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Abstract—In modern manufacturing, divergent market dy-
namics impel companies to move toward a zero-defect production
by reducing the risk of errors and defects down to zero. Paint-
coating of metal surfaces is one of such process steps and most
prominent as consumers will be animated to buy based on their
first impression. Despite significant advances in automation and
precision engineering of paint-coating, the presence of process
contaminants as residual of different stages of production may
compromise the process. In this contribution, we focus on the
paint-coating of washing machine cabinets as a representative.
Within the last decade, hyperspectral imaging technology has
shown promising potentials in a variety of applications that
aim at detecting objects and discriminating materials. In this
work, we present a hyperspectral acquisition and analysis system
that verifies the feasibility of detection and discrimination of
process contaminants smeared on the washing machine cabinet
based on spectral information. The acquisition system, aided
by a robot arm, collects hyperspectral images based on two
scenarios: contaminants on flat steel sheets and contaminants
on washing machine chassis. This dataset, which is published
publicly, is calibrated, analysed, and segmented through the
proposed analysis models. The results for both flat base and
structured washing machine surfaces indicate the great capacity
of this technology for being integrated into the pre-treatment
stage before painting metal parts.

Index Terms—hyperspectral imaging, zero-defect manufactur-
ing, process residual contaminants, contaminant discrimination,
foreground extraction, image segmentation

I. INTRODUCTION

Fast-changing customer’s demands, volatility in local and
global economics, and yet achieving success and profit in
competitive markets has led companies to aim at reducing the
risk of misproduction. Preventing defects and keeping errors

from becoming defects is a crucial task in realizing this goal.
Zero-Defect Manufacturing [1] is a concept for this quality
and production control to realize manufacturing with (close to)
zero defects. The presence of residuals of different production
stages as contaminants is one of the issues that currently
leaves the production of painted metal parts with difficult
compromises. In particular, maintaining the coating quality of
paint in the production of washing machine cabinets is critical
to keep it from corrosion and to provide a clean look. Yet, it
is highly affected by these residual contaminants. Automatic
detection and measuring of these residual contaminants before
the painting stage is a significant step toward zero-defect
manufacturing.

Hyperspectral Imaging (HSI) is a technique that combines
conventional imaging with optical spectroscopy to sample
spatially resolved spectral information from an object. HSI
produces images in two spatial dimensions where each pixel
carries spectral information (typically within a spectral range
from visible to mid-infrared spectrum) that generates the third
dimension of the image. Hence, such images are often called
hyper-cube data or cubic images. Chemical sensitivity can
be achieved towards the infrared region of the spectrum.
As a rule of thumb, the chemical sensitivity and specificity
enhance as wavelength increases, but at the same time cap-
ital expenditures for the systems increases. Near- or short-
wave-infrared systems usually allow for sufficient chemical
information at a reasonable price, but this of course strongly
depends on the use-case. In the last decade, the concurrence
of advances in HSI technologies and computational capacities
has introduced hyperspectral sensors to new domains and
applications. Besides the remote sensing field [2], where HSI978-1-7281-2989-1/21/$31.00 ©2021 IEEE



knowledge originated, there has been growing interest in HSI
technology in diverse fields such as in industry [3], agriculture
[4], food quality and safety [5], pharmaceuticals [6], and
healthcare [7].

The significant advantages of hyperspectral images stem
from the fact that besides containing the proper information
to detect objects, they allow also the identification of the
material by their different spectral absorption characteris-
tics. In other words, the interaction of constituent molecules
with different electromagnetic wavelengths demonstrates the
material characteristics, which can lead to its identification
and discrimination. For many organic molecules, such as oil
and grease, these interaction wavelengths are accessible in
the (near-)infrared region. Within the last decade, the food
industry has significantly benefited from this information to
detect ripeness or firmness of fruits [8], and to control the
quality and safety of meats [9]. Such achievements made
the potentials of HSI technology be recently noticed for the
detection of contaminants in the manufacturing of metal parts
and led to a new research trend on this emerging topic. In this
work, we present the remarkable potential of this technology
in detecting organic contaminants that are left throughout
the different stages of the production of washing machine
cabinets. The possibility of automatically eliminating defects
before the painting stage allows moving toward the zero-defect
manufacturing goal.

