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AMENABILITY AND SUBEXPONENTIAL SPECTRAL GROWTH RATE

OF DIRICHLET FORMS ON VON NEUMANN ALGEBRAS

FABIO CIPRIANI, JEAN-LUC SAUVAGEOT

Abstract. In this work we apply Noncommutative Potential Theory to characterize (rel-
ative) amenability and the (relative) Haagerup Property (H) of von Neumann algebras in
terms of the spectral growth of Dirichlet forms. Examples deal with (inclusions of) countable
discrete groups and free orthogonal compact quantum groups.

1. Introduction and description of the results.

Classical results relate the metric properties of conditionally negative definite functions on
a countable discrete group Γ to its approximation properties. For example, there exists a
proper, conditionally negative definite function ℓ on Γ if and only if there exists a sequence
ϕn ∈ c0(Γ) of normalized, positive definite functions, vanishing at infinity and converging
pointwise to the constant function 1.
In a celebrated work [Haa2], U. Haagerup proved that the length function of a free group Fn

with n ∈ {2, · · · ,∞} generators is negative definite, thus establishing for free groups the above
approximation property. Since then the property is referred to as Haagerup Approximation
Property (H) or Gromov a-T-menability (see [CCJJV]).
In addition, if for a conditionally negative definite function ℓ on a countable discrete group
Γ, the series

∑
g∈Γ e

−tℓ(g) converges for all t > 0, then there exists a sequence ϕn ∈ l2(Γ)
of normalized, positive definite functions, converging pointwise to the constant function 1
([GK Thm 5.3]). This latter property is just one of the several equivalent appearances of
amenability, a property introduced by J. von Neumann in 1929 [vN] in order to explain the
Banach-Tarski paradox in Euclidean spaces Rn exactly when n ≥ 3.

In this note we are going to discuss extensions of the above results concerning amenability
for σ-finite von Neumann algebras N .

The direction along which we are going to look for substitutes of the above summability
condition related to amenability, is that of Noncommutative Potential Theory.

This is suggested by a recent result by Caspers-Skalski [CaSk] asserting that N has the
(suitably formulated) Haagerup Approximation Property (H) if and only if there exists a
Dirichlet form (E ,F) on the standard Hilbert space L2(N), having discrete spectrum.
The link between the properness condition for a conditionally negative definite function ℓ
on a countable discrete groups Γ and the generalized one on von Neumann algebras, relies
on the fact that, when the von Neumann algebra N = L(Γ) is the one generated by the left
regular representation of Γ, the quadratic form Eℓ[a] =

∑
g∈Γ ℓ(g)|a(g)|2 on the standard space

L2(L(Γ), τ) ≃ l2(Γ) is a Dirichlet form if and only if the function ℓ is conditionally negative
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definite and its spectrum is discrete if and only if ℓ is proper. Moreover, on a countable, finitely
generated, discrete group Γ with polynomial growth, there exist a conditionally negative
definite functions ℓ, having polynomial growth and growth dimensions arbitrarily close to the
homogeneous dimension of Γ (see [CS5]).

This point of view thus suggests that a condition providing amenability of a von Neumann
algebra with faithful normal state (N, ω) could be the subexponential spectral growth of a
Dirichlet form (E ,F) on the standard space L2(N, ω), i.e. the discreteness of the spectrum
of (E ,F) and the summability of the series

∑
k≥0 e

−tλk for all t > 0, where λ0 , λ1 , . . . are the
eigenvalues of (E ,F).

The second fundamental fact that will allow to use Dirichlet forms to investigate the amenabil-
ity of a von Neumann algebra, is the possibility to express this property in terms of Connes’
correspondences: N is amenable if and only if the identity or standard N -N -correspondence
L2(N) is weakly contained in the coarse or Hilbert-Schmidt N -N -correspondence L2(N) ⊗
L2(N) (see [Po1]).

In the second part of the work we provide a condition guaranteeing the relative amenability
of an inclusion B ⊆ N of finite von Neumann algebras introduced by Popa [Po1,2], in terms
of the existence of a Dirichlet form (E ,F) on L2(N) having relative subexponential spectral
growth. Also this result is based on the possibility to express the relative amenability of a von
Neumann algebra N with respect to a subalgebra B ⊆ N in terms of the weak containment
of the identity correpondence L2(N) in the relative tensor product correspondence L2(N)⊗B

L2(N) introduced by Sauvageot [S1], [Po2].

Using a suitable Dirichlet form constructed in [CFK], whose construction uses tools developed
by M. Brannan in [Bra], we apply the above result to prove amenability of the von Neumann
algebra of the free orthogonal quantum group O+

2 and Haagerup Property (H) of the free
orthogonal quantum groups O+

N for N ≥ 3 (see also the recent [DFSW]), results firstly
obtained by M. Brannan [Bra].
A detailed discussion of the relative Haagerup Property (H) for inclusions of countable discrete
groups in terms of conditionally negative definite functions is presented.

The paper is organized as follows: in Section 2 we provide the necessary tools on noncommu-
tative potential theory on von Neumann algebra as Dirichlet forms, Markovian semigroups
and resolvents.
In Section 3 we first recall some equivalent constructions of the coarse or Hilbert-Schmidt
correspondence of a von Neumann algebra N and some connections between the modular
theories of N , of its opposite No, and of their spatial tensor product N⊗No. Then we intro-
duce the spectral growth rate of a Dirichlet form and we prove the first main result of the
work about the amenability of von Neumann algebra admitting a Dirichlet form with subex-
ponential spectral growth rate. This part terminates with an application to the amenability
of countable discrete groups and with a partially alternative approach to the proof of a result
of M. Brannan [Bra] about the amenability of the free orthogonal quantum group O+

2 .
Section 4 starts recalling some fundamental tool of the basic construction 〈N,B〉 for inclusions
B ⊆ N of finite von Neumann algebras, needed to prove the second main result of the work
concerning the amenability of N with respect to its subalgebra B. To formulate the criterion,
we introduce the spectral growth rate of a B-invariant Dirichlet form on the standard space
L2(N) relatively to the subalgebra B, using the compact ideal space J (〈N,B〉) of 〈N,B〉 ( cf.
[PO1,2]). The section terminates discussing relative amenability for two natural subalgebras
Bmin ⊆ N and Bmax ⊆ N associated to any Dirichlet form.
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In Section 5 we extend the spectral characterization of the Haagerup Property (H) of von
Neumann algebras with countable decomposable center due to M. Caspers and A. Skalski
[CaSk] to the Relative Haageruup Property (H) for inclusions of finite von Neumann algebras
B ⊆ N formulated by S. Popa [Po 1,2].
In Section 6 we discuss the relative Haagerup Property (H) for inclusions H < G of countable
discrete groups in terms of the existence of an H-invariant conditionally negative definite
function onG which is proper on the homogeneous space G/H and in terms of quasi-normality
of H in G.

The content of the present work has been the subject of talks given in Rome II (March
2015), Paris (GREFI-GENCO April 2015), Berkeley (UC Seminars September 2015), Krakov
(September 2015), Varese (May 2016).

2. Dirichlet forms on σ-finite von Neumann algebras

Recall that a von Neumann algebra N is σ-finite, or countably decomposable, if any col-
lection of mutually orthogonal projections is at most countable and that this property is
equivalent to the existence of a normal, faithful state. This is the case, for example, if N acts
faithfully on a separable Hilbert space.

Let us consider on a σ-finite von Neumann algebra N a fixed faithful, normal state ω ∈ N∗+.
Let us denote by (N,L2(N, ω), L2

+(N, ω), Jω) the standard form of N and by ξω ∈ L2
+(N, ω)

the cyclic vector representing the state (see [Haa1]).
For a real vector ξ = Jωξ ∈ L2(N, ω), let us denote by ξ ∧ ξω the Hilbert projection of the
vector ξ onto the closed and convex set Cω := {η ∈ L2(N, ω) : η = Jωη, ξω − η ∈ L2

+(N, ω)}.
We recall here the definition of Dirichlet form and Markovian semigroup (see [C1]) on a
generic standard form of a σ-finite von Neumann algebra. For a definition particularized to
the Haagerup standard form see [GL1].

Definition 2.1 (Dirichlet forms on σ-finite von Neumann algebras). A densely defined, non-
negative and lower semicontinuous quadratic form E : L2(N, ω) → [ 0,+∞] is said to be:
i) real if

(2.1) E [Jω(ξ)] = E [ξ] ξ ∈ L2(N, ω) ;

ii) a Dirichlet form if it is real and Markovian in the sense that

(2.2) E [ξ ∧ ξω] ≤ E [ξ] ξ = Jωξ ∈ L2(N, ω) ;

iii) a completely Dirichlet form if all the canonical extensions En to L2(Mn(N), ω ⊗ tr n)

(2.3) En[[ξi,j]ni,j=1] :=
n∑

i,j=1

E [ξi,j] [ξi,j]
n
i,j=1 ∈ L2(Mn(N), ω ⊗ tr n) ,

are Dirichlet forms.

By the self-polarity of the standard cone L2
+(N, ω), any real vector ξ = Jωξ ∈ L2(N, ω)

decomposes uniquely as a difference ξ = ξ+ − ξ− of two positive, orthogonal vectors ξ± ∈
L2
+(M, ω) (the positive part ξ+ being just the Hilbert projection of ξ onto the positive cone).

The modulus of ξ is then defined as the sum of the positive and negative parts |ξ| := ξ++ ξ−.
Notice that, in general, the contraction property

E [ |ξ| ] ≤ E [ξ] ξ = Jωξ ∈ L2(A, ω)

is a consequence of Markovianity and that it is actually equivalent to it when E [ξω] = 0.
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The domain of the Dirichlet form is defined as the (dense) subspace of L2(N, ω) where the
quadratic form is finite: F := {ξ ∈ L2(N, ω) : E [ξ] < +∞}. We will denote by (L,D(L))
the densely defined, self-adjoint, nonnegative operator on L2(A, τ) associated with the closed
quadratic form (E ,F)

F = D(
√
L) and E [ξ] = ‖

√
Lξ‖2 ξ ∈ D(

√
L) = F .

