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Abstract: In this work, we propose a novel data-driven approach for detailed kinetic mechanism
optimization. The approach is based on a curve matching-based objective function and
includes a methodology for the optimisation of pressure-dependent reactions via
logarithmic interpolation (PLOG format). In order to highlight the advantages of the new
formulation of the objective function, a comparison with L1 and L2 norm is performed.
The selection of impactful reactions is carried out by introducing a Cumulative Impact
Function (CIF), while an Evolutionary Algorithm (EA) is adopted to perform the
optimization. The capabilities of the proposed methodology were demonstrated using a
database of ~635 experimental datapoints on ammonia combustion, covering standard
targets like ignition delay times, speciation and laminar flame speed. The optimization
was carried out starting from a recently published mechanism, describing ammonia
pyrolysis and oxidation, largely developed using first-principles calculation of rate
constants. After the selection of the 24 most impactful reactions, the related 101
normalized Arrhenius parameters were simultaneously varied, within their uncertainty
bounds. Their uncertainty bounds were taken from the literature, when available, or
estimated according to the level of theory adopted for the determination of the rate
constant. Hence, we also provide guidelines to estimate uncertainty for reaction rate
constants derived from first principles calculations using well consolidated
computational protocols as a reference. The optimized mechanism was found to
improve the nominal one, showing a satisfactory agreement over the entire range of
operating conditions. Moreover, the use of a ‘curve matching’ index was found to
outperform the adoption of L1 and L2 norms. The comparison between the nominal
mechanism and the one optimized via curve matching allowed a clear identification of
different critical reaction pathways for different experimental targets. From this
perspective, the methodology proposed herein can find further application as a useful
design-of-experiments tool for an accurate evaluation of crucial kinetic constants, thus
driving further mechanism improvement.
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o Uncertainty analysis. This section contains details about the employed methods for rate 

constants uncertainty estimation, performed on the basis of the accuracy of the level of 

theory adopted for the rate constant determination.  

o Penalties analysis. Here, a Monte Carlo approach was adopted to quantify the 
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Abstract 

In this work, we propose a novel data-driven approach for detailed kinetic mechanism optimization. 

The approach is based on a curve matching-based objective function and includes a methodology for 

the optimisation of pressure-dependent reactions via logarithmic interpolation (PLOG format). In order 

to highlight the advantages of the new formulation of the objective function, a comparison with L1 

and L2 norm is performed. The selection of impactful reactions is carried out by introducing a 

Cumulative Impact Function (CIF), while an Evolutionary Algorithm (EA) is adopted to perform the 

optimization. The capabilities of the proposed methodology were demonstrated using a database of 

~635 experimental datapoints on ammonia combustion, covering standard targets like ignition delay 

times, speciation and laminar flame speed. The optimization was carried out starting from a recently 

published mechanism, describing ammonia pyrolysis and oxidation, largely developed using first-

principles calculation of rate constants. After the selection of the 24 most impactful reactions, the 

related 101 normalized Arrhenius parameters were simultaneously varied, within their uncertainty 

bounds. Their uncertainty bounds were taken from the literature, when available, or estimated 

according to the level of theory adopted for the determination of the rate constant. Hence, we also 

provide guidelines to estimate uncertainty for reaction rate constants derived from first principles 

calculations using well consolidated computational protocols as a reference. The optimized mechanism 

was found to improve the nominal one, showing a satisfactory agreement over the entire range of 

operating conditions. Moreover, the use of a ‘curve matching’ index was found to outperform the 

adoption of L1 and L2 norms. The comparison between the nominal mechanism and the one optimized 

via curve matching allowed a clear identification of different critical reaction pathways for different 

experimental targets. From this perspective, the methodology proposed herein can find further 

application as a useful design-of-experiments tool for an accurate evaluation of crucial kinetic 

constants, thus driving further mechanism improvement. 
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Keywords 

Optimization, detailed kinetics, ammonia, uncertainty quantification. 

Nomenclature 

Roman symbols 

A   = pre-exponential factors [s – cm3 – mol] 

Ea  = activation energy [cal/mol] 

fr  = uncertainty factor for reaction r 

R   = universal gas constant [cal/mol/K] 

 𝑑𝑗
0  = zero-order derivative dissimilarity index for the the jth dataset  

 𝑑𝑗
1  = first-order derivative dissimilarity index for the the jth dataset 

g  = experimental data spline 

m  = model evaluations spline 

pc   = cross-over rate 

pm   = mutation rate 

X  = uniformly distributed random variable 

Y   = optimisation target 

 Ir,s  = impact coefficient of rth reaction in sth test case 
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 sr,s  = sensitivity coefficient of rth reaction in sth test case 

Greek symbols 

               = kinetic rate constant [cm3/mol/s]  

   = ln(A) [-] 

   = temperature exponent [-] 

   = activation temperature (Ea/R) 

Acronyms 

GRI  = Gas Research Institute 

B2B-DC  = Bound to (2) Bound Data Collaboration 

EA   = Evolutionary Algorithm 

GA    = Genetic Algorithm 

MUM-PCE  = Method of Uncertainty Minimization using Polynomial Chaos Expansion 

PLOG   = Pressure LOGarithmic nterpolation 

CM   = Curve Matching 

RCM  = Rapid Compression Machine  

PFR  = Plug Flow Reactor 

JSR  = Jet Stirred Reactor 

FPF   = Freely Propagating Flames 

TC   = Test Case 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 6 

CSF   = Cumulative Sensitivity Function 

CIF   = Cumulative Impact Function 

PES   = Potential Energy Surface 

Subscripts 

0  = nominal 

r   = rth reaction 

max   = maximum value of the related variable 

min   = minimum value of the related variable 

L2   = dissimilarity index based on L2 norm evaluation of given polynomials 

p  = Pearson based measure of given polynomials 

m   = mutation 

c   = cross-over 
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1 Introduction 

The development of detailed kinetic mechanisms for fuels combustion supports and facilitates the 

implementation of cleaner fuels and more efficient combustion technologies, in the perspective of a 

reduced environmental impact, a differentiation of energy sources and their wiser utilization [1]. From 

a chemical kinetics perspective, a combustion process involves a considerable amount of species 

connected by a complex network of reactions. The increase in computing capabilities and in the 

accuracy and availability of experimental data [2,3] pushes the development of kinetic models of 

increasing complexity in terms of number of species (~103) and reactions (~104) [1]. The rate constants 

of these reactions constitute the parameters of such models, together with thermodynamic and transport 

properties. These can be determined experimentally, theoretically or based on analogy with similar 

compounds for which kinetic subsets already exist [4]. The last decade was characterized by a more 

frequent adoption of theoretical methods (e.g. ab initio transition state theory-based master equation, 

AI-TST-ME) [5,6], for the determination of kinetic parameters and thermodynamic properties. Beyond 

the intrinsic advantages derived from the massive use of AI-TST-ME methods in terms of model 

predictive capabilities, the increasing popularity of such methods is justified by improved theoretical 

methods and algorithms currently available, and by the capability of measuring rate constants for 

elementary steps in a more accurate way, thus providing an immediate validation target for the 

theoretical results. In addition, automated computational protocols implementing the state-of-the-art 

AI-TST-ME methods [7–11] are reaching out to a much wider audience, thus paving the way to a more 

standardized approach to theoretical calculations within the combustion chemistry community. 

Nonetheless, adopting the best rate parameters does not necessarily lead to improved model 

performances when looking at a wide range of experimental targets [4,12]. This is due to multiple 

reasons: i) reference kinetic mechanisms within the combustion science and engineering community 

have a long and consolidated history, or, in machine learning terms, are “well-trained” models, 

iteratively validated over a wide range of experimental targets over decades of research activities 
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[12,13]. ii) Models that have been historically developed largely relying on analogy rules and on semi-

empirical, or at least less complex, thermochemical kinetics principles [14] are typically self-

consistent, even in terms of the very likely possibility of hiding error compensation phenomena. iii) 

Every rate constant, including those from theoretical methods, is affected by an uncertainty [12,15,16]. 

The implementation of theory-based development strategies is an iterative process that shows its 

payback only in the mid-to-long-term perspective. In fact, due to the hierarchical nature of detailed 

mechanisms and their development [17], implementing one single accurate rate parameter, or new rate 

parameters for an entire reaction class, might strongly perturb the critical equilibrium between the 

different modules of a kinetic model. This is particularly important if, while gradually introducing new 

parameters from theoretical calculations, a well performing model is needed for applications of interest 

to the end-user.  

Regarding theoretical determinations the uncertainty can be intuitively considered as decreasing with 

an increasing detail in the level of theory [18]. In the past, uncertainty propagation methods were used 

to quantify the level of uncertainty of phenomenological rate coefficients, in n-propyl radical 

oxidation, obtained from theory [19]. In recent times, quantum chemistry calculations are said to have 

reached a level of accuracy comparable to that of experimental measurements [5], promoting their 

applicability in combustion mechanism development [20]. A multi-scale modelling approach was 

proposed by Burke et al. [21,22], who optimized a set of uncertain theoretical kinetics parameters 

directly relating their uncertainties to the combustion behaviour in terms of macroscopic targets 

(ignition delay time, laminar flame speed, etc.). Shannon et al. [23] proposed the use of experimental 

data and uncertainty quantification to constrain and optimize input parameters in the master equation 

using MESMER [24]. 

Essentially, each parameter of a kinetic model, expressed in any form, can be considered as a randomly 

distributed variable within its uncertainty range [16]. This feature can be exploited in mathematical 
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optimization if the model is required to accurately perform on small, as well as large, sets of 

experimental targets.  

Optimization is a powerful tool for data-driven mechanism development, which can be used in 

combination with the solution of the so called “inverse problem”, consisting in obtaining a new set of 

constrained kinetic parameters, by minimizing or maximizing a chosen objective function using 

experimental data as targets.  

