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Abstract: Hierarchical decision-making processes traditionally modeled as bilevel optimization
problems are widespread in modern engineering and social systems. In this work, we deal with a
leader with a population of followers in a hierarchical order of play. In general, this problem can
be modeled as a leader–follower Stackelberg equilibrium problem using a mathematical program
with equilibrium constraints. We propose two interconnected dynamical systems to dynamically
solve a bilevel optimization problem between a leader and follower population in a single time
scale by a predictive-sensitivity conditioning interconnection. For the leader’s optimization problem,
we developed a gradient descent algorithm based on the total derivative, and for the followers’
optimization problem, we used the population dynamics framework to model a population of
interacting strategic agents. We extended the concept of the Stackelberg population equilibrium to
the differential Stackelberg population equilibrium for population dynamics. Theoretical guarantees
for the stability of the proposed Stackelberg population learning dynamics are presented. Finally,
a distributed energy resource coordination problem is solved via pricing dynamics based on the
proposed approach. Some simulation experiments are presented to illustrate the effectiveness of
the framework.

Keywords: bilevel optimization; Stackelberg games; population dynamics

1. Introduction

Hierarchical decision-making processes, where a leader is making decisions affected
by the response of the follower(s), are widespread in modern engineering and social
systems. Hierarchical decision-making structures or leader–follower problems appear
in diverse domains of applications such as terrorism analysis [1], communications and
network security [2], traffic management [3], smart grids [4–6], machine learning [7], and
market systems [8]. A particular promising application domain is the intersection between
machine learning and game theory to model hierarchical interactions between learning
agents. Classic simultaneous play games have been extended to problems in machine
learning such as robust supervised learning [9] or generative adversarial network [10] and,
most recently, in multiagent system (MAS) reinforcement learning [11]. For hierarchical
machine-learning approaches based on game theory, just a few works have been proposed.
A couple of relevant contributions can be found in [12], where a gradient descent with
time scale separation was proposed, and in [7], where Stackelberg learning dynamics was
developed; both works focused on a leader with a single follower.

Traditionally, hierarchical decision-making processes have been modeled as bilevel
optimization problems, which can be classified into two main theoretical domains [13].
On the one hand are models based on game theory [14], which have used bilevel pro-
gramming methods to develop the concept of Stackelberg equilibria. On the other hand is
mathematical programming, which proposed a first attempt to solve bilevel optimization
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problems as an upper-level optimization problem with a lower-level optimization problem
as a constraint [15]. Considering its nested nature, bilevel optimization problems have
challenged the optimization and mathematical community ever since; they have been
proven to be strongly NP-hard [16], and even the evaluation of the optimality of a solution
is NP-hard [17,18]. Recent critical literature reviews recount the historical developments
and current perspectives of the field [13,19,20].

In this work, we deal with a leader with a population of followers in a hierarchical
order of play. In general, this problem can be modeled as a leader–follower Stackelberg equi-
librium problem using a mathematical program with equilibrium constraints (MPEC) [21].
Some applications of this modeling have been recently proposed [22–25]. A preliminary
MPEC model for a multiple leaders with multiple followers game was presented in [22].
A discrete-time iterative algorithm was proposed to compute a Stackelberg–Nash saddle-
point in a leader with multiple followers problem. In [24], a Stackelberg differential game
based on pricing for the bandwidth usage of the Internet was solved. Finally, a semi-
decentralized algorithm was formulated to compute a local solution to the leader with
multiple followers Stackelberg aggregate game in [25]. On the other hand, for power
system applications, there is an emerging market-based control approach called transactive
energy systems (TESs) [26–28]. This method is based on a privacy-preserving, market-
based framework for the management of devices exchanging energy [6,29]. Hierarchical
decision-making modeling has been studied as a cornerstone in this framework, where a
coordinator agent is responsible for solving the market-clearing price of the distribution
network. In several scenarios, the control signal of the leader agent or coordinator is not a
price, but a pricing function depending on the preferences of the follower agents forming
a reverse Stackelberg game [30,31]. Considering the multiple applications based on hier-
archical decision-making structures, we propose a Stackelberg game learning framework
to solve bilevel optimization problems as a dynamical system in a single time scale. In
this paper, we focus on a single leader with a follower population of agents due to the
motivation of the coordinator agent problem in TESs. For the upper-level optimization
problem, we propose gradient descent dynamics in continuous-time [32,33], and for the
lower-level optimization problem, we propose population games dynamics based on the
replicator dynamics [34,35], in order to obtain two nested dynamical systems. This allows
us to bring theoretical tools from the dynamical system theory for the design of algorithms
to solve optimization problems. In contrast with traditional time scale separation methods
for interconnected dynamical systems such as singular perturbation analysis [36], we used
predictive-sensitivity conditioning [37,38] to integrate the two interconnected dynamical
systems in a single time scale to guarantee the stability and convergence of the solution to
a differential Stackelberg population equilibrium.