Proper analysis of hyperspectral images and the extraction
of information come with a set of challenges. Some challenges
are related to the type of data such as the so-called ‘curse of di-
mensionality’ (i.e., due to the high dimensionality of data) and
redundancies within the data. In other words, the hyperspectral
image comes with plenty of spectral information that does not
contribute to the identification task, instead they complicate
the analysis process dramatically. Machine learning has shown
promising potentials in dealing with such complexity in hyper-
spectral image classification/segmentation. The work in [10]
gives a brief introduction to machine learning techniques that
are used for the classification of hyperspectral images. Accord-
ing to [10], Support Vector Machine (SVM), Random Forest
(RF), and perceptron-base (Deep learning) techniques are the
most common approaches in classifying hyperspectral images.
In addition to the aforementioned techniques, in this work
we examine K-Nearest Neighbor (KNN), Adaptive Boosting
(AdaBoost), Gaussian Naive Bayesian (GaussianNB), Logistic
Regression (LR), and Quadratic Discriminant Analysis (QDA)
classification techniques to enable a wider comparative basis.

Another challenge in identifying contaminants on the chas-
sis of washing machine cabinets is bound to direct reflections
and to the presence of spatial and spectral noise. Since the
surface is structured this adds complexity to the background.
Therefore, both distinguishing the foreground and removing
the unnecessary background not only lighten the burden of the
computation but also help the machine to better process data.
In [11], authors apply a spatial-spectral approach for the fore-
ground (bacteria colonies) segmentation from the background
(agar substrate). In this method, the map resulted by applying

foreground thresholding techniques is used together with the
spectral cosine distance map of the hyperspectral image to
finely segment bacteria from the background. The cosine
distance map could be useful in determining the thickness of
contaminations. However, in our study, we only focus on the
localization of the contamination as well as contamination type
discrimination.

To extract the foreground in hyperspectral images, the
authors of [12] suggest an ensemble model consisting of a
set of parallel and identical background subtraction models
[13], each applied on a single spectral band. The foreground
areas intersecting or overlapping with the majority of channels
are subsequently considered the final foreground result. In this
approach, the ground-truth is based on a-priori knowledge on
background, meaning that the background can be modelled
and the foreground is questioned. In our study, although the
background is always the metal chassis, due to the variation
of acquisition profiles in our dataset, it is difficult to model it
precisely. Therefore, we propose to use a model for the extrac-
tion of the foreground inspired by the approaches proposed
in [11] and [12]. In our model, the foreground thresholding
technique is applied to each spectral band within an ensemble
structure, and areas with more than a certain number of
channel intersections are considered as foreground.

In this study, we investigate the potential of HSI tech-
nology in the detection of contaminants on metal chassis of
washing machine cabinets by designing and implementing an
acquisition and analysis system. As explained earlier, in our
experiments we employ several machine learning techniques
together with an ensemble feature extraction model. The goal
of this experiment is to establish if the implementation of
HSI technology for extracting process contaminants is feasible,
suitable, and time-effective in the production line.

II. METHODS

A. Hyperspectral image acquisition

For our study, we designed and setup a HSI system based
on a state-of-the-art hyperspectral push broom camera, Specim
FX17, by SPECIM, Spectral Imaging Ltd. This type of camera
features an optical imaging spectrograph in front of a two-
dimensional optical detector array, resulting in a line imaging
device where spatial information from a line in the scene is
projected onto one dimension of the detector, while spectral
information along this line is projected onto the other di-
mension of the detector, see figure 1. The Specim FX 17
addresses the spectral range between 900 nm and 1700 nm
and captures images, co-registering 224 spectral channels with
nominal 8 nm FWHM for each of its 640 (× 1) pixels sampling
the line. In our scenario, broad band illumination of the sample
is realized by a controlled artificial light source. We utilized
a Metaphase UL Line Light by Metaphase Technologies
Inc, which is a collimated array of 5 types of LEDs with
their emission wavelengths centered at 1050 nm, 1200 nm,
1300 nm, 1450 nm and 1550 nm, respectively. The light source
has gap less spectral coverage between 900 nm and 1700 nm
and is a perfect match for the camera.