Definition 2.2 (Markovian semigroups on standard forms of von Neumann algebras).
a) A bounded operator T on L2(N, ω) is said to be
i) real if it commutes with the modular conjugation: TJω = JωT ,
ii) positive if it leaves globally invariant the positive cone: T (L2

+(N, ω)) ⊆ L2
+(N, ω),

iii) Markovian if it is real and it leaves globally invariant the closed, convex set Cω:

T (Cω) ⊆ Cω ,

iv) completely positive, resp. completely Markovian, if it is real and all of its matrix amplifi-
cations T (n) to L2(Mn(N), ω ⊗ tr n) ≃ L2(N, τ)⊗ L2(Mn(C), tr n) defined by

T (n)[[ξi,j]
n
i,j=1] :=

n∑

i,j=1

[Tξi,j]
n
i,j=1 [ξi,j]

n
i,j=1 ∈ L2(Mn(N), ω ⊗ tr n) ,

are positive, resp. Markovian;
b) A strongly continuous, uniformly bounded, self-adjoint semigroup {Tt : t > 0} on L2(N, ω)
is said to be real (resp. positive, Markovian, completely positive, completely Markovian) if the
operators Tt are real (resp. positive, Markovian, completely positive, completely Markovian)
for all t > 0.

In literature, property in item iii) above is sometime termed submarkovian, while markovian is
meant positivity preserving and unital. Our choice is only dictated by a willing of simplicity.

Notice that T is (completely) Markovian iff it is (completely) positive and Tξω ≤ ξω.

Notice that if N is abelian, then positive (resp. Markovian) operators are automatically
completely positive (resp. completely Markovian).

Dirichlet forms are in one-to-one correspondence with Markovian semigroups (see [C1]) through
the relations

Tt = e−tL t ≥ 0

where (L,D(L)) is the self-adjoint operator associated to the quadratic form (E ,F).

Dirichlet forms and Markovian semigroups are also in correspondence with a class of semi-
groups on the von Neumann algebra. To state this fundamental relation, let us consider the
symmetric embedding iω determined by the cyclic vector ξω

iω : N → L2(N, ω) iω(x) := ∆
1
4
ωxξω x ∈ N .

Here, ∆ω is the modular operator associated with the faithful normal state ω (see [T]). We
will denote by {σω

t : t ∈ R} the modular automorphisms group associated to ω and by
Nσω ⊆ N the subalgebra of elements which are analytic with respect to it. Then (see [C1])
(completely) Dirichlet forms (E ,F) and (completely) Markovian semigroups {Tt : t > 0}
on L2(N, ω) are in one-to-one correspondence with those weakly∗-continuous, (completely)
positive and contractive semigroups {St : t > 0} on the von Neumann algebra N which are
modular ω-symmetric in the sense that

(2.4) ω(St(x)σ
ω
−i/2(y)) = ω(σω

−i/2(x)St(y)) x, y ∈ Nσω , t > 0 ,
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through the relation

iω(St(x)) = Tt(iω(x)) x ∈ N , t > 0 .

Relation (2.4) is called modular symmetry and it is equivalent to

(2.5) (Jωyξω|St(x)ξω) = (JωSt(y)ξω|xξω) x, y ∈ N , t > 0 .

Remark 2.3. In case ω is a trace, the symmetric embedding reduces to iω(x) = xξω while the
modular symmetry simplifies to ω(St(x)y) = ω(xSt(y)) for x, y ∈ N and t > 0.

To shorten notations, in the forthcoming part of the paper
”Dirichlet form” will always mean ”completely Dirichlet form” and

”Markovian semigroup” will always mean ”completely Markovian semigroup”.

Whenever no confusion can arise, the modular conjugation Jω will be sometime denoted J .

2.1. Examples of Dirichlet forms. Instances of the notions introduced above may be
found in various frameworks. We just recall here some examples of different origins. One
may consult the fundamental works [BeDe], [FOT] for the commutative case and [C2], [C3]
for surveys in the noncommutative setting.
a) The archetypical Dirichlet form on the Euclidean space Rn or, more generally, on any
Riemannian manifold V , endowed with its Riemannian measure m, is the Dirichlet integral

E [a] =
∫

V

|∇a|2 dm a ∈ L2(V,m) .

In this case the trace on L∞(V,m) is given by the integral with respect to the measure m
and the form domain is the Sobolev space H1(V ) ⊂ L2(V,m). The associated Markovian
semigroup is the familiar heat semigroup of the Riemannian manifold. Interesting variations
of the above Dirichlet integral are the Dirichlet forms of type

E [a] :=
∫

Rn

|∇a|2 dµ a ∈ L2(Rn, µ) ,

that for suitable choices of positive Radon measures µ, are ground state representations of
Hamiltonian operators in Quantum Mechanics.
b) Dirichlet forms are a fundamental tool to introduce differential calculus and study Mar-
kovian stochastic processes on fractal sets (see [Ki], [CS3], [CGIS 1,2]).
c) On a countable discrete group Γ, any conditionally negative definite function ℓ gives rise
to a Dirichlet form

Eℓ[ξ] :=
∑

s∈Γ

|ξ(s)|2ℓ(s) ,

on the Hilbert space l2(Γ), considered as the standard Hilbert space of the left von Neumann
algebra L(Γ) generated by the left regular representation of Γ (see [CS1], [C2]). The associated
Markovian semigroup is simply given by the multiplication operator

Tt(a)(s) = e−tℓ(s)a(s) t > 0 , s ∈ G , a ∈ l2(Γ) .

d) On noncommutative tori Aθ, θ ∈ [0, 1] (see [Co2]), which are C∗-algebras generated by two
unitaries u and v, satisfying the relation

vu = e2iπθuv ,

the heat semigroup {Tt : t ≥ 0} defined by

Tt(u
nvm) = e−t(n2+m2)unvm (n,m) ∈ Z

2 ,



6 FABIO CIPRIANI, JEAN-LUC SAUVAGEOT

is a τ -symmetric Markovian semigroup on the von Neumann algebra Nθ generated by the
G.N.S. representation of the faithful, tracial state τ : Aθ → C characterized by

τ(unvm) = δn,0δm,0 n,m ∈ Z .

e) There exists a general interplay between Dirichlet forms and differential calculus on tracial
C∗-algebras (A, τ) (see [S 2,3], [CS1]) and this provides a source of Dirichlet forms on von
Neumann algebras (generated by A in the G.N.S. representation of the trace). In fact,
denoting by N the von Neumann algebra generated by the G.N.S. representation of the trace,
if (∂,D(∂)) is a densely defined closable derivation from L2(N, τ) to Hilbert A-bimodule H,
then the closure of the quadratic form

E [a] := ‖∂a‖2H a ∈ F := D(∂)

is a Dirichlet form on L2(N, τ). Viceversa, any Dirichlet form on L2(N, τ) whose domain is
dense in A arises in this way from an essentially unique derivation on A canonically associated
with it (see [CS1]). Examples of this differential calculus can be found in all the situations
illustrated above as well as in the geometric framework of Riemannian foliations (see [S4])
and also in the framework of Voiculescu’s Free Probability theory (see [V1]). There, the
Dirichlet form associated to Voiculescu’s derivation presents several aspects connected to
Noncommutative Hilbert Transform, Free Fischer Information and Free Entropy.

3. Amenability of σ-finite von Neumann algebras

In this section we relate a certain characteristic of the spectrum of a Dirichlet form to the
amenability of the von Neumann algebra. Recall that a von Neumann algebra N is said to
be amenable if, for every normal dual Banach N -bimodule X , the derivations δ : N → X are
all inner, i.e. they have the form

δ(x) = xξ − ξx x ∈ N

form some vector ξ ∈ X . It is a remarkable fact, and the byproduct of a tour de force, that
this property is equivalent to several others of apparently completely different nature, such
as hyperfiniteness, injectivity, semi-discreteness, Schwartz property P, Tomiyama property E.
We refer to [Co2 Ch. V] for a review on these connections. Among the main examples of
amenable von Neumann algebras, we recall: the von Neumann algebra of a locally compact
amenable group, the crossed product of an abelian von Neumann algebra by an amenable
locally compact group, the commutant von Neumann algebra of any continuous unitary rep-
resentation of a connected locally compact group, the von Neumann algebra generated by
any representation of a nuclear C∗-algebra.

3.1. Standard form of the spatial tensor product of von Neumann algebras. Here
we summarize some well known properties of the standard form of the spatial tensor product
of two von Neumann algebras in terms of Hilbert-Schmidt operators (details may be found
in [T]), mainly with the intention to make precise, in the next section, some properties of the
symmetric embedding of a product state. More precisely we shall use the following facts:

3.1. let N ⊆ B(H) be a von Neumann algebra. A vector ξ ∈ H is cyclic for the commutant
N ′ if and only if it is separating for N ;

3.2. let Nk ⊆ B(Hk) k = 1, 2 be von Neumann algebras. If the vectors ξk ∈ Hk , k = 1, 2
are cyclic for Nk, then the vector ξ1 ⊗ ξ2 ∈ H1 ⊗ H2 is cyclic for the spatial tensor product
N1⊗N2;
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3.3. let Nk k = 1, 2 be von Neumann algebras and L2(Nk) their standard forms. If the
vectors ξk ∈ L2

+(Nk) k = 1, 2 are cyclic for Nk (hence separating) then the vector ξ1 ⊗ ξ2 ∈
L2(N1)⊗ L2(N2) is cyclic and separating for the spatial tensor product N1⊗N2.

3.2. Symmetric embedding of tensor product of von Neumann algebras. Here we
recall the definition and a property of the symmetric embedding of a von Neumann algebra
in its standard Hilbert space. Let N be a σ-finite von Neumann algebra and ω ∈ N∗,+ a
faithful, normal state.
In the standard form (N,L2(N, ω), L2

+(N, ω)), we denote by ξω ∈ L2
+(N, ω) the cyclic vector

representing the state ω and by Jω and ∆ω its modular conjugation and modular operator,
respectively.