In the context of chemical mechanisms, Solution Mapping [25] was the first method applied to a large, 

complex system. This method faces the multi-modality of the problem through polynomial response 

surfaces, and it was applied for the development of the GRI-MECH [26]. This mechanism was trained 

on 77 well-documented and heterogeneous experimental targets describing the combustion of natural 

gas. Frenklach et al. [27] introduced the concept of collaboration of data, and demonstrated that a joint 

analysis on the entire data sample can increase the amount of extracted information and improve the 

results. Feeley et al. [28] showed that the technique of data collaboration can be used  to rigorously 

assess the mutual consistency of experimental results and identify potential outliers, using a chemical 

kinetic model. The methodology, called Bound-to-Bound Data Collaboration (B2B-DC) has been 

successfully applied and refined in several other works [29–34]. The applicability of 

Evolutionary/Genetic Algorithms (EA/GA) to optimization problems involving detailed kinetics was 

broadly investigated by Elliott et al. [35]. EA/GA were found particularly suitable for searching 

objective-function spaces characterized by high dimensionality. Turányi et al. [36] proposed a sum-

of-squared-error-based methodology, accounting for both direct and indirect measurements, and 

successfully applied it to H2/O2 [37], H2/O2/NOx [38], H2/CO mixtures [39], CH2O and CH3OH [40], 

and ethanol [41]. Najm et al. [42] applied forward Uncertainty Quantification (UQ) and Polynomial 

Chaos Expansion (PCE) to chemical kinetics. Sheen and Wang introduced the method of uncertainty 

minimization by polynomial chaos expansion (MUM-PCE) [43,44]. Cai and Pitsch [45] minimized 

the uncertainty in a n-pentane combustion mechanism by applying the MUM-PCE method to the 
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optimization of rate rules. They also proposed a strategy to optimize pressure-dependent reactions, 

formulated via logarithmic interpolation, i.e. PLOG standard [46]. PLOG expressions are indeed 

gradually substituting the previous formulation of pressure-dependent rate constants, as they yield a 

better fitting to experiments or calculations [5]. As this formalism uses accurate rates for discrete 

pressures, the parameters of each pressure value were considered independent from each other in [45].  

The optimization of relatively compact kinetic mechanisms, such as methane, hydrogen, and ammonia 

is particularly attractive, because of i) the large availability of high-fidelity data [4], ii) the current 

interest in e-fuels produced from renewable energy [47], and iii) their compact size allowing to 

benchmark the suitability of different optimization algorithms before their application to more 

complex networks. Among them, the combustion kinetics of ammonia (NH3) is one of the most active 

research fields, due to the high potential of ammonia as a fuel, from both an economic and a technical 

perspective [48]. Indeed, ammonia is a carbon-free energy vector with high hydrogen content, which 

can be liquefied at pressures higher than 9.9 bar at ambient temperature. Historically ammonia has 

been used as NO reducing agent in both selective and non-selective catalytic reduction. The importance 

of ammonia is also related to other renewable energy sources: for example, it is a by-product of 

anaerobic digestion of municipal wastewater sludges [49], and it is found in trace amounts in biogas 

[50]. The combined use of NH3 with conventional fuels like H2 or CH4 has also been studied in order 

to improve shortcomings related to its low reactivity [51,52]. Also, optimal operating conditions were 

found to minimize NOx emissions [53]. Therefore, several mechanisms describing the oxidation of 

NH3 and NH3/H2 fuel blends were developed [54–56]. Glarborg et al. [57] recently proposed a 

comprehensive nitrogen chemistry model, including ammonia itself. Anyway, uncertainties still persist 

in the characterization of ammonia chemistry for an accurate prediction of ignition, speciation, and 

laminar flame speed [57]. So far, optimization studies in chemical kinetics have been relying on 

objective functions based on the L1 and L2 norms of the difference between models predictions and 

corresponding experimental targets [35,58,59]. Recently, You et al. [31] minimized the L1-norm of 
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the difference between the active variables values and the nominal ones, constrained on the feasible 

set of combinations identified with B2B-DC [27]. The formulations in [31] not only improve the model 

performance, but also minimize the number of parameters and the deviations of the new values from 

the literature recommendations. Recently, Bernardi et al. [60] presented an innovative framework 

based on Curve Matching (CM), consisting in a multi-faceted functional analysis of the profiles 

obtained from both models and experiments. In this approach, they introduced a proper metric to 

quantify the similarity between the curves representing experiments and simulations, rather than a 

point-wise measure of the distance between them. Pelucchi et al. [61] revised and proposed such 

framework as a further step towards an automatic model validation protocol.  

In this work, a novel methodology for the optimization of kinetic mechanisms is proposed, which 

includes, for the first time, the possibility to optimize PLOG reactions by accounting for 

interdependencies between rates at different pressures and using the CM index [61] as the objective 

function. The effectiveness of such approach was verified by adopting a kinetic mechanism for 

ammonia combustion as a case study [20]. This model was recently proposed and largely relies on 

theoretical calculations of key reaction rate constants. As an added value, this work also presents 

guidelines for attributing reasonable uncertainty factors for theoretical determinations performed with 

different theory levels. On these bases, optimization was carried out using a non-gradient based, mono-

objective, Evolutionary Algorithm (EA) in OptiSMOKE++ [62], capable of handling all the 

parameters as uniformly distributed random variable within their estimated bounds, simultaneously.  

The manuscript is organized as follows. Section 2 presents the proposed methodology. Section 3 

describes the results, for pure ammonia on a wide range of experimental conditions covering ignition 

delay times in Shock Tube (ST) and Rapid Compression Machines (RCM), Plug Flow (PFR) and Jet-

Stirred Reactor (JSR) speciation measurements and laminar burning speed in Freely Propagating 

Flames (FPF). Finally, conclusions are presented in Section 4.  
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2 Methodology 

2.1 Optimization procedure 

As in [18, 20], all the parameters of the selected rate constants expressed according to the modified 

Arrhenius expression (k=A Tβ exp(-Ea/RT)) undergo optimization, i.e. pre-exponential factors (A), 

temperature exponents (), and activation energies (Ea). The logarithmic expression of the rate 

constant adopted in this work yields: 

 𝜅 = ln(𝑘(𝑇)) = ln(𝐴∗) + 𝛽 ln (
𝑇

𝑇𝑟𝑒𝑓

) −
𝐸𝑎

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓

) = 𝛼∗ + 𝛽 ln (
𝑇

𝑇𝑟𝑒𝑓

) − 𝜀 (
1

𝑇
−

1

𝑇𝑟𝑒𝑓

) (1) 

where, *, , and  are continuous random variables representing the Arrhenius parameters, usually 

assumed to be uniformly [59] or normally [63] distributed. In equation (1), A* is a re-parametrized 

form of the pre-exponential factor at the reference temperature Tref: 

 𝐴∗ = 𝐴 𝑇𝑟𝑒𝑓
𝛽 exp (−

𝜀

𝑇𝑟𝑒𝑓
), (2) 

The re-parametrization in equation (2) minimizes the high correlation between the parameters of the 

Arrhenius equation, and makes parameters estimation easier [64,65]. In this work, a reference 

temperature of 1000 K was adopted for all reactions.  

The uncertainty of the rate coefficients is usually assumed as symmetric, and is reported in literature 

in terms of fr factor [15], being defined as follows: 

 𝑓𝑟 =
,𝑚𝑎𝑥−0

ln(10)
=

0−𝑚𝑖𝑛

ln(10)
, (3) 

The problem of defining the constraints for the active parameters was dealt with in several studies. In 

the deterministic framework of B2B-DC [27][30], the feasible set is obtained by combining the initial 

bounds of both active variables and experimental data. In MUM-PCE [43], a statistical approach is 
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adopted, which assumes “a priori” distributions for both the model parameters and the measurements, 

and produces “a posteriori” distributions for both model parameters and predictions. These two 

approaches were recently compared, and they were found to give consistent results [32]. Nagy and 

Turányi [66,67] considered the dependence of 𝑓𝑟 on temperature, and proposed a method to determine 

the covariance matrix and the multivariate normal distribution of the transformed Arrhenius 

parameters from prior information on the rate constant. In a later study, Nagy et al. [68] recommended 

the adoption of temperature-independent uncertainty and uniform distributions for Arrhenius 

parameters with little prior information. As we discuss later (see 2.5), the nominal mechanism in this 

study largely relies on ab-initio calculations. For this reason, the temperature dependence of 𝑓𝑟 is not 

accounted for, and uniform distributions for all the active variables are employed.  

As reported in equation (1),  is a weighted sum of three random variables with joint uniform 

distribution, which results in a higher probability near o [68]. For the sake of simplicity, in the 

following we assume that for all temperatures the kinetic constant  is a normally distributed random 

variable with mean value 0, corresponding to (po), and standard deviation 𝜎𝜅, with 𝒑𝟎 = [𝛼0, 
0

, 0]. 

As in [43][59], we assume that 𝑓𝑟 corresponds to the 2𝜎𝜅 of the distribution of , and we constrain it 

at 3.  From equation (3), max and min can be obtained, i.e. the maximum and minimum linear 

constraints of  in T[Tmin, Tmax]. As an element i in  can be retrieved by sampling from the 

distributions of the normalized Arrhenius parameters, 𝑓𝑟 can also be propagated from  to , , and  

to estimate their bounds. In the following, the hypothesis of mutual independence between parameters 

is used exclusively to achieve this goal. Given the equation: 

 10𝑓𝑟 =
𝑘𝑚𝑎𝑥(𝑇)

𝑘0(𝑇)
=

𝑘0(𝑇)

𝑘𝑚𝑖𝑛(𝑇)
= exp[ +  ln 𝑇 −  𝑇−1], (4) 
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and assuming that the maximum variation pi of one parameter is determined by projecting the 

uncertainty of  on the parameter itself (i.e. keeping constant the other two to their nominal values so 

that pi=0), the following constraints can be retrieved: 

 0 − ln(10𝑓𝑟) ≤  ≤ 0 + ln(10𝑓𝑟), (5) 

 
0

−
𝑓𝑟

𝑙𝑜𝑔10(𝑇)
≤  ≤ 

0
+

𝑓𝑟

𝑙𝑜𝑔10(𝑇)
, (6) 

 0 − 𝑓𝑟  𝑇𝑙𝑛 (10)  ≤  ≤ 0 + 𝑓𝑟 𝑇𝑙𝑛 (10), (7) 

This operation results in 2 non-linear constraints for  and  in T[Tmin, Tmax]. However, it can be 

shown that: 

 lim
𝑇→∞

𝑘(𝑇) = exp() 𝑇, (8) 

 lim
𝑇→0

𝑘(𝑇) = exp(−𝑇−1), (9) 

The limits (8) and (9) indicate that at high temperature, the term 𝑇 controls the value of , while the 

contribution of 𝑇−1 is progressively smaller. The opposite is true for low temperatures. Thus, the 

sensitivity of  to  is maximum at Tmax. Conversely, the sensitivity of  to  is maximum at Tmin. By 

bounding  and  in equations (6) and (7) at Tmax and Tmin, respectively, we ensure that 