The main contribution of this paper is threefold. First, we propose two interconnected
dynamical systems to dynamically solve a bilevel optimization problem between a leader
and follower population in a single time scale by a predictive-sensitivity conditioning
interconnection [37]. For the leader optimization problem, we developed a gradient de-
scent algorithm based on the total derivative using the implicit function theorem [39]. For
the follower MAS optimization problem, we used the population dynamics framework
to model MAS interacting strategic agents, as shown in [34,35,40–42] and the reference
therein. We extended the concept of the Stackelberg population equilibrium [43] to the dif-
ferential Stackelberg population equilibrium for population dynamics. Second, theoretical
guarantees for the stability of the proposed Stackelberg population learning dynamics are
presented. Finally, a distributed energy resource (DER) coordination problem was solved
via pricing dynamics based on the proposed approach. Some simulation experiments are
presented to illustrate the effectiveness of the framework.

The rest of the paper is organized as follows. In Section 2, the formulation of the
bilevel optimization problem and the main concepts of Stackelberg equilibria are intro-
duced. Section 3 presents the population game’s essential concepts, and the Stackelberg
population learning dynamics is developed based on the predictive-sensitivity condition-
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ing interconnection. Stability results are established to guarantee the convergence of the
proposed dynamics. In Section 4, an application of the proposed framework is developed
for DER coordination. Finally, the main conclusions are drawn in Section 5.

2. Stackelberg Games and Bilevel Optimization Problems

In this section, we introduce a general formulation of a noncooperative game between
an agent called a leader and a finite set of agents called followers. In this case, we have
a Stackelberg game with multiple followers, where the leader plays first and then the
followers make their decision. This Stackelberg game can be modeled by a bilevel opti-
mization problem. Traditionally, the leader’s optimization problem is referred to as the
upper-level problem, and the followers’ optimization problem is referred as the lower-level
problem. Each level has its own set of variables, constraints, and objective functions, and
the upper-level problem has as a constraint the lower-level problem:

min
λ∈Λ

F1(λ, x∗)

s.t. x∗ ∈ arg min
x∈X
{F2(λ, x)},

(1)

where λ ∈ Λ ⊆ R is the upper-level variable, x ∈ X ⊆ Rn are the lower-level variables,
F1(λ, x) is the objective function of the leader agent, and F2(λ, x) is the objective function
of the followers. It was assumed that each follower has an objective function Ji(λ, x) with
i = {1, 2, . . . , n}, and then, without loss of generality, we assumed that the global objective
function is:

F2(λ, x) =
n

∑
i=1

Ji(λ, x). (2)

Let us recall the main equilibrium concept studied in hierarchical play games: consider
one leader agent and one follower agent x f .