The symmetric embedding iω : N → L2(N, ω), defined by iω(x) := ∆
1
4
ωxξω for x ∈ N , is

a completely positive contraction with dense range, which is also continuous between the
weak∗-topology of N and the weak topology of L2(N, ω). It is also an order isomorphism of
completely ordered sets between {x = x∗ ∈ N : 0 ≤ x ≤ 1N} and {ξ = Jωξ ∈ L2(N, ω) : 0 ≤
ξ ≤ ξω)} (see [Ara], [Co1], [Haa1] and [BR]). We shall make use of the following properties:

3.4. Let Nk k = 1, 2 be von Neumann algebras and L2(Nk) their standard forms. Consider
the cyclic (hence separating) vectors ξk ∈ L2(Nk) k = 1, 2 and the cyclic and separating vector
ξ1 ⊗ ξ2 ∈ H1 ⊗H2 for the spatial tensor product N1⊗N2.
Let Jk,∆k be the modular conjugation and the modular operator associated to ξk ∈ Hk k = 1, 2
and Jξ1⊗ξ2 ,∆ξ1⊗ξ2 be the modular conjugation and the modular operator associated to ξ1 ⊗ ξ2.
Then the following identifications hold true

• Jξ1⊗ξ2 = Jξ1 ⊗ Jξ2;

• N1ξ1 ⊙N2ξ2 ⊆ H1 ⊗H2 is a core for the closed operator ∆
1
2

ξ1⊗ξ2
;

• ∆
1
2
ξ1⊗ξ2

(η1 ⊗ η2) = ∆
1
2
ξ1
(η1)⊗∆

1
2
ξ2
(η2) for ηk ∈ Nkξk and k = 1, 2.

We will denote by N◦ the opposite algebra of N : it coincides with N as a vector space but the
product is taken in the reverse order x◦y◦ := (yx)◦ for x◦, y◦ ∈ N◦. As customary, we adopt
the convention that elements y ∈ N , when regarded as elements of the opposite algebra are
denoted by y◦ ∈ N◦.
A linear functional ω on N , when considered as a linear functional on the opposite algebra
N◦ is denoted by ω◦ and called the opposite of ω. As N and N◦ share the same positive cone,
if ω is positive on N so is ω◦ on N◦ and if ω is normal so does its opposite.

By the properties of standard forms of von Neumann algebras, it follows that for the standard
form (N◦, L2(N◦, ω◦), L2

+(N
◦, ω◦)) of N◦ one has the following identifications

L2(N◦, ω◦) = L2(N, ω) , L2
+(N

◦, ω◦) = L2
+(N, ω) , Jω = Jω◦ , ∆ω◦ = ∆−1

ω , ξω◦ = ξω .

Using the isomorphism between N◦ and the commutant N ′, given by N◦ ∋ y◦ → Jωy
∗Jω ∈ N ′,

we can regard L2(N, ω) not only as a left N -module but also as a left N◦-module, hence as
a right N -module and finally as a N -N -bimodule

y◦ξ := Jωy
∗Jωξ , ξy := Jωy

∗Jωξ , xξy := xJωy
∗Jωξ x, y ∈ N , ξ ∈ L2(N, ω) .

The symmetric embeddings associated to ω and ω◦ are related by

iω◦(y◦) = ∆
1
4
ω◦(ξωy) = ∆

1
4
ω◦Jωy

∗Jωξω = ∆
− 1

4
ω ∆

1
2
ωyξω = ∆

1
4
ωyξω = iω(y) .

Jω(iω(y
∗)) = Jω∆

1
4
ω(y

∗ξω) = Jω∆
1
4
ωJω∆

1
2
ω(yξω) = ∆

1
4
ω(yξω) = iω(y) = iω◦(y◦) .
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3.3. Coarse correspondence. Recall that a Hilbert-Schmidt operator T is a bounded op-
erator on L2(N, ω) such that TraceL2(N,ω)(T

∗T ) < +∞. It may be represented as

Tξ :=

∞∑

k=0

µk(ηk|ξ)ξk ξ ∈ L2(N, ω)

in terms of suitable orthonormal systems {ηk : k ∈ N} , {ξk : k ∈ N} ⊂ L2(N, ω) and a
sequence {µk : k ∈ N} ⊂ C such that

∑∞
k=0 |µk|2 < +∞. The set of Hilbert-Schmidt operators

HS(L2(N, ω)) is a Hilbert space under the scalar product (T1|T2) := TraceL2(N,ω)(T
∗
1 T2).

Lemma 3.5. The binormal representations π1
co, π

2
co, π

3
co of N ⊗max N

◦, characterized by

π1
co : N ⊗max N

◦ → B(HS (L2(N, τ)))

π1
co(x⊗ yo)(T ) := xTy x, y ∈ N , T ∈ HS (L2(N, τ)) ,

π2
co : N ⊗max N

◦ → B(L2(N, τ)⊗ L2(N, τ))

π2
co(x⊗ yo)(ξ ⊗ η) := xξ ⊗ ηy x, y ∈ N , ξ, η ∈ L2(N, τ)

π3
co : N ⊗max N

◦ → B(L2(N, τ)⊗ L2(N, τ))

π3
co(x⊗ yo)(ξ ⊗ η) := xξ ⊗ ηy x, y ∈ N , ξ, η ∈ L2(N, τ) ,

are unitarely equivalent by

U : L2(N, τ)⊗ L2(N, τ) → L2(N, τ)⊗ L2(N, τ) U(ξ ⊗ η) := ξ ⊗ Jωη

V : L2(N, τ)⊗ L2(N, τ) → HS(L2(N, τ)) V (ξ ⊗ η)(ζ) := (η|ζ)ξ .

They give rise by weak closure

(π3
co(N ⊗max N

◦))′′ = N⊗N◦

of the spatial tensor product of N by its opposite N◦.

Lemma 3.6. The normal extension of the coarse representation πco of the C
∗-algebra N⊗max

N◦ to the von Neumann tensor product N⊗N◦ is the standard representation of N⊗N◦ (and
it will still denoted by the same symbol).
The standard positive cone in the various equivalent representations is determined as

• HS(L2(N, ω))+, the set of all nonnegative Hilbert-Schmidt operators on L2(N, ω);

• (L2(N, τ)⊗ L2(N, ω))+, generated by the vectors ξ ⊗ ξ with ξ ∈ L2(N, ω);
• (L2(N, τ)⊗ L2(N, ω))+, generated by the vectors ξ ⊗ Jωξ with ξ ∈ L2(N, ω).

The standard Hilbert space and the positive cone of N⊗N◦ will be denoted also by

L2(N⊗N◦, ω ⊗ ω◦) , L2
+(N⊗N◦, ω ⊗ ω◦) .

Lemma 3.7. Let T : L2(N, ω) → L2(N, ω) be a bounded operator and consider on the
involutive algebra N ⊙N◦, the linear functional determined by

ΘT : N ⊙N◦ → C ΘT (x⊗ y◦) := (iω(y
∗)|T iω(x)) x⊗ y◦ ∈ N ⊙N◦ .

Then ΘT is a positive linear functional on N ⊙N◦ if and only if T is completely positive (c.f.
Definition 2.2 iv)).
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Proof. i) The positive cone of N ⊙N◦ is generated by elements of type ν∗ν =
∑n

j,k=1 x
∗
jxk ⊗

(yky
∗
j )

◦ where ν =
∑n

k=1 xk ⊗ y◦k ∈ N ⊙N◦. The result then follows by the identity

ΘT (ν
∗ν) =

n∑

j,k=1

ΘT (x
∗
jxk ⊗ (yky

∗
j )

◦) =

n∑

j,k=1

(iω(yjy
∗
k)|T iω(x∗

jxk)) ,

the completely positivity of the symmetric embedding iω : N → L2(N, τ) and the positivity
of [x∗

jxk]
n
j,k=1 and [yjy

∗
k]

n
j,k=1 in Mn(N).

�

Lemma 3.8. Let T : L2(N, ω) → L2(N, ω) be a completely positive operator and consider
the positive linear functional ΘT on N ⊙N◦. Then, among the properties

a) ΘT is a state on N ⊙N◦

b) T is a contraction
c) Tξω = ξω

we have that the following relations

i) a) and b) imply c) and ‖T‖ = 1
ii) c) implies a) and b).

Proof. i) By a) and b) we have 1 = ΘT (1N⊗1N◦) = (ξω|Tξω) ≤ ‖ξω‖·‖Tξω‖ ≤ ‖ξω‖2 ·‖T‖ = 1
that implies ‖T‖ = ‖Tξω‖ = 1 and (ξω|Tξω) = ‖ξω‖ · ‖Tξω‖ which provide Tξω = ξω. ii)
The proof that c) implies a) is immediate while the proof that c) implies b) can be found in
[C1]. �

3.4. Spectral growth rate. In the following definition, the notion of growth rate of a finitely
generated, countable discrete group is extended to σ-finite von Neumann algebras having the
Haagerup Property (H), i.e. von Neumann algebras admitting Dirichlet forms with discrete
spectrum. The idea for this generalization results from [CS5] (see discussion in Example 3.11
below).

Definition 3.9. (Spectral growth rate of Dirichlet forms). Let (N, ω) be a σ-finite, von
Neumann algebra with a fixed faithful, normal state on it. To avoid trivialities we assume N
to be infinite dimensional .
Let (E ,F) be a Dirichlet form on L2(N, ω) and let (L,D(L)) be the associated nonnegative,
self-adjoint operator. Assume that its spectrum σ(L) = {λk ≥ 0 : k ∈ N} is discrete, i.e.
its points are isolated eigenvalues of finite multiplicity (repeated in non decreasing order
according to their multiplicities).
Then let us set

Λn := {k ∈ N : λk ∈ [0, n]} , βn := ♯(Λn) , n ∈ N

and define the spectral growth rate of (E ,F) as

Ω(E ,F) := lim sup
n∈N

n
√

βn .

