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Abstract
Orbital resonances can be leveraged in the mission design phase to target planets at different
energy levels. On the other side, precise models are needed to predict possible threatening
returns of natural and artificial objects closely approaching a target planet. To this aim, we
propose a semi-analytic extension of the b-plane resonance model to account for perturbing
effects inside the planet’s sphere of influence.We compute the actual values of the perturbing
coefficients by means of precise numerical simulations, whereas their expression stems from
the properties of hyperbolic trajectories and asymptotic planetocentric velocity vectors. We
apply the proposed b-plane model to design ballistic resonant flybys by solving a multilevel
mixed-integer nonlinear optimization problem.

Keywords B-plane · Orbital resonance · Flyby design

1 Introduction

The condition for twoorbiting bodies to be in orbital resonancewith each other is conceptually
simple and is met when the two orbital periods are in a ratio that equals that of two integers.
Such a physical phenomenon has beenwidely explored and exploited in the past two decades.

Orbital resonances can be used to further characterize the planetary protection analysis,
which in general poses a constraint on the design of end of life and disposal maneuvers.
The impact probability of human-crafted objects with specified planets or celestial bodies
must remain below a certain threshold, under a certain confidence level up to some epoch
forward in time. For instance, European Space Agency (ESA)’s planetary protection require-
ments (Kminek 2012) impose a planet-dependent maximum impact probability for the 100

B Alessandro Masat
alessandro.masat@polimi.it

Matteo Romano
matteo1.romano@polimi.it

Camilla Colombo
camilla.colombo@polimi.it

1 Department of Aerospace Science and Technology, Politecnico di Milano, Via G. La Masa 34, Milano
20156, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10569-022-10072-w&domain=pdf
http://orcid.org/0000-0002-7748-1856


   17 Page 2 of 28 A. Masat et al.

upcoming years, accurate at 95% confidence level. Any of the mission disposal objects must
be considered, as well as any perturbing effects on the two-body dynamics, uncertainties on
maneuvers or initial conditions and possible failures of the propulsion systems must also
be accounted for. An uncontrolled close approach of a disposal object with a given body is
therefore a potential impact threat; studying orbital resonances allows the extension of the
planetary protection analysis considering also future returns at the moment of first encounter.

Colombo et al. (2016)made somework in this direction developing the SNAPPshot suite,
a tool that performs the planetary protection compliance analysis according to the just men-
tioned requirements (Kminek 2012). SNAPPshot’s original version estimates the impact
probabilities performing a full Monte Carlo simulation, by sampling the state probability
distribution that stems from either the uncertainty on the initial condition, the interplane-
tary injection maneuver or the failure of the propulsion system. SNAPPshot also represents
possible resonant returns that may arise from the uncertainty sampling, using the b-plane for-
malism (Valsecchi et al. 2003). Romano (2020) improved the SNAPPshot suite by extending
the pool of available numerical integration schemes and implementing a line sampling pro-
cedure, a Monte Carlo-based technique that improves the accuracy of the impact probability
estimation and lowers the overall computational burden of the analysis.

Planetary defense is another direct application of orbital resonance theory, aiming to
understand whether a near-Earth asteroid returns and threatens the planet again. Valsecchi
et al. (2003) showed the b-plane potential for the resonance analysis, using the asteroid orbit
characterization as principal application in their work. They also modeled the so-called key-
holes (Chodas 1999), which are the counter-image of the Earth at the consequent resonant
return mapped onto the b-plane of the current close encounter (Valsecchi et al. 2003). Key-
holes identify the regions of the current b-plane that lead to future impacts, not simply to new
crossings of the sphere of influence. Petit (2018) exploited the keyhole definition to design
asteroid deflection maneuvers so that a consequent impact and resonance is avoided. The
variety of works on the asteroid identification and characterization is extremely wide on its
own, and it is beyond the scopes of this work to deepen the topic. Here, we focus on the
b-plane model and its planetary protection and flyby design applications.

Orbital resonances are exploited in mission design applications, and repeated flybys over
the same body can allow complex and composed trajectory deflections with low fuel con-
sumption that could not be achieved with a single gravity assist maneuver. Most recent works
explore the concept in the three-body problem and different moon systems.

Within the Earth–Moon system, Topputo et al. (2005) showed that a low-energy transfer
to the L1 libration point is similar to a 5/2 resonance with the Moon. Topputo et al. (2008)
studied a peculiar Earth–Moon resonance with a Poincare map approach to show its close
link with weak capture into Moon orbits. Then, they also showed that such resonant orbits
may lead to escape toward heliocentric trajectories, accounting for solar gravity within the
four-body environment. Ceriotti and McInnes (2014) investigated the resonance exploitation
for continuous polar observation missions, using the resonance with the Moon particularly
for a ballistic flip of line of apsides. Vaquero and Howell (2014b) exploited the design of
resonant arcs to target the libration points in the Earth–Moon system in the circular restricted
three-body problem. Vaquero and Howell (2014a) also proposed a solution for targeting the
libration point L5 exploiting dynamical systems theory and unstable invariant manifolds
together with Moon-resonant orbits. Yárnoz et al. (2016) showed that the Sun gravitational
perturbation can be used as free acceleration within multiple gravity assist trajectories in the
Earth–Moon system, and applied the concept to design transfers to the Earth–Moon L2 point
and toward the asteroid Phaethon. Oshima et al. (2017) searched for low-thrust transfers to
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the Moon in the circular restricted three-body problem, showing that repeated high-altitude
lunar flybys reduce the total fuel consumption.

The other major set of works on orbital resonance exploitation regards the design of
missions within Jupiter’s and Saturn’s moon systems. A proper trajectory choice is crucial,
as major constraints on payload and fuel consumption are present. Johannesen and D’Amario
(2000) designed the endgame of the Europa Orbiter mission within the Jovian system as a
series of nearly resonant orbits with the Jovian moon Europa itself. Within the framework
of the circular restricted three-body problem, Ross and Scheeres (2007) studied possible
multiple gravity assist trajectories for quasi-ballistic captures and escapes in low-energy
orbits. Campagnola andRussell (2010) introduced theTisserand–Poincare graph for the study
of ballistic endgames, showing the important role of resonant orbits patchedwith high-altitude
flybys in the low fuel consumption and applying it to transfers between the Jupiter’s moons
Europa and Ganymede and between halo orbits from the Jupiter-Ganymede to the Jupiter-
Europa system. Woolley and Scheeres (2011) showed that, albeit the most efficient strategy
for a cheap capture would require infinite flybys, fuel savings up to 50% can be achieved
performing repeated gravity assists for v-infinity leveraging, without requiring excessive
times of flight. Lantoine et al. (2011) used the Tisserand–Poincare graph to target trajectories
in the patched three-body problem to optimize the fuel consumption in a transfer between
a close resonant orbit of Ganymede to a close resonant orbit of Europa. Campagnola and
Kawakatsu (2012) studied 3-D resonant hopping strategies to connect resonant orbits over
Jupiter’s moons, for JAXA’s Jupiter Magnetospheric Orbiter mission. Vaquero and Howell
(2013) exploited dynamical systems theory, invariant manifolds and Poincare maps to design
ballistic transfers between libration point and resonant trajectories in the Saturn–Titan system
to target the moon Hyperion. Campagnola et al. (2014) introduced the Tisserand-leveraging
transfers to design low energy and applied them to ESA’s JUICE mission to Ganymede.
They also used low-thrust models within Tisserand-leveraging transfers to explain the lunar
resonances of the Moon orbiter SMART-1.

