
A Power-Aware Approach for Online Test
Scheduling in Many-Core Architectures

Mohammad-Hashem Haghbayan, Student Member, IEEE, Amir-Mohammad Rahmani, Member, IEEE,
Antonio Miele, Member, IEEE, Mohammad Fattah, Student Member, IEEE, Juha Plosila, Member, IEEE,

Pasi Liljeberg, Member, IEEE, and Hannu Tenhunen, Member, IEEE
Abstract—Aggressive technology scaling triggers novel challenges to the design of multi-/many-core systems, such as limited power budget
and increased reliability issues. Today’s many-core systems employ dynamic power management and runtime mapping strategies trying to offer
optimal performance while fulfilling power constraints. On the other hand, due to the reliability challenges, online testing techniques are
becoming a necessity in current and near future technologies. However, state-of-the-art techniques are not aware of the other power/
performance requirements. This paper proposes a power-aware non-intrusive online testing approach for many-core systems. The approach
schedules software based self-test routines on the various cores during their idle periods, while honoring the power budget and limiting delays in
the workload execution. A test criticality metric, based on a device aging model, is used to select cores to be tested at a time. Moreover, power
and reliability issues related to the testing at different voltage and frequency levels are also handled. Extensive experimental results reveal that
the proposed approach can i) efficiently test the cores within the available power budget causing a negligible performance penalty, ii) adapt the
test frequency to the current cores’ aging status, and iii) cover available voltage and frequency levels during the testing.

Index Terms—Online testing, functional testing, dark silicon, power capping, many-core systems, aging, lifetime reliability

1 INTRODUCTION

RECENT advances in technology, fabrication processes
and computing architecture have enabled the integra-

tion of some hundreds of cores in the same chip, thus lead-
ing to the design of many-core architecture. However, such
aggressive trend presents a relevant drawback related to
the increasing power consumption issues. In fact, power
has become a first-class constraint in many-core system
design due to thermal issues and the emergence of the dark
silicon era [1]. Dark silicon denotes the phenomenon that,
due to thermal and power constraints, the fraction of tran-
sistors that can operate at full frequency is decreasing with
each technology generation. According to predictions,
designers will face more than 90 percent dark area within
five years if this phenomenon is not properly mitigated [2].

On the other hand, the technology scaling is causing also
a reliability challenge. Indeed, the transistor shrinking is
leading to devices that are more susceptible to internal

defects, variability phenomena, and wear-out and aging
process [3]. The complexity of large many-core architec-
tures, the high failure probability of modern chips, and the
high stress to reduce time-to-market have made the in-field
test and verification process increasingly challenging [4]. In
such a scenario, in order to detect the occurrence of perma-
nent failures, especially due to the aging effects, online
testing represents a viable solution to cope with the limita-
tions of in-field test and verification process. Moreover,
since such architectures are usually not provided with spe-
cific Built-in-Self-Testing (BIST) circuitry (e.g., [5]), software
based self-test (SBST) has been selected as a promising solu-
tion (e.g., [3], [6]). However, two different issues have to be
taken into account: 1) the considerable workload to be exe-
cuted which requires strict performance levels, thus leading
to the necessity of a transparent test scheduling, and 2) the
necessity to consider the power consumption in testing
activities, thus leading to a power-aware testing approach [6],
[7]. As a conclusion, we claim that in the scenario of the
dark silicon era there is the quest for a power-aware test sched-
uling approach to detect at runtime permanent faults occur-
ring in many-core architectures while not degrading the
overall system performance.

An interesting aspect of modern many-core systems is
that they are generally characterized by a highly variable
and heterogeneous workload which makes the amount of
dark area on the chip (i.e., total chip utilization) highly valu-
able. Furthermore, due to the emergence of dim silicon [8]
as a way to minimize dark areas and increase the number
of active cores, the system might reach up to 100 percent uti-
lization of its resources (if the majority of running applica-
tion are not performance-demanding) by making use of
advanced power management features such as Dynamic

� M.-H. Haghbayan, M. Fattah, J. Plosila, and P. Liljeberg are with the
Embedded Computer and Electronic Systems Laboratory, Department of
Information Technology, University of Turku, Turku 20520, Finland.
E-mail: {mohhag, mofana, juplos, pakrli}@utu.fi.

� A.-M. Rahmani and H. Tenhunenis are with the Embedded Computer and
Electronic Systems Laboratory, Department of Information Technology,
University of Turku, Turku 20520, Finland, and with the Department of
Industrial and Medical Electronics, Royal Institute of Technology (KTH),
Kista 16440, Sweden. E-mail: amirah@utu.fi, hannu@kth.se.

� A. Miele is with the Dipartimento di Elettronica, Informazione e Bioingeg-
neria, Politecnico di Milano, Milano 20133, Italy.
E-mail: antonio.miele@polimi.it.

Manuscript received 1 Feb. 2015; revised 20 July 2015; accepted 27 Aug. 2015.
Date of publication 22 Sept. 2015; date of current version 10 Feb. 2016.
Recommended for acceptance by C. Bolchini, S. Kundu, and S. Pontarelli.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. To access the final edited and published work see http://dx.doi.org/10.1109%
2FTC.2015.2481411

Voltage and Frequency Scaling (DVFS) [9]. This makes the
behavior of such systems to be highly related to the charac-
teristics of theworkloadwhere at differentmoments it is pos-
sible to have wide dark areas with small resource utilization,
due to the fact that some other group of cores are set on a
high voltage-frequency (VF) level thus reserving the overall
power budget, or small dark areas with large resource utili-
zation by globally setting a very low voltage-frequency level.
Therefore, if suitable scenarios are intelligently detected
(when there is enough room in power budget), such tempo-
rary dark areas can be favorable targets for online testing in
order to improve the system reliability [10], [11].

Recent studies show also that the reliability of systems
equipped with DVFS knobs should be ensured at multiple
voltage-frequency settings as faults are manifested in differ-
ent ways in the various configurations [12]. Therefore, the
test scheduling method needs to be adapted to test the cores
in different voltage-frequency levels.