Definition 1 (Local Stackelberg equilibrium (SE)). Let Λ be the set of strategies for the leader
agent and X f be the set of strategies for the follower agent. Let BR f (λ) be the best response function
for the follower defined as:

BR f (λ) = {y ∈ X f |F2(λ, y) ≤ F2(λ, x f ), ∀x f ∈ X f }.

A leader strategy λ∗ ∈ Λ and a follower strategy x∗f are in Stackelberg equilibrium if the
following conditions hold:

(a) maxx f∈BR f (λ∗) F1(λ
∗, x f ) ≤ maxx f∈BR f (λ)

F1(λ, x f );

(b) x∗f ∈ BR f (λ
∗).

The local notions of the equilibrium concepts are preferred since it is standard in pop-
ulation games where the concavity or convexity is not assumed in the objective functions.

Some assumptions have to be considered to assure the optimality and existence of
the solutions to Problem (1) such as the connectivity of the communication graph and the
regularity of objective functions.

Assumption 1. The communication graph connecting each agent of the system such as the leader
and follower population agents is connected.

Assumption 2. Every objective function F1(λ, x) and F2(λ, x) is assumed to be differentiable ev-
erywhere and with Lipschitz continuous partial derivatives, and the Hessian matrices ∇2

λλF1(λ, x)
and ∇2

xxF2(λ, x) are globally invertible.
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Local solutions’ concepts and first- and second-order necessary and sufficient con-
ditions for bilevel optimization problems [19] are needed to establish the Stackelberg
population flow with predictive-sensitivity conditioning in the next section.

Definition 2. A point (λ∗, x∗) is said to be a local solution to the bilevel optimization problem (1) if:

(a) x∗ is a local minimum of F2(λ
∗, x);

(b) There exists a neighborhood Ω ⊂ Λ× X of (λ∗, x∗) such that F1(λ
∗, x∗) ≤ F1(λ

∗, x) for all
local solutions (λ∗, x∗) ∈ Ω such that x∗ is a local minimum of F2(λ, x).

Lemma 1 (First-order optimality conditions). If (λ∗, x∗) is a local solution of Problem (1), then
it is a stationary point satisfying the first-order Karush–Kuhn–Tucker (KKT) conditions:

∇λF1(λ
∗, x∗(λ∗)) = 0,

∇xF2(λ
∗, x∗) = 0.

(3)

For a given λ, Assumption 2 guarantees that the lower-level problem in (1) has at most
a single optimal solution x∗ satisfying the first-order optimality conditions in Lemma 1 of
the lower-level ∇xF2(λ, x∗) = 0. The implicit function theorem [39] guarantees the local
existence of the optimal solution function x∗(λ), and its derivative is obtained as:

∇λx∗(λ) = −
(
∇2

xxF2(λ, x∗(λ))
)−1
∇2

xλF2(λ, x∗(λ)).

In addition, this optimal solution function can be used to give an expression for the
directional derivative, also known as the total derivative in points x(λ) and defined as:

DλF1(λ, x(λ)) := ∇λF1(λ, x(λ))

+∇λx(λ)>∇xF2(λ, x(λ)).
(4)

Here, (·)> stands for the vector or matrix transpose.

Lemma 2 (Second-order optimality conditions). If a stationary point (λ∗, x∗) satisfies:

∇2
λλF1(λ

∗, x∗(λ∗)) ≥ 0,

∇2
xxF2(λ

∗, x∗) ≥ 0,
(5)

then (λ∗, x∗) is a local solution of the bilevel optimization Problem (1).

The second-order total derivative can be deduced similarly as the first-order (4)
as follows,

D2
λλF1(λ, x(λ)) :=∇2

λλF1(λ, x(λ)) +∇λx(λ)>∇2
xλF1(λ, x(λ))

+∇2
λ,xF1(λ, x(λ))∇λx(λ) +∇λx(λ)>∇2

xxF1(λ, x(λ))∇λx(λ)

+∇xF1(λ, x(λ))>(∇2
λλx(λ) +∇2

xxx(λ)∇λx(λ)).