The Dirichlet form (E ,F) is said to have

• exponential growth if (E ,F) has discrete spectrum and Ω(E ,F) > 1
• subexponential growth if (E ,F) has discrete spectrum and Ω(E ,F) = 1
• polynomial growth if (E ,F) has discrete spectrum and, for some c, d > 0, βn ≤ c · nd

for all n ∈ N

• intermediate growth if it has subexponential growth but not polynomial growth.
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Lemma 3.10. Setting γ0 = β0 and

γn := βn − βn−1 = ♯{k ∈ N : λk ∈ (n− 1, n]} , n ∈ N
∗ ,

and
Ω′(E ,F) := lim sup

n∈N∗

n
√
γn

we have
Ω(E ,F) = Ω′(E ,F) ≥ 1 .

Proof. On one hand, by definition, we have Ω(E ,F) ≥ Ω′(E ,F). On the other hand, since, by
assumption, N is infinite dimensional and σ(L) is discrete, we have Ω(E ,F) ≥ Ω′(E ,F) ≥ 1.
Consider now the following identity involving analytic functions in a neighborhood of 0 ∈ C

∞∑

n=0

βnz
n = (1− z)−1

∞∑

n=0

γnz
n

and notice that the radius of convergence of the series on the left-hand side is R = 1/Ω(E ,F),
while the radius of convergence of the series on the right-hand side is R′ = 1/Ω′(E ,F) so that
R ≤ R′ ≤ 1. Since (1 − z)−1 is analytic in the open unit disk centered in z = 0, the above
identity implies that R ≥ R′ so that Ω(E ,F) ≤ Ω′(E ,F). �

Example 3.11. (Spectral growth rate on countable discrete groups).
i) On a countable discrete group Γ, if there exists a proper, c.n.d. function ℓ, then the
associated Dirichlet form (Eℓ,Fℓ) has discrete spectrum σ(L) = {ℓ(g) ∈ [0,+∞) : g ∈ Γ}.

ii) On a finitely generated, countable discrete group Γ, if the length ℓS corresponding to a
finite system of generators S ⊆ Γ is negative definite, then the spectral growth rate Ω(EℓS ,FℓS)
of the corresponding Dirichlet form coincides with growth rate of (Γ, S) (see [deH Ch. VI]).

iii) Moreover, if (Γ, S) has polynomial growth, it has been shown in [CS5] that there exists
on Γ a proper, c.n.d. function function ℓ with polynomial growth. The associated Dirichlet
form (Eℓ,Fℓ) will have polynomial spectral growth rate.

Remark 3.12. By a well known bound (see [R Theorem 3.37])

1 ≤ lim inf
n

βn+1

βn
≤ lim sup

n∈N

n
√

βn ,

if the spectral growth rate is subexponential, then lim infn
βn+1

βn
= 1 so that there exists a

subsequence of {βn+1

βn
}n∈N converging to 1. In other words, the sequence of spectral subspaces

{En}n∈N corresponding to the interval [0, n] ⊂ [0,+∞) admits a subsequence such that

lim
k

dimEnk+1

dimEnk

= 1 .

Subexponential growth can be equivalently stated in terms of the nuclearity of the completely
Markovian semigroup {e−tL : t > 0} on L2(N, ω):

Lemma 3.13. The Dirichlet form (E ,F) has discrete spectrum and subexponential spectral
growth if and only if the Markovian semigroup {e−tL : t > 0} on L2(N, ω) is nuclear, or
trace-class, in the sense that:

Trace (e−tL) =
∑

k∈N

e−tλk < +∞ t > 0 .
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Proof. Since

γ0 +
∑

n∈N∗

γne
−tn ≤

∑

k∈N

e−tλk ≤ γ0 + et
∑

n∈N∗

γne
−tn t > 0 ,

the series
∑

k∈N e
−tλk and

∑
n∈N∗ γne

−tn converge or diverge simultaneously. They obviously
converge for all t > 0 if and only if Ω′(E ,F) ≤ 1. �

Example 3.14. If on a countable discrete group Γ, there exists a c.n.d. function ℓ, such
that

∑
g∈Γ e

−tℓ(g) < +∞ for all t > 0, then ℓ is proper, the spectrum of the associated

Dirichlet form (Eℓ,Fℓ) coincides with {ℓ(g) ∈ [0,+∞) : g ∈ Γ} and it is thus discrete with
subexponential growth.

The following is the main result of this section.

Theorem 3.15. Let (N, ω) be a σ-finite von Neumann algebra endowed with a normal, faith-
ful state on it. If there exists a Dirichlet form (E ,F) on L2(N, ω) having subexponential
spectral growth, then N is amenable.

Proof. Recall that N is amenable if and only if the identity or standard bimodule NL
2(N)N

is weakly contained in the coarse or Hilbert-Schmidt bimodule Hco (see [Po1]). Consider
the completely positive semigroup {Tt := e−tL : t > 0} and assume, for simplicity, that the
cyclic vector is invariant: Ttξω = ξω for all t > 0. Recall (cf. Lemma 3.7) that the complete
positivity of Tt provides a binormal state on N ⊗max N

◦ characterized by

Φt : N ⊗max N
◦ → C Φt(x⊗ y◦) := (iω(y

∗)|Ttiω(x)) .

To compute this state, we consider the spectral representation Tt =
∑

k≥0 e
−tλkPk (converging

strongly) in terms of the rank-one projections Pk on L2(N, ω) associated to each eigenvalue
λk (repeated according to their multiplicity). Notice that by Markovianity, the semigroup
commutes with the modular conjugation Jω so that each eigenvector ξk may be assumed to
be real: ξk = Jωξk. We then have

Φt(x⊗ y◦) = (iω(y
∗)|Ttiω(x))

=
∞∑

k=0

e−tλk(iω(y
∗)|Pk(iω(x)))

=
∞∑

k=0

e−tλk(iω(y
∗)|(ξk|iω(x))ξk)

=
∞∑

k=0

e−tλk(ξk|iω(x))(iω(y∗)|ξk) .

As the series Zt :=
∑∞

k=0 e
−tλkξk ⊗ ξk is norm convergent for all t > 0 by the nuclearity of the

semigroup, since Jω is an antiunitary operator on L2(N), using properties in item 3.4 above
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we have

Φt(x⊗ y◦) =

∞∑

k=0

e−tλk(ξk|iω(x))(Jωξk|Jωiω(y
∗))

=

∞∑

k=0

e−tλk(ξk|iω(x))(ξk|iω◦(y◦))

=

∞∑

k=0

e−tλk(ξk ⊗ ξk|iω(x)⊗ iω◦(y◦))L2(N,ω)⊗L2(N,ω)

=
( ∞∑

k=0

e−tλkξk ⊗ ξk

∣∣∣iω(x)⊗ iω◦(y◦)
)
L2(N,ω)⊗L2(N,ω)

=
(
Zt

∣∣∣iω⊗ω◦(x⊗ y◦)
)

L2(N⊗N◦,ω⊗ω◦)
.

Since the symmetric embeddings of von Neumann algebras are continuous when N⊗N◦ is
endowed with the weak∗-topology and L2(N⊗N◦, ω⊗ω◦) is endowed with the weak topology,
by continuity we have

Φt(z) =
(
Zt

∣∣∣iω⊗ω◦(z)
)

L2(N⊗N◦,ω⊗ω◦)
z ∈ N⊗N◦ .

In other words, the linear functional Φt extends as a σ-weakly continuous linear functional
on the spatial tensor product N⊗N◦. Φt being positive by Lemma 3.7, there exist a unique
positive element Ωt ∈ L2

+(N⊗N◦, ω ⊗ ω◦) (see [Haa1]) such that

Φt(z) = (iω(y
∗)|Ttiω(x)) =

(
Ωt|πco(z)Ωt

)
L2(N⊗N◦,ω⊗ω◦)

z ∈ N⊗N◦

and the GNS representation of N⊗maxN
◦ associated to Φt coincides with a sub-representation

of πco. In other words, the N − N -correspondence Ht associated to the completely positive
map Tt is contained in the coarse N−N -correspondence Hco for all t > 0. Since the semigroup
{Tt : t > 0} is strongly continuous on L2(N, ω), for all x⊗ y◦ ∈ N ⊗max N

◦ we have

lim
t↓0

(
Ωt|πco(x⊗ y◦)Ωt

)

L2(N,ω)⊗L2(N,ω)
= (iω(y

∗)|iω(x))L2(N,ω)

= (∆
1
4
ωy

∗ξω|∆
1
4
ωxξω)

= (∆
1
2
ωy

∗ξω|xξω)
= (Jωyξω|xξω)
= (JωyJωξω|xξω)
= (ξω|Jωy

∗Jωxξω)

= (ξω|xJωy
∗Jωξω)

= (ξω|xξωy)
= (ξω|πid(x⊗ y◦)ξω)

and by continuity

lim
t↓0

(
Ωt|πco(z)Ωt

)
L2(N,ω)⊗L2(N,ω)

= (ξω|πid(z)ξω) z ∈ N ⊗max N
◦ .
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This proves that the identity correspondence Hid is weakly contained in the coarse correspon-
dence Hco and thus N is amenable at least if the semigroup leaves the cyclic vector invariant.
To deal with the general case, remark first that, by strong continuity, we have that
limt↓0(ξω|Ttξω) = ‖ξω‖2 = 1 and there exist t0 > 0 such that (ξω|Ttξω) > 0 for all 0 < t < t0.
Applying the argument above to the binormal states

Φ̃t(x⊗ y◦) :=
1

(ξω|Ttξω)
(iω(y

∗)|Ttiω(x)) x⊗ y◦ ∈ N ⊗max N
◦ , 0 < t < t0

we get the amenability of N even in the general situation. �

Remark 3.16. i) The above result implies that if the von Neumann algebra N is not amenable,
then any Dirichlet form (E ,F) with respect to any normal, faithful state ω has exponential
growth rate Ω(E ,F) > 1, i.e. its sequence of eigenvalues has exponentially growing distri-
bution. ii) Conversely, it is an open question whether there exist amenable von Neumann
algebras on which every Dirichlet form has exponential growth. The analogy with discrete
groups suggests that the the answer is likely positive.