In this work, we use orbital resonances for trajectory design purposes in a different frame-
work compared to what mentioned above, sticking to interplanetary resonant transfers and
adopting the b-plane formalism, that allows the study of orbital resonances at the moment of
first close encounter (Valsecchi et al. 2003). The theory is based on Opik’s variables (Opik
1976) and continues the work on the geometry and the modeling of close encounters initiated
by Carusi et al. (1990) and Valsecchi et al. (1997). The formalism has been further developed
in the past years by Valsecchi (2006) and Valsecchi et al. (2015) providing better insight on
the geometry of close encounters and quasi-collision conditions (Valsecchi 2006). Valsecchi
et al. (2015) obtained a fully analytic solution for the post-encounter orbital parameters, for a
given entry condition to the sphere of influence (Valsecchi et al. 2015), under the assumptions
of two-body zero-radius sphere of influence theory and conservation of the Tisserand param-
eter T . A specified post-encounter semi-major axis is described by a circle in the b-plane
(Valsecchi et al. 2003), tightly connected to the resonance definition because of its relation
with the orbital period.

Thiswork refines the b-planemodel for a given post-encounter semi-major axis accounting
for general perturbing effects. This is a direct consequence of better modeling the rotation of
the planetocentric velocity vector experienced during gravity assists. The standard b-plane
theory is summarized in Sect. 2. Section 3 presents a perturbed model for the b-plane circles,
the loci of points of common post-encounter semi-major axis. We obtain the key physical
quantities to extend the b-plane circle model to the general perturbed case with numerical
simulations. The circular locus of point is extended to a belt-shaped one, also considering
almost perfectly phased returns among the possibly threatening ones for planetary protection
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applications. We validate the model against a Monte Carlo simulation of Solar Orbiter’s
upper stage of launcher, visualizing which subset of the simulated cloud on the b-plane is in
actual, i.e., simulated, resonance with Venus. We finally apply the proposed b-plane model
to the design of interplanetary resonant orbits in Sect. 4. We study the case of Solar Orbiter
(SolO) (EADS-Astrium 2011; European Space Agency (ESA) 2011) with its repeated flybys
of Venus aimed at rising the orbit inclination. An optimization problem is formulated and
solved, designing resonant interplanetary trajectories with ballistic gravity assist maneuvers.
We obtain a solution already close to ESA’s optimized resonant trajectory in a few seconds
only.

2 B-plane deflection and resonance theory

2.1 Deflection and b-plane reference frame

By assuming that the planet follows a circular orbit around the Sun, the reference frame
of analysis (Fig. 1) was first introduced by Carusi et al. (1990). The system is centered on
the planet’s center of mass, and the (x, y, z) axes are directed as the heliocentric position,
velocity vp and orbital angular momentum of the planet, respectively.

The remaining quantities stand for the planetocentric velocities U and U′ before and after
the close approach, the spherical angles θ and θ ′ with respect to the planet’s velocity. The
angles φ and φ′ locate the maximum circles identified by the y-axis passing through the U
and U′ directions, respectively, measured from the maximum circle of the plane (y, z). γ

identifies the deflection magnitude (i.e., the turn angle of the flyby) andψ its direction, given
as the internal angle between the sides γ and θ of the spherical triangle θγ θ ′, formed by the
vectors U, U′ and vp (Carusi et al. 1990; Valsecchi et al. 2003). The flyby effect is modeled
as an instantaneous rotation of the vector U without magnitude change.

First defined in Appendix of Greenberg et al. (1988) as (x ′, y′, z′) in the framework of
Öpik’s theory (Opik 1976) and corresponding to the (ξ, η, ζ ) frame of Valsecchi andManara
(1997) and Valsecchi et al. (2003), the axes (ξ̂ , η̂, ζ̂ ) of the b-plane reference frame are
defined as:

η̂ = U
|U| ; ξ̂ = vp × U

|U| |vp| ; ζ̂ = ξ̂ × η̂. (1)

The impact parameter b is defined in the b-plane as (Milani et al. 2002)

ξ2 + ζ 2 = b2. (2)

Fig. 1 Graphical representation
of the reference frame of analysis.
Picture from Carusi et al. (1990)
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Recalling Fig. 1, from an interplanetary point of view the flyby can be modeled as an instan-
taneous rotation of U into U′. The resulting velocity deflection can be determined by solving
the spherical triangle (θ, γ, θ ′), withψ acting as internal angle, obtaining the new orientation
θ ′. The cosine law for spherical geometry gives (Valsecchi et al. 2003):

cos θ ′ = cos θ cos γ + sin θ sin γ cosψ. (3)

2.2 Resonant circles

The b-plane coordinates and the impact parameter provide a straightforward definition of the
deflection direction angle ψ (Carusi et al. 1990; Valsecchi et al. 2003):[

ξ

ζ

]
=

[
b sinψ

b cosψ

]
(4)

and introducing the quantity c = m/U 2, where m is the planet’s mass expressed in solar
masses, γ can be identified as (Valsecchi et al. 2003):

tan
γ

2
= m

bU 2 = c

b
(5)

or

cos γ = b2 − c2

b2 + c2

sin γ = 2bc

b2 + c2
. (6)

We introduce the resonance definition, i.e., that a flyby leads to a resonant return when the
new small object’s interplanetary orbit (with superscript ′) satisfies the condition (Valsecchi
et al. 2003)

hT ′
obj = kTpl (7)

with T to identify the orbital periods for the planet (pl) and of the small object (obj) and
(k, h) positive integers, respectively, the number of orbits of planet and small object until the
next close approach. In the adopted unit system (Valsecchi et al. 2003), the planet’s orbital
period is Tpl = 2π and the small object’s one is linked to the new interplanetary orbit semi-
major axis by T ′

obj = 2πa′3/2. Therefore, a resonant post-encounter semi-major axis can be
determined just by k and h (Valsecchi et al. 2003). The subscript R is added to remark the
resonance feature of this new orbit:

a′
R =

(
k

h

)2/3

. (8)

The resonant condition is fully determined by the angle θ ′
R (Valsecchi et al. 2003):

cos θ ′
R = 1 − 1/a′

R −U 2

2U
. (9)

This post-encounter anglemust satisfy the deflection equation (Equation (3)). The resonant
circle equation proposed in Valsecchi et al. (2003) is then:

ξ2 + ζ 2 − 2c sin θ

cos θ ′
R − cos θ

ζ + c2(cos θ ′
R + cos θ)

cos θ ′
R − cos θ

= 0, (10)
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which is equivalent to
ξ2 + ζ 2 − 2Dζ + D2 = R2 (11)

with

D = c sin θ

cos θ ′
R − cos θ

R =
∣∣∣∣ c sin θ ′

R

cos θ ′
R − cos θ

∣∣∣∣. (12)

3 Perturbed semi-analytic extension

We semi-analytically extend the b-plane resonance model, considering also non-perfectly
phased returns as resonant ones (Sect. 3.1) and accounting for perturbation effects inside the
sphere of influence (Sect. 3.2).