The following definition introduces the differential versions of the Nash and Stackel-
berg equilibria [7].

Definition 3 (Differential Nash equilibrium (DNE)). The joint strategy (λ∗, x∗) ∈ Λ× X is a
differential Nash equilibrium if ∇λF1(λ

∗, x∗) = 0, ∇xF2(λ
∗, x∗) = 0, ∇2

λλF1(λ
∗, x∗) > 0, and

∇xxF2(λ
∗, x∗) > 0.

Definition 4 (Differential Stackelberg equilibrium (DSE)). The joint strategy (λ∗, x∗) ∈ Λ× X
is a differential Stackelberg equilibrium if the total derivativeDλF1(λ

∗, x∗) = 0,∇xF2(λ
∗, x∗) = 0,

D2
λλF1(λ

∗, x∗) > 0, and ∇2
xxF2(λ

∗, x∗) > 0.
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In the next section, we present the main contribution of this work using the concept
introduced above.

3. Stackelberg Population Games with Predictive-Sensitivity Conditioning

In this section, we show how the bilevel optimization problem in two time scales can
be solved in a single time scale using an interconnection based on a predictive-sensitivity
matrix of two dynamical systems in continuous-time, namely a gradient descent and
population dynamics. First, the basic concepts of population games are introduced. Thus,
the definitions and results for Stackelberg population games are derived. Finally, the
interconnection using the predictive-sensitivity matrix for Stackelberg population games
is shown.

3.1. Population Games’ Essentials

Population games have been proposed as a multiagent model to find the Nash equi-
librium for a large set of agents or a population. The main dynamical model in population
games is the replicator dynamics. Replicator dynamics has been successfully implemented
in various engineering applications where real-time adaptation and robustness to dynamic
environmental uncertainties is of vital importance [35]. Replicator dynamics represents a
mass M of players choosing strategies evolving in time. It is assumed that a finite set of pure
strategies S = {1, 2, . . . , n}, and the analysis is based on a payoff function associated with
the selected strategy. The population states are denoted by the vector x = [x1, x2, . . . , xn],
and the population states are constrained by all possible distributions of individuals among
the strategies given by the simplex:

∆ =

{
x ∈ Rn

≥0|
n

∑
i=1

xi = M

}
(6)

The agents playing strategy i obtain a reward depending on the population state.
A fitness function representing the reward for agents playing strategy i is defined as
fi : ∆ 7→ R for i ∈ S . The replicator dynamics is interpreted as an evolutionary game where
the proportion of the population of agents playing the most successful strategy (higher
payoff than the average) is increasing. Agents dynamically compare their fitness function
with the other agents’ performance through the average fitness function of the whole
population f̄ = ∑n

i xi fi, also understood as the expected average payoff of the population.
The replicator dynamics associated with each population of agents playing the i-th strategy
is given by:

ẋi = xi( fi(x)− f̄ (x)), for all i ∈ S . (7)

As mentioned, the solution concept of the replicator dynamics is an equilibrium, and
the Nash equilibrium is the preferred solution concept in population games. Let F be a
population game: the Nash equilibrium set is defined as:

PNE(F) = {x∗ ∈ ∆ : x∗i > 0⇒ fi(x∗) ≥ f j(x∗), ∀ i, j ∈ S}.

All agents obtain the same profit in a Nash equilibrium. An important type of popula-
tion games is potential games. Potential games can be defined as follows.

Definition 5. Let F : Rn
+ 7→ Rn be a vector of fitness functions with positive population game

payoffs. Let V : Rn
+ 7→ R be a continuously differentiable function and the following condition hold,

∇xV(x) = F(x), ∀x ∈ Rn
+.

Then, F is a full potential game.