𝜅(0, 
𝑚𝑎𝑥

, 0, 𝑇), 𝜅(0, 
𝑚𝑖𝑛

, 0, 𝑇), 𝜅(0, 
0

, 𝑚𝑎𝑥 , 𝑇), and 𝜅(0, 
0

, 𝑚𝑖𝑛 , 𝑇) never violate the 

linear constraints on 𝜅(𝑇), when T[Tmin, Tmax]. In this work, the minimum and maximum 

temperatures are  300 and 3000 K, respectively. Indeed, from the definition of 𝑓𝑟 in equation (3), also 

𝜅(𝑚𝑎𝑥 , 
0

, 0, 𝑇), and 𝜅(𝑚𝑖𝑛, 
0

, 0, 𝑇) do not violate the mentioned constraints. The adoption of 

this methodology for the estimation of parameter boundaries has two main advantages. First, it reduces 

the probability of sampling a kinetic rate constant 𝜅(𝑇), which violates the above mentioned linear 

constraints, with respect to previously proposed methods [69]. Further details about this feature are 

provided in the Supplementary Material (SM). Secondly, it also enables the optimization of PLOG-
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based reactions. As an example, Figure 1 shows the projections of the parameters bounds on the kinetic 

constants of the reaction NH2+NO2=H2NO+NO. Those resulting from varying only  overlap with the 

2 of the distribution of . On the other hand, those resulting from the variation of   and  only 

overlap with the 2 of k only at Tmax and Tmin, respectively, while not exceeding them along T[Tmin, 

Tmax]. The limit values of the corresponding  distribution, i.e. 𝜅(𝑚𝑎𝑥, 
𝑚𝑎𝑥

, 𝑚𝑖𝑛) and 

𝜅(𝑚𝑖𝑛, 
𝑚𝑖𝑛

, 𝑚𝑎𝑥), are also displayed. They include the entire space of  and exceed it. In fact, since 

the parameters are correlated [66], not all the combinations of the three results are valid.  

All the combinations, which result in values of  belonging to the area between the limit values and 

the 3 bounds of the distribution of , are excluded from the set of eligible parameter combinations. 

This is achieved by introducing a penalty function during the optimization: the associated objective 

function is equal to curve matching index of 0 (i.e. the maximum error in the CM methodology). 

Conversely, for each valid combination suggested by the adopted optimization algorithm, a 

corresponding set of simulations responses are obtained by performing model evaluations for the entire 

database. Subsequently, the CM indices: 

 CM𝑗 =
(𝑑𝑗,𝐿2

0 +𝑑𝑗,𝐿2
1 +𝑑𝑗,𝑝

0 +𝑑𝑗,𝑝
1 )

4
[0, 1], (10) 

are calculated, as a weighted sum of 4 dissimilarity indices, for each dataset j. A unitary CM value 

indicates a perfect matching between model evaluations and experiments. In particular, functional 

estimations of both experimental, g(x), and model evaluations, m(x) (and their derivatives g’(x) and 

m’(x)) are obtained by interpolating smoothed splines, which result in satisfactory approximations of 

both data points and first derivatives [60,61]. Based on these estimations, the dissimilarity indices are 

computed as follows: 

 𝑑𝑗,𝐿2

0 =
1

1+
‖𝑚−𝑔‖

|𝐷|

[0, 1], (11) 
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 𝑑𝑗,𝐿2

1 =
1

1+
‖𝑚′−𝑔′‖

|𝐷|

[0, 1], (12) 

 𝑑𝑗,𝑝
0 = 1 −  

1

2
‖

𝑚

‖𝑚‖
−

𝑔

‖𝑔‖
‖[0, 1], (13) 

 𝑑𝑗,𝑝
1 = 1 −  

1

2
‖

𝑚′

‖𝑚′‖
−

𝑔′

‖𝑔′‖
‖[0, 1], (14) 

where |𝐷| is the intersection of the domain between g and m. For instance, if the abscissa values of g 

belong to [500,1500], and those of m belong to [400, 1800], the value of |𝐷| would be 1000 (i.e. |𝐷| 

=1500-500). The ‖𝑔‖ is the L2-norm of the function g. All the dissimilarity indices are intrinsically 

constrained between 0 and 1, where 1 indicates maximum similarity, and 0 maximum dissimilarity. 

Individually, 𝑑𝑗,𝐿2

0  depends on the area enclosed by g and m, while  𝑑𝑗,𝐿2

1  evaluates the same quantity 

between their respective derivatives. Hence, the first generalizes a classical L2-norm, while the second 

extends it. On the other side, the Pearson dissimilarity measures 𝑑𝑗,𝑝
0  and 𝑑𝑗,𝑝

1  indicate perfect matching 

if g and m, and their derivatives, only differ by vertical translation. Further mathematical details and 

examples are given in [60,61]. In order to account for the uncertainty in the evaluation of (10), a 

bootstrapping procedure [70] on the experimental data is carried out. This procedure relies on the 

assumption that each data point is normally distributed within its experimental uncertainty. A 

sufficiently large set of possible experimental trends is generated taking random samples from the 

above-mentioned distributions. Figure 2 displays an example of the application of the bootstrap 

procedure for laminar flame speed data, where 7 gaussian distributions (i.e. one for each data point) 

were sampled 10 times to generate as many bootstrap variations. 

A set of 50 bootstrap variations (Nb=50) for each data point was adopted after verifying the substantial 

independence of the final output on a further broadening of the set. Thus, the objective function in this 

work is defined as: 
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 𝑀 =
1

𝐷𝑆
∑ [1 −

1

𝑁𝑏
∑ (𝐶𝑀𝑗)

𝑁𝑏
𝑗=1 ]

𝑖

𝐷𝑆
𝑖=1 , (15) 

Where, DS is the number of target datasets and Nb is the number of bootstrap variations. In order to 

discuss its advantages, the final index (eq. (15)) is compared to the modified versions of L1-norm and 

L2-norm: 

 𝐿1 =
1

𝐷𝑆
∑

1

𝐸𝑖

𝐷𝑆

𝑖=1
∑ |

𝑌𝑖,𝑗
𝑒𝑥𝑝

−𝑌𝑖,𝑗
𝑠𝑖𝑚

(𝑌
𝑖,𝑗
𝑒𝑥𝑝

)
|

𝐸𝑖

𝑗=0

 , 16a) 

 

𝐿2 =
1

𝐷𝑆
∑

1

𝐸𝑖

𝐷𝑆

𝑖=1
∑

(𝑌𝑖,𝑗
𝑒𝑥𝑝

−𝑌𝑖,𝑗
𝑠𝑖𝑚)

2

2(𝑌
𝑖,𝑗
𝑒𝑥𝑝

)

𝐸𝑖

𝑗=0

, 

(16b) 

where Ei is the number of discrete experiments belonging to the i-th dataset. Yij
exp, Yij

sim and  are the 

values of the j-th measurement, simulation, and experimental uncertainty in the i-th dataset, 

respectively.  

As in Olm et al. [71], when the error on ignition delay times is evaluated, the following transformation 

is used, Yij
exp

=ln(yij
exp) and Yij

sim
=ln(yij

sim), where the yij
exp and yij

sim refers to the absolute experimental 

and simulated values, respectively. For other experimental targets, such as species concentrations and 

laminar flame speeds, the logarithmic transformation is not used. The same is done for the estimation 

of Curve Matching indices for ignition delay times. 

In this work, the objective function minimization is performed by means of an Evolutionary Algorithm 

(EA) [72], whose solution is less dependent on the initial guess compared to other algorithms [35]. 

Indeed, in EA the initial guess is a set of sampled combinations of active parameters, i.e. the 

‘population’. Initially, a population of 100 different combinations of parameters is sampled, evaluated 

and labelled with objective function values. Then, the algorithm starts the first iteration (a 

‘generation’), where the elements of the current population (the ‘parents’) are ranked applying a linear 

scaling of probability based on the corresponding objective function values. In general, the best 
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performing parents undergo uniform crossover, where a couple of parents (or a ‘chromosome’) is 

selected, and each parameter value can be swapped between the two with a probability equal to the 

crossover rate pc. This operation produces a new pair of elements (the ‘off-springs’), resulting from 

the cross-over of as many parents. Subsequently, mutation is introduced. In particular, for each new 

off-spring, every variable has the same probability to mutate, according to the mutation rate pm. A non-

uniform mutation operator was adopted to assign a new parameter value by sampling from its 

distribution. When mutation and cross-over are complete, a resulting population of 200 is obtained, 

i.e. twice the size of the initial one. In this work, a replacement strategy, which selects the 50 best 

individuals in 200 elements, and randomly selects other 50 from the remaining 150, was adopted. This 

ensures the balance between global and local search. The adopted probability of cross-over (pc=0.65) 

and mutation (pm=0.5) were suggested by Elliott et al. [35]. The new parent population undergoes the 

same procedure iteratively until satisfactory accuracy is achieved. In the present work, Dakota [72] 

and OpenSMOKE++ [73,74], are coupled in OptiSMOKE++ [62] to perform the optimization. The 

first toolbox is specifically conceived to address engineering problems such as optimization, 

calibration and uncertainty quantification. On the other hand, OpenSMOKE++ enables the simulation 

of multiple experimental combustion facilities typically considered for kinetic model development and 

validation. 

2.2 Optimization of reactions in PLOG formalism 

For those reactions exhibiting a “fall-off” behaviour, the rate k(T,P) is usually determined from the 

low and high-pressure limit constants, together with a blending function that smoothly connects the 

limiting rates across the fall-off regime, using different possible formulations. Among these, the Troe 

formulation [75,76] is the most widely used. An alternative formulation based on logarithmic 

interpolations, expressed with the so-called PLOG, has been recently proposed [46], and is rapidly 

growing in popularity because of the potentially superior accuracy, thus becoming the new standard 
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formalism. PLOG reactions are typically introduced in a kinetic mechanism using multiple Arrhenius 

rate constants accounting for temperature dependence at constant pressures covering the entire range 

of conditions from the low to the high-pressure limits. Then, a proper (i.e. logarithmic) interpolation 

is adopted for the intermediate pressures. In this way, the combined effects of pressure (P) and 

temperature (T) on the rate constant k is properly accounted for. As a result, the three Arrhenius 

parameters for each pressure value cannot be optimized independently from each other, even within 

their own uncertainty ranges, in order to keep the physical consistency in the whole pressure domain. 