3.1 Resonant belts

Recalling Equations (7) and (8), as in Colombo et al. (2016) we introduce a quasi-resonance
definition, i.e., an object is considered in resonance with a given planet whether the condition
for a generic resonance k/h

∣∣∣∣Tobject/Tplanet − k/h

k/h

∣∣∣∣ ≤ 
∗ (13)

is satisfied, with the quantity 
∗ to be an arbitrary value identifying the quasi-resonance
threshold. We can be conceptually revert the definition, in order to obtain the values of k/h
that correspond to the quasi-resonance boundaries:

k

h

±
= k

h
(1 ± 
∗). (14)

Re-applying Equation (8), we obtain two new quasi-resonant post-encounter semi-major
axes:

a
′±
R =

(
k

h

±)2/3

, (15)

which in turn result in two new values for cos θ ′
R (as in Eq. (9)) and the parameters of two

new resonant circles (as in Eq. (12)).

3.2 Perturbed deflection

Some work to model perturbing effects in hyperbolic trajectories has already been made. For
example, Anderson and Giampieri (1999) present an analytic solution for perturbing angles
in a formalism close to Öpik’s variables (Opik 1976), by means of the Born approximation
(Fowler et al. 1927).A fewof the geometrical considerationsmade inAnderson andGiampieri
(1999) remain valid in this work, even though we assume no specific expression of the
perturbing force and do not apply superposition of effects.

Starting with the perturbing effects, inside the sphere of influence any perturbation acts
by modifying the classical spherical triangle introduced by Carusi et al. (1990) and Valsecchi
et al. (2003) for the angles:
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γ ∗ = γ + 
γ

ψ∗ = ψ + 
ψ

θ
′∗ = θ ′ + 
θ ′

(16)

with the superscript ∗ to identify the real quantities after the flyby and the clean symbols to
denote the analytic ones, from the usual resonance theory (Valsecchi et al. 2003). Such angles
are relative to the single planetocentric trajectory, i.e., in general different variations appear
for different trajectories undergoing the same perturbations. Then, we model perturbing
effects as the angular displacements given by (
γ,
ψ,
θ ′), which modify the two-body
asymptotic velocity deflection given by (γ, ψ, θ ′).

Modeling the variation in the deflection γ ∗ and θ
′∗ is straightforward:

γ ∗ = arccos

(
U · U′∗

|U| |U′∗|
)

θ
′∗ =

( U′∗ · voutp

|U′∗| |voutp |
)

.

(17)

Re-arranging Equation (16) and with the definition of γ from Equation (6), 
γ becomes


γ = γ ∗ − γ = γ ∗ − arccos

(
b2 − c2

b2 + c2

)
(18)

and 
θ ′, with the expression for θ ′ as in Equation (9)


θ ′ = θ
′∗ − θ ′ = θ

′∗ − arccos

(
1 − 1/a

′ −U 2

2U

)
(19)

with the symbol a
′∗ to denote the actual post-encounter semi-major axis, without the reso-

nance subscript to preserve for now the generality of the definition. Following the definition
in Equation (19), possible variations of the asymptotic velocity magnitudeU can be included
in 
θ ′.

The computation of the perturbation 
ψ requires some observations on the encounter
geometry. By definition, the b-plane is perpendicular to the vector U, which identifies the η̂

direction (Equation (1)) and is common to both the simulated and the theoretical deflections.
Particularly, we observe that:

• The angle ψ is measured clockwise on the b-plane and counterclockwise on the three-
dimensional reference frame of Fig. 1 (Carusi et al. 1990; Valsecchi et al. 2003).

• The vector U × U′∗ identifies the principal rotation direction of U into U′∗ and must lie
on the b-plane, because of the cross-product properties.

We denote withψ andψ∗ the deflection direction angles, theoretical and actual, respectively,
according to the definition by Carusi et al. (1990) and Valsecchi et al. (2003). ψ∗ is related
but not equal to the angle identified by the vector U×U′∗ and the +ζ̂ direction. If we define
ψ̃∗ as the counterclockwise angle measured from the −ζ̂ direction to the vector U×U′∗, we
have that

|ψ̃∗| = |ψ∗| + π/2. (20)

Similarly, switching to a counterclockwise measure from the −ζ̂ direction also for the angle
ψ allows us to introduce the related angle ψ̃ . Its definition is similar to Equation (4) and also
stems from the b-plane coordinates ξ and ζ :
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Fig. 2 Graphical representation
of the rotation convention used
for the computation of 
ψ

cos(ψ̃ − π/2) = −ζ

b

sin(ψ̃ − π/2) = ξ

b
.

(21)

Figure 2 shows a graphical representation of these handle angles ψ̃ and ψ̃∗.
These handle angles allow us to retrieve the value of 
ψ because they still refer to the

rotation direction vector and the chosen b-plane point (ξ, ζ ). To obtain ψ̃∗, we first express
the vector U × U′∗ in the b-plane reference frame with1

U × U’|∗b−plane = [
ξ̂ , η̂, ζ̂

]TU × U’|∗Cartesian (22)

and then, observing the geometry of Fig. 2, we retrieve ψ̃∗ using its cosine:

cos ψ̃∗ =
[
U × U’|∗

ξ̂
,U × U’|∗

ζ̂

]T · [0,−1]T
|U × U’||∗ . (23)

Since both the angles ψ̃ and ψ̃∗ are measured counterclockwise on the b-plane, we add a
change of sign to finally comply with the original b-plane description (Carusi et al. 1990;
Valsecchi et al. 2003), obtaining:


ψ = −(ψ̃∗ − ψ̃). (24)

3.3 Perturbed circle parameters

The perturbing angles (
γ,
ψ,
θ ′) modify the circle parameters presented in Equation
(12), since their definition has a direct impact on the variables that mathematically define

1 The η component of U × U′∗ is equal to zero because of the cross-product properties and the definition of
the η̂ direction.
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the circles. Consequently, the resonant circle equations need to be re-derived. The spherical
triangle equation highlighting the perturbations is then

cos θ
′∗
R = cos θ cos(γ + 
γ ) + sin θ sin(γ + 
γ ) cos(ψ + 
ψ). (25)

Since the perturbing effects must be small compared to the main two-body effect, the
overall shape should be still identified by circles centered on the ζ̂ axis. Then, we find the
two intersections of such circles with the b-plane ζ̂ axis, linked to the new circle parameters
as:

ζ1,2 = D ± R, (26)

which correspond to the solution of the quadratic equation that is obtained by setting ξ = 0
and exploiting b2 = ζ 2 + ξ2 in Equation (25), after introducing the b-plane definition
of the trigonometry functions of γ and ψ . The full derivation is reported in Appendix A.
The trigonometry function properties lead to the definition of the following perturbed circle
parameters:

D = c(sin θ cos
γ cos
ψ − cos θ sin
ψ)

cos θ
′∗
R − cos θ cos
γ − sin θ sin
γ cos
ψ

R =
∣∣∣∣

c
√
sin2 θ

′∗
R − sin2 θ sin2 
ψ

cos θ
′∗
R − cos θ cos
γ − sin θ sin
γ cos
ψ

∣∣∣∣.
(27)

If the angles 
γ , 
ψ and 
θ ′ were all zero, the original solution of Equation (12) from
Valsecchi et al. (2003) would be obtained.