In potential games, a single scalar-valued function is associated with the game, called
the potential function, which retains key information about the payoffs of the agents. If
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there exists a continuously differentiable potential function V : Rn
+ 7→ R, then a potential

game satisfies:

∂V(x)
∂xi

= fi(x) for all i ∈ S , (8)

and (8) also implies that F must satisfy the external symmetry:

∂ fi
∂xj

=
∂ f j

∂xi
for all i, j ∈ S . (9)

In potential games, the Nash equilibrium is related to local maximizers of potential
functions [34]; this is stated in the following lemma.

Lemma 3. In a full potential game, the Nash equilibrium is equal to the solution of the first-order
KKT conditions of the maximizing V(x) subject to a feasible set ∆.

Finally, an important result on the stability of population games claims that a popula-
tion game satisfying (8) is a stable game if the potential function V is concave [34].

3.2. Stackelberg Population Games

One of the main concepts in the design of population games is the selection of the
fitness functions such that the replicator dynamics (7) can be used as a distributed optimiza-
tion algorithm. In order to obtain fitness functions to accomplish a stable and convergent
solution, we use the following Lemma 4, which characterizes an optimal solution for the
lower-level optimization problem (1) satisfying Assumption 2 [44].

Lemma 4. A solution of the bilevel optimization problem (1) (λ∗, x∗), with λ∗ ∈ Λ and x∗

belonging to the feasible set ∆, is an optimal solution for the population game if and only if
∇xi F2(x∗i ) = ∇xj F2(x∗j ) for all i, j ∈ S .

Definition 6. Let Λ be the set of strategies for the leader agent and X ∈ Rn be the set of strategies
for the follower population. Let the best response function for the follower population br f (λ) be
defined as:

br f (λ) = {x ∈ ∆|xi > 0 =⇒ fi(λ, x) ≥ f j(λ, x), ∀i, j ∈ S}.

A leader strategy λ∗ ∈ Λ and a follower population strategy vector x∗ are in a Stackelberg
population equilibrium if the following conditions hold:

(a) maxx∈br f (λ∗) F1(λ
∗, x) ≤ maxx∈br f (λ)

F1(λ, x);

(b) x∗ ∈ br f (λ
∗).

Definition 7 (Differential Stackelberg population equilibrium (DSPE)). The joint strategy
(λ∗, x∗) ∈ Λ× ∆ is a differential Stackelberg population equilibrium if the following KKT condi-
tions hold:

(a) First-order: DλF1(λ
∗, x∗) = 0, ∇xF2(λ

∗, x∗) = 0;
(b) Second-order: D2

λλF1(λ
∗, x∗) > 0, ∇2

xxF2(λ
∗, x∗) > 0.

For the leader upper-level optimization problem (1), we propose a continuous-time
gradient descent flow using the concept of the directional derivative, also known as
total derivative obtained following the traditional ideas of gradient dynamics for convex
optimization problems [45] as follows:

Σ1 : λ̇ = −DλF1(λ, x). (10)
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For the lower-level optimization problem, we propose the follower population game
dynamics using the replicator dynamics (7). In order to guarantee the convergence prop-
erties of the population games, a full potential game introduced in Definition 5 is chosen
using the objective function F2(λ, x) as the potential function, i.e., V(λ, x) = −F2(λ, x).
Notice that the potential games are related to maximizing the potential function V(x), and
in this case, we seek to minimize, so we convert the problem. With this potential function,
we can obtain the fitness function using (8), yielding for each agent i:

fi(λ, x) =
∂V(λ, x)

∂xi
= −∂F2(λ, x)

∂xi
,

and since F2(λ, x) is separable, then the fitness function for each agent i is:

fi(λ, x) = − ∂

∂xi

(
n

∑
i=1

Ji(λ, x)

)
= −∂Ji(λ, x)

∂xi
. (11)

The average fitness function f̄ (λ, x) is then:

f̄ (λ, x) = −
n

∑
i=1

xi
∂Ji(λ, x)

∂xi
. (12)

With fitness functions for each agent (11) and the average fitness function (12), the
replicator dynamics is the lower-level flow as follows:

ẋi = xi
(

fi(λ, x)− f̄ (λ, x)
)
, ∀i ∈ S .