On the contrary, the same optimization performed using all the nominal pre-exponential factors, 

temperature exponents and activation energies, i.e. treating reactions at different pressures as 

independent from each other, would result in a non-monotonic behaviour with arguable physical 

meaning. Additionally, since the number of reactions within the same PLOG is the result of a fitting 

needed to describe complex k(T, P) with a small acceptable error, the number of parameters to be 

handled scales accordingly. This may result in an abrupt increase in the number of parameters for a 

single reaction. For the first time in literature, we propose an approach to optimize the parameters at 

all pressures simultaneously, based on what proposed for the parameters bounds in the previous 

section, using only three, uniformly distributed random variables with an average value of 0, and 

constrained in the following ranges:  

 𝑋1 ∈ [− ln(10𝑓𝑟) , ln(10𝑓𝑟)], (17) 

 𝑋2 ∈ [−
𝑓𝑟

𝑙𝑜𝑔10(𝑇𝑚𝑎𝑥)
, +

𝑓𝑟

𝑙𝑜𝑔10(𝑇𝑚𝑎𝑥)
], (18) 

 𝑋3 ∈ [−𝑓𝑟𝑇𝑚𝑖𝑛 ln(10) , +𝑓𝑟𝑇𝑚𝑖𝑛 ln(10)], (19) 

These variables are associated with , , and , at all pressures, respectively. The value of X1 is 

sampled from its distribution and added to all the , at different pressures, i.e. each reaction rate is 

changed by the same factor, and the same is done for 0 and 0, using X2 and X3. As an example, Figure 
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3 displays results from the section 3 about the comparison between nominal and optimized rate for the 

decomposition reaction HNO=H+NO, to which we attributed an uncertainty factor fr of 0.3. The 

reported pressure values for this reaction are 0.1,1,10,100 and 1000 bar. Figure 3 highlights the 

preserved consistency in the pressure dependent behaviour of the reaction rates.  

2.3 Database 

Figure 4 summarizes the features of each test case (TC) in the temperature, pressure and composition 

space. The experimental data considered in this work cover the entire space of operating conditions. 

The database, consisting of 60 different datasets (with 635 experimental points) from different test 

cases, was divided in optimization and validation targets (i.e. 75% and 25%, respectively). For high-

temperature conditions, the shock tube experiments from Mathieu and Petersen [55], and Shu et al. 

[77] cover ignition delay time in a wide range of composition ( = 0.5 to 2.0) and pressures (10 to 40 

bar). Stagni et al. [20] reported data for ammonia oxidation at nearly atmospheric pressure for lean 

mixtures in two different systems, namely jet stirred and flow reactors. At low temperatures, He et al 

[78] and Pochet et al. [79] provided auto-ignition data at higher pressures, for lean, stoichiometric and 

rich mixtures in rapid compression machines. Wargadalam et al. [80] and  Song et al. [81] published 

speciation data for very lean conditions, at pressures of 1, 30 and 100 bar, in flow reactors. Davidson 

et al. [82] investigated ammonia pyrolysis in a shock tube at extremely high temperatures (T>2500 K). 

The laminar burning speed experiments by Lhuillier et al. [51] were only considered for validation. 

However, flame speed targets were included by using the data from Ronney [83]. The TCs from Rota 

[84] and Dagaut [85] in jet stirred reactors were excluded from the optimisation set, yet used for 

validation, as they cover a part of the operating conditions space which is already densely populated 

(see Figure 4). 
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2.3.1 Numerical simulations  

In this work, the ignition delay time was calculated using the definition reported in the corresponding 

experimental paper. The constant volume assumption was used to simulate the shock tube data of 

Mathieu and Petersen [55], and Davidson [82]. In reproducing the data from Shu et al. [77], gas 

dynamic effects were accounted for using the methodology described in [86]. The RCM data were 

reproduced under the hypothesis of adiabatic core [87], and detailed volume profiles from He [78] and 

Pochet [79] were used to properly account for the compression stroke and heat exchange effects in 

each experiment. For the flow reactor experiments from Stagni et al. [20], measured, non-reactive 

temperature profiles were given as input to the simulations. 

2.4 Impact-based reactions selection  

Warnatz [88] suggested the joined use of sensitivity and uncertainty to identify key reactions in a 

detailed kinetic mechanism. This concept was also used in optimization of kinetic models for the first 

time by Frenklach et al. [25], who selected the active variables using a ranking based on the “impact 

factor”, i.e. considering the absolute values of sensitivity coefficients multiplied by their own 

uncertainty. Later on, this index was also referred to as “sensitivity-uncertainty index” [89] and 

“optimization potential”  [45]. 

In this work, parameters selection is performed separately for each Test Case (TC), in order to retain 

all the important elementary steps. First, a local sensitivity analysis [73], was performed for each 

experimental point in TC. This produces a vector S containing the average normalized sensitivity 

coefficient sr (eq. (20)) for each reaction rR.  

  𝑠𝒓 =
1

𝑫
∑ |

𝐴𝒓

𝑌𝑟𝑒𝑓

𝜕𝑌𝑑

𝜕𝐴𝒓
|𝑫

𝑑=1 , (20) 
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where Ar is the pre-exponential factor of the reaction r, Y is the optimization target, Yref is a 

normalizing factor, and D is the number of experiments for the test case. This vector is then sorted and 

elaborated in a cumulative sum, and the resulting one is referred to as Cumulative Sensitivity Function 

(CSF). This methodology allows exploiting the properties of the cumulative sum, which enables the 

selection of reactions to be optimized with proper priority. In particular, a subset of sensitive reactions 

SS can be retrieved by establishing a threshold corresponding to a defined fraction of the sum of the 

1st order sensitivity coefficients related to a specific TC. Subsequently, the test case related impact 

factor vector for each reaction r is evaluated with eq. (21): 

 𝐼𝒓,𝒔 =  𝑠𝒓,𝒔 ∙ 𝑓𝒓, (21) 

where each element of the sensitivity vector is multiplied with the corresponding uncertainty factor  

[15,16]. Figure 5 shows an example of Cumulative Impact Function (CIF) obtained by applying the 

cumulative sum for the test case from [81]. Here only 5 reactions, are responsible of 90% of the impact. 

The remaining set of 196 reactions retaining ~10% of the total impact are excluded in further 

investigations. All selected reactions at CSF and CIF level are reported in table S1 (SM). 

2.5 Uncertainty estimation 

Among the reactions included in this work 13 out of 43 rates come from experiments together with 

their uncertainty factors (see table S1 in SM). These reactions were selected by applying the procedure 

described in section 2.4 to each experiment inside the database (section 2.3). The remaining part 

involves phenomenological rate constants determined using first principle (ab-initio) calculations. 

Klippenstein et al. [18] declares that an uncertainty factor of 0.3 (see eq. (3)) can be obtained for for 

the rate constants of the reactions belonging to the families considered in the present work. In a more 

recent publication Cavallotti et al. [90] showed that the level of accuracy attainable using the ab-initio 

master equation approach can be a factor of 0.3 (see eq. (3)) or lower. The main factors contributing 
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to uncertainty in a rate constant calculation derive from: 1) the level of theory used to determine the 

energy of stationary points on the potential energy surface (PES); 2) the theoretical methods adopted 

for the computation of the high pressure rate constant; 3) the level at which pressure effects and 

reaction dynamics on a multi-well PES are described; 4) the treatment of anharmonicities, most 

importantly the description of torsional motions, if active for a specific reaction; 5) the availability of 

experimental rate constant data. The values from the protocols of Cavallotti et al. [90] and Klippenstein 

et al. [18] are assumed as the lower uncertainty threshold in the present work, while the remaining 

ones are assigned with a policy of inverse proportionality to the adopted level of theory. This threshold 

corresponds to a fr factor equal to 0.3 (see eq. (3)). The following penalty terms were used: 

1) Concerning the level at which electronic structure calculations were performed, computational 

protocols where energies are computed at the CCSD(T)/CBS or higher have no penalty term. 

For CBSQB3 calculations a 0.2 factor is added to fr, so that the uncertainty goes from 0.3 to 

0.5. For DFT calculations, such as B3LYP, a factor of 0.3 is added, thus increasing the 

uncertainty factor to 0.6. 

2) High pressure rate constants can be determined using (in order of decreasing accuracy): i) 

Variable Reaction Coordinate Transition State Theory (VRC-TST), ii) variational transition 

state theory (VTST), or iii) conventional transition state theory (TST), where TST or VTST 

are assumed to be suitable to study abstraction or addition reactions, while VRC-TST or VTST 

are necessary to study barrierless processes such as recombination or bond dissociation 

reactions (i.e. unimolecular initiations reactions). A penalty of 0.3 and 0.1 was assigned to TST 

and VTST, respectively, in case of radical/radical recombination or decomposition reactions. 

Otherwise, penalties of 0.1 and 0.05 were assigned. 

3) Methods where the impact of pressure dependence and multi-well dynamics on the rate 

constant are studied using the Master equation approach coupled with TST and ab initio 

calculations (AI-TST-ME), are generally more accurate than methods with lower theoretical 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 24 

detail, such as QRRK. The adopted penalty term is 0.4, so that for QRRK methods the 

estimated rates are associated with an uncertainty factor ranging between 0.7 and 1.  This value 

was adapted to 0.5 for Dean and Bozzelli [91], who also compared their rates with experimental 

data and adjusted their recommendations accordingly.  

4) Anharmonicities can have a quite relevant impact on rate constants if torsional motions are 

present [92]. If no torsional motion treatment, such as the hindered rotor model, is used when 

torsional motions are active, a penalty term of 0.5 is added. 

More details regarding the uncertainty estimations in this work are provided in the Supplementary 

Material. In order to further support the general validity of the optimization method, a sensitivity 

analysis to the assigned uncertainty parameters was carried out by performing three different 

optimizations with a limited number of targets (see SM). The first, is carried out with uncertainty 

factors used in this work, the others by multiplying all of them by a factor of 0.5, and 2. Results are 

reported in the Supplementary Material showing that the majority of the resulting kinetic rate constants 

overlap with those obtained with the nominal values of fr (eq. (3)), thus supporting the robustness of 

the methodology.  

3 Results and Discussion 

The model from Stagni et al. [20], hereafter reported as ‘nominal’, consists of 31 species and 210 

reactions. The proposed methodology for mechanisms optimization aims at improving the nominal 

one considering all target datasets and uncertain parameters, simultaneously. This represents a 

significant difference from previously suggested approaches, where a hierarchical and systematic 

procedure was adopted instead [41]. As already explained in section 2.3, the 60 datasets within the 

database were split into two parts, i.e. optimization and validation targets (45 and 15, respectively) to 

a-posteriori  the the loss in predictability on the datasets, which were not used in the optimization. The 
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evaluation of the impact of different objective functions on the optimized model performance is the 

main purpose of this work. Using the same database, three detailed kinetic mechanisms were obtained 

using CM (eq. (15)), L1-norm (eq. (16a)), and L2-norm (eq. (16b)). These are hereafter referred to as 

CM-mech, L1-mech, and L2-mech, respectively. Specifically, CM-mech is available in the 

Supplemental Material. The thermodynamic and transport properties (which were not involved in the 

optimization) were taken from [20].  