3.4 Validation: SolO’s upper stage of launcher planetary protection

A test case taken from a study conducted in Colombo et al. (2016) over Solar Orbiter’s (SolO)
upper stage of launcher is shown in Fig. 3, the same presented for the planetary protection
analysis in Fig. 5. The original analysis and data reported in Colombo et al. (2016) were
referred to a mission profile with launch on October 2018 (European Space Agency (ESA)
2011), while the actual launch eventually took place in February 2020.

The nominal initial condition is (J2000 reference frame, centered on the Sun)2:

r0 =
⎧⎨
⎩
133116775.747934
63535749.7019948
27709795.6796008

⎫⎬
⎭ km; v0 =

⎧⎨
⎩

−12.2083082146286
20.2518732464216
9.77270323544705

⎫⎬
⎭ km/s

t0 : October 22, 2018, 02:51:54.096 UTC
(28)

and the covariance matrix C used for the sample generation (Colombo et al. 2016) for the
Monte Carlo simulation expressed in an inertial Cartesian reference frame is reported in
Table 1.

The simulated nominal condition features a resonant close approach (resonance condition
k/h = 5/4) with Venus at epoch April 6, 2019, 12:40:58.214 UTC. We used the flyby entry
nominal condition as basis for the validation of the deflection model in Fig. 3, where we held
the entry velocity constant and equal to:

U0 =
⎧⎨
⎩

3.79322995886949
−8.13551531308769
−2.1091357908664

⎫⎬
⎭ km/s. (29)

2 The ephemeris model includes the Sun, the Solar System planets, Pluto and the Moon.
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Table 1 SolO’s covariance matrix unique elements at the initial epoch, inertial reference frame (Colombo
et al. 2016)

POSITION COVARIANCE

ri [km] r j [km] rk [km]

ri [km] 5.35139 × 104

r j [km] 5.40922 × 104 1.35541 × 105

rk [km] −2.56206 × 1004 4.50788 × 103 1.72826 × 105

CROSS-COVARIANCE

ri [km] r j [km] rk [km]

vi [km/s] 2.48201 × 101 2.33655 × 101 −1.37013 × 101

v j [km/s] 2.74411 × 101 7.10015 × 101 5.01510 × 102

vk [km/s] −1.20515 × 101 3.42692 × 102 8.33312 × 101

VELOCITY COVARIANCE

vi [km/s] v j [km/s] vk [km/s]

vi [km/s] 1.15577 × 106

v j [km/s] 1.17908 × 1006 3.72423 × 106

vk [km/s] −6.48488 × 1007 3.07751 × 107 4.01929 × 106

We multiplied the same initial velocity by a factor 0.1 to generate the low-velocity case
presented in Fig. 4.

3.4.1 B-plane deflection model

We have obtained the b-plane region presented in Figs. 3 and 4, simulating with Matlab®

a fine grid of points, all with the planetocentric velocity of the respective nominal conditions
but with different initial positions. We generated the samples in b-plane polar coordinates
and divided the whole domain in several regions; for the sake of conciseness, we present only
the low- and high-altitude results, for a limited b-plane region. We compute the deflection as
the rotation of the planetocentric velocity due to the angles γ and ψ , and we then compare
it to the results from numerical simulations in the relativistic N-body environment. In the
corrected b-plane model, the angles 
γ and 
ψ introduce the perturbing effects, computed
from the simulation of the nominal sample. We then apply the same numerical values of 
γ

and 
ψ to the whole cloud of simulated b-plane points. The perturbation on 
θ ′ affects the
circles for a specified post-encounter semi-major axis only; thus, we show it directly on the
planetary protection analysis.

In the SolO case, the implemented correction (Fig. 3b and d) improves the deflection
model, obtaining exact deflections at the point where the perturbations are computed and
highly accurate results nearby, although the error obtained with the standard deflection is
already small (Fig. 3a and c). High-altitude flybys are less affected by errors, because of the
lower time spent within the planet’s sphere of influence and the lower nominal deflection,
which introduces some error amplification itself.

The low-speed case shown in Figure 4 partly exposes the singularity of the b-plane for-
malism visible in the definition of cos θ (Equation (9)). The error becomes large at both low
and high altitudes (Fig. 4a and c), and despite enormously improved by the perturbed model
(Fig. 4b and d), the reliability of the proposed approach becomes extremely localized. This is
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Fig. 3 Relative errors against full numerical simulation, SolO-like close approach

due to the b-plane theory itself, not suited to handle low-energy cases where the three-body
problemwould better describe the dynamical regime. Still, the simulation-based computation
of the perturbing angles keeps the deflection error small nearby the reference where such
angles are computed.

3.4.2 Perturbed resonant belts

Weobtained the results presented in this subsection usingSNAPPshot to perform a planetary
protection analysis for SolO’s upper stage of launcher.Wegenerated the cloud of points shown
in Fig. 5a and b using the Monte Carlo analysis and consequent b-plane representation of
the resonances already available in SNAPPshot. We computed the perturbing coefficients
(
γ,
ψ,
θ ′) only at the barycenter of the simulated cloud, expecting accurate results near
it. This is mainly due to SNAPPshot’s current features that allow the user to retrieve the full
propagation data only of a single specified sample of the cloud (Colombo et al. 2016). We
present a visual check in Fig. 5a and b, whereas the numerical values for the relative error
are available in Table 2. We show directly the resonant belts, both for a better visualization
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Fig. 4 Relative errors against full numerical simulation, low-speed close approach

of the results and to check the compliance of the size of the modeled belts with the amplitude
of the proportion of the cloud in actual orbital resonance.

The error drastically drops nearby the reference point and it increases the farther the cloud’s
samples get from it, as expected from the deflection model validation and as the numerical
values in Table 2 show. Figure 5a and b also offers a visual feeling of the improvement
reached: The yellow dotted loci of points, being the b-plane representation of numerically
simulated resonances, are now almost perfectly predicted by the analytical belts, drawn in
black. Furthermore, the neat separation from the non-resonant close approaches (dark gray
dots) is also precisely predicted.