Finally, there are several studies (e.g., [13], [14]) that pro-
pose statistical models to estimate the aging trend and the
lifetime reliability during the system lifetime. Such models
are used, for instance, in Dynamic Reliability Management
(DRM) approaches [15] to prolong the overall lifetime of the
system. The basic idea is to drive the runtime decisions on
architectural parameters tuning (such as DVFS) and work-
load distribution to avoid an excessive stress of the cores
and consequently slowing down the aging process. In fact,
the estimated aging trend is also an effective metric to tune
at runtime how frequent an online testing routine should be
executed to avoid overtesting of various cores.

Given these motivations, in this paper, we propose a
power-aware online testing strategy for many-core systems
in the dark silicon era. Our dark silicon aware test strategy
benefits from a non-intrusive online test scheduling algo-
rithm using SBST techniques to test idle cores in the system
while respecting the system’s power budget. We define a
reliability metric called test criticality factor that represents
the priority to test the cores in many-core systems; more-
over, we compute such metric also on the basis of the cores’
aging status. Further, we propose an efficient test schedul-
ing algorithm that chooses near optimal possible voltage-
frequency settings considering the system’s power budget.

The main contributions of this paper, which is major
extension of our recent work published in [6], are:

� An enhanced power-aware online test scheduling
method with explicit consideration of limited power
budgets in many-core systems using runtime appli-
cation mapping.

� An efficient test scheduling method for testing the
cores in different voltage-frequency settings.

� Extending the test criticality metric used in [6] with a
lifetime reliability estimation to achieve accurate
fault occurrence probability as a priority to test the
cores, and to balance the regularity of the test accord-
ing to the aging status of the cores.

� Modeling and evaluation of a many-core system
using various current and future technology nodes
(32, 22, and 16 nm) for different die area budgets to
demonstrate the efficiency of the proposed approach
in the dark silicon era.

The rest of the paper is organized as follows: Section 2 presents

the background on the considered system architecture. Section 3

discusses the related work and motivations of this paper, while

Section 4 describes suitable scenarios for online testing by

means of a running example. The proposed dark silicon aware

online testing framework is presented in Section 5, while

Section 6 proposes an enhancement to handle testing at differ-

ent voltage-frequency levels. Section 7 discusses the experimen-

tal results demonstrating the efficiency of the proposed

approach, and, Section 8 draws the conclusions.

2 BACKGROUND ON THE ADOPTED MANYCORE

ARCHITECTURE

The general model of the architectural platform targeted in
this paper consists of a 2D-mesh-based grid of processing
cores whose activity is managed by a controller running on
the host machine. Each node within the architecture is an
independent processing core, and different cores communi-
cate by exchanging data through a packet-based message
communication protocol. The system executes applications
that are generally organized in a set of interdependent tasks.
Therefore, each application is modeled in terms of a task
graph, where nodes represent the various activities, and
directed edges represent control and data dependencies
between pairs of tasks. In order to execute an application,
each task is dispatched (or mapped) on a specific core that
will execute it; in other words, we may also say that a core
has to be allocated for the execution of the task. Finally, to
satisfy the specified dependencies, the task can be executed
only when all input data is available on the core. Fig. 1
shows an example of 9� 7 architecture running four differ-
ent applications.

The working scenario where such systems are commonly
employed is generally characterized by a highly variable
workload. Indeed, applications arrive with an unknown
trend (depending on the requests of the various users), and
may have different characteristics (in terms of the size and
shape of the task graph), and requirements (for instance on
the performance or on the amount of the processed data).
As an example in Fig. 1, applications are annotated with
realtime/non-realtime requirements. In order to deal with
this evolving scenario, runtime mapping (RTM) is generally
performed by means of a specific software unit running on
the host machine. The RTM unit is in charge of receiving the

Fig. 1. A NoC-based many-core system with mesh topology supporting
DPM and RTM.

request of execution arriving from the users, and dispatch-
ing the application tasks on the available cores to satisfy the
specified performance requirements.

On the other side, modern multi-/many-core systems
present non negligible power issues due to physical limits
in circuit cooling, packaging, and power delivery. In partic-
ular, during its activity the system is subject to a given
power budget, known as power capping, which may prevent
the system to use all available cores at the same time. For
instance, Fig. 1 shows that some cores are switched off (i.e.,
dark) shown by gray color. As shown in Fig. 1, such budget
may be defined at design time (i.e., Thermal Design Power,
TDP, [1]), or dynamically managed at run-time with another
feedback loop, such as Thermal Safe Power (TSP [16], [17]).
Moreover, during the system activity, it may happen that
the set of applications to be executed does not demand high
operating frequencies, and therefore it is possible to use the
total chip utilization at a low voltage-frequency level, leav-
ing no dark area on the chip. However, when computation-
ally intensive applications are demanding to meet certain
deadlines for execution, the active cores need to work at a
high voltage-frequency level and, therefore, may consume
larger power; as a consequence, the other cores will have to
stay dark for some time (i.e., temporarily) due to the lack of
power budget. This example shows that the dynamic and
heterogeneous nature of the workload makes the amount of
dark area on the chip highly variable, and, therefore, shows
the necessity of a dynamic power management (DPM).

The power budget is generally managed by exploiting
on-chip power sensors as feedback for DVFS and power gat-
ing techniques. Fig. 1 shows that a DPM Unit is placed side
by side to the RTM Unit to optimize at runtime applications
requirements (in particular, on the performance) while ful-
filling the power limit. As proposed in the literature [18],
[19], [20] and shown in the figure, the DPM Unit features a
feedback-based control mechanism to manage the power
using per-core DVFS or per-core power gating (PCPG). The
unit monitors the total power consumption of the system;
whenever, the system power consumption violates the
power budget, the controller reduces the power by acting
on the two available knobs [18], [19], [21]. To support this
solution, let us mention that various modern devices (such
as the Intel Single-chip Cloud Computer (SCC) [21] and the
Haswell Xeon 5 [22]) have been equipped with sensors for
measuring current intensity, power and energy consump-
tion, and knobs for DVFS and power gating of each core/
cluster or at least the total chip.

