be 

improved by considering multiple factors through machine learning 

techniques, which allow a reliable prediction of a CKD patient at 

dialysis risk in a short or longer time. The promising results obtained 

show that machine learning techniques allow developing a 

computational model that, coupled with the knowledge and experience 

of the clinicians, can effectively lead to better personalized care and 

strategic planning of both patient’s needs and hospital resources. 
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