4 Ballistic resonant flyby design

In a planetary protection application, one wishes to identify orbital resonances in order
to minimize the probability of a resonant return. Here, instead, we exploit the resonant
circle concept in the opposite way, using the degree of freedom left in the patched conics
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Fig. 5 Visual accuracy improvement of the b-plane circle model. The analytical belts are bounded by the
black circles, the yellow dots represent the numerically detected resonances, and the gray dots represent the
numerically simulated non-resonant close approaches

Table 2 SolO case, relative error
for standard and corrected belt
models with respect to the
simulated resonances

k/h Standard belt (%) Corrected belt (%)

5/4 24.460 < 0.1

6/5 52.669 < 0.1

9/7 17.499 < 0.1

approximation3 to force resonant flybys, trying to achieve a total ballistic deflection unfeasible
for a single flyby.

About the perturbed b-plane model proposed in this work, we are not aware of any appli-
cation of this kind in the literature, particularly dealing with open interplanetary resonances.
The model is yet to be completed to the most general extent, i.e., it still relies on the patched
conics approximation for the definition of resonance. In other words, even though there we
can already semi-analytically refine the deflection of the planetocentric velocity vector, con-
straining the corresponding modified resonant circles does not provide the same 
v of their
two-body parents and therefore does not correspond to the
v required for that specified res-
onance to happen. In any case, the innermost structure of the algorithm we present remains
unchanged, since only the interfaces with the interplanetary environment will be adapted in
future works.

The proposed algorithmic method features a modular structure, where at the highest level
the resonant flybys are designed by solving a global optimization problem, under a fully
two-body patched conics approximation. At a lower level, the perturbed resonant deflections
are designed to minimize their difference against each correspondent optimal two-body 
v.
Somework in a similar direction, even though not specificallymeant for the optimal trajectory
design purposes of this work, was already done in Valsecchi (2006) and Valsecchi et al.
(2015), where the authors developed an analytic solution for the post-encounter Keplerian
parameters implementing the b-plane deflection formalism. InValsecchi (2006) andValsecchi
et al. (2015), a fully b-plane and Keplerian description was enough to achieve a fully analytic
solution. In thiswork,we propose instead a hybridCartesian, b-plane andKeplerian approach,

3 The point of injection in the sphere of influence.
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Fig. 6 Block scheme diagram of
the overall design algorithm

in order to exploit the b-plane flyby design properties, the Keplerian description of the
orbital parameters and the simplicity of the Cartesian coordinates, where the flyby deflections
become simple vector summations.

4.1 Assumptions

First of all, a major limitation appears when using the b-plane formalism for design purposes:
The deflections can be described in this framework only if fully natural.An artificialmaneuver
modifies the outgoing asymptote, the hyperbolic excess velocitymagnitude and consequently
the geometry described in Carusi et al. (1990). The design is limited to initial and final orbits
featuring the same Tisserand parameter T . Recalling the relation in Carusi et al. (1990) and
Valsecchi et al. (2003):

U = √
3 − T . (30)

The two-body patched conics definition of orbital resonance naturally embeds another
assumption: Under a Cartesian description of the two orbits, the position remains fixed for
all the resonant flybys designed, with only the heliocentric velocity v to change according
to some 
v to have consequent resonant returns. This new velocity v + 
v becomes the
incoming condition of the consequent flyby. In this way, at least part of the combinatorial
nature of the multi-flyby design problem can be neglected; having the encounter position
always fixed in time and space reduces the problem to identifying the velocities only.

Even when dealing with resonances some combinatorial issues exist, i.e., what actual
resonance to choose at each flyby. Once a specified resonance is selected, there are again
infinite possible solutions that satisfy such a resonance condition, which represent the degree
of freedom exploited in the presented algorithm.

Apart from the gravitational constants, the reference frame and the ephemerides data, the
algorithm requires:

• A set of admissible resonances S = {
k/h|i

}
.

• An initial orbit (r0, v0).
• An ultimate target orbit (r f , v f ).
• The number of close approaches N to be designed to reach such a final trajectory.

Figure 6 shows a block scheme diagram of the overall algorithm, described in detail in
the following sections.
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4.2 Optimization levels

4.2.1 Highest level

A sub-
v target is assigned to each flyby, and the planetocentric trajectory is selected in
order to minimize the difference between its own deflection and the specified sub-target. The
highest optimization level determines the best set of sub
v targets that eventually minimizes
the artificial contribution needed to match the final orbit. We can formulate the optimization
problem as:

minimize

v(i)

|
vresidual(
v(i), (k/h)i , v0, v f )|
subject to

∑
i


v(i) = 
vtarget , i = 1, ..., N ,

(k/h)i ∈ S, i = 1, ..., N . (31)

Three remarks arise from the possible ways of computing |
vresidual |:
• The summation of the sub-targets 
v(i)

target must lead to the global 
vtarget , but the
optimal solution could still feature some residual at each flyby. The resonance condition
is a constraint on the 
v to ensure consequent return; matching the global deflection
does not require anything specific on the single flybys.

• We should expect some residuals arising because of the resonance constraint; in spite of
this, the summation of all the actual 
v-s given must still lead to the final target.

• The last flyby may not be resonant and should match the final orbit, allowing a much
more flexible design of the last deflection.

A possible design choice is then splitting evenly the residual 
v of the current flyby over
all the next sub-targets. This allows the design of resonant flybys up to and including the
penultimate one, without any artificial 
v, optimizing the last and more flexible deflection
to reach the final target.

For N flybys, we can write the sub-target update as:


v(i)
target, new = 
v(i)

target, old +
i−1∑
j=1


v( j)
residual

N − j
i = 2, ..., N . (32)

The sub-targets are a sort of guidance for the design of each flyby. Here lies the drastic
reduction in the combinatorial nature of the problem, replaced by the solution of a non-
smooth optimization leading to the optimal set of brute-force designed resonant deflections.
Figure 7 shows a summary of the algorithm flow for the presented optimization level.

4.2.2 Resonant flyby optimization

Given a set S of resonances, for a specified sub 
v the algorithm finds the best resonant
trajectory whose deflection gets the closest to the sub-target. We perform this with another
two-level local optimization algorithm:

1. Select one of the resonances in S.
2. Find the point on the resonant circle that gives the best 
v.
3. Loop over all the admissible resonances and pick the best 
v.
4. Store the data the selected resonant trajectory.
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Fig. 7 Block scheme diagram of the higher optimization level

Fig. 8 Block scheme diagram of the circle-level optimization

We still need to introduce some constraints to bound the trajectories in a feasible region (i.e.,
the impact parametermust be at the same timenot too lowandnot too high,bmin ≤ b ≤ bmax ).
Figure 8 summarizes the algorithm flow.
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4.3 Deflectionmodels

4.3.1 Unperturbed case

We model each deflection using the b-plane formalism. A distinction between resonant and
free flybys is required for the first step: A specific resonance acts similarly to imposing a
constraint on the position on the b-plane; the point must belong to a circle of center’s ζ̂

coordinate D and radius R. Identifying with α a counterclockwise angle measured from the
ξ̂ direction (exactly as the angle in simple polar coordinates), given D and R a generic point
is identified by:

ξ = R cosα

ζ = D + R sin α
(33)

and the impact parameter is defined as

b2 = ξ2 + ζ 2, (34)

whereas for a non-resonant case we obtain ξ and ζ by

ξ = b cosα

ζ = b sin α,
(35)

where b acts directly as the radius variable in b-plane polar coordinates. The non-resonant
case removes the resonant circle constraint, introducing one more degree of freedom on b.