Fig. 1. Hyperspectral image acquisition: (a) schematics of a hyperspectral
push broom scanner and the (b) corresponding orientation of the hyperspectral
datacube. The cube is acquired by capturing frames (x, λ) while scanning
along the y-axis. (not drawn to scale)

Since the push broom camera is capturing one spatial and
the spectral dimension, the acquisition of a hyperspectral cube
requires spatial scanning by relative lateral motion between
the camera system and the sample. In contrast to common
implementations of HSI push broom systems for industrial
applications that use linear stages or conveyor belt systems
for the motion, we mounted the camera and the light source
on a convey robot arm as shown in figure 2. The robot was
programmed to guide the optical system along a trajectory in
a plane parallel to the sample surface with a constant offset of
249 mm, which equals the working distance of the optics. To
scan one side of the chassis, we performed three consecutive
line scans as we did not modify the existing camera nor the
illumination setup. The surface was scanned at a speed of
100 mm/s by moving the optical system over the sample in a
zigzag pattern schematically shown in yellow lines: along the
solid lines the camera records data and along the dashed lines
it returns back to the starting position of the next scan.

The data acquired from the three scans was concatenated
into a single hyperspectral cube file for each run. We cap-
tured our images at 10 ms and 20 ms integration times for
later analysis of the trade-off between the S/N ratio at low
intensities and potential photo detector non-linearities at high
intensities (in the best cases the camera corrects this non-
linearity internally). The complete dataset is published in [14].

B. Hyperspectral image analysis

The overall configuration for the implementation of the
image processing chain is shown in Fig.3. This configuration
comprises a data preparation, a foreground extraction, and
a classification stage. Data preparation is the primary step,
which is determined by the acquisition profile and the size of
the acquired hyperspectral image. The aim of this stage is to
adjust and calibrate data in a way that it is visually perceivable
and easier for the machine to process. In the foreground
extraction stage, the prepared data are processed to eliminate
the unwanted background. This includes a pre-processing step
that helps with better identification of the foreground and an

Fig. 2. The hyperspectral acquisition system setup. The camera and the
broadband light source are mounted on a convey robot arm. To capture the
entire surface, the robot arm moves on a path schematically shown in yellow.
The scan width of the camera is schematically depicted as a bold red arrow.
(Note: the image shows the arm in its park position, therefore the distance
from the surface is not the acquisition distance.)

Fig. 3. The experiment chain, including data preparation, foreground ex-
traction and classification stages. In the foreground extraction stage, after an
internal pre-processing step, an ensemble model is employed within which
each channel is processed independently, then all extracted foregrounds per
channel are aggregated as the final foreground.

ensemble model that is designed to first extract the foreground-
background map and, subsequently, eliminate the background
regions of the hyperspectral image from the data preparation
stage. Within the contaminant classification phase, stratified
sampling is applied to the data using the ground-truth to split it
into sets for training, validation, and testing. Around one-third
of the pixels in the dataset are kept out as test data in order
to provide an evaluation of all final models. The rest of the
samples is used to train the models and to tune the hyper-
parameters using k-fold cross-validation.

To improve the accuracy of reflectance transformations
and tampering the effect of variations in illumination pro-
file, white-dark calibration is performed as a part of the
data preparation stage. The white (100% illumination of a
Lambertian reflector) and dark (shutter is closed) reference
hyperspectral images determine the maximum and minimum
values of reflectance at each pixel position. Therefore, by



Fig. 4. Reshape and resizing the hyperspectral image. (a) Image before
reshaping and resizing, (b) Size-reference image, (c) Hyperspectral image
after being reshaped and resized to be matched with the size-reference image.

calculating the actual reflectance R using R = I−D
W−D , where

I is the non-calibrated hyperspectral image and W and D
are the white and dark references, respectively, the spectral
information becomes independent from spatial and temporal
variation in the illumination profile. In the experiment on the
whole chassis, the reference ceramics did not cover the whole
field of view (line) of the camera, therefore we replicated
the closest pixel values for the missing ones. Yet, it resulted
a noisy reflectance shift (slightly darker) around 5% of the
length at both ends of the reference line (as can be observed
in Fig.4-a).

We then reshape and resize the images to match their actual
spatial width-height proportion. In the case of whole chassis
image, the acquisition system produces three images (Fig.4-
a). These images are reordered and matched by the edges to
generate the whole. Then, a feature-based image alignment
technique is applied to resize the image to match the size-
reference image (Fig.4-b). The size-reference image contains
four markers that indicate the outer corners of the chassis
surface. By extracting the outer corners of the hyperspectral
image and aligning them with the size-reference image’s
corner points using a homography transformation, the whole
image can be resized into its actual proportion.