The reactions to be optimized were selected using a cumulative sensitivity threshold (see 2.4) equal to 

90%, applied for each test case, leading to a sensitive subset of 41 reactions. Then, a selected subset 

of 24 most impactful reactions was obtained using the same threshold on the CIF (see 2.4) after the 

estimation of reaction rates uncertainties (see section 2.5). More details about which reactions were 

included in this sub-set are given in SM. It is also important to mention that 4 out of 24 reactions 

(namely (R24, R111 and R112, and R143) are expressed with PLOG formalism. Indeed, R111 and 

R112 are duplicate of the same reaction, as evaluated by Dean and Bozzelli [91]. 

 NH3 = NH2 + H (R24) 

 N2H2 = NNH + H (R111/R112) 

 HNO = NO + H (R143) 

Overall, optimization was carried out considering 68 active variables. Nonetheless, only 56 out of 68 

are directly linked to one single Arrhenius parameter, in pressure-independent reactions. Due to the 

nature of the four pressure-dependent reactions (i.e. PLOG), the remaining 12 uncertain parameters 

correspond to 45 Arrhenius parameters in the kinetic mechanism (see section 2.2). Subsequently, 101 

kinetic parameters were optimized simultaneously. 
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Figure 6 shows a comparison between the optimized duplicate PLOG using the CM as objective 

function, and the nominal reaction. The former falls within the 2 uncertainty band and it is increased 

by the same factor, for all pressures. 

On average, the optimized rate deviates from the nominal value by +76.4% at the low-pressure limit 

and by +78.2% at the high-pressure limit, due to the sum of R111 and R112 at different pressures. The 

pre-exponential factors at three different pressures were optimized by multiplying them by a factor of 

~1.567 and ~1.221, for R111 and R112, respectively. Regarding other parameters, for R111 the 

temperature exponent is kept constant, while it increases for the R112 by a factor of 0.065. Inversely, 

a more significant change of -315.7 [cal/mol] in the energies of activation for R111, and no variation 

for the same parameter in R112, was observed.  

The agreement with the laminar flow reactor experiments from Stagni [20] is mostly affected by 

reactions (R24, R111, R112, and R143. Remarkable results are obtained, with all objective functions, 

for predictions of O2 consumption, NH3 conversion, H2O and NO formation, as highlighted in Figure 

7. The major change occurs at 1523 K for NO, where also ammonia, oxygen, and water are 

significantly affected in shape. At this temperature, NH3 consumption is delayed and NO volume 

fraction decreases by one order of magnitude (from ~1.3 to ~0.2 v/v %), resulting in a largely improved 

agreement with the experimental data for both CM-mech and L2-mech, while the L1-mech slightly 

underestimates the concentration of NO at this point. For temperatures between 1600 and 1800 K, 

none of the models can reliably reproduce the experimental observations. For the temperature ranges 

[1523,1600] and [1800,2000] K, the L2-mech shows the best agreement with the experiments. For NO 

formation, the CM index (see eq. (10)) increases from 0.849 to ~0.9 for all the optimized mechanism. 

The L2-norm for this dataset decreases from ~1560 to 172, 160 and 158 for CM-mech, L1-mech and 

L2-mech, respectively. 
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In order to discuss this case further, sensitivity and rate of production analysis of both nominal and 

CM-mech were performed at 1523 K to explain how modifying kinetic rate constants led to the 

improvement discussed above. Figure 8a shows the main sensitive reactions for the formation of NO. 

R26 is characterized by a negative sensitivity coefficient, which relatively increases after optimization. 

This happens because the rate constant for this reaction increases by a factor of ~2, as shown in Figure 

8b, and strongly impacts ammonia conversion, as well as NO formation. Existing direct measurements 

for R26 [93,94] reported a lower rate with respect to the nominal mechanism. Therefore, model 

optimization and measurements seem to recommend conflicting rate modification for this reaction. 

However, recent advanced theoretical calculations [95] reported an increased rate for R26 with respect 

to the nominal one, in agreement with the optimizer. In this context, a better characterization for this 

reaction is recommended for future mechanism development. For instance, new experiments may be 

carried out to confirm previous findings [95].  

Globally, the rate of NH3 consumption in the optimized mechanism decreases because of the 

competition between R26 and R27.  

 NH3 + H = NH2 + H2 (R26) 

 NH3 + OH = NH2 + H2O (R27) 

NH2 is formed in a lower amount, since R27 is the dominant kinetic step for its formation. This 

explains modified trend for ammonia in Figure 7. In spite of the ~27% increase in the combined kinetic 

rate constant of  R31 and R32  (see Figure 8c), HNO rate of production decreases due to the limited 

availability of NH2. It is clear that in L2/L1-mech the reduced production of HNO is enhanced by a 

decrease in  R31 and R32. 

 NH2 + O = HNO + H (R31/R32)  
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As reported by Stagni et al. [20], HNO plays a key role in NOx formation. This species dissociates 

through R143, and undergoes H-abstraction in R144, forming nitrogen-oxide (NO).  

 HNO = NO + H (R143) 

 H + HNO = NO + H2 (R144) 

As shown in Figure 8a, R143 and R144 exhibit positive and negative sensitivity coefficients, 

respectively. Therefore, the reduction of R143 by a factor of ~2 (see Figure 3) along with the increase 

of R144 by a factor of ~2.5 (shown in Figure 8f) cause the pronounced NO reduction at 1523 K. 

Figure 8e shows a 6% increase in k(T) for R76, which carries an enhanced negative sensitivity 

coefficient in the optimized mechanism. Therefore, NO reduction is also due to its conversion to final 

products through such reaction. 

 NO + NH2 = N2 + H2O (R76) 

Also, an average 7% increase in R39 (see Figure 8d), along with the abovementioned deviation of 

R111/R112 from the nominal values, displayed in Figure 6, strengthen the following path 

NHN2H2NNHN2, which bypasses NO formation during ammonia oxidation, contributing to its 

reduction.  

 NH + NH2 = N2H2 + H (R39) 

Figure 8d also shows the rate constants obtained in L2/L1-mech, which are significantly higher than 

those of CM-mech. This reaction, together with R31 and R32, is responsible for the difference between 

the three optimized mechanisms in terms of NO formation. 

All the reactions discussed above were found to be impactful for laminar flame speed cases. The 

dataset from Ronney [83] was considered as a target in the optimization process, as measurements 

have been obtained in microgravity, where buoyancy effects do not affect the measurements. Indeed, 

this physical phenomenon was found to cause instabilities in the flame front for low-reactive mixtures, 
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i.e. high pressure [96], and was correlated to discrepancies between experimental data and predictions 

using 1D laminar flames [97], for rich conditions. Since pure ammonia exhibits a very low laminar 

burning speed, and the data from Lhuillier et al. [51] were not produced in microgravity conditions, 

they were used only for the validation.  

Figure 9a displays the comparison between the nominal, and the optimized mechanisms on data from 

Ronney [83]. The performance of CM-mech mostly falls within the experimental uncertainty and is 

comparable to the nominal one. On the contrary, using the point-wise definitions of the objective 

function, namely eq. (16a) and (16b), resulted in a loss in predictability. For the conditions in Figure 

9a, the 4 most sensitive reactions (and their sensitivity coefficients) are H+O2=O+OH (0.804), R39 

(0.196), NO+NH2=OH+NNH (0.151), and R31-R32 (-0.095). As shown in Figure 8c and Figure 8d, 

R31-R32 decrease and R39 increases in both L2/L1-mechanisms. Since these reactions show a negative 

and a positive sensitivity coefficient, respectively, they determine an increase in reactivity for L2/L1-

mech. 

In particular, R39 is pushed outside the 2 of its distribution and approaches the upper bound at 3 

for both L2/L1-mech, resulting in a rate with lower probability than that of CM-mech. 

This reaction was found to be strongly impactful in the shock tube data from Davidson [82]. In  Figure 

9b, the L2/L1-mech clearly outperform the nominal model, as well the CM-mech, for the formation of 

NH2 during the pyrolysis of ammonia at 2300 K and atmospheric pressure. Conversely, in the same 

system and operating conditions, all of the models show satisfactory agreement for the experiment on 

NH formation (see Figure 9c). 

Thus, to improve the predictions in Figure 9b and the NO formation in Figure 7 using the objective 

functions in equations (16a) and (16b), the optimizer might force the kinetic parameters of R26 to less 

probable values (see Figure 8c/d). The same does not happen CM-mech, where only 1 out of 24 
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reactions exceeds the 2. The details about kinetic rate constants of the considered reactions in 

optimization can be found in the supplementary material (SM). 

 

As already discussed in [57], reactions R74 and R75 are crucial for modelling extremely lean mixtures, 

leading to formation of N2O, and H2NO. In the same study [57], R172 was defined as strongly 

impactful for high O2 excess and high pressures. 

 NO2 + NH2 = NO + H2NO (R74) 

 NO2 + NH2 = H2O + N2O (R75) 

 H2NO + O2 = HO2 + HNO (R172) 

In this work, the same three reactions were found to be strongly impactful for ignition delay time 

predictions at high pressure in both shock tube [77] and rapid compression machine [78] experiments.  

Figure 10 shows examples from the 6 ignition delay time datasets from Shu et al. [77], at high pressure. 

For this test case, CM-mech has the highest similarity with experiments, in fact the average CM value 

is 0.954, while the nominal one is 0.945. Even though L1/L2-mech yield very good agreement with this 

test case, their curve matching indices decreases to 0.927 and 0.931, respectively. At 20 bar and in rich 

conditions, none of the mechanism is consistent with the experimental uncertainty at low temperatures. 

These results suggests that, only for these three points, measurement uncertainty might be higher than 

20%. 

The reactions R74, R75 and R172 were also selected for the JSR data by Stagni [20], the RCM data 

by Pochet [79], and the PFR data from Wargadalam [80], and Song [81]. In a similar temperature 
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regime, ignition delay time measured at high pressures (20 and 40 bar) [78] give the most satisfying 

results in this work. In general, overall improvement can be appreciated in Figure 11. 