We compute the deflection angle γ as in Valsecchi et al. (2003):

cos γ = b2 − c2

b2 + c2
. (36)

The rotation direction lies on the b-plane, and its orientation is strictly linked to the angle ψ ,
defined as:

cosψ = ζ

b

sinψ = ξ

b
.

(37)

Particularly, the planetocentric velocity points toward the b-plane and the angle ψ measures
a clockwise rotation from the ζ̂ direction to the b-plane point itself. In addition, we observe
that the velocity vector is always rotated toward the center of the plane. Consequently, a
possible deflection direction computation strategy rotates the direction−ζ̂ counterclockwise
of an angle ψ + π/2. Then, the rotation of the Cartesian incoming planetocentric velocity
Ui into the outgoing one U′

i at the i th flyby follows these steps:

1. Rotate −ζ̂ counterclockwise of ψ + π/2.
2. Represent this new vector in the Cartesian reference frame, applying a vector rotation

whose matrix arises from the b-plane axes definition (Equation (1)).
3. Include γ to build the principal rotation vector in the Cartesian reference frame.
4. Apply the rotation to Ui .
5. Compute 
v(i) = U′

i − Ui .

Defining the residual of flyby i as


v(i)
residual = 
v(i)

target − 
v(i) (38)
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at the lowest level, the optimization process finds a solution where the quantity |
v(i)
residual |2

is minimized. For the last free flyby, the algorithm selects the best coordinates (b, α), whereas
for a resonant flyby the choice is limited to the coordinate α and the correspondent circle
parameters.

4.3.2 Perturbed case

We rely on a fine b-plane mapping of 
γ , 
ψ and 
θ ′ to account for perturbing effects.
We report the interpolation and mapping strategies we adopted in this concept validation in
Appendix B, as well as the way to compute the perturbed resonant circles from a map of
perturbing angles.

Since the resonance definition is still strictly two-body patched conics, the current imple-
mentation of the algorithm targets these resonant orbits. We expect some residuals given
the circle modification, i.e., because we compute the perturbed 
vs so that their difference
with respect to the already optimized two-body deflections is minimized. We do not mean
these 
vs to be maneuvers to be implemented, and our current purpose is only to show the
difference between the perturbed and the unperturbed cases.

For the resonant case, we apply the same optimization process, constraints and deflection
presented in the unperturbed application. The only difference lies on including the perturbing
angles 
γ and 
ψ in the deflection computation. The perturbed last free flyby is again free
of any constraint, and solution is free to comply with the last deflection required. Yet again
the deflection model remains the same, but having both b and α as optimization variables
and including the perturbing effects.

4.4 Validation:SolO-like resonant orbit design

We performed the optimization with Matlab® and JPL ephemerides through the SPICE
toolkit (Acton 1996), using the function patternsearch.m at the highest level (optimal

v target search) and a multi-start fmincon.m for the unperturbed b-plane deflections,
since the formulation is non-convex albeit smooth enough to allow the convergence of descent
methods if starting from a good enough initial guess. In general, for the perturbed model the
interpolation of the perturbing parameters makes the problem non-smooth even at the plan-
etocentric design; thus, we implemented a patternsearch.m optimization at this level
as well, with an fmincon.m refinement performed on the direct search optimal solution.

We ask the resonant trajectory design algorithm to search for an optimal solution similar
to SolO’s flybys of Venus (EADS-Astrium 2011), where resonant gravity assists raise the
orbit’s ecliptic inclination with low-cost maneuvers. We expect the solution to slightly differ
from ESA’s optimized one, since the algorithm for now designs ballistic flybys only. In any
case, reaching a solution similar to SolO’s mission profile would give a strong proof of the
proposed design approach.

The reference case is the solution proposedwith launch in January 2017 in European Space
Agency (ESA) (2011), even though the actual launch has eventually happened in February
2020. We report the just mentioned optimized trajectory in Fig. 9. We use our algorithm to
reproduce the resonant flybys only, i.e., to find a solution similar to the trajectory between
the close approaches marked as V 2 and V 6.

We report the main features of the four resonant orbits in Table 3, with the first flyby to
happen on May 22, 2020 (European Space Agency (ESA) 2011). The resonances are also
available in European Space Agency (ESA) (2011), (3/4, 3/4, 2/3, 3/5) in that order. We
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Fig. 9 Optimized, final orbit sequence for the January 2017SolarOrbiter’smission plan. Picture fromEuropean
Space Agency (ESA) (2011)

Table 3 Orbital parameters of the
resonant orbits for SolO’s January
2017 mission profile (European
Space Agency (ESA) 2011)

Orbit Aphelion [AU] Perihelion [AU] Ecl. Incl. [◦]

Initial 0.998 0.311 1.72

V2-V3 0.910 0.284 9.93

V3-V4 0.870 0.315 18.11

V4-V5 0.789 0.315 23.83

V5-V6 0.740 0.290 27.25

use the same notation introduced in European Space Agency (ESA) (2011) to identify the
different close approaches, with V i standing for the i th flyby of Venus and V i −V j referring
to the heliocentric orbit between the flybys i and j . The orbits are uniquely defined, since
the position of Venus at each specified time adds the three remaining parameters.

4.4.1 Unperturbed (interplanetary) level

For the sake of testing the fully ballistic design algorithm, we remove some of the mission
constraints, especially keeping perihelion and aphelion altitudes within specified boundaries.
Therefore, we ask the solver to perform the specified change in inclination in the same num-
ber of flybys, letting all the parameters adjust autonomously. Given the optimal resonances
mentioned above, the algorithm selects (k, h) values only within the range 1 to 5. We report
the initial and final orbits for a Solar Orbiter-like resonant phase with Venus in Table 4.

123



   17 Page 20 of 28 A. Masat et al.

Table 4 Initial and final orbit
parameters given as input to the
optimization algorithm

Orbit Aphelion [AU] Perihelion [AU] Ecl. Incl. [◦]

Initial 0.998 0.311 1.72

Final 0.738 0.320 27.25

Fig. 10 Interplanetary trajectory
computed by the optimization
algorithm

The total deflection required is


vtot =
⎧⎨
⎩

−10.544
−7.553
13.381

⎫⎬
⎭ km/s. (39)

The algorithm converged to a ballistic optimal solution, obtaining a 
vresidual after the
last flyby whose norm is on the order of 10−8 km/s. The four deflections are


v(1) =
⎧⎨
⎩

−2.067
−0.167
3.862

⎫⎬
⎭ km/s, 
v(2) =

⎧⎨
⎩

−2.888
−1.259
3.807

⎫⎬
⎭ km/s,


v(3) =
⎧⎨
⎩

−3.719
−2.367
2.882

⎫⎬
⎭ km/s, 
v(4) =

⎧⎨
⎩

−1.870
−3.760
2.830

⎫⎬
⎭ km/s.