3 RELATED WORK AND MOTIVATIONS

Online periodic error detection using functional testing tech-
niques has received an increasing attention in multi-/many-
core system testing [23]. Indeed, since such architectures are
generally employed for the acceleration of computational
intensive applications, the relevant aspect is the minimiza-
tion of the overhead of online error detection activities on the
overall system performance [24]. However, none of the state-
of-the-art online error detection techniques consider power
budgeting in runtime. They are actually not power-aware.

It should be noted that power-aware testing is not to be
confused with power-constrained testing. Power-constrained

testing is an off-line process focusing on power consumption
minimization during test process. There are several studies
on power-constrained and thermal-aware test scheduling
techniques for test application time (TAT) minimization in
multi-/many-core systems [25]. Various methods, such as
2D/3D rectangular packing models [26] or test scheduling
graphs [27], are used to achieve optimal TAT. The vital fact in
power-constrained testing is that power consumption of the
single core during test process is generally greater than in nor-
mal operation mode [28]. Indeed, core testing process typi-
cally results in considerably higher circuit activity rate,
compared to normal mode operation, hence, causing above
normal power dissipation. This high power consumption
generates extra temperature that can negatively affect the reli-
ability of testing [28]. However, in contrast with power-con-
strained testing, in power-aware testing the current power
consumption feedback of the system is used to manage the
online test application at runtime and to ensure that the total
system power budget is not violated.

Recently, there have been some contributions in testing
multi-core and many-core systems with advanced static
and dynamic power management capabilities such as
PCPG and DVFS. These efforts can be divided into two
main categories 1) techniques which test the system includ-
ing power switches to ensure that it properly works at dif-
ferent voltage-frequency settings [29] and 2) contributions
in which associated hardware for power management is
made use of to control power dissipation during the test
process while reducing the TAT [30]. Most of the techniques
in these two categories have been proposed for the offline
testing process of DPM-based systems. Even though we can
find a limited number of online testing methods in these
two categories, they do not yet consider any power feedback
from the system at runtime and instead use a pre-defined
dedicated power budget for testing. An example of power-
aware optimization of the SBST has been presented in [31],
where the authors propose an optimal approach to test the
L1 cache in microprocessors considering power profile.
However, this work is not either fully power-aware as the
authors use a pre-defined power model of the microproces-
sors for different applications, which lacks an online power
feedback from the system.

There are two different ways to perform online testing in
many-core systems: intrusive and non-intrusive [3]. In
intrusive testing, the normal system operation is interrupted
and the cores, or a subset of them, are reconfigured to test
mode at runtime, and then run the test program. In non-
intrusive testing, each core executes the test program indi-
vidually whenever the core is in idle state. As mentioned
before, the power consumption needed for the test purpose
is considerably higher than the power consumption of the
system in the normal operation mode. As the power budget
of the system is limited specially in the dark silicon era, it is
not possible to perform a fully parallel intrusive testing as
the power consumption can easily exceed the available bud-
get and endanger the chip reliability. Furthermore, as the
system is concurrently running multiple independent appli-
cations with different requirements, interrupting all or
some of these might lead to deadline miss for some applica-
tions. Due to these facts, in this paper, we focus on non-
intrusive testing while honoring power budget.

Due to these motivations, we claim that online testing is
gradually reshaping to power-aware online testing in the dark sili-
con era, especially for many-core systems. The main ground for
this statement is that due to thermal and power constraints,
the fraction of transistors that can operate at full frequency
is decreasing with each technology generation. This high-
lights the fact that power budget is an extremely crucial
resource in those technologies where the dark silicon phe-
nomenon is more challenging to address (e.g., 22 or 16 nm).
In such technologies, a many-core system demands an effi-
cient power-aware online testing method capable of mini-
mizing the usage of power for the online testing purpose. In
other words, the online testing method should have the
lowest negative impact on the system performance by effi-
ciently using the power budget.

4 ONLINE TESTING SUITABLE SCENARIOS

We performed an extensive investigation on a many-core
system using DPM and RTM to identify the most appropri-
ate moments when the online testing can be executed with a
minimum negative (often zero) impact on the overall sys-
tem performance. The outcome of this analysis has been a
taxonomy of the frequent situations of the many-core sys-
tem running dynamic workloads presented in Fig. 2. In
each scenario, the state of the system (i.e., current power
consumption of the system, allocated cores to different
applications and idle cores, size of the application requested
to be mapped if there is any) in a specific time is shown.
Moreover, the related power consumption graph is shown,
also specifying the given power budget by means of a dot-
ted line. In each situation, in order to run a non-intrusive
online testing application on the system, the candidate core

to be tested should be unallocated (i.e., idle/dark), and the
power consumption required for the test purpose should
not cause a violation of the available power budget. These
scenarios are commented in the following paragraphs.

Scenario (a). At time t1, the system is executing three
applications with strict performance requirements. In this
scenario, the active cores are set to a high frequency-voltage
level thus leading the overall power consumption to be too
close to the available budget and forcing the other cores to
be dark. In this case, although there are idle cores that can
be tested without affecting the nominal activities of the sys-
tem, there is not enough available power budget to be dedi-
cated to online testing.

Scenario (b). At time t2 all the cores have been allocated
for the execution of the eight running applications without
performance requirements. In this case it is possible to set
the dim area to the 100 percent of the available resources.
Consequently, even though there is an available amount of
power budget for the testing activity, it cannot be executed
in a non intrusive way since all cores are busy. This scenario
can happen when the running applications are not perfor-
mance-demanding.

Scenario (c). At time t3, the system is almost unloaded,
since few applications are running and the power consump-
tion is quite low. This is the best scenario, since the online
testing activities can be executed in a transparent way. In
fact, we can allocate idle cores to the online testing applica-
tion; at the same time the system performance is not
degraded by the testing activities because the available
power budget is used in an efficient way.