Table 1 shows the overall objective function values for the optimized models and their deviations from 

those of the nominal mechanism. As expected, both L1-mech and L2-mech outperform the nominal 

mechanism in terms of L1 and L2-norms, but the first is characterized by lower a CM index (i.e. higher 

1-CM), and the second shows little improvements. This indicates that using the objectives functions 

16a/16b on large databases, may lead to a lower CM index (i.e. lower agreement with experimental 

data) with respect to the initial model. On the other hand, the CM-mech performs better than the 

nominal mechanism for all the measurements, not only in terms of CM index, which is expected, but 

also in terms of L1/L2-norm (even though its gain is much lower than that of the other two optimized 

mechanisms). 

Mech. Label/Objective function 

 

1-CM 

(% deviation) 

L1-norm 

(% deviation) 

L2-norm 

(% deviation) 

Stagni 0.1919 3.77 176.35 

CM-mech 
0.1726 

(-11.17%) 

3.72 

(-1.46%) 

136.31 

(-22.70%) 

L1-mech 
0.1962 

(+1.76%) 

2.71 

(-31.51%) 

58.94 

(-66.58%) 

L2-mech 
0.1903 

(-1.49%) 

2.54 

(-35.37%) 

55.60 

(-68.46%) 

Table 1: Comparison between different error measures values of nominal and optimized mechanisms for the optimization subset. 

Overall, the deviations of the objective function values between optimized and nominal mechanisms 

are smaller using CM with respect to the L1/L2-norm. Indeed, in equation (15), performance gains and 

losses for each curve contribute equally to the average value, which is always between 0 and 1. 

Additionally, it is very difficult, if not impossible, for any mechanism to show no similarity, or 

dissimilarity with experimental data, if a large set is considered. For this reason, the possible range of 

values for CM is even narrower than [0,1]. In general, a well-constructed and validated kinetic model, 
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as the one used in this work, is not expected to show outstanding global improvements in terms of 

curve matching. Yet, significant differences between the nominal model and the CM-mech were 

observed in this work when looking at single curves. To further support this, the CM index (see eq. 

(10)) was computed for the optimization target datasets inside the database (i.e. 44 out of 60), for all 

mechanisms (i.e. Stagni, CM/L1/L2-mech). Table 2 reports the number of negatively/positively 

impacted datasets in each optimized mechanism. The average, and maximum deviations from the 

nominal CM values are also reported. This deviation is the difference in percentage between the CM 

index of the nominal mechanism and of the optimized ones, and it was computed for each of the 44 

optimization target datasets.   

 Negative Impact Positive Impact 

Adopted objective function CM-mech L1-mech L2-mech CM-mech L1-mech L2-mech 

No of datasets 12 26 23 32 18 21 

Average CM deviation (%) -1.42 -3.29 -3.21 +3.99 +3.29 +4.54 

Maximum CM deviation (%) -3.00 -8.75 -8.89 +14.39 +11.29 +18.35 

Table 2: Performance comparisons between mechanisms on target datasets in optimization. 

The CM-based optimization approach leads to a significantly larger number of improved datasets, with 

respect to point-wise based approaches. In fact, L1-mech shows reduced performances on a number 

of curves almost twice as big as the number of improved ones, and L2-mech behaves similarly. 

Additionally, both average and maximum negative deviations are significantly lower for the CM-mech 

compared to the others. For this reason, the latter approach can be considered as more conservative 

than the other two. Moreover, average and peak improvements in CM-mech are comparable to those 

of the L2-mech, which is the one leading to the biggest local improvement. All of this is graphically 

summarized in Figure 12, where the same information for the single dataset is delivered through a 
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parity plot. From Figure 12, it can be also concluded that the CM-mech yields the most homogeneous 

and consistent improvement over the entire subset of optimization target datasets even in terms of L1 

and L2 norms.  

Indeed, the absolute numerical values of relevant measures for combustion kinetic model validation 

(i.e. laminar burning speed, main and intermediate species concentration, and ignition delay time) 

range different order of magnitudes, namely from 10-6 to 102. As a consequence, the point-wise 

formulations of the objective function (i.e.  eq. (16a-16b)) are characterized by very different absolute 

values for each dataset, even when normalization is performed or the natural logarithm is adopted for 

the ignition delay time, as suggested by Olm [71]. Therefore, in a mono-objective optimization study 

targeting a wide set of experimental data, the optimizer focuses on those contributing more to the full 

extent of the objective-function. CM prevents this issue, since it associates each curve with a score 

between 0 and 1.  

4 Conclusions 

In this work, we proposed a novel data-driven approach for the optimisation of detailed kinetic 

mechanisms. The employed optimization algorithm is the Evolutionary Algorithm (EA). For the first 

time the objective function was based on a recently published curve matching algorithm that is capable 

of quantitatively and qualitatively evaluate the agreement of kinetic models with experimental data, 

characterizing it in terms of L2 norm as well as on the first derivatives and shapes of the curves. Also, 

a methodology to optimize the Arrhenius parameters of PLOG-based reactions was established. The 

interdependencies between Arrhenius expressions at different pressures were accounted for by 

handling three random variables for each PLOG, regardless of the number of discrete pressures 

specified in the mechanism. To the authors knowledge, PLOG reactions were consistently optimized 

for the first time within their entire temperature and pressure domain. An optimized mechanism for 
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ammonia combustion was obtained, and it was found to outperform the initial one [20], as well as 

those obtained with point-wise formulations of the objective function (i.e. L1 and L2 norms), over a 

wide range of operating conditions including more than ~635 experimental data points. Addressed 

features of ammonia combustion were conversion, oxidation, pyrolysis, ignition and laminar flame 

speed in several systems. Improvements driven by optimization on all the impactful reactions were 

constrained to their uncertainty bounds when experiments on single elementary steps were available. 

For rates determined using first principles calculations, guidelines were established to estimate 

uncertainty ranges based on the level of theory adopted throughout the calculation protocols for 

electronic structures, potential energy surfaces and phenomenological reaction rate constants. In this 

process, 41 reactions were involved and 24 were finally selected as the most impactful by introducing 

a Cumulative Sensitivity Function (CSF) and a Cumulative Impact Function (CIF) for each test case 

in the database. As a result, the approach involved all 101 kinetic parameters, which were addressed 

contemporarily by the optimizer during the optimum search.  Finally, the comparison between nominal 

and optimized mechanisms was exploited to highlight crucial reaction pathways, in need of further 

characterization, demonstrating the applicability of the proposed methodology as a useful tool for a 

more accurate evaluation of crucial kinetic constants and for design of experiments. 

5 Acknowledgements 

The authors acknowledge Luna Pratali Maffei for fruitful discussions on uncertainty of first principle 

calculations. The first Author acknowledges the support of Funds pour la Recherche Scientifique 

(FNRS) through a FRIA fellowship of the project “HOPTIMAL: Hierarchical development of 

OPTimised kinetic Mechanisms for Advanced combustion technoLogies”. This project has received 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 35 

funding from the European Research Council (ERC) under the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 714605.  

6 References  

[1] T. Lu, C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, 

Prog. Energy Combust. Sci. 35 (2009) 192–215. 

[2] PrIMe, http://primekinetics.org. 

[3] ReSpecTh, http://respecth.chem.elte.hu/respecth/index.php. 

[4] H.J. Curran, Developing detailed chemical kinetic mechanisms for fuel combustion, Proc. 

Combust. Inst. 37 (2019) 57–81. 

[5] S.J. Klippenstein, From theoretical reaction dynamics to chemical modeling of combustion, 

Proc. Combust. Inst. 36 (2017) 77–111. 

[6] T. Faravelli, F. Manenti, E. Ranzi, Mathematical Modelling of Gas-Phase Complex Reaction 

Systems: Pyrolysis and Combustion, Elsevier, 2019. 

[7] N. Vandewiele, K. Van Geem, M.-F. Reyniers, G. Marin, Genesys: kinetic model construction 

using chemo-informatics, Chem. Eng. J. 207–208 (2012) 526–538. 

[8] R. de Vijver, J. Zádor, KinBot: Automated stationary point search on potential energy 

surfaces, Comput. Phys. Commun. 248 (2020) 106947. 

[9] A. Rodríguez, R. Rodríguez-fernández, S.A. Vázquez, G.L. Barnes, J.J.P. Stewart, E. 

Martínez-núñez, tsscds2018 : A Code for Automated Discovery of Chemical Reaction 

Mechanisms and Solving the Kinetics, J. Comput. Chem. 39 (2018) 1922–1930. 

[10] P.L. Bhoorasingh, B.L. Slakman, F.S. Khanshan, J.Y. Cain, R.H. West, Automated Transition 

State Theory Calculations for High- Throughput Kinetics, J. Phys. Chem. 121 (2017) 6896–

6904. 

[11] M. Keçeli, S.N. Elliott, Y. Li, M.S. Johnson, C. Cavallotti, Y. Georgievskii, W.H. Green, M. 

Pelucchi, J.M. Wozniak, A.W. Jasper, S.J. Klippenstein, Automated computational 

thermochemistry for butane oxidation : A prelude to predictive automated combustion 

kinetics, Proc. Combust. Inst. 37 (2019) 363–371. 

[12] M. Frenklach, Transforming data into knowledge — Process Informatics for combustion 

chemistry, Proc. Combust. Inst. 31 (2007) 125–140. 

[13] E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A.P. Kelley, C.K. Law, 

Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and 

oxygenated fuels, Prog. Energy Combust. Sci. 38 (2012) 468–501. 

[14] S.W. Benson, Thermochemical kinetics. Methods for the estimation of thermochemical data 

and rate parameters., John Wiley & Sons, Ltd, 1976. 

[15] D.L. Baulch, M.J. Pilling, C.J. Cobos, R.A. Cox, P. Frank, G. Hayman, T. Just, J.A. Kerr, T. 

Murrells, J. Troe, R.W. Walker, J. Warnatz, Evaluated Kinetic Data for Combustion 

Modeling. Supplement II, J. Phys. Chem. Ref. Data. 34 (2005) 757–1397. 

[16] A.S. Tomlin, The role of sensitivity and uncertainty analysis in combustion modelling, Proc. 

Combust. Inst. 34 (2013) 159–176. 

[17] C.K. Westbrook, F.L. Dryer, Chemical kinetics and modeling of combustion processes, Proc. 

Combust. Inst. 18 (1981) 749–767. 

[18] S.J. Klippenstein, L.B. Harding, P. Glarborg, J.A. Miller, The role of NNH in NO formation 

and control, Combust. Flame. 158 (2011) 774–789. 