The following one is a generalization of a result of Guentner-Kaminker [GK].

Corollary 3.17. Let Γ be a countable discrete group, λ : Γ → B(l2(Γ)) be its left regular
representation, L(Γ) its associated von Neumann algebra and τ its trace state. If there exists
a Dirichlet form (E ,F) on L2(L(Γ), τ) having subexponential spectral growth, then the group
Γ is amenable.

Proof. Under the assumptions, the group von Neumann algebra L(Γ) is amenable by the
above theorem. Hence by a well known result of A. Connes, the group Γ is amenable. �

Example 3.18. (Free orthogonal quantum groups) On the von Neumann algebra L∞(O+
2 , τ)

of the free orthogonal quantum group O+
2 with respect to its Haar state τ , it has been con-

structed in [CFK] a Dirichlet form with an explicitly computed discrete spectrum of polyno-
mial growth (and spectral dimension d := lim supn

lnβn

lnn
= 3). Applying the theorem above

one obtains a proof of the amenability of L∞(O+
2 , τ), a result which has been proved by M.

Brannan [Bra].

4. Relative amenabiltity of inclusions of finite von Neumann algebras

In this section we extend the previous result to the relative amenability of inclusions of
finite von Neumann algebras B ⊆ N , as defined by S. Popa [Po 1,2]. This extension is based
on the properties of the relative tensor product of Hilbert bimodules and on the properties
of the basic construction, which we will presently recall (see [Chr], [GHJ], [J], [SiSm]).

4.1. Basic construction of finite inclusions. Let N be a von Neumann algebra admitting
a normal faithful trace state τ and 1N ∈ B ⊆ N a von Neumann subalgebra with the same
identity (see [Chr], [J1], [Po1], [PiPo], [SiSm]).

Recall that the relative tensor product L2(N, τ) ⊗B L2(N, τ) over B of the N -B-bimodule

NL
2(N, τ)B by the B-N -bimodule BL

2(N, τ)N , constructed in [S1], is isomorphic, as anN−N -
bimodule, to the N -N -correspondence HB associated to the conditional expectation EB :
N → N from N onto B. The latter being generated by the GNS construction applied to the
binormal state

ΦB : N ⊗max N
◦ → C ΦB(x⊗ y◦) := τ(EB(x)y) .
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According to S. Popa (see [Po1,2]), the inclusion B ⊆ N is said to be relatively amenable
if the standard bimodule NL

2(N, τ)N is weakly included in the relative coarse bimodule

NL
2(N, τ)⊗B L2(N ; τ)N .
Let eB be the oerthogonal projection in B(L2(N, τ)) from L2(N, τ) onto L2(B, τ) and

consider the basic construction 〈N,B〉, i.e. the von Neumann algebra in B(L2(N, τ)) generated
by N and the projection eB. For example, if B = C1N then 〈N,B〉 = B(L2(N, τ)) and when
B = N then 〈N,B〉 = N .
Denoting by ξτ ∈ L2(N, τ) the cyclic vector representing τ one has

eB(xξτ ) = EB(x)ξτ , eBxeB = EB(x)eB x ∈ N .

It can be shown that an element x ∈ N commutes with the projection eB if and only if x ∈ B.
Moreover, span(NeBN) is weakly∗-dense in 〈N,B〉 and eB〈N,B〉eB = BeB. It can be shown
that

〈N,B〉 = (JBJ)′ ⊆ B(L2(N, τ))

so that 〈N,B〉 is semifinite since B is finite. In particular, there exists a unique normal,
semifinite faithful trace Tr characterized by

Tr(xeBy) = τ(xy) x, y ∈ N .

and there exists also a unique N −N -bimodule map Φ from span(NeBN) into N satisfying

Φ(xeBy) = xy x, y ∈ N , Tr = τ ◦ Φ .

The map Φ extends to a contraction between the N -N -bimodules L1(〈N,B〉,Tr) and L1(N, τ)
and satisfies

eBX = eBΦ(eBX) X ∈ 〈N,B〉 .
Moreover, Φ(eBX) ∈ L2(〈N,B〉,Tr) for all X ∈ 〈N,B〉. These properties enable us to prove
that the identity correspondence L2(〈N,B〉,Tr) of the algebra 〈N,B〉 reduces to the relative
correspondence HB when restricted to the subalgebra N ⊆ 〈N,B〉.
The following proposition is well known, we give the proof for sake of completeness.

Proposition 4.1. The N-N-correspondences HB and L2(〈N,B〉,Tr) are isomorphic. In
particular, the binormal state is given by

ΦB(x⊗ y◦) = (eB|xeBy)L2(〈N,B〉,Tr) x, y ∈ N

so that the cyclic vector representing the state ΦB is eB ∈ L2(〈N,B〉,Tr).

Proof. Let us consider the map Ψ defined on the domain

D(Ψ) := span{[x⊗ y◦]HB
: x, y ∈ N}

by

Ψ : D(Ψ) → L2(〈N,B〉,Tr) Ψ([x⊗ y◦]HB
) := xeBy x, y ∈ N .

Here [x ⊗ y◦]HB
denotes the element of HB image of the elementary tensor product x ⊗ y◦,

in the GNS construction of the state ΦB. The map is well defined because ‖eB‖2 = Tr(eB) =
τ(Φ(eB)) = τ(1N) = 1 and ‖xeBy‖2 ≤ ‖x‖ · ‖y‖ · ‖eB‖2 = ‖x‖ · ‖y‖. By the definition of the
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Hilbert space HB, the map Ψ is densely defined. For x, y ∈ N we have

‖Ψ([x⊗ y◦]HB
)‖22 = ‖xeBy‖22

= Tr((xeBy)
∗(xeBy))

= Tr(y∗eBx
∗xeBy)

= Tr(y∗eBeBx
∗xeBeBy)

= Tr((eBx
∗xeB)(eByy

∗eB))

= Tr(EB(x
∗x)eBEB(yy

∗)eB)

= Tr(EB(x
∗x)eBEB(yy

∗))

= τ(EB(x
∗x)EB(yy

∗))

= τ(EB(EB(x
∗x)yy∗))

= τ(EB(x
∗x)yy∗)

= ΦB(x
∗x⊗ (yy∗)◦)

= ΦB(x
∗x⊗ (y∗)◦y◦)

= ΦB((x
∗ ⊗ (y∗)◦)(x⊗ y◦))

= ΦB((x⊗ y◦)∗(x⊗ y◦))

= ‖[x⊗ y◦]HB
‖2HB

.

By polarization, for all {xj}nj=1 ⊂ N we have also

(Ψ([xj ⊗ y◦j ]HB
|Ψ([xk ⊗ y◦k]HB

)2 = ([xj ⊗ y◦j ]HB
|[xk ⊗ y◦k]HB

)HB
j, k = 1 , · · · , n .

Consider now ν =
∑n

k=1[xk ⊗ y◦k]HB
∈ D(Ψ) so that ν∗ν =

∑n
j,k=1[x

∗
jxk ⊗ (yky

∗
j )

◦]HB
∈ D(Ψ)

and then

‖Ψ(ν)‖22 =
n∑

j,k=1

([xj ⊗ y◦j ]HB
|[xk ⊗ y◦k]HB

)HB
= (ν|ν)HB

= ‖ν‖2HB
.

Hence the map Ψ extends to an isometry from HB into L2(〈N,B〉,Tr) which is clearly an
N − N -bimodule map. Since Im(Ψ) = span(NeBN) is weakly∗-dense in 〈N,B〉, it is also
dense in L2(〈N,B〉,Tr). By the isometric property we have that Im(Ψ) is closed so that Ψ is
a surjective isometry. Finally, for x, y ∈ N we compute

(eB|xeBy)L2(Tr) = Tr(eBxeBy)

= Tr(EB(x)eBy)

= τ(Φ(EB(x)eBy))

= τ(EB(x)y)

= ΦB(x⊗ y◦) .

�

Definition 4.2. (B-invariant Dirichlet forms). Let N be a von Neumann algebra admit-
ting a normal faithful tracial state τ and 1N ∈ B ⊆ N a von Neumann subalgebra.
A Dirichlet form (E ,F) on L2(N, τ) is said to be a B-invariant if

bF ⊆ F , E(bξ|ξ) = E(ξ|b∗ξ) b ∈ B, ξ ∈ F
and

Fb ⊆ F , E(ξb|ξ) = E(ξb∗|ξ) b ∈ B, ξ ∈ F .
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Since, by definition, a Dirichlet form is J-real, the above two properties are in fact equivalent.

In terms of the associated nonnegative, self-adjoint operator (L,D(L)), B-invariance means
that the resolvent family {(λ+ L)−1 : λ > 0} is B-bimodular for some and hence all λ > 0

(λ+ L)−1(bξ) = b((λ + L)−1ξ)

(λ+ L)−1(ξb) = ((λ+ L)−1ξ)b ξ ∈ L2(N, τ) , b ∈ B ,

or that, alternatively, the semigroup {e−tL : t > 0} is for some and hence all t > 0 a B-
bimodular map

e−tL(bξ) = b(e−tLξ)

e−tL(ξb) = (e−tLξ)b ξ ∈ L2(N, τ) , b ∈ B .

Since the Markovianity of the Dirichlet form implies that the semigroup and the resolvent
commute with the modular conjugation J , we have that the B-invariance of the Dirichlet
form provides that the semigroup and the resolvent belong to the relative commutant of B
in the basic construction 〈N,B〉:

(λ+ L)−1, e−tL ∈ (JBJ)′ ∩B′ = 〈N,B〉 ∩ B′ t > 0 , λ > 0 .