(40)

We report the orbits designed in Fig. 10 and their parameters in Table 5. The intermediate
orbits feature resonances (3/4, 2/3, 3/5) and the last orbit complies with the final inclination,
albeit the last orbit reported in Table 3 is still in a 3/5 resonance. As a visual check, the
algorithm has produced orbits that are similar to the optimized ones (Fig. 9) available in
EuropeanSpaceAgency (ESA) (2011).Also, the orbital parameters obtained are similar, apart
from the perihelion distance which appears to be the main objective of control maneuvers,
given also the purposes of the mission itself (EADS-Astrium 2011).

Only the first one out of three resonances corresponds to the ones designed in European
Space Agency (ESA) (2011). This may be due to the absence of maneuvers and mission
constraints in the optimization algorithm, which, for instance, leads to perihelion distances
too low compared to the constraints specified in European Space Agency (ESA) (2011).
Also the Cartesian formulation of the objective function that features an automatic 
v split
might affect the obtained solution, since the optimization does not include user-specified
intermediate orbital parameters.

123



Different perspectives on the b-plane Page 21 of 28    17 

Table 5 SolO-like interplanetary
orbital parameters for the
trajectories computed by the
optimization algorithm

Orbit Aphelion [AU] Perihelion [AU] Ecl. Incl. [◦]

Initial 0.998 0.311 1.72

V2-V3 0.914 0.281 7.17

V3-V4 0.838 0.267 15.68

V4-V5 0.771 0.259 22.60

Final 0.738 0.320 27.25

Fig. 11 B-plane coordinates and
circles of the resonant close
approaches

4.4.2 Perturbed b-plane level

Figure 11 shows the perturbed b-plane points that are chosen for achieving a deflection that
gets the closest to the unperturbed interplanetary target. Visually, their distance from the
optimal unperturbed b-plane coordinates seems to be minimized, and this may be due to the
higher difference between the b-plane circle shapes than the actual 
v deflections, as it is
discussed in Sect. 3.4.1. For the sake of conciseness, all the resonant flybys are reported in
the same plot, although the b-plane reference frame itself has a different orientation for each
close approach.

All the resonant deflections feature some residual, shown in Equation (41), which is
explained by the constraint of lying on their b-plane perturbed circles. The residual on the
last free flyby is in the order of 10−6 km/s:


v(1)
residual =

⎧⎨
⎩

0.192
−0.031
−0.003

⎫⎬
⎭ km/s,
v(2)

residual =
⎧⎨
⎩

0.195
−0.021
0.039

⎫⎬
⎭ km/s,


v(3)
residual =

⎧⎨
⎩

0.137
−0.027
0.078

⎫⎬
⎭ km/s.

(41)

Providing a further and final check to the deflection model, we obtain the maximum error
on the third flyby, equal to 0.628% with respect to the simulated trajectory.
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4.4.3 Performances

In the unperturbed design, the heaviest part from the computational point of view is the target
selection. patternsearch.m implements an intelligent direct search method that needs
to perform several function evaluations at each algorithm iteration. For large domains and
small tolerances, this results in a rather high computational time, due to the optimal targets not
known at all. Instead, we obtain an extremely small computational time when the algorithm
is executed again for retrieving the complete solution, of only 1.5 seconds on a single core
of a CPU Intel® Coretm i5-5200U running at 2.20 GHz.

About the perturbed design, in order to underline the performances of the deflectionmodel
itself we focus on the performance of the local computations, whose time mentioned below
includes the numerical simulation of the selected trajectory. The heaviest part is the map
generation, with higher computational time required for higher resolution. For a given map,
we obtain again an extremely fast convergence, for about 2.7 seconds in the last free flyby
and 1.9 seconds for the resonant close approaches, with the same CPU and machine settings
of the unperturbed case. Considering the pair precision level reached and software used, a
full transition to better programming languages could easily tackle these design problems
with higher precision and even lower computational times.

5 Conclusion

The precise identification of the resonant loci of point in the b-plane reference frame suc-
cessfully brought a semi-analytic modification of the current model. We obtained an exact
solution, in terms of simulation compliance, at the b-plane point where the perturbing coeffi-
cients have been computed, achieving a highly reliable approximation in the nearby b-plane
regions. The immediately next developments already comply with the planetary protec-
tion application needs, i.e., showing a full Monte Carlo simulation on the same b-plane.
The model should eventually detach from the patched conics approximation: The proposed
semi-analytic solution should be generalized to account for the variations of the perturb-
ing parameters among different b-plane regions. To this extent, some focus should be put
toward both exploring optimal mapping strategies and new analytic solutions, preserving the
efficiency features and ensuring an in-b-plane precise impact/resonance probability compu-
tation.

Finally, we have shown the deflection modeling capabilities of the b-plane formalism by
implementing an efficient ballistic resonant trajectory design algorithm. The algorithm could
already be used for preliminarymission analysis purposes, given that a good enough guess for
the resonant deflection is known. Themain outcome is perhaps having shown how embedding
and connecting different orbital representations could enhance the algorithm performances,
using the b-plane features for the deflection design, the traditional Keplerian elements for the
objective definition and the simple Cartesian representation to perform simple computations.
The results achieved by the algorithm, in terms of precision and required computational
resources, suggest keeping developing both the model and the method. On the one hand, the
restriction to resonant flybys drastically reduced the number of degrees of freedom left to
the problem, which is the main reason for such low computational costs. This also highlights
that proper analytic or semi-analytic developments, such as optimal perturbation mapping
strategies and in-b-plane maneuver design, could lead to application extensions to the non-

123



Different perspectives on the b-plane Page 23 of 28    17 

resonant case. On the other hand, optimal trajectory design techniques already exist; thus,
our method could contribute to increasing the functionality of the current procedures.
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Appendix A: Perturbed resonant circles derivation details

From
cos θ

′∗
R = cos θ cos(γ + 
γ ) + sin θ sin(γ + 
γ ) cos(ψ + 
ψ) (A1)

with the trigonometry relations

cos(A + B) = cos A cos B − sin A sin B

sin(A + B) = sin A cos B + cos A sin B,
(A2)

we obtain an equation of the following form

cos θ
′∗
R =a1 cos γ + a2 sin γ + a3 sin γ cosψ + a4 cos γ cosψ+

a5 sin γ sinψ + a6 cos γ sinψ
(A3)

with the ai coefficients not to depend on the b-plane variables, particularly:

a1 = cos θ cos
γ

a2 = cos θ sin
γ

a3 = sin θ cos
γ cos
ψ

a4 = sin θ sin
γ cos
ψ

a5 = − sin θ cos
γ sin
ψ

a6 = − sin θ sin
γ sin
ψ.

(A4)
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By replacing the trigonometric functions of γ and ψ with their b-plane definitions, Equa-
tion (A3) becomes

(b2 + c2) cos θ
′∗
R =a1(b

2 − c2) + 2a2bc + 2a3cζ + a4(b
2 − c2)ζ/b+

2a5cξ + a6(b
2 − c2)ξ/b.