[19] C.F. Goldsmith, A.S. Tomlin, S.J. Klippenstein, Uncertainty propagation in the derivation of 

phenomenological rate coefficients from theory: A case study of n-propyl radical oxidation, 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 36 

Proc. Combust. Inst. 34 (2013) 177–185. 

[20] A. Stagni, C. Cavallotti, S. Arunthanayothin, O. Herbinet, F. Battin-Leclerc, T. Faravelli, An 

experimental, theoretical and kinetic modeling study of the gas-phase oxidation of ammonia, 

R. Soc. Chem. 5 (2020) 696–711. 

[21] M.P. Burke, C.F. Goldsmith, S.J. Klippenstein, O. Welz, H. Huang, I.O. Antonov, J.D. Savee, 

D.L. Osborn, J. Za, C.A. Taatjes, L. Sheps, Multiscale Informatics for Low-Temperature 

Propane Oxidation: further Complexities in Studies of Complex Reactions, J. Phys. Chem. 

119 (2015) 7095–7115. 

[22] M.P. Burke, S.J. Klippenstein, L.B. Harding, A quantitative explanation for the apparent 

anomalous temperature dependence of OH+HO2=H2O+O2 through multi-scale modeling, 

Proc. Combust. Inst. 34 (2013) 547–555. 

[23] R.J. Shannon, A.S. Tomlin, S.H. Robertson, M.A. Blitz, M.J. Pilling, P.W. Seakins, Global 

Uncertainty Propagation and Sensitivity Analysis in the CH3OCH2+O2 System: Combining 

Experiment and Theory To Constrain Key Rate Coefficients in DME Combustion, J. Phys. 

Chem. 119 (2015) 7430−7438. 

[24] D.R. Glowacki, C.H. Liang, C. Morley, M.J. Pilling, S.H. Robertson, MESMER: An open-

source master equation solver for Multi-Energy well reactions, J. Phys. Chem. A. 116 (2012) 

9545–9560. 

[25] M. Frenklach, H. Wang, M.J. Rabinowitz, Optimization and analysis of large chemical kinetic 

mechanisms using the solution mapping method - combustion of methane, Prog. Energy 

Combust. Sci. 18 (1992) 47–73. 

[26] M. Frenklach, H. Wang, M. Goldenberg, G.P. Smith, D.M. Golden, GRI-MECH: An 

optimized detailed chemical reaction mechanism for methane combustion. Topical report, 

September 1992-August 1995, United States, 1995. 

[27] M. Frenklach, A. Packard, P. Seiler, R. Feeley, Processing in Developing Predictive Models 

of Complex Reaction Systems, Int. J. Chem. Kinet. 36 (2003) 57–66. 

[28] R. Feeley, P. Seiler, A. Packard, M. Frenklach, Consistency of a Reaction Dataset, J. Phys. 

Chem. 108 (2004) 9573–9583. 

[29] T. Russi, A. Packard, R. Feeley, M. Frenklach, Sensitivity Analysis of Uncertainty in Model 

Prediction, J. Phys. Chem. 112 (2008) 2579–2588. 

[30] T. Russi, A. Packard, M. Frenklach, Uncertainty quantification : Making predictions of 

complex reaction systems reliable, Chem. Phys. Lett. 499 (2010) 1–8. 

[31] X. You, T. Russi, A. Packard, M. Frenklach, Optimization of combustion kinetic models on a 

feasible set, Proc. Combust. Inst. 33 (2011) 509–516. 

[32] M. Frenklach, A. Packard, G. Garcia-donato, R. Paulo, J. Sacks, Comparison of Statistical and 

Deterministic Frameworks of Uncertainty Quantification, SIAM/ASA J. Uncertain. Quantif. 4 

(2016) 875–901. 

[33] N.A. Slavinskaya, M. Abbasi, J.H. Starcke, R. Whitside, A. Mirzayeva, U. Riedel, W. Li, J. 

Oreluk, A. Hegde, A. Packard, M. Frenklach, G. Gerasimov, O. Shatalov, Development of an 

Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion, 

Energy Fuels. 31 (2017) 2274–2297. 

[34] S. Iavarone, J. Oreluk, S.T. Smith, A. Hegde, W. Li, A. Packard, M. Frenklach, P.J. Smith, F. 

Contino, A. Parente, Application of Bound-to-Bound Data Collaboration approach for 

development and uncertainty quantification of a reduced char combustion model, Fuel. 232 

(2018) 769–779. 

[35] L. Elliott, D.B. Ingham, A.G. Kyne, N.S. Mera, M. Pourkashanian, C.W. Wilson, Genetic 

algorithms for optimisation of chemical kinetics reaction mechanisms, Prog. Energy Combust. 

Sci. 30 (2004) 297–328. 

[36] T. Turányi, T. Nagy, I.G. Zsély, M. Cserháti, T. Varga, B.T. Szabó, I. Sedyó, P.T. Kiss, A. 

Zempléni, H.J. Curran, Determination of rate parameters based on both direct and indirect 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 37 

measurements, Int. J. Chem. Kinet. 44 (2012) 284–302. 

[37] T. Varga, T. Nagy, C. Olm, I.G. Zsély, R. Pálvölgyi, Valkó, G. Vincze, M. Cserháti, H.J. 

Curran, T. Turányi, Optimization of a hydrogen combustion mechanism using both direct and 

indirect measurements, Proc. Combust. Inst. 35 (2015) 589–596. 

[38] M. Kovács, M. Papp, I.G. Zsély, T. Turányi, Determination of rate parameters of key N/H/O 

elementary reactions based on H2/O2/NOx combustion experiments, Fuel. 264 (2020) 

116720. 

[39] T. Varga, C. Olm, T. Nagy, I.G. Zsély, É. Valkó, R. Pálvölgyi, H.J. Curran, T. Turányi, 

Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an 

Optimization Approach, Int. J. Chem. Kinet. 48 (2016) 407–422. 

[40] C. Olm, T. Varga, É. Valkó, H.J. Curran, T. Turányi, Uncertainty quantification of a newly 

optimized methanol and formaldehyde combustion mechanism, Combust. Flame. 186 (2017) 

45–64. 

[41] C. Olm, T. Varga, É. Valkó, S. Hartl, C. Hasse, T. Turányi, Development of an Ethanol 

Combustion Mechanism Based on a Hierarchical Optimization Approach, Int. J. Chem. Kinet. 

48 (2016) 423–441. 

[42] H.N. Najm, B.J. Debusschere, Y.M. Marzouk, S. Widmer, Uncertainty quantification in 

chemical systems, Int. J. Numer. Meth. Engng. 80 (2009) 789–814. 

[43] D.A. Sheen, H. Wang, The method of uncertainty quantification and minimization using 

polynomial chaos expansions, Combust. Flame. 158 (2011) 2358–2374. 

[44] H. Wang, D.A. Sheen, Combustion kinetic model uncertainty quantification, propagation and 

minimization, Prog. Energy Combust. Sci. 47 (2015) 1–31. 

[45] L. Cai, H. Pitsch, Mechanism optimization based on reaction rate rules, Combust. Flame. 161 

(2014) 405–415. 

[46] Reaction Design: San Diego, ANSYS Chemkin Theory Manual 17.0 (15151), (2015). 

[47] A. Evans, V. Strezov, T.J. Evans, Assessment of utility energy storage options for increased 

renewable energy penetration, Renew. Sustain. Energy Rev. 16 (2012) 4141–4147. 

[48] H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of 

ammonia combustion, Proc. Combust. Inst. 37 (2019) 109–133. 

[49] L. Appels, J. Baeyens, J. Degrève, R. Dewil, Principles and potential of the anaerobic 

digestion of waste-activated sludge, Prog. Energy Combust. Sci. 34 (2008) 755–781. 

[50] D.P.B.T.B. Strik, A.M. Domnanovich, P. Holubar, A pH-based control of ammonia in biogas 

during anaerobic digestion of artificial pig manure and maize silage, Process Biochem. 41 

(2006) 1235–1238. 

[51] C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaïm-Rousselle, Experimental 

investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated 

temperatures, Fuel. 263 (2020) 116653. 

[52] A. Valera-Medina, R. Marsh, J. Runyon, D. Pugh, P. Beasley, T. Hughes, P. Bowen, 

Ammonia–methane combustion in tangential swirl burners for gas turbine power generation, 

Appl. Energy. 185 (2017) 1362–1371. 

[53] H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of 

ammonia combustion, Proc. Combust. Inst. 000 (2018) 1–25. 

[54] R. Li, A.A. Konnov, G. He, F. Qin, D. Zhang, Chemical mechanism development and 

reduction for combustion of NH3/H2/CH4 mixtures, Fuel. 257 (2019) 116059. 

[55] O. Mathieu, E.L. Petersen, Experimental and modeling study on the high-temperature 

oxidation of Ammonia and related NOx chemistry, Combust. Flame. 162 (2015) 554–570. 

[56] K.P. Shrestha, L. Seidel, T. Zeuch, F. Mauss, Detailed Kinetic Mechanism for the Oxidation 

of Ammonia Including the Formation and Reduction of Nitrogen Oxides, Energy and Fuels. 

32 (2018) 10202–10217. 

[57] P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 38 

combustion, Prog. Energy Combust. Sci. 67 (2018) 31–68. 

[58] T. Varga, C. Olm, T. Nagy, I.G. Zsély, É. Valkó, R. Pálvölgyi, H.J. Curran, T. Turányi, 

Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an 

Optimization Approach, Int. J. Chem. Kinet. 48 (2016) 407–422. 

[59] Y. Tao, H. Wang, Joint probability distribution of Arrhenius parameters in reaction model 

optimization and uncertainty minimization, Proc. Combust. Inst. 37 (2019) 817–824. 

[60] M.S. Bernardi, M. Pelucchi, A. Stagni, L.M. Sangalli, A. Cuoci, A. Frassoldati, P. Secchi, T. 

Faravelli, Curve matching, a generalized framework for models/experiments comparison: An 

application to n-heptane combustion kinetic mechanisms, Combust. Flame. 168 (2016) 186–

203. 

[61] M. Pelucchi, A. Stagni, T. Faravelli, Chapter 15 - Addressing the complexity of combustion 

kinetics: Data management and automatic model validation, in: T. Faravelli, F. Manenti, 

E.B.T.-C.A.C.E. Ranzi (Eds.), Math. Model. Gas-Phase Complex React. Syst. Pyrolysis 

Combust., Elsevier, 2019: pp. 763–798. 