To achieve an accurate foreground segmentation, the Adap-
tive Histogram Equalization (AHE) method is used to im-
prove image contrast locally, during the feature extraction
pre-processing step shown in Fig.3. AHE is also helpful
in amplifying noise in homogeneous regions of the image,
making it easier to detect possible noises (as shown in Fig.5).
Therefore, using AHE prior to noise-removal filters increases
the chance of removing unwanted noise within the image. For
pre-processing noise-removal, we apply a Median Filter with
a 10×10 window per channel. We consider outlier reflections,
regular random image noises, unimportant scratches and tiny

Fig. 5. An example demonstrating the effect of AHE in increasing the contrast
and amplifying the noises, visualized for one channel. (a) and (b) are the
original image and its histogram for one channel, respectively; (c) and (d)
visualize the effect of AHE. Note: for the sake of a clearer presentation in
the histograms, zero intensity is excluded. The high proportion of pixels with
zero value obscures the distribution of foreground pixels in the histograms.

details as noises. Therefore, due to their size, a window size
smaller than 10×10 cannot properly conduct the noise removal
task.

The foreground extraction stage comprises an ensemble
model, which consists of identical foreground thresholdings
followed by spatial filterings per channel. The stage is then
concluded by aggregating the obtained results as the final
foreground. In foreground thresholding, pixels with intensities
within a range defined by threshold(s) are assumed as the
foreground. In this experiment we tested: channel’s mean
value as a single threshold (FG = [I ≥ µ(I)]) and different
proportions of standard deviation from the mean as foreground
intervals (FG = [µ(I)− cσ(I) ≤ I ≤ µ(I) + cσ(I)] ). After
primary tests, we chose mean thresholding for the experiment
as it showed more accurate foreground segmentation. Subse-
quently, we apply another median filter to remove noises in
the thresholding step and a sequence of closing and opening
morphological filters to ensure the continuity of the foreground
areas. We chose circular masks with a diameter between 10
and 14 pixels for both closing and opening filters empirically.
The effect of median and morphological filters on thresholded
foreground is shown in Fig.6. In the aggregation step, per-
channel foregrounds are aggregated in such a way that the
areas with at least 15% of channels intersection are accepted
as foreground and the rest are ignored as background.

The contaminant classification step is conducted using dif-
ferent linear and nonlinear supervised classifiers. As listed ear-
lier, SVM (linear and non-linear), RF, Multilayer Perceptron
(MLP), AdaBoost, KNN, GaussianNB, LR, and QDA methods
are chosen as classifiers to provide a wider comparative basis



Fig. 6. An example demonstrating the effect of median and morphological
filters in enhancing the thresholded foreground for one channel. (a) is the
foreground obtained using mean threshold. (b) displays the effect of the
median filter in removing the noise in (a). (c) shows the effect of closing
and opening morphological filters on realizing the continuity of regions in
(b).

for this study. SVM with linear kernel has been widely used
with success for classification of hyperspectral images. In this
study, we also examine SVM with nonlinear Radial Basis
Function (RBF) kernel. RF (with 200 estimators), Adaboost
(with 200 estimators), and KNN (with k = 3) are other
powerful non-parametric classifiers picked out for this exper-
iment. The perceptron-based classifiers, such as MLP, have
shown promising performance in classifying hyperspectral
images when there exists an enormous amount of labeled data
for training. In our experiment we test the MLP classifier
with 100 hidden neurons, once arranged in one layer and
once in two layers (each layer contains 50 neurons), and
the “adam” optimizer. LR and GaussianNB are two popular
probabilistic classifiers chosen for this experiment, which are,
respectively, linear and non-linear. QDA is another non-linear
probabilistic classifier useful to understand if individual classes
have distinct covariances.

III. RESULTS

We analysed up to 10 different organic contaminant sub-
stances, once placed on a flat steel sheet and then on a
washing machine chassis (not flat, containing reinforcing ribs).
These types of contaminants are determined by the materials
used in the production of the washing machine cabinet during
coil cutting, stamping and welding stages. Fig.7 displays the
spectral signatures of all contaminants used in the experiment.
The spectral signatures of these contaminants distinctively
differ and this helps with proper discrimination.