Scenario (d). At time t4, the RTM Unit receives the request
to execute an application composed of eight tasks. How-
ever, the dynamic mapping strategy [32] decides that it is

Fig. 2. Frequent scenarios regarding resource and power availability for test.

not convenient to immediately execute the applications; in
fact, even if there is an available power budget, the system
presents a high dispersion of the idle cores that would
imply a inefficient choice in terms of performance and
energy consumption due to the communication costs.
Therefore, since the RTM Unit will wait for a contiguous
region composed of at least eight cores, the system can
employ the available power budget to run the test process
on the idle cores. Dispersed cores in such scenarios are the
best candidates for being non-intrusively tested without
any degradation of the system performance.

Scenario (e). At the time t5, the RTM Unit receives the
request to execute an application composed of nine tasks. In
this scenario, even if the available power budget suffices for
the execution of the application, there are not enough cores
available in the system to accommodate the arrived applica-
tion. Once again, the available power budget can be exploited
for non-intrusive online testing of the available cores.

Scenario (f). At time t6, the RTM Unit receives the request
to execute an application composed of nine tasks, which can
be potentially executed in that moment due to the availabil-
ity of more than nine idle cores. Unfortunately, according to
the pre-mapping power estimation result (performed with
specific techniques, such as [18]), the available power budget
is not large enough to support the arrived application, and
on the other hand, the DPM unit is not able to reduce the
power consumption of the other applications currently run-
ning on the system due to their performance requirements.
This is also another situation in which the available power
budget can be used to test a number of unallocated cores.

There are two other additional consideration that can be
drawn.When it is possible to execute online testing (as in sce-
narios from (c) to (f)), it is also necessary to choose the candi-
date cores to be tested; in fact, the concurrent test of all the
idle cores generally overcomes the available power budget.
Moreover, as discussed above, testing activities have to be
performed with several voltage-frequency levels in order to
ensure the correct behavior of the system with the various
settings [12], [29]. Therefore, the testing application needs to
be executed with various voltage-frequency levels, each one
having a different power consumption/execution time
trade-off. As a result, in the scenarios (d), (e), (f), it is also pos-
sible to exploit such trade-off to accommodate the test appli-
cation with a low voltage-frequency setting on several cores
at the same time, or, when it is required, to run a single test
with a high voltage-frequency setting on a specific core.

A promising yet hidden finding can be also concluded
from the presented scenarios is the efficiency of non-intrusive
online testing in such systems. The DPM unit often deacti-
vates some cores in the system since the available power bud-
get does not suffice for the execution of the newly arrived
applications having strict performance requirements. How-
ever, an opportunistic online test scheduling method can
take advantage of such situations and test the dark cores as
long as there is enough room in the remaining power budget.

5 DARK SILICON AWARE ONLINE TESTING
FRAMEWORK

The proposed dark silicon aware online testing framework
is presented in Fig. 3. It actually enhances the standard

runtime controller discussed in Section 2, with some addi-
tional components devoted to the execution of the test-
related activities.

The goal of the framework is to integrate the test execu-
tion in a transparent way with respect to the nominal activi-
ties of the architecture; in this way, it is possible to ensure
the reliability of the system by testing the cores when
strictly necessary, while limiting the performance overhead
of the executed applications. The basic idea of the proposed
approach is to test each core with a frequency proportional
to the stress it has been affected. If a core is frequently used
by the RTM Unit for the execution of the applications, it is
highly stressed and therefore needs frequent tests; on the
other side, if the core has been rarely allocated, it does not
require urgent testing in the near future. Therefore, using
information on the utilization of each core, a test scheduler
can considerably reduce the test time by avoiding over-test-
ing the under-utilized cores in the system. This aspect is
highly relevant in the considered working scenario because
of the discussed power and performance issues.

In this perspective, the proposed framework contains a
novel software component, running on the host machine,
that is called Test Scheduling Unit (TSU) and is in charge of
the selection of the cores that needs to be tested and the
scheduling of the testing task on such cores. This unit will
work in a tightly-coupled way with the RTM Unit and the
DPM one to define the proper test scheduling. Moreover, a
utility module, called Reliability Monitor (RM), will provide
to the TSU information on the aging status of the processors
in order to drive the selection of the cores to be tested. In the
following sections, the various activities of the TSU and of
the RM will be discussed in details together with the inter-
nal modifications to the RTM Unit necessary to handle the
test information received by the TSU.

5.1 Monitoring of the Cores’ Utilization

A classical approach used in literature on online testing to
estimate the stress suffered by each core is to simply count
the number of instructions executed on a specific core. For
instance, the approach proposed in [23] schedules a test of a
core within the system every time the instruction counter
reaches a specified threshold (i.e., 10 M, 100 M, and 1 B
instructions); then after the test, the counter is reset.

Fig. 3. The system architecture including the online testing framework.

In literature, such count is called utilization metric, since it is
used to quickly estimate how much the core has been uti-
lized. It is worth mentioning that some of today’s platforms
are equipped with such utilization meter (UM) feature. As a
real platform in Intel SCC platform there exists hardware
performance counter to report the core’s utilization.

Therefore, in the considered framework, each core is
equipped with an Utilization Meter, that is a hardware
counter of the executed instructions; the counter is incre-
mented every time an instruction is executed and is reset
when the core is tested. The UM values of the cores are
organized in an M�N matrix, with the same dimension of
the architecture, and each value is identified as ai;j. Based
on the ai;j, the UM computes a test criticality parameter tcij,
also organized in a matrix with the same dimension, that
point out which is the core that is more urgent to be tested
at the next suitable time. The test criticality parameter is
defined according to the following formula:

tcij ¼ aij

d
� 1; (1)

where d is the threshold stating the number of executed
instructions that triggers the test execution. The value of the
threshold is tuned at run-time according to an estimation of
the current lifetime reliability of the core; the approach will
be presented later in Section 5.4.