Definition 4.3. (Relative discrete spectrum) We say that (E ,F) or (L,D(L)) have
discrete spectrum relative to the inclusion B ⊆ N if the Markovian semigroup, or equivalently
the resolvent, belongs to the compact ideal space J (〈N,B〉) ([J], [Po2], [SiSm]) of the basic
construction, generated by projections in 〈N,B〉 having finite trace:

e−tL ∈ J (〈N,B〉) for some and hence all t > 0 ,

(λ+ L)−1 ∈ J (〈N,B〉) for some and hence all λ > 0 ,

Another way to state it is that the spectrum of (L,D(L)) is a discrete subset of R+ and that
each eigenprojection has finite Tr trace.

Definition 4.4. (Relative spectral growth rate of Dirichlet forms) Let N be a von
Neumann algebra admitting a normal faithful tracial state τ and 1N ∈ B ⊆ N a von Neumann
subalgebra. A Dirichlet form (E ,F) on L2(N, τ) which is B-invariant is said to be have

• exponential spectral growth relative to B ⊆ N if Tr(e−tL) = +∞ for some t > 0;
• subexponential spectral growth relative to B ⊆ N if Tr(e−tL) < +∞ for all t > 0.

Notice that, if Tr(e−tL) < +∞ for some t > 0, then e−tL ∈ J (〈N,B〉) so that (L,D(L)) has
discrete spectrum relative to the inclusion B ⊆ N . This applies, in particular, to B-invariant
Dirichlet forms (E ,F) with subexponential spectral growth relative to B ⊆ N which thus
have necessarily discrete spectrum relative to the inclusion B ⊆ N .

Remark 4.5. Let EL be the spectral measure of the self-adjoint operator
(
L,D(L)

)
. If the

Dirichlet form is B-invariant then EL takes its values in the class of projections of the von
Neumann algebra 〈N,B〉 and we can consider the positive measure νL

B := Tr◦EL on [0,+∞),
supported by the spectrum σ(L). In the framework of quantum statistical mechanics, where
the operator L may represent the total energy observable, the measure νL

B acquires the mean-
ing of ”density of states” in the sense that νL

B(Ω) measures the number (relatively to B) of
allowed energy levels located in a measurable subset Ω ⊂ σ(L). In this case the subspace
L2(B, τ) ⊂ L2(N, τ) may represent the manifold of ground states corresponding to the mini-
mal allowable energy level (see also Example 4.7 below). The measure µL

B(dλ) := λνB(dλ) has
then the meaning of ”spectral energy density” in the sense that µL

B(Ω) measures the energy
of the system in a situation where all the allowed energy levels in Ω ⊂ σ(L) are occupied.
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The subexponential spectral growth condition (relatively to B ⊆ N) can be rephrased in
terms of the Laplace Transform ν̂L

B saying that its abscissa of convergence vanishes. In this
situation ν̂L

B(β) = Tr (e−βL) is called the partition function of the system, it is defined for
all β > 0 and the variable β is interpreted as the inverse temperature. The subexponential
spectral growth condition also allows to consider the so called Gibbs normal states, defined by

Φβ(A) :=
Tr(Ae−βL)
Tr(e−βL)

, on the von Neumann (observable) algebra 〈N,B〉, for any fixed value of

the inverse temperature β > 0. These states possess properties by which they can be regarded
as equilibria of the system at the fixed value of the inverse temperature. Finally, notice that
the subexponential spectral growth condition is equivalent to the requirement that the mean

energy Φβ(L) :=
Tr(Le−βL)
Tr(e−βL)

of the system is finite for any β > 0 (see [BR]).

The following is the main result of this section.

Theorem 4.6. Let N be a von Neumann algebra admitting a normal faithful tracial state τ
and 1N ∈ B ⊆ N a von Neumann subalgebra.
If there exists a B-invariant Dirichlet form (E ,F) on L2(N, τ) having subexponential spectral
growth relatively to B ⊆ N , then the inclusion B ⊆ N is amenable.

Proof. Let us check first the following identity

(T ∗|xeBy)L2(Tr) = (iτ (y
∗)|T (iτ(x))L2(τ)) T ∈ 〈N,B〉 ∩ L2(〈N,B〉,Tr) , x, y ∈ N .

As span(NeBN) is weakly∗ dense in 〈N,B〉, it is enough to prove the identity for T ∈ NeBN .
If T = ueBv for some u, v ∈ N we have

eByTxeB = eByueBvxeB = (eByueB)(eBvxeB) = EB(yu)eBEB(vx)eB

and then

(T ∗|xeBy)L2(Tr) = Tr(TxeBy)

= Tr(eByTxeB)

= τ(Φ(eByTxeB))

= τ(Φ(EB(yu)eBEB(vx)eB))

= τ(EB(yu)Φ(eBEB(vx)eB))

= τ(EB(yu)Φ(EB(vx)eB))

= τ(EB(yu)EB(vx))

= τ(EB(yuEB(vx)))

= τ(yuEB(vx))

= (u∗y∗ξτ |EB(vx)ξτ)L2(τ)

= (iτ (y
∗)|uEB(vx)ξτ )L2(τ)

= (iτ (y
∗)|ueB(v(xξτ )))L2(τ)

= (iτ (y
∗)|ueBv(iτ (x))L2(τ)

= (iτ (y
∗)|T (iτ(x))L2(τ)

so that the identity holds true. Under the hypothesis of subexponential spectral growth,
we have that Tt := e−tL ∈ L2(〈N, b〉,Tr) ∩ L1(〈N, b〉,Tr) for all t > 0. Applying the above
identity, we have that the binormal states

Φt : N ⊗max N
◦ → C Φt(x⊗ y◦) :=

1

(ξτ |Ttξτ)L2(N,τ)

(iτ (y
∗)|Tt(iτ (x))L2(N,τ) ,
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well defined, by strong continuity of the semigroup, for t sufficiently close to zero, may be
represented for t > 0 as Φt(x⊗ y◦) = 1

(ξτ |Ttξτ )L2(N,τ)
(Tt|xeBy)L2(〈N,b〉,Tr).

By the identity above, Φt extends as a normal state on the von Neumann algebra gener-
ated by the left and right representations of N in L2(〈N,B〉,Tr). The N -N -correspondence
Ht generated by Φt is thus a sub-correspondence of a multiple of the N -N -correspondence
L2(〈N,B〉,Tr). Since the semigroup {Tt : t > 0} strongly converges to the identity operator
on L2(N, τ), we obtain that the trivial correspondence from N to N is weakly contained in
the relative correspondence HB. �

Example 4.7. (Minimal and maximal inclusions of a Dirichlet form) Let N be a von Neu-
mann algebra and τ a normal, faithful, tracial state and let (E ,F) be a Dirichlet form on
L2(N, τ) with associated self-adjoint operator (L,D(L)).
Assume that inf σ(L) = 0 and that this is an eigenvalue (not necessarily of finite multi-
plicity). The spectral projection P0 onto the eigenspace corresponding to the Borel subset
{0} ⊂ [0,+∞) can be represented as the strong limit P0 = limt→+∞ e−tL . Hence P0 is a
completely Markovian projection, so that there exists a von Neumann subalgebra Bmin ⊆ N
such that P0 = eBmin

. Obviously the associated Markovian semigroup is Bmin-bimodular and
the Dirichlet form is Bmin-invariant.

Alternatively, one can consider the inclusion Bmax ⊂ N where Bmax := {Tt : t > 0}′ ∩ N
is the relative commutant of the Markovian semigroup in N . Notice that by the Spectral
Theorem Bmax = {Tt}′ ∩ N for all t > 0. Obviously the associated Markovian semigroup is
Bmax-bimodular and the Dirichlet form is Bmax-invariant.

Proposition 4.8. Let (N, τ) be a finite von Neumann algebra with faithful, normal trace. Let
(E , F ) a Dirichlet form on L2(N, τ) with generator (L,D(L)) having pure point spectrum
made by distinct, isolated eigenvalues σ(L) := {λ0 < λ1 < λ2 < · · · } and assume λ0 :=
inf σ(L) = 0.
Then (E , F ) has discrete spectrum relative to Bmin (resp. Bmax) if and only if each eigenspace
Eλ ⊂ L2(N, τ), λ ∈ σ(L), has finite coupling constant dim Bmin

(Eλ) < +∞ (resp. dim Bmax(Eλ) <
+∞) relative to Bmin (resp. Bmax).

Remark that the finite coupling constant dim Bmin
(Eλ) < +∞ (resp. dim Bmax(Eλ) < +∞) rel-

ative to Bmin (resp. Bmax) is well defined for any eigenvalue λ ∈ σ(L) because any eigenspace
Eλ is obviously a left (and also right) Bmin-module (resp. Bmax-module). We refer to [GHJ
Section 3.2] for the definition and properties of the Murray-von Neumann coupling constant.

Example 4.9. Let K < Γ be an inclusion of countable, discrete groups and let L(K) ⊂ L(Γ)
be the inclusion of the finite von Neumann algebras generated by K and Γ, respectively.
Their standard spaces coincide with l2(K) and l2(Γ) respectively and the projection eL(K)

coincides with the projection from l2(Γ) onto its subspace l2(K).
Let ℓ : Γ → [0,+∞) be a c.n.d. function. The Dirichlet form (Eℓ,Fℓ) associated to ℓ
(introduced in Section 3.3) is L(K)-invariant if and only if ℓ vanishes on K or, equivalently,
if ℓ is a right K-invariant function. In this situation we have:

Proposition 4.10. Let Γ be a countable, discrete group and let L(Γ) be its left von Neumann
algebras. Let ℓ : Γ → [0,+∞) be a c.n.d. function and (Eℓ,Fℓ) the associated Dirichlet form.
Denote by H := {s ∈ Γ : ℓ(s) = 0} the subgroup where ℓ vanishes. We then have
i) Bmin = Bmax = L(H);
ii) If K is a subgroup of G, then (Eℓ,Fℓ) is L(K)-invariant if and only if K < H. In this
case :
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ii.a) ℓ is L(K)-biinvariant
ii.b) (Eℓ,Fℓ) has discrete spectrum relative to L(K) ⊂ L(Γ) if and only if the function

ℓG/K : G/K → [0,+∞) ℓG/K(s̃) := ℓ(s)

defined for s̃ = sK ∈ G/K, is proper.
ii.c) If, for any t > 0,

∑
s̃∈G/K e−tℓG/K (s̃) < +∞, then the inclusion L(K) ⊂ L(G) is amenable.