In compact form, we can define the vector of fitness functions f (λ, x) = [ f1, f2, . . . , fn]. We
obtain the replicator dynamics in compact form as:

Σ2 : ẋ = x ·
(

f (λ, x)− f̄ (λ, x)
)
. (13)

We used the notation “·” to indicate an elementwise product between vectors. In this
leader–follower population dynamics, we have a nested interaction model in two time
scales, which could slow down the convergence of the dynamics. In order to solve these
limitations in two time scales, we propose to use the prediction-sensitivity conditioning
concept presented in the next section.

3.3. Predictive-Sensitivity for Stackelberg Population Games

In this section, we introduce the predictive-sensitivity conditioning approach to deal
with the bilevel optimization problem (1). The regularity introduced in Assumption 2
guarantees that the bilevel problem has at most one solution, and this also ensures that
the problem is well posed. Then, it is possible to define the sensitivity of x∗. The main
idea is represented in Figure 1, where it is shown that the sensitivity matrix is used to
integrate in one single level the dynamics associated with the upper-level by the gradient
dynamics (10) and the lower-level by the replicator dynamics (13), respectively.

Considering Assumption 2, the analytic expression of (4) is well defined at any point
(λ, x), so defining an extended sensitivity for any point (λ, x) is possible as:

Sx
λ(λ, x) := −

(
∇2

xxF2(λ, x)
)−1
∇2

xλF2(λ, x), (14)

while:
Sx

λ(λ, x)|(λ,x∗(λ))= ∇λx∗(λ).
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is satisfied. The total derivative using the sensitivity matrix can be extended to any point
(λ, x) as:

DλF1(λ, x) := ∇λF1(λ, x)

+ Sx
λ(λ, x)>∇xF2(λ, x).

(15)

Figure 1. Predictive-sensitivity conditioning interconnection.

The two-level interconnected dynamical system represented by Σ1 and Σ2 can be
integrated into a single time scale using the sensitivity matrix (14) and the total deriva-
tive (15). A feed-forward term is added as the predictive-sensitivity conditioning based
on the optimization sensitivity to the follower population dynamics Σ2 (13) to predict the
dynamics of the leader gradient descent dynamics Σ1 (10).

Based on a recent work [37], we used a predictive-sensitivity conditioning intercon-
nection between the two-time-scale systems without the need for the time scale separation.
This interconnection preserves the optimal solution (λ∗, x∗(λ∗)) and its convergence prop-
erties. A sensitivity-based conditioning matrix Sx

λ is used as the interconnection between
both subsystems as shown in Figure 1, and it is defined as follows.

Definition 8. Consider the extended sensitivity Sx
λ(λ, x) defined in (14): the conditioning matrix

is defined as:

S =

[
I 0

−Sx
λ(λ, x) I

]
(16)

where I is an identity matrix of the appropriate dimension.

Using Definition 8, we obtain the predictive-sensitivity Stackelberg learning dynamics:

S
[

λ̇
ẋ

]
=

[
I 0

−Sx
λ(λ, x) I

][
λ̇
ẋ

]
=

[
−DλF1(λ, x)

x ·
(

f (λ, x)− f̄ (λ, x)
)] (17)

It is observed that the extended sensitivity term modifies the dynamics of the follower
population as:

ẋ = x ·
(

f (λ, x)− f̄ (λ, x)
)
− Sx

λ(λ, x)DλF1(λ, x),

where the first term drives the population state x to the optimal solution x∗(λ), while
the predictive-sensitivity feed-forward term anticipates the variation of x∗(λ) due to the
dynamics λ̇. The complete predictive-sensitivity Stackelberg population flow is given by:

λ̇ = −DλF1(λ, x)

ẋ = x ·
(

f (λ, x)− f̄ (λ, x)
)
− Sx

λ(λ, x)DλF1(λ, x)
(18)
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In the next result, the relation between the differential Stackelberg population equi-
librium concepts defined in Definition 7 and the stability of the predictive-sensitivity
Stackelberg population dynamics is established (18).