According to this definition, tcij assumes a value (i.e., a
real number) between �1 and þ1. In this range, as long as
tcij is lower than 0:0, the corresponding core does not need
to be tested, since the aij value is still lower than the speci-
fied threshold d. Then, whenever tcij exceeds 0:0, it means
the corresponding core needs to be tested at the earliest pos-
sible moment. The UMs send tcij matrix to the TSU at a
fixed timing interval. In this way, the test request will be
interrupt-based rather than polling-based and redundant
packet generation on the system will be avoided.

Finally, when the testing process of the corresponding
core is started, the corresponding aij counter is reset to 0,
and consequently, the tcij value is re-updated to �1.

5.2 The Proposed Test-Aware Mapping Method

As discussed above, the TSU requires to test a core every
time its test criticality tcij becomes greater than 0:0. How-
ever, to run the test, the candidate core must be idle and
there should be enough power budget for the test applica-
tion. Therefore, to prepare the testing activities, the TSU
prevents the RTM Unit from allocating cores with
tcij > 0:0; in this way, unallocated cores can be later sched-
uled for testing in an appropriate time, when there is
enough available power budget.

At the same time, to achieve a high runtime performance,
the RTM Unit uses a strategy which maps the tasks of the
same application on a contiguous set of cores [33], [34]. In
this way, communication power and latencies are consider-
ably reduced. In our RTM Unit, such region of neighbor
cores is identified through the Squared Factor SFij (intro-
duced in [33]), a metric which counts the number of almost-
contiguous available nodes around a given node. However,
disabling the cores having tcij > 0:0may cause a dispersion
of the planned contiguous allocations. For instance, let us

assume that an application with 10 tasks has to be executed
on the system depicted in Fig. 1. As the SFij of the node
(4, 5) is 10, it will be selected to map the application onto its
surrounding nodes. However, if two cores of this region
have tcij > 0:0, the RTM Unit has to allocate some available
nodes from south-west region of the system which leads to
high dispersion.

To avoid such performance crippling dispersions, the
RTM Unit calculates a new SFij value by subtracting the
number of cores with tcij > 0:0 from the original SF value.
As a result, the new SFij value shows the number of avail-
able cores around a given core that are not candidate for
testing. For instance, the new SF value of the core in Fig. 1
will be newSFij ¼ 10� 2 ¼ 8. Thus the core will not be
selected as the first node for mapping an application with
10 tasks, but with eight tasks instead.

5.3 The Proposed Test Scheduling Method

The test scheduling algorithm determines the cores to be
tested among the list of candidates. In practice, due to limits
on the available power budget, it may not be possible to test
all the candidate cores at the same time. Hence, it is neces-
sary to define a ranking to assign a priority to the testing
activities. Indeed, the ranking should follow the test critical-
ity values. The higher the tcij is, the more critical to schedule
a testing application on that core. However, our analysis
shows that in the cases with close tc values, the cores with
vacant vicinity should be ranked higher for testing.

First, cleaning up regions of idle cores facilitates future
application mappings. Isolated cores with or without
tcij > 0:0 are, nevertheless, not suitable for being allocated.
Let us assume we test a core with busy neighbors instead of
the one with idle cores around. The allocation of isolated
(just tested) core leads to high dispersion of applications
(degrading the system performance). Whereas, the idle area
of cores is not cleaned up from cores with tcij > 0:0. Hence,
utilization of its cores leads to a dispersed mapping. More-
over, testing applications are power-hungry. We should
avoid placing them in proximity to each other or to other
running applications. Otherwise, testing several adjacent
cores together can cause high power densities, and conse-
quently thermal hotspots.

Based on the above, we tend to clean up regions of idle
cores (e.g., the dark region in Fig. 2c) from cores with
tcij > 0:0 when scheduling test routines. In other words,
when having two cores with similar tcij values, we prefer to
test the one which is more likely to be used in near future
allocations and is far from other running cores. As a metric,
SFij estimates the number of vacant cores around a given
core; i.e., the larger the SFij value of a core is, the higher the
number of idle cores around it. In summary, we define our
ranking parameter trij for each core:

trij ¼ tcij þ
ffiffiffiffiffiffiffiffiffi
SFij

p
total number of cores

; (2)

where SFij value is normalized to the total number of cores
in the system. Moreover, we used a square root of SFij value
to limit its impact to the cases where tcij values are too close

together. For instance, in case of equal tcij values in Fig. 1,
we rank cores ð3; 4Þ and ð4; 6Þ higher than the core ð7; 3Þ.

Algorithm 1 shows the pseudo-code for the selection of
the cores for the test scheduling. Do note that we further
control the negative impact of testing on system perfor-
mance. That is, the maximum number of cores that can be
simultaneously tested is limited by a given threshold, t#Test.
The motivation is that we have to cope with a highly evolv-
ing scenario: while there might be enough power at the
moment to test even more cores, this can change in near
future. Other applications might enter the system, or the
power demand and behavior of running applications might
change.

Algorithm 1. Selecting Cores for Test Scheduling

In predefined intervals:
1: if there is available resource and power for test then {// One

of the suitable scenarios shown in Fig. 2}
2: Sort available cores based on their trij values;
3: while there is enough power budget for test and # of

(cores under test) < t#Test do
4: Schedule the first core in the ranked list for testing;

Online-testing overhead. In general, test application time is
proportionally short compared to applications’ execution
time. However, regardless of the application types, the
overhead of the online testing is almost independent of the
applications’ execution time. The test criticality value of a
core (tcij) depends on the number of instructions executed
over time. In case of short applications, tcij becomes greater
than 0 only after execution of several applications. While, in
case of long applications, the allocated core might need to
go under test after the application execution. In this case,
the overhead would be again negligible compared to execu-
tion time of the application. Finally, it is worth noting that
the tcij value increases significantly in case of executing
very long applications. We leave it for future work to better
analyze this case and develop methods such as task migra-
tion to overcome the issue.