The foreground extraction stage exhibits remarkable perfor-
mance in removing the unwanted background with flat steel
surface. Fig.8 visualizes an example of foreground extraction
of four contaminants on a flat steel sheet: (a) is one channel
of the hyperspectral image after AHE, (b) is the aggregated
foreground-background map, and (c) is a 3D visualization of
the foreground of the hyperspectral image. However, for the
chassis sample the areas with the reinforced ribs reflect the
light directly to the camera causing signal shifts that result
in outlier pixels of high intensity in the captured image.
Accordingly, the proposed thresholding technique does not

Fig. 7. Spectral signatures of the ten organic contaminants used in the
experiment. The x and y axis correspond to the wavelength in nm and
absorbance in a.u., respectively. Note: for visual discrimination of the spectral
features all the signatures are plotted with an individual offset.

Fig. 8. An example showing the result of foreground extraction of a
hyperspectral image consisting of four types of contaminants on a flat steel
background. (a) shows one channel of the hyperspectral image after AHE,
(b) shows the aggregated foreground-background map (foreground in yellow
and background in purple), and (c) shows the hyperspectral image in 3D after
removing the background pixels indicated in (b). x and y are the spatial axes,
z is the spectral axis.

perform well in the case of not-flat surfaces. To proceed with
the experiment, we do not apply the foreground extraction
stage on the chassis sample, but we directly pass it to the
contaminant classification stage to understand how the clas-
sifier distinguishes the foreground oils from other unwanted
background pixels.

The ground-truth is assembled through a semi-manual pro-
cess, which samples 50 × 50 pixels of each contaminant
(in resized version). To provide the machine with a clue on
background features, we also sample 50 × 50 pixels as un-
wanted background. For the experiment with flat steel sheets,
we analysed 6 types of contaminants. For the classification,
the ground-truth is randomly split for training and cross-
validation in 5 folds (80/20 proportion). The classifier includes
standardization to provide a comparable scale for features.
For hyper-parameters optimization of the classifiers, we used
grid search, and the results we provide here belong to the
best estimator (estimator with the best parameters), which is



TABLE I
CLASSIFIERS PERFORMANCE ON THE 6-TYPES-OF-CONTAMINANTS

Cross-validation Test
Classifier Prec.∗ Rec.∗ F1∗ Prec. Rec. F1
SVM-Linear 0.9844 0.9841 0.9841 0.9720 0.9703 0.9702
SVM-RBF 0.9751 0.9743 0.9743 0.9638 0.9604 0.9602
RF 0.9721 0.9717 0.9717 0.9545 0.9522 0.9521
MLP 0.9625 0.9606 0.9606 0.9776 0.9774 0.9773
LR 0.8850 0.8789 0.8774 0.8815 0.8746 0.8734
KNN 0.7240 0.7125 0.7138 0.7419 0.7451 0.7393
GaussianNB 0.7140 0.7198 0.7133 0.6728 0.6866 0.6745
AdaBoost 0.6802 0.6567 0.6314 0.6328 0.6249 0.5812
QDA 0.6068 0.2198 0.1940 0.6419 0.6449 0.6242
The ordering is based on cross-validation mean precision
* Mean of the k-fold

Fig. 9. An example of how different estimators perform in segmenting
the foreground, which is already extracted using the foreground extraction
mechanism, based on a hyperspectral image captured from a flat sheet steel
smeared with four types of process contaminants. The segmented maps belong
to: (a) SVM-Linear, (b) SVM-RBF, (c) RF, (d) MLP, (e) LR, and (f) KNN.

chosen based on the mean cross-validation score calculated
over the accuracy. Tab.I lists the precision, recall, and F1-score
for each employed classifier through cross-validation and the
final testing. Fig.9 demonstrates how 6 highest-precision fitted
classifiers perform in segmenting a hyperspectral image where
its background is eliminated by the foreground extraction
model. For post-processing, a median filter can be applied to
increase the regions cohesion within the segmented map.