Proof. i) Let x =
∑

t∈Γ x(t)λ(t) ∈ Bmax = {Tt : t > 0}′ ∩ L(Γ). We then have

xδe = x(I + L)−1δe = (I + L)−1xδe ,

which implies 0 = L(xδe) = L(
∑

t∈Γ x(t)λ(t)δe) = L(
∑

t∈Γ x(t)δt) =
∑

t∈Γ x(t)ℓ(t)δt. So that
x(t)ℓ(t) = 0 for all t ∈ Γ which in turn implies x ∈ L(H) = Bmin. The reverse inclusion is
obvious.
ii) follows from the arguments of the example above. For ii) b) just notice that λ(s)eL(K)λ(s)

−1

is the orthogonal projection PsK onto the subspace l2(sH). Hence the eigenspace Eλ corre-
sponding to the eigenvalue λ ∈ σ(L) is given by

⊕
s̃∈G/K , ℓ(s)=λ l

2(sK). Hence, L will have

discrete spectrum relative to K if and only if each of these sums is finite (i.e. for all λ) and
the set of values of ℓ is discrete, i.e. ℓ−1({λ})/K is finite in G/K, i.e. ℓG/K : G/K → [0,+∞)
is proper.
For ii.c), note that in the basic construction for B = L(K) ⊂ N = L(G), PsK = λ(s)eBλ(s)
belongs to 〈N,B〉 and has trace 1. Hence Tr(e−tL) =

∑
s̃∈G/K etℓ(s) for all t > 0. �

Remark 4.11.
i) If the Dirichlet form (Eℓ,Fℓ) has discrete spectrum relative to L(K) then
a) the function ℓG/H : G/H → [0,+∞) is proper and (Eℓ,Fℓ) has discrete spectrum relative
to L(H) ;
b) ℓG/K being left K-invariant, hence constant on left K-cosets, and proper, left K-cosets in
G/K must be finite sets. In other words, K is quasi-normal in G.
ii) On the other hand, if (Eℓ,Fℓ) has discrete spectrum relative to L(H) then the function
ℓG/K : G/K → [0,+∞) will be constant onto the right H-coset in G/K. Thus (Eℓ,Fℓ) has
discrete spectrum relative to L(K) if and only if each right H-coset in G/K is a finite union
of K-cosets, which happens if and only if K has finite index in H , i.e. when the homogeneous
space H/K is finite.

5. A spectral approach to the Relative Haagerup property

As already mentioned in the Introduction, in a recent work [CaSk], M. Caspers and A.
Skalski characterized von Neumann algebras having Property (H) in terms of the existence of
a Dirichlet form with discrete spectrum. In the spirit of the previous section, we extend their
result to relative property (H), as defined by S. Popa [Po1,2], for inclusions of von Neumann
algebras, using a completely different approach. We will make use of the following well known
properties:

5.1. Let (N, τ) be a von Neumann algebra endowed with a normal, faithful trace and let
ϕ : N → N be a completely positive, normal contraction such that τ ◦ ϕ ≤ τ . Then
i) there exists a contraction Tϕ ∈ B(L2(N, τ)) characterized by

Tϕ(xξτ ) = ϕ(x)ξτ x ∈ N ;

ii) there exists a completely positive, normal contraction ϕ∗ : N → N such that

Tϕ∗ = (Tϕ)
∗
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or, more explicitly,

(ϕ∗(y)ξτ |xξτ) = (yξτ |ϕ(x)ξτ ) x, y ∈ N .

Definition 5.2. ([Po1,2]) Let N be a finite von Neumann algebra and B ⊆ N a von Neumann
subalgebra. Then N is said to have Property (H) relative to B if there exist a normal, faithful
tracial state τ on N and a net {ϕi : i ∈ I} of normal completely positive, B-bimodular maps
on N satisfying the conditions

i) τ ◦ ϕi ≤ τ
ii) Tϕi

∈ J (〈N,B〉)
iii) limi∈I ‖xξτ − Tϕi

(xξτ )‖2 = 0 for all x ∈ N .

In this definition J (〈N,B〉) is the compact ideal space, i.e. the norm closed ideal generated
by projections with finite trace in 〈N,B〉 and Tϕi

is the operator defined in item 5.1 above.

By a remark of S. Popa [Po2], the maps ϕi in the definition above can be chosen to be
contractions. In the following we shall always assume this property for approximating nets
of the identity map of a von Neumann algebra.

Theorem 5.3. Let N be a finite von Neumann algebra with countably decomposable center
and faithful tracial state τ . Let B ⊆ N be a sub-von Neumann algebra such that L2(N, τ), as
B-module, admits a countable base. Then the following properties are equivalent

i) N has Property (H) relative to B
ii) there exists a B-invariant Dirichlet form (E ,F) on L2(N, τ) with discrete spectrum

relative to B.

Proof. Assume that there exists a Dirichlet form (E ,F) on L2(N, τ) with discrete spectrum
relative to B. Hence, the associated generator (L,D(L)) has its resolvent in the compact
ideal space: (λ + L)−1 ∈ J (〈N,B〉). Then for all λ > 0, Sλ := λ(λ + L)−1 ∈ J (〈N,B〉).
Moreover, any Sλ is Markovian on L2(N, τ) which implies that there exists a completely
positive contraction ϕλ : N → N determined by Sλ(xξτ ) = ϕλ(x)ξτ for x ∈ N . Since the
Sλ are self-adjoint on L2(N, τ), the ϕλ are symmetric with respect to the trace: τ(ϕλ(x)y) =
τ(xϕλ(y)) for all x, y ∈ N . This implies that

τ(ϕλ(x)) = τ(ϕλ(1N)x) ≤ τ(x) x ∈ N+ .

Last condition iii) in Definition 5.2 above comes from the strong continuity of the resolvent:

lim
λ→+∞

‖ξ − Sλξ‖2 = 0 ξ ∈ L2(N, τ) .

The theorem is proved in the ”if” direction. In the reverse direction, let us suppose that
B ⊆ N is an inclusion with relative property (H) and that L2(N, τ) is separable as B-module.
Let {ϕn : n ∈ N} be a sequence of normal, completely positive, B-bimodular contractions of
N , satisfying the conditions of the definition above. By [Po2 Proposition 2.2] such a sequence
always exists. Each ϕn extends by Tn(xξτ ) := ϕn(x)ξτ to a B-bimodular contraction Tn of
L2(N, τ), which belongs to the compact ideal space J (〈N,B〉). It is also completely positive
with respect to the standard positive cone L2

+(N, τ) and its matrix amplifications. It is easy
to check that the maps ϕ∗

n appearing in item 5.1 above, have the same properties as the
ϕn’s in definition above. Replacing each ϕn by (ϕn + ϕ∗

n)/2, we can suppose, without loss
of generality, that the ϕn are symmetric with respect to τ so that the corresponding Tn are
completely positive, self-adjoint contractions on L2(N, τ).
Let {ξk ∈ L2(N, τ) : k ∈ N} be an orthonormal basis for the left B-module L2(N, τ). Recall
that this means that L2(N, τ) = ⊕k∈NBξk.
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For any k ∈ N one has limn→+∞ Tnξk = ξk and hence there exists nk ∈ N such that

(ξj|(I − Tnk
)ξj) ≤ 2−k , k ∈ N , j ∈ {0, 1, . . . , k} .

Let us consider the quadratic form (E ,F) on L2(n, τ) defined by

E [ξ] :=
∑

k∈N

(ξ|(I − Tnk
)ξ) ξ ∈ L2(N, τ) .

The domain F ⊆ L2(N, τ) being understood as the subspace where the quadratic form is
finite. Note first that E is densely defined since bξj ∈ F for all b ∈ B and j ∈ N. Noticing
that each ξ 7→ (ξ|(I − Tnk

)ξ) is a bounded symmetric Dirichlet form on L2(N, τ) we see that
(E ,F) is a lower semicontinuous, hence closed Dirichlet form on L2(N, τ). The B-modularity
of (E ,F) being obvious, what is left to prove is the relative discrete spectrum property.
The generator (L,D(L)) associated to (E ,F), given by L =

∑
k∈N(I − Tnk

), appears as the
increasing limit L = limm↑+∞ Lm of the bounded operators

Lm :=
m∑

k=0

(I − Tnk
) = (m+ 1)I −Θm

where Θm :=
∑m

k=0 Tnk
.The important fact is that Θm belongs to the compact ideal space

J (〈N,B〉).
Let qm be the spectral projection of Θm corresponding to the interval [0, (m + 1)/2] and
pm := I− qm the spectral projection corresponding to the interval ((m+1)/2, m+1]. On one
hand we have τ(pm) < +∞, which implies (I + L)−1/2pm ∈ J (〈N,B〉). On the other hand
by spectral calculus we have

qm(I + L)−1qm ≤ qm(I + Lm)
−1qm ≤ 2

m+ 1
qm

which implies

‖qm(I + L)−1/2‖ ≤
√

2

m+ 1
.

Finally, we have (I + L)−1/2 = limm→+∞(I + L)−1/2pm for the uniform norm, which implies
that (I + L)−1/2 and (I + L)−1 are in J (〈N,B〉). �

Remark 5.4. It would be very interesting to generalize the above result to type III (factors)
inclusions. The first difficulties rely on a convenient identification of the ideal of relative
compact operators.

6. Relative Property (H) for inclusions of discrete groups and
conditionally negative definite functions

In this section we extend a well known characterization of groups with Property (H) in
terms of the existence of a proper c.n.d. function, to inclusions of discrete groups H < G.
We denote by λ and ρ the left and right regular representation of G in the Hilbert space
l2(G). If (δt)t∈G is the canonical orthonormal basis of l2(G), then

λ(s)δt = δst ρ(s)δt = δts−1 s, t ∈ G .