5.4 Aging-Aware Tuning of the Test Scheduling

The goal of the online testing approach is to detect at run-
time the possible occurrence of permanent faults mainly
due to device aging and wear-out phenomena, in order to
take some recovery or containment actions. It is worth not-
ing that, at the beginning of the lifetime of the system, when
the core is new, it is presumable that it will have a low fail-
ure probability, and, therefore, it is not strictly necessary to
test the core very frequently; however, as the core ages, this
necessity increases proportionally to the failure probability.
For this reason, we propose to test a core with a frequency
proportional to its aging status. To implement such idea, we
have defined an approach to dynamically tune the d thresh-
old, used in the test criticality computation, on the basis of
the reliability status of the core itself.

As shown in Fig. 3, the system contains a Reliability
Monitor, devoted to the computation of the aging status of
each core. The RM can be implemented in two different
ways: in hardware, by means of wear-out sensors, or in soft-
ware, by using a statistical lifetime reliability model relying

on the existence of per-core thermal sensors within the plat-
form.However, even if there is a large effort on the study and
the design of wear-out sensors (e.g., [35]), they are not cur-
rently integrated in commercial devices, while per-core ther-
mal sensors are commonly available (e.g., Intel Single-chip
Cloud Computer [21]). Therefore, Dynamic Reliability Man-
agement approaches proposed in the literature (e.g., [15])
generally implements the statistical lifetime reliability model
as a software process, and we acted in the same direction.
Indeed, we envision that the proposed testing framework is
used in conjunctionwith a DRM approach for the application
mapping; in this situation, the RMwould be already available
in the system and sharedwith the DRMUnit.

The RM has been implemented similarly to the one pro-
posed in [15], and based on the reliability model presented
in [13]. The internals of the monitor are here briefly pre-
sented; further details can be found in [13], [15]. The RM
implements the standard lifetime reliability model based on
a Weibull distribution [14]:

RðtÞ ¼ e
� t

aðT Þ

� �b

(3)

being t the current instant of time (generally measured in
hours), T the constant worst-case processor temperature
(Kelvin degrees), b the Weibull slope parameter, and aðT Þ
the scale parameter, or aging rate. Fig. 4a shows an example
of reliability curve of a core according to the technological
characterization presented in [13]; in such a situation the
Mean Time To Failure (MTTF) of the system (measured asR1
0 RðtÞ dt) would be around five years. The aðT Þ parameter

formulation depends on the considered wear-out mecha-
nisms, that are for instance the electromigration, the hot car-
rier injection (HCI), or the thermal cycling. Moreover,
several failure mechanisms can be combined in a single
aðT Þ formula by means of the Sum Of Failure Rate (SOFR)
approach. For simplicity, Equation (3) considers only a con-
stant temperature; this aspect may cause pessimistic non-
accurate evaluation of the reliability especially when the
designer aims at analyzing the reliability with respect to a
variable usage of the core. Therefore, as shown in [13], to
consider a varying temperature caused by changing in the
core utilization, Equation (3) has been enhanced in the RM
internal implementation as following:

RðtÞ ¼ e
�

Pi

j¼1
tj

ajðT Þ

� �b

; (4)

where tj represents the duration of each period of time with
constant steady-state temperature Tj up to time t (i.e.,

t ¼Pi
j¼1 ti).

Fig. 4. Relationship between reliability and d parameter.

The RM periodically analyzes the aging status of each
core to tune the related d value; similarly to the other infor-
mations, the reliability values of the various cores RijðtÞ and
the corresponding dijðtÞ are organized in a matrix that are
periodically transmitted to the RTU. To compute at runtime
the d threshold in Equation (1), to be used at time t, the RM
uses the following formula:

dðtÞ ¼ dRmax � dRmin

Rmax �Rmin
� ðRmax �RðtÞÞ þ dRmax : (5)

The above formula has been obtained by means of the stan-
dard equation of the line connecting two points. dRmax and
dRmin

are the two threshold set by the designer for the sce-

nario in which the system is new (typically Rmax ¼ 1), and
the system is assumed to be at the end of the lifetime (i.e.,
R ¼ 0:3 in Fig. 4b), respectively. If the reliability of the core
overcomes the Rmin value, the d value will remain constant
since it is non possible to decrease it below a given value (it
would mean to continue testing the core without actually
executing anything). As an example, Fig. 4b reports the
curve for the tuning of the d value specifying dRmax ¼ 1B
when the core is new (R ¼ 1), and dRmin

¼ 10 M when the

core has a reliability value R ¼ 0:3.

6 TEST SCHEDULING FOR DIFFERENT VOLTAGE-
FREQUENCY SETTINGS

Recent studies have shown that some specific faults mani-
fest themselves in a particular voltage-frequency settings.
For instance, in [36], it is shown that certain resistive bridg-
ing faults can occur at specific voltage levels. These studies
have concluded that multi-/many-core systems equipped
with DVFS feature should be tested at multiple voltage lev-
els to ensure that cores can operate reliably at different con-
ditions. However, testing at multiple voltage levels is more
challenging compared to single voltage level testing due to
repetitive test process, high switching time to change the
voltage of the core under test, and limited upper bound for
the maximum possible operating frequency for each voltage
level [37]. The trivial and straightforward solution to repeti-
tively run a test process for every voltage level drastically
increases the overall test application time, having a direct
impact on the overall system performance. Furthermore, at
low voltage levels, test process becomes slower resulting in
a longer TAT. In this section, we propose an efficient tech-
nique to test cores at different voltage levels with the aim of
providing a uniform testing probability for all the levels
while minimizing the performance overhead.

To apply online testing on cores running at different volt-
age levels, it is essential to use a test scheduling policy with
the minimum negative impact on system performance.

To this end, allocated cores(s) need to be detected and enough
power budget need to be available for the test purpose so that
the upper power consumption bound will not be violated.
However, as test power consumption at different voltage
levels considerably varies, the suitable frequency level in
each voltage level should be properly determined at runtime.