For the hyperspectral images of the chassis, we increased the
number of background samples in the ground-truth to include
more of its variations. Therefore, to assemble the ground-
truth for chassis images, we collected the 50 × 50 pixels per

contaminant class and 100 × 1744 pixels (two vertical scans
with 50 pixels width) as background samples. These vertical
scans include reinforcing ribs, unwanted borders, white-dark
calibration noises, marking tape, and flat steel pixels. We
considered four best-performing estimators in the case of flat
steel sheets for the chassis experiment: SVM-Linear, SVM-rbf,
RF, and MLP. To get the most out of the collected ground-
truth, the number of folds for cross validation is increased
to 10 (90/10 proportion for train and test), and the hyper-
parameters are tuned using grid-search, similar to the flat
sheet experiment. The mean precision, recall, and F1-score
for the best estimators chosen by the grid-search through
cross-validation and their final testing evaluation results are
listed in Tab.II. The confusion matrix displayed in Fig.11
reveals how the trained SVM-RBF model, which is the best
performing model, classifies the samples and which are the
errors. Fig.10 shows how each of the above estimators per-
forms in segmenting the foreground from the background and
in discriminating the contaminants in a hyperspectral image
sample that consists of 15 smears made using 10 different
types of process contaminants. Although, within the confusion
matrix, the graphite spray samples seem to cause the major
confusions, the extracted foreground in Fig.10 exhibits no
specific bias with respect to the other classes.

TABLE II
CLASSIFIERS PERFORMANCE ON 10-TYPES-OF-CONTAMINANTS AND

CHASSIS BACKGROUND

Cross-validation Test
Classifier Prec.∗ Rec.∗ F1∗ Prec. Rec. F1
SVM-RBF 0.9247 0.9192 0.9121 0.9731 0.9807 0.9765
MLP 0.8962 0.8634 0.8557 0.9669 0.9657 0.9656
RF 0.8685 0.6717 0.7084 0.9454 0.8447 0.8871
SVM-Linear 0.8432 0.7786 0.7865 0.9073 0.8934 0.8915
The ordering is based on cross-validation mean precision
* Mean of k-fold

IV. DISCUSSION AND CONCLUSION

We presented the design, implementation, and testing of a
hyperspectral imaging system for detection and discrimination
of organic contaminants which are residuals of different stages
of the washing machine cabinet production. To examine the
effectiveness and feasibility of this system and to collect objec-
tive knowledge, we established pilot experiments replicating
the occurrence of some possible contaminants in controlled
lab conditions. The experiment is conducted on the basis of
two scenarios: the first is to analyse contaminants on small flat
steel sheets, and the second is to analyse these contaminants
on a real washing machine chassis featuring reinforcement
ribs. The foreground extraction step proposed in the model did
not act effectively for the hyperspectral images we captured
based on the latter scenarios. This was due to the reflectance
irregularity caused by the uneven surface and the white-dark
calibration noises. Yet, just ignoring the foreground extraction
step for the second scenario, in this work we established the



Fig. 10. The results of contaminant segmentation using different classifiers
based on a hyperspectral image sample from the washing machine chassis
smeared using 10 types of contaminants. For the sake of visibility, the
pixels segmented as background are replaced with one channel of the actual
hyperspectral image. The segmented maps refer to: (a) SVM-RBF, (b) MLP,
(c) RF, and (d) SVM-Linear.

feasibility of a reliable system that can detect, localize, and
discriminate organic contaminants using hyperspectral images.

Despite the remarkably short inference time (less that a sec-
ond to discriminate contaminants within a full chassis image
using a single AMD64 core), the designed acquisition process
acts as the main time bottleneck because of calibration and
the acquisition time. This study suggests further investigations
over improving and adapting the acquisition lighting system to
illuminate the entire surface of the washing machine cabinet
at once. This not only shortens the time of the acquisition
process but also decreases the acquisition noises. It helps with
more precise calibration and more accurate segmentation, and
increases the scalability of this solution for being integrated
into the production line. Realizing the proper integration of the
acquisition system within the production line and collecting
real-time data offer the opportunity of a comprehensive model
evaluation and generalizing the findings to real settings with
uncontrolled variables.

In this study, 10 types of common organic contaminants
were considered as the residuals of the production line. How-

Fig. 11. The confusion matrix displaying the evaluation results using the test
dataset on the trained SVM-RBF model. Given the fact that the ground-truth
is not necessarily free of noise, this model exhibits remarkable performance
in classifying contaminants.

ever, the arbitrary contaminants are yet possible to remain
throughout the production stages, which calls for supplemen-
tary investigations. Furthermore, the assessment of contami-
nant thicknesses should be considered for further studies, as
such information would significantly improve the cleaning pro-
cess. Additionally, in the pilot experiments presented by this
work, we do not consider the situation where the contaminants
are mixed or have overlaps, which remains to be investigated
in future works.
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