The associated inclusion of von Neumann algebras is

B = L(H) = λ(H)′′ ⊂ λ(G)′′ = L(G) = N .

L(G) has the canonical finite trace τ : L(G) → C determined by τ(λ(s)) = δe(s) for s ∈ G.
The standard space L2(L(G), τ) identifies canonically with l2(G) through the unitary map
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determined by λ(s)ξτ → δs for s ∈ G. The projection eB of the basic construction is the
orthogonal projection from l2(G) onto its subspace l2(H) given by the multiplication operator
by the characteristic function χH of the subset H of G.

Lemma 6.1. (Basic construction for group inclusions).
i) The basic construction

〈
N,B

〉
is the commutant ρ(H)′ of the right regular representation

restricted to H.
ii) For T ∈

〈
N,B

〉
, the map ϕT : G → C given by s 7→ (δs, T δs) is right H-invariant :

ϕT (sh) = ϕT (s) s ∈ G , h ∈ H .

iii) The canonical trace on
〈
N,B

〉
is given by the formula

Tr(T ) =
∑

s̃∈G/H

ϕT (s) =
∑

s̃∈G/H

(δs, T δs) T ∈
〈
N,B

〉

where it is understood that the map s̃ 7→ s indicates a section of the projection G → G/H.

Proof. i) On one side, we have
〈
N,B

〉
= (JBJ)′. On the other side, it is an elementary fact

that Jλ(h)J = ρ(h), h ∈ H . ii) For h ∈ H and T ∈ B(l2(G)) commuting with ρ(h), we
compute

ϕT (sh) = (ρ(h)−1δs, T ρ(h)
−1δs) = (δs, ρ(h)Tρ(h)

−1δs) = ϕT (s) s ∈ G, h ∈ H.

iii) Fix an arbitrary section σ : G/H → G of the homogeneous space G/H . The formula

ϕ(T ) =
∑

γ∈G/H

(δσ(γ), T δσ(γ)) ∈ [0,+∞] T ∈
〈
N,B

〉
+
= ρ(H)′+

defines a normal faithful weight ϕ on the von Neumann algebra
〈
N,B

〉
. We claim that this

weight is equal to the natural trace Tr.
For x ∈ L(G) with Fourier expansion x =

∑
s∈G x(s)λ(s) (the series {x(s)}s∈G converges at

least in the ℓ2-sense), let us compute

ϕ(x∗eBx) =
∑

γ∈G/H

(δσ(γ), x
∗eBxδσ(γ))

=
∑

γ∈G/H

||eBxδσ(γ)||2

with

||eBxδσ(γ)||2 = ||eB
∑

s∈G

x(s)δsσ(γ)||2

= ||eB
∑

s∈G

x(sσ(γ)−1)δs||2

= ||
∑

h∈H

x(hσ(γ)−1)δh||2

=
∑

s∈Hσ(γ)−1

||x(s)||2

and finally

ϕ(x∗eBx) =
∑

γ∈G/H

∑

s∈Hσ(γ)−1

||x(s)||2 =
∑

s∈G

||x(s)||2 = τ(x∗x) = Tr(x∗eBx) .
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This proves that the normal weight ϕ is semifinite and that it coincides with the canonical
trace Tr on elements of the form x∗eBx, x ∈ N .
The Radon-Nykodim derivative dϕ/dTr must be equal to 1, hence ϕ = Tr.

�

Theorem 6.2. Let G be a countable discrete group and H < G a subgroup. Then the
inclusion of von Neumann algebras L(H) ⊂ L(G) has the relative Property (H) if and only if
there exists a conditionally negative type function ℓ : G → [0,+∞) such that

i) ℓ|H = 0
ii) ℓ is proper on G/H.

Proof. Let us suppose that i) and ii) are satisfied. Then for any t > 0, e−tℓ is a positive
type function equal to 1 on H and it induces a normal, completely positive, trace preserving
contraction φt on the von Neumann algebra L(G), characterized by

φt(λu) = e−tℓ(u)λu u ∈ G .

Let (π,Hπ) be the orthogonal representation and c : G → Hπ the 1-cocycle associated to the
c.n.d. function ℓ. If ℓ(u) = 0 then 0 = ℓ(u) = ‖c(u)‖2Hπ

so that c(u) = 0 for all u ∈ H . Then,
c(vu) = c(v) + π(v)c(u) = c(v) for all v ∈ G and u ∈ H and ℓ(vu) = ℓ(v), v ∈ G, u ∈ H .
Finally, as ℓ(v−1) = ℓ(v) for all v ∈ G, one also has ℓ(uv) = ℓ(v) for all v ∈ G and u ∈ H .
Consequently we shall have

φt(λvλu) = e−tℓ(vu)λvλu = e−tℓ(v)λvλu = φt(λv)λu v ∈ G , u ∈ H

and

φt(ab) = φt(a)b a ∈ L(G) , b ∈ L(H).

Similarly

φt(ba) = bφt(a) a ∈ L(G) , b ∈ L(H).

This proves that φt is a L(H)-bimodular map for all t > 0.
The self-adjoint operator Tt on l2(G), induced by φt on L(G), is just the multiplication
operator by the function e−tℓ. Its spectrum coincides with the set of values e−tλ where λ runs
in the range ℓ(G) which is, by assumption ii), a discrete subset of [0,+∞).
The eigenspace Eλ, corresponding to the eigenvalue e−tλ, is the set of functions in l2(G)
supported by Sλ := {s ∈ G : ℓ(s) = λ}. Again by assumption ii), Sλ is a finite union of right

H-cosets: Sλ =
⋃k

i=1 uiH for some u1, · · · , uk ∈ G. The corresponding spectral projection Pλ

is then the sum of projections on those cosets:

Pλ =

k∑

i=1

multiplication by χuiH .

Since, for B := L(H) ⊂ L(G) = N , the projection eB is just the multiplication operator by
the characteristic function χH of the subgroup, the projection λueBλ

−1
u , for u ∈ G, is the

multiplication operator by the function χuH . The spectral projection Pλ onto Eλ is then a
finite sum of projections of trace one (for the trace Tr), and its trace is equal to the number
of right H-cosets in Sλ :

Tr (Pλ) = Tr (

k∑

i=1

λui
eBλ

−1
ui
) =

k∑

i=1

Tr (λui
eBλ

−1
ui
) =

k∑

i=1

Tr (eB) =

k∑

i=1

1 = k .

This proves that Tt belong to J
(〈
N,B

〉)
, which ends the proof in the forward direction.
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Conversely, let us suppose that the inclusion L(H) ⊂ L(G) has the relative property (H).
By Theorem 5.3, there exists an L(H)-invariant symmetric Dirichlet form with generator L
and discrete spectrum relative to the subalgebra B = L(H).
Let us observe that, for ε > 0, the resolvent maps (I+εL)−1 are a completely positive, normal
contractions of the von Neumann algebra N = L(G) and that the map

ωε : G → [0,+∞) ωε(s) = (δs, (I + εL)−1δs) = τ(λ(s)∗(I + εL)−1(λ(s)))

is positive definite on G and H-right invariant. Notice that ωε is symmetric because it is
positive definite and real, as L is self-adjoint. Moreover, by the weak∗-continuity of the
resolvent, one has

lim
ε→0

ωε(s) = 1 s ∈ G.

We claim that ωε vanishes at infinity on the quotient space G/H . This holds true because
(I + εL)−1 being in the compact ideal J

(〈
N,B

〉)
, it will be a uniform limit of trace class

operators Tn ∈ L1(
〈
N,B

〉
, T r) and that, for such Tn, the function s 7→ (δs, Tnδs) is summable

on G/H (by Lemma 6.1 iii)) thus vanishing at infinity.
Let (Fk)k≥1 be an increasing family of finite subsets of G such that ∪kFk = G. For any k, let
us choose εk > 0 such that

0 ≤ 1− ωεk(s) ≤ 2−k s ∈ Fk

and consider the function ℓ : G → [0,+∞) defined by

ℓ(s) =

∞∑

k=1

(1− ωεk(s)) s ∈ G.

By the choice of εk, the series converges for any s in any Fk and thus for any s ∈ G so that
ℓ is well defined on G. The function ℓ is c.n.d. as a sum of c.n.d. functions and a right
H-invariant function as a sum of right-H-invariant functions. It can thus be considered as a
function on G/H .
Moreover, as the functions ωε vanish at infinity on G/H , the set Γk = {s̃ ∈ G/H |ωεk(s) ≥
1/2} is finite and for s̃ 6∈ ∪N

k=1Γk, one has ℓ(s) ≥ N/2. Hence, for any N ∈ N, the set
{s̃ ∈ G/H | ℓ(s) ≤ N/2} is finite, which proves that ℓ is proper on G/H . �

Corollary 6.3. If H < G and L(H) ⊂ L(G) has relative property (H), then H is a quasi
normal subgroup: each orbit of the left action of H on the right-cosets space G/H is finite.

Proof. The c.n.d. function ℓ constructed in Theorem 6.2 is left H-invariant, as it clearly
satisfies ℓ(s−1) = ℓ(s) for s ∈ G. It is thus constant on the orbits of the left action of H on
the right cosets space G/H . A subset of G/H on which the proper function ℓ is constant
must be finite. �

Corollary 6.4. If H < G is normal, then the inclusion L(H) ⊂ L(G) has relative property
(H) if and only if the quotient group G/H has the Haagerup property.

Example 6.5. Let us consider the free group F2 with generators a, b ∈ F2 and the abelian
subgroup H := {ak : k ∈ Z} isomorphic to the additive group Z of integer numbers.
H is not quasi-normal in F2, so that the inclusion H < G has not the relative property (H),
though both G and H have property (H).
More generally, for countable discrete groups G1, G2, the inclusion G1 < G1 ∗G2 is not quasi-
normal as soon as G1 is infinite and G2 has at least two elements. Hence, this inclusion has
not the relative property H .
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