In multi-/many-core systems equipped with DVFS fea-
ture, usually for each voltage level, an upper bound for the
maximum frequency that can operate at that voltage level is
defined. For example, in Intel SCC platform, seven voltage
levels for each island are defined where each voltage level
has a maximum possible frequency, thus forming more than
15 VF levels per island which can be changed at runtime. In
each particular voltage level, different operating frequencies
used for testing result in different test power/energy. As the
system is tested at runtime with functional methods, and a
test at a certain voltage level can be performed at different fre-
quencies (i.e., equal or lower than themaximum frequency at
the respective voltage [37]), we define a VF set as the set of
different available frequencies (i.e., VF levels) that can be
selected for testing at a given voltage level. At low VF levels,
power consumption is lower at the cost of longer TAT, com-
pared to high VF levels where higher power consumption is
needed to achieve a shorter TAT. This raises a question
whether it is more efficient to use a low VF level and save the
power to have parallel testing of multiple cores or to use a
higher VF level and reduce the TAT for individual cores. Our
solution to address this issue is inspired by the traditional 2D
rectangular packing model used in power-constrained test-
ing. Fig. 5 shows an example of using 2D rectangular model
when three cores are tested over time at different VF levels.
Each rectangle depicts a test process as a triplet ðCi; Vj; FkÞ
where Ci is the core to be tested, Vj is the voltage of test, and
Fk is the frequency of test. Thewidth and length of the rectan-
gle correspond to the test power consumption and TAT,
respectively, where the total summation of test power at each
moment of time should not exceed the maximum available
power budget for test. It can be observed that when power
budget is limited and an optimal test scheduling algorithm is
used, the total areas of the all test rectangles determine the
overall test time. This area is the TAT-test power product
which can be called as energy consumption for test. We use
the energy consumption for test as a metric to choose the
proper VF level for test when there is an option to select one
VF level among the available VF levels in a particular VF set.

In Fig. 6, we have compared the normalized energy with
different frequency levels when the voltage is fixed. As can
be seen, by increasing the frequency up to themaximumpos-
sible frequency, the energy consumption exponentially
decreases. That is because of the fact that for a constant

Fig. 5. An example of rectangular packingmodel for power aware testing.

Fig. 6. Power versus energy in a fixed voltage level.

voltage, the static power remains constant, and by decreas-
ing the frequency, the penalty of unchanged high static
power superimposes the overall power and energy accord-
ingly. From these two observations, we propose a general
rule for our test scheduling algorithm that for a given voltage
level, the test frequency should be increased as much as pos-
sible whilemonitoring and honoring the total power budget.

Algorithm 2. Selecting Cores for Test Scheduling with
VF Selection Algorithm

Inputs: Pc: Instantaneous power measurement from the sensor;
Pmax: The maximum power budget (i.e., TDP or TSP);
Output: CUT 0set: The target core(s) to be tested at specified VF

level(s) (i.e., set of ðCi; Vj; FkÞ);
Variables: availablePower: Available power for test;
CUTset: Temporary variable for the target core(s) and their VF

level(s) for test;
CUTpower: Core under test power consumption at a given VF

level;
Constant: t#Test: Maximum number of core(s) under test;

Body:
1: availablePower Pc - Pmax;
2: while availablePower > 0 and # of (cores under test)

< t#Test do

3: Sort available cores based on their trij values;
4: Ci The first core in the ranked list for testing;
5: if Ci is not tested in VFsetj then
6: ðCUTpower; Vj; FkÞ minPower(VFsetj);
7: if CUTpower < availablePower then
8: CUTset (Ci, Vj, Fk);
9: Update tr for all cores;
10: availablePower availablePower - CUTpower;
11: while availablePower > 0 and there is unselected core(s) in

CUTset do
12: select core ðCi; Vj; FkÞ from CUTset;
13: ðCUTpower; Vj; F

0
kÞ maxVF (ðCi; Vj; FkÞ,

availablePower);
14: CUT 0set ðCi; Vj; F

0
kÞ;

15: update (availablePower);

Algorithm 2 shows in more details the proposed test
scheduling strategy for testing the cores at different VF lev-
els. Algorithm 2 is the extension of Algorithm 1 to consider
VF levels in test scheduling, thus offering the system man-
ager the option to choose two different test scheduling poli-
cies with contrasting reliability-complexity trade-offs. The
input of the test scheduler is the instantaneous power con-
sumption of the system (i.e., Pc) which is provided by the
chip power sensor and the output of the test scheduler is
the core(s) targeted for being tested at specified VF level(s)
(i.e., set of ðCi; Vj; FkÞ where Vk and Fk are the voltage and
frequency of the core Ci during the test process).

First the amount of available power budget (i.e.,
availablePower) is calculated which is the available portion of
power budget that can be used for test purpose (Line 1 in
Algorithm 2). If it is less than or equal to zero, it means there
is no available power for the test purpose. If availablePower is
greater than zero (i.e., there exists available power for the test
purpose) and the number of cores under test is smaller than
the maximum threshold (i.e., t#Test), the algorithm will find
the first core in the list of cores sorted based on their trij values

as the target for test (Line 3-4). If such a core exists in the sys-
tem, for each VF set (i.e., VFset) at which the core has not been
tested yet, the algorithmwill check if the available power can
be used to test the core at that VF set or not (Line 5-12). Based
on a pessimistically pre-calculated test power for each VF
level, the function minPower returns the minimum required
test power (i.e., CUTpower) and the corresponding voltage and
frequency (i.e., (Vj, Fk)) to test the core at one of the VF levels
at that specific VF set (i.e., VFsetj). If the test power is less
than the available power, then the core and voltage-frequency
for test will be added to the set of target cores for test (i.e.,
CUTset) and availablepowerwill be updated accordingly (Line
7-11). Whenever a core is selected for test, the tr value for
other cores will be updated based on the consideration of the
selected core as an occupied node. This causes the next core
for test to be selected in other vacant areas.