Theorem 1. The joint strategy (λ∗, x∗) is a DSPE of the Stackelberg population game (1) satisfying
the condition in Definition 7 if and only if it is a locally exponentially stable point of the predictive-
sensitivity Stackelberg learning dynamics (18).

Proof. Consider that (18) satisfies Assumptions 1 and 2. Since we are proving local stability,
it is sufficient to prove that the eigenvalues of the Jacobian of the system at the joint strategy
(λ∗, x∗) have a strictly negative real part [36]. For this, observe that by Definition 7, if the
point (λ∗, x∗) is a DSPE, then the second-order conditions are satisfied at this point, and
in addition, it has been proven that if the population dynamics are a full potential game,
this implies that the Stackelberg follower population (see Definition 6) is asymptotically
stable [35], then it is guaranteed that the Jacobian would have a strictly negative part at
point (λ∗, x∗). Conversely, if a point (λ∗, x∗) of the system (18) is locally exponentially
stable, then the corresponding Jacobian must have eigenvalues with a negative real part;
thus, it is a strictly local solution satisfying the conditions in Definition 7.

In the next section, an interesting application to the coordination of distributed energy
resources via pricing dynamics is presented to illustrate the theoretical results of the
proposed framework.

4. DER Coordination via Pricing Dynamics

A distributed energy resource (DER) coordination problem via pricing dynamics [6] is
presented to illustrate the applicability of the proposed predictive-sensitivity Stackelberg
learning dynamics. A dynamic transactive control involving a feedback loop is imple-
mented to solve a bilevel optimization problem via a pricing dynamics. The DERs consist of
a set of distributed generators (follower population) interacting with a distribution system
operator (DSO) (leader) to reach a Stackelberg equilibrium.

Consider a set of distributed generators G = {1, 2, . . . , M}: each distributed generator
has a payoff function:

Ui(λ, pi) = λpi − Ci(pj) (19)

where pi is the amount of power produced by each generator i (this power is stacked in a
vector as p = [p1, p2, . . . , pM]>), λ is the energy price defined by the DSO, and Ci(pi) is the
cost function for producing energy for each generator. The cost function is traditionally
chosen as a convex quadratic function such as Ci(pi) = 1/2αi p2

i + βi pi, where αi, βi are
the cost coefficients. The power resource allocation is constrained by the power balance
equation ∑M

i=1 pi = PL, where PL is the total power demand of the distribution network.
On the other hand, the main goal of the pricing problem is to determine the market

clearing price (MCP) for the energy producer. The DSO solves an optimization problem
that maximize the welfare of the population over a market cycle. It is observed that
the coordination scheme is cast as a Stackelberg game, which is a challenging bilevel
optimization problem. In the objective function, it is assumed that the DERs will have
chosen the optimal generation profile for a particular price λ. The optimal market clearing
price is then obtained by solving the following bilevel optimization problem:

max
λ

U(λ, p) =
M

∑
i=1

Ui(λ, pi)

s.t. p = arg max
p
{U(λ, p) :

M

∑
i=1

pi = PL}.
(20)
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Since we posed the proposed dynamics for minimization problems, we define the
objective functions as F1(λ, p) = F2(λ, p) = −U(λ, p) = ∑M

i=1(Ci(pj)− λpi). Following
the population game’s description, the fitness function for each generator is given by:

fi(λ, p) =
dU
dpi

=
dUi
dpi

= λ− (αi pi + βi).

In order to obtain the pricing dynamics, we need the sensitivity matrix (14):

Sx
λ(λ, x) = −

(
∇2

xxF2(λ, x)
)−1
∇2

xλF2(λ, x)

= −


−α1 0 · · · 0

0 −α2 · · · 0
...