(A5)

The two intersections with the ζ axis are:

ζ1,2 = D ± R, (A6)

which correspond to the solution of the quadratic equation that is obtained by setting ξ = 0
and b = ζ in Equation (A5):

(ζ 2 + c2) cos θ
′∗
R = a1(ζ

2 − c2) + 2a2cζ + 2a3cζ + a4(ζ
2 − c2) (A7)

and therefore

ζ 2 − 2c
B

A
ζ + c2

C

A
= 0 (A8)

where, writing explicitly the coefficients ai ,

A = cos θ
′∗
R − cos θ cos
γ − sin θ sin
γ cos
ψ

B = sin θ cos
γ cos
ψ − cos θ sin
ψ

C = cos θ
′∗
R + cos θ cos
γ + sin θ sin
γ cos
ψ.

(A9)

The solutions to Equation (A8) are

ζ1,2 = 2c(B ± √
B2 − AC)

2A
. (A10)

Simplifying the square root argument, some of the terms become:

B2 = sin2 θ cos2 
γ cos2 
ψ − 2 sin θ cos
γ cos
ψ cos θ sin
ψ

+ cos2 θ sin2 
ψ

AC = cos2 θ
′∗
R − (cos θ cos
γ + sin θ sin
γ cos
ψ)2

= cos2 θ
′∗
R + cos2 θ cos2 
γ + 2 cos θ cos
γ sin θ sin
γ cos
ψ

+ sin2 θ sin2 
γ cos2 
ψ,

(A11)

thus
B2 − AC = sin2 θ cos2 
γ cos2 
ψ + cos2 θ sin2 
ψ − cos2 θ

′∗
R +

cos2 θ cos2 
γ + sin2 θ sin2 
γ cos2 
ψ
(A12)

and using the identity sin2 
γ = 1 − cos2 
γ

B2 − AC = cos2 θ − cos2 θ
′∗
R + sin2 θ cos2 
ψ (A13)

finally the use of cos2 
ψ = 1 − sin2 
ψ yields the desired solution form ζ1,2 = D ± R,
where

D = c(sin θ cos
γ cos
ψ − cos θ sin
ψ)

cos θ
′∗
R − cos θ cos
γ − sin θ sin
γ cos
ψ

R =
∣∣∣∣

c
√
sin2 θ

′∗
R − sin2 θ sin2 
ψ

cos θ
′∗
R − cos θ cos
γ − sin θ sin
γ cos
ψ

∣∣∣∣.
(A14)
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Fig. 12 Quartic mesh
representation example, polar
(top) and b-plane (bottom)
coordinates

Appendix B Perturbation andmapping strategy for flyby design

Wemap perturbing effects onto the b-plane before designing the flyby, with a finermesh close
to the planet, and then interpolate to obtain the perturbing values not exactly at themap nodes,
exploiting the deflection model to avoid numerical propagations within the optimization
process.

We perform a set of simulations at the beginning of the design itself: We describe the
starting conditions with the b-plane polar coordinates (bmin ≤ b ≤ bmax , 0 ≤ α < 2π), thus
with their correspondent (ξ, η, ζ ) positions at the entrance of the sphere of influence, and the
incoming planetocentric velocity of the current flyby. All these points together build a mesh
(Fig. 12), whose propagation brings the following set of parameters at each node:

• The perturbation 
γ on the deflection magnitude.
• The perturbation 
ψ on the deflection direction.
• The perturbation 
θ ′ on the outgoing angle between the planet’s and the object’s plane-

tocentric velocities.
• Mesh-related handle quantities for the interpolation.

Thedifferentα angles are linearly spaced,whereasb features a quartic distributionbetween
bmin and bmax . As shown in Fig. 12, we arbitrarily chose the quartic distribution on b to reach
a finer mapping nearby the lower limit, where the difference between two values of b has an
higher impact on the deflection error.

Despite the reason of mapping, the whole domain is fully evident in the free flyby case; we
would not necessarily need to propagate the whole mesh for the resonant close approaches.
If we knew the b-plane region of a specified resonance, we could restrict the domain to the
interest areas only. Nevertheless, in the current application, not only is the position of the
resonant circles at a specified close approach not known, but also all the configurations of
the intermediate encounters are let free, leading to even more uncertainties than the sole
circle location. For the current implementation, the optimal two-body result could cut some
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computational cost, identifying the interest areas in the N-body analysis. However, aiming
to detach from the patched conics approximation, a complete mapping is anyway needed to
include the perturbing effects, since we would run the optimization already at the perturbed
level.

The interpolation strategy is similar to a bi-linear Lagrange polynomials, interpolating
over b and the arc bα. The four interpolation coefficients are

li j (b, α) = b − bi
b j − bi

bα − biαi

b jα j − biαi
(B15)

with i, j the indexes identifying the nodes of the cell enclosing b and α.
Being in a design phase and having mapped the perturbing effects on the b-plane, we

do not need to pick one node only as the reference to draw the perturbed resonant circles,
whose approximation looses accuracy far from the reference. Since in general the position
of the circle intersection with the ζ̂ axis is not known, some iteration method is required. We
propose a fixed-point-iteration-like algorithm:

1. Initialize the search by computing the unperturbed circle parameters D and R.
2. Compute the highest magnitude intersection b with the ζ̂ axis (accounting for both pos-

itive and negative intersections with ζ̂ ).
3. Get the interpolated perturbing angles 
γ , 
ψ and 
θ ′ on this point.
4. Compute the perturbed circle parameters Dp and Rp and get the updated intersection

bnew with the ζ̂ axis.
5. If the difference between the current bnew and the previous iteration’s one (equal to b

when initializing the algorithm with the unperturbed case) is lower than some tolerance
stop the algorithm, otherwise return to step 1.

We expect a fast convergence, given themap resolution and the deflectionmodel validation
results. In fact, despite having set a rather strict toleranceof 10−6km for the differencebetween
two iterations and amaximum of 1000 steps, this number was never reached and convergence
happened in all the test cases analyzed.

Thismodel does not take into account possible different values of the perturbation
θ ′ and
still assumes the resonant loci of points to be described by circles. A possible generalization
performs the optimization over both the variables (b, α) of the free flyby and relaxes the circle
approximation of the perturbed resonances, but stillmakes use of the perturbing coefficients to
insert the followingnonlinear constraint basedon the perturbed resonant geometric deflection:

cos θ
′∗
R − cos(γ + 
γ ) cos θ∗ − sin(γ + 
γ ) sin θ∗ cos(ψ + 
ψ) = 0. (B16)

We are removing the assumption that such a deflection must bring a circular locus of points in
the b-plane, accounting for possible different angles 
γ , 
ψ and 
θ in the various b-plane
positions to be obtained via map interpolation. We attempted to optimize the deflection with
this generalized resonance, although the new setup has not converged to an optimal solution.
The results reported in themain body involve only the circular resonancemodel, and a further
analysis to find a suitable method for the generalized resonance optimization is required.
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