[62] M.B. Fürst, A. Bertolino, A. Cuoci, T. Faravelli, A. Frassoldati, A. Parente, OptiSMOKE++: a 

toolbox for optimization of chemical kinetic mechanisms., Comput. Phys. Commun. , Press. 

(n.d.). 

[63] T. Turányi, T. Nagy, I.G. Zsély, M. Cserháti, T. Varga, B.T. Szabó, I. Sedyó, P.T. Kiss, A. 

Zempléni, H.J. Curran, Determination of rate parameters based on both direct and indirect 

measurements, Int. J. Chem. Kinet. 44 (2012) 284–302. 

[64] M. Schwaab, J.C. Pinto, Optimum reference temperature for reparameterization of the 

Arrhenius equation . Part 1 : Problems involving one kinetic constant, Chem. Eng. Sci. 62 

(2007) 2750–2764. 

[65] M. Schwaab, L.P. Lemos, J.C. Pinto, Optimum reference temperature for reparameterization 

of the Arrhenius equation . Part 2 : Problems involving multiple reparameterizations, Chem. 

Eng. Sci. 63 (2008) 2895–2906. 

[66] T. Nagy, T. Turányi, Uncertainty of Arrhenius Parameters, Int. J. Chem. Kinet. 43 (2011) 

359–378. 

[67] T. Nagy, T. Turányi, Determination of the uncertainty domain of the Arrhenius parameters 

needed for the investigation of combustion kinetic models, Reliab. Eng. Syst. Saf. 107 (2012) 

29–34. 

[68] T. Nagy, É. Valkó, I. Sedyó, I.G. Zsély, M.J. Pilling, T. Turányi, Uncertainty of the rate 

parameters of several important elementary reactions of the H2 and syngas combustion 

systems, Combust. Flame. 162 (2015) 2059–2076. 

[69] M.B. Fürst, P. Sabia, M. Lubrano Lavadera, G. Aversano, M. De Joannon, A. Frassoldati, A. 

Parente, Optimization of chemical kinetics for methane and biomass pyrolysis products in 

MILD combustion, Energy and Fuels. 32 (2018) 10194−10201. 

[70] J.S.U. Hjorth, Computer intensive statistical methods: validation model selection and 

bootstrap, CRC Press, London, 1993. 

[71] C. Olm, I.G. Zsély, T. Varga, H.J. Curran, T. Turányi, Comparison of the performance of 

several recent syngas combustion mechanisms, Combust. Flame. 162 (2015) 1793–1812. 

[72] B.M. Adams, W.J. TBohnhoff, K.R. Dalbey, J.P. Eddy, M.S. Eldred, D.M. Gay, K. Haskell, 

P.D. Hough, L.P. Swiler, DAKOTA, a multilevel parallel object-oriented framework for 

design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: 

version 5.0 user’s manual, Sandia National Laboratories, Tech. Rep. SAND2010-2183, 2009. 

[73] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, OpenSMOKE++: An object-oriented 

framework for the numerical modeling of reactive systems with detailed kinetic mechanisms, 

Comput. Phys. Commun. 192 (2015) 237–264. 

[74] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, Numerical Modeling of Laminar Flames with 

Detailed Kinetics Based on the Operator-Splitting Method, Energy & Fuels. 27 (2013) 7730–

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 39 

7753. 

[75] C.J. Cobos, H. Hippler, J. Troe, Experimental and numerical study, under LTC conditions, of 

ammonia ignition delay with and without hydrogen addition, J. Phys. Chem. 89 (1985) 342–

349. 

[76] J. Troe, Detailed modeling of the temperature and pressure dependence of the reaction H + O2 

(+M) → HO2 (+M), Proc. Combust. Inst. 28 (2000) 1463–1469. 

[77] B. Shu, S.K. Vallabhuni, X. He, G. Issayev, K. Moshammer, A. Farooq, R.X. Fernandes, A 

shock tube and modeling study on the autoignition properties of ammonia at intermediate 

temperatures, Proc. Combust. Inst. 37 (2019) 205–211. 

[78] X. He, B. Shu, D. Nascimento, K. Moshammer, M. Costa, R.X. Fernandes, Auto-ignition 

kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high 

pressures, Combust. Flame. 206 (2019) 189–200. 

[79] M. Pochet, V. Dias, B. Moreau, F. Foucher, H. Jeanmart, F. Contino, Experimental and 

numerical study, under LTC conditions, of ammonia ignition delay with and without hydrogen 

addition, Proc. Combust. Inst. 000 (2018) 1–9. 

[80] V.J. Wargadalam, G. Löffler, F. Winter, H. Hofbauer, Homogeneous Formation of NO and 

N2O from the Oxidation of HCN and NH3 at 600 – 1000°C, Combust. Flame. 2180 (2000) 

465–478. 

[81] Y. Song, H. Hashemi, J.M. Christensen, C. Zou, P. Marshall, P. Glarborg, Ammonia oxidation 

at high pressure and intermediate temperatures, Fuel. 181 (2016) 358–365. 

[82] D.F. Davidson, K. Kohse-Höinghaus, A.Y. Chang, R.K. Hanson, A Pyrolysis Mechanism for 

Ammonia, Int. J. Chem. Kinet. 22 (1990) 513–535. 

[83] P.D. Ronney, Effect of Chemistry and Transport Properties on Near-Limit Flames at 

Microgravity, Combust. Sci. Technol. 59 (1988) 123–141. 

[84] R. Rota, D. Antos, E.F. Zanoelo, S. Carra, Experimental Study and Kinetic Modelling of 

Nitric Oxide Reduction with Ammonia, Combust. Sci. Tech. 163 (2001) 25–47. 

[85] P. Dagaut, Experimental and kinetic modeling study of the effect of SO2 on the reduction of 

NO by ammonia, Proc. Combust. Inst. 30 (2005) 1211–1218. 

[86] C. Lee, S. Vranckx, K.A. Heufer, S. V. Khomik, Y. Uygun, H. Olivier, R.X. Fernandes, On 

the chemical kinetics of ethanol oxidation: Shock tube, rapid compression machine and 

detailed modeling study, Z. Phys. Chem. 226 (2012) 1–27. 

[87] C.J. Sung, H.J. Curran, Using rapid compression machines for chemical kinetics studies, 

Prog. Energy Combust. Sci. 44 (2014) 1–18. 

[88] J. Warnatz, Resolution of gas phase and surface combustion chemistry into elementary 

reactions, Symp. Combust. 24 (1992) 553–579. 

[89] L. Zalotai, T. Be, Effect of the uncertainty of kinetic and thermodynamic data on methane 

flame simulation results, Phys. Chem. Chem. Phys. 4 (2002) 2568–2578. 

[90] C. Cavallotti, M. Pelucchi, Y. Georgievskii, S.J. Klippenstein, EStokTP: Electronic Structure 

to Temperature- and Pressure-Dependent Rate Constants-A Code for Automatically Predicting 

the Thermal Kinetics of Reactions, J. Chem. Theory Comput. 15 (2019) 1122–1145. 

[91] A.M. Dean, J.W. Bozzelli, Gas-Phase Combustion Chemistry, in: W.C. Gardiner Jr. (Ed.), 

Springer, 2000. 

[92] T.L. Nguyen, J.R. Barker, Sums and Densities of Fully Coupled Anharmonic Vibrational 

States : A Comparison of Three Practical Methods, J. Phys. Chem. (2010) 3718–3730. 

[93] J. V Michael, J.W. Sutherland, R.B. Klemm, Rate Constant for the Reaction NH3 over the 

Temperature Range, J. Phys. Chem. 90 (1986) 497–500. 

[94] T. Ko, P. Marshall, A. Fontijn, Coefficients for the H+NH3 reaction over a wide Temperature 

Range, J. Phys. Chem. 94 (1990) 1401–1404. 

[95] J. Li, H. Guo, A nine-dimensional global potential energy surface for NH4(X2A1) and 

kinetics studies on the H+NH3=H2+NH2 reaction, Phys. Chem. Chem. Phys. 16 (2014) 6753–

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 40 

6763. 

[96] J.R. Chen, H.Y. Tsai, J.H. Chien, H.J. Pan, Flow and flame visualization near the upper 

flammability limits of methane/air and propane/air mixtures at elevated pressures, J. Loss 

Prev. Process Ind. 24 (2011) 662–670. 

[97] A. Bertolino, A. Stagni, A. Cuoci, T. Faravelli, A. Parente, A. Frassoldati, Prediction of 

flammable range for pure fuels and mixtures using detailed kinetics, Combust. Flame. 207 

(2019) 120–133. 

[98] P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in 

combustion, Prog. Energy Combust. Sci. 67 (2018) 31–68. 

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 41 

FIGURES 

 

Figure 1: Projections of parameters bounds on the reaction rate constant k for the reaction NH2+NO2=H2NO+NO [98]. 

 

Figure 2: Example of bootstrap procedure with 10 variations. Experimental data from [83]. 
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Figure 3: 3D behavior of a PLOG reaction. R143: HNO=H+NO before (dashed line) and after optimization (continuous line). 

 

Figure 4: Collected data on Ammonia combustion in terms of operating conditions (temperature, pressure, and composition). 
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Figure 5: Example of reaction selection using the Cumulative Impact Function (CIF), (Test Case from Song [81]). The horizontal line 

represents the chosen threshold of 90% of the impact. 

 

Figure 6: Sum of reaction rates constants for R111 and R112 at different pressures. 
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Figure 7: Comparison between speciation predictions with nominal and optimized mechanism for lean NH3/O2 mixture in a flow 

reactor, at 1.25 bar. Experimental data from [20].  
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Figure 8: Sensitivity analysis (a) and kinetic rate constants (b-f) of key reactions for NO formation,comparison between nominal and 

optimized mechanisms. Test case: Stagni [20]. 
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Figure 9: Comparison of nominal and optimized mechanisms. (a) Laminar flame speed of NH3/air mixtures in microgravity conditions 

at 300 K; (b) Molar fraction of NH2 in a shock tube at 1.028 atm and 2301 K. (c) Molar fraction of NH in a shock tube at 0.986 atm 

and 2294 K.  Experimental data from [82,83]. 
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Figure 10: High pressure ignition delay time of NH3/air mixtures in a shock tube for different equivalence ratios, namely 0.5,1.0, and 

2.0. Experimental data from [77]. 
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Figure 11: Comparison between nominal and optimized mechanism for NH3 self-ignition at pressures between 40 and 60 bar in a 

Rapid compression machine. Experimental data from [78]. 
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Figure 12:  Parity plot: Comparison of curve matching indices between nominal [20] and optimized mechanisms in this work. 
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