...
. . .

...
0 0 · · · −αM


−1

1
1
...
1



=


1/α1
1/α2

...
1/αM


With this sensitivity matrix, we can obtain the total derivative (15) for the gradient

descent for the upper-level pricing variable λ. Now, we are ready to introduce the predictive-
sensitivity Stackelberg learning dynamics (18) for the DER coordination problem:

λ̇ =
M

∑
i=1

pi +
M

∑
i=1

(
pi +

βi
αi
− λ

αi

)
=

M

∑
i=1

(
2pi +

(βi − λ)

αi

)
,

ṗ = (1/PL)p ·
(

f (λ, p)− f̄ (λ, p)
)
− 1

α

(
M

∑
i=1

pi +
M

∑
i=1

(
pi +

βi
αi
− λ

αi

))
,

(21)

where 1
α is the vector with elements 1/αi.

The distributed generators’ (DGs) capacities and coefficients for the simulation ex-
periments are presented in Table 1. The numerical experiments were simulated in a IEEE
9-bus test feeder adapted from [41], where each DG was modeled using a voltage–source
inverter with local controllers. In Figure 2 is presented the distribution network with three
distributed generators and three loads. The test case scenario is as follows. Initially, the
system has to supply a total load of PL = 4950 W, corresponding to three loads as L1 = 1500
W, L2 = 1250 W, and L3 = 2200 W in the distribution network. The distributed generators
in the distribution network dynamically interact with each other and with the DSO to
reach the optimal solution via a pricing dynamics that determines the optimal price and
the optimal energy allocation for each DG based on the proposed predictive-sensitivity
Stackelberg learning dynamics (18). Then, at t = 0.8 s of simulation, an additional load is
added to the grid, summing up the total to PL = 5850 W.

In Figure 3 is presented the frequency response. It is shown that the system maintains
the frequency stable around the reference of 60 Hz. The variations of the load are observed
as small overshoots, but the system returns to the equilibrium point with a rapid response.
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Figure 2. Distribution network with DERs adapted from an IEEE 9-bus test feeder.

Table 1. System parameters’ simulation.

Distributed Generators

i pi pi αi βi

1 6000 (W) 200 (W) 2.5 3.5
2 5500 (W) 200 (W) 2.5 3.6
3 4000 (W) 200 (W) 1.9 2.5

Figure 3. Frequency response of the distribution network.

In Figure 4 is presented the power behavior of each DG. It is shown that the less
expensive DG3 (with small α) dispatches more power to the system, while the more
expensive DG2 (with the bigger α) dispatches less power. The response to variations of the
load (see Figure 5) at t = 0.8 s is observed, and the generators dynamically adapt to the
new demand with a small overshoot.
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Figure 4. Power response of each DG.

Figure 5. Total load demanded response.

Finally, Figure 6 presents the price dynamics λ(t). Behavior towards the stable point
is observed and, then, the dynamic response to the variation of the load at t = 0.8 s, as
expected.
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Figure 6. Price dynamics response.

5. Conclusions

To solve bilevel optimization problems between a leader and a follower population,
we proposed two dynamical systems interconnected by a predictive-sensitivity condition-
ing matrix in a single time scale. For the leader optimization problem, we developed
a gradient descent algorithm based on the total derivative, and for the followers’ opti-
mization problem, we used the population dynamics framework to model a population
of interacting strategic agents. We extended the concept of the Stackelberg population
equilibrium to the differential Stackelberg population equilibrium for population dynamics.
Theoretical guarantees for the stability of the proposed Stackelberg population learning
dynamics were presented. A distributed energy resource coordination problem was solved
via a pricing dynamics based on the proposed approach. Some simulation experiments
were presented to illustrate the effectiveness of the framework. As future work, several
research avenues are available. For instance, extensions of this work to include uncertainty
would be very useful for real-life problems.
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