The process of searching for cores to be tested at the min-
imum possible VF level continues until either the t#Test

threshold is reached or availablePower is less than zero.
After that, if availablePower is larger than zero meaning that
extra power budget is available for test, the algorithm will
attempt to use availablePower to minimize the TAT by
selecting the highest possible VF level for the core(s) under
test (Line 14-19). The function maxVF returns the highest
possible VF level from the VF set considering the
availablePower. If such a level exists, then the new voltage-
frequency for test will be added to the updated set of target
cores for test (i.e., CUT 0set) and availablepower will be
updated. This process continues until either availablePower
is larger than zero or all the cores in CUTset are selected. The
proposed algorithm for determining the appropriate VF
level for test is a simple greedy approach inspired from
solution proposed and validated in state-of-the-art power
constrained testing in multi-clock domain SoCs [38]. The
difference is that, the available power budget in power con-
strained testing is a fixed value while in online testing this
value might change during the test process. However, if the
test time is short enough (which is reasonable assumption
as discussed in Section 5.3), we can assume that the power
budget for test does not change and two problems are the
same. More details regarding the efficiency of this method
can be found in [38]. It is worth noting that the proposed
algorithm for test scheduling is targeted for platforms fea-
turing per-core DVFS. The extension to also consider per-
cluster DVFS is left as a future work.

7 EXPERIMENTAL RESULTS

To demonstrate the efficiency of our dark silicon aware
online testing approach on many-core systems, we run three
set of experiments using different technology nodes as
shown in Table 1. The simulation platform implemented

TABLE 1
The System Settings for Different Experiment Setups

Technology
Node

System
Type

Area
(mm2)

NoC
Size

First Setup 16 nm medium 138 12 � 12
Second Setup 22 nm large 232 11 � 11
Third Setup 32 nm large 254 8 � 8

for [6] has been adapted to integrate the new online testing
framework. As a processing core in baseline design, we use
Niagara2-like in-order core specifications obtained from
McPAT [39]. NetlistGen.exe is used for generating netlists of
the synthesized cores and fault simulation with PLI library
in HDL environment [40]. Physical scaling parameters,
power model, voltage-frequency scaling model, and TDP
calculation were extracted from the Lumos [8], a framework
to analytically quantify power-performance characteristics
of many-cores in near-threshold operation. The physical
scaling parameters have been calibrated by circuit simula-
tions with a modified Predictive Technology Model [41].
We integrated HotSpot 5.0 [42], and Caliper [13] for model-
ing the thermal behavior and the lifetime reliability of the
system, respectively. We also integrated TSP calculation
tool from [16] to evaluate the dynamic power budget based
on the number of active cores at the moment. We generate
several set of applications with four to 35 tasks using
TGG [43], and we consider three real applications, namely
MPEG-4, UAV and VOPD, from [44].

We use the run-time mapping algorithm presented
in [32], and the dark silicon aware power management
(DSAPM) technique presented in [18]. In this power man-
agement strategy, a Proportional Integral Derivative (PID)
controller is used for dynamic power management that con-
siders a fixed power budget (i.e., TDP). Functional testing is
used to test cores. To prepare the test program, we first
generate deterministic test patterns from the netlist of HDL
implementation of Niagara2-like cores using the technique
proposed in [45]. Then, we develop test macros based on the
generated deterministic test patterns. The overall coverage
for the cores’ datapath and controller are 79 and 63 percent,

respectively. The test application duration is 9,000 cycles for
each core. The models presented in [8] are also used to calcu-
late dynamic and static power consumption of the test pro-
cess. Finally, we set t#Test, to 4.

Table 2 shows the throughput penalty of our proposed
testing method when a constant d is set to 10 M, 100 M, and
1 B instructions while using two different values as the max-
imum power limit viz. TDP and TSP. As can be seen from
the table, our proposed online testing method has a negligi-
ble throughput penalty compared with many-core systems
without any online testing method for both TSP and TDP
based budgets. For all the d values, the minimum through-
put penalty is observed at the first experiment setup where
power limitation is more challenging and the system size
(i.e., the total number of cores) is larger than in the other
experiments. This will give more opportunities to the TSU
to find suitable scenarios for online testing. The penalty also
increases when d is set to smaller values because cores enter
the test critical range more rapidly. It can be noticed that the
penalty while using TSP as the maximum power limit is so
close to the penalty of using TDP. It should be noted that
the throughput penalty of our online testing method is con-
siderably lower than in the existing online testing methods
such as [23], [24]. The reason of such improvement is that
our method takes advantage of non-intrusive testing of the
cores which are temporarily located in the dark area.

In a second experimental session, the performance over-
head of the proposed approach is compared more in details
against one of the most relevant state-of-the-art methods [7]
in which fixed amount of power budget is dedicated to the
test process. Figs. 7 and 8 show the system throughput over
time (250 seconds) for the both TDP-based and TSP-based

TABLE 2
Throughput Penalty for Different Experiment Setups and d Values While Using TDP and TSP

First experiment
setup

Second experiment
setup

Third experiment
setup

d value 10 M 100 M 1 B 10 M 100 M 1 B 10 M 100 M 1 B
TDP-based(%) 1.31 0.29 0.13 2.9 0.58 0.21 5.9 1.3 1.06
TSP-based(%) 1.38 0.32 0.16 3.2 0.63 0.21 5.86 1.3 1.12

Fig. 7. The number of completed applications versus time (TDP-based approach).

Fig. 8. The number of completed applications versus time (TSP-based approach).

approaches, and different experiment setups when d is set to
10M (i.e., the worst case scenario). It can be seen that the pro-
posed online testing approach achieves a better performance
over time compared to the DSAPM approach with dedicated
power for test. The throughput penalties while d ¼ 10 M for
DSAPM with dedicated power for test in 16, 22, and 32 nm
technologies are 23, 20, and 16 percent, respectively for the
TDP-based approach, and 25, 23, and 22 percent for the TSP-
based approach which is larger compared to the correspond-
ing results reported in Table 2 for the proposed method in
this paper. Furthermore, it can be noted that applications are
being completed and leave the system with almost the same
trend for the both DSAPM with online testing and DSAPM
without online testing. This shows the capability of the pro-
posed method to make use of available power budget and
resources at runtime for testing the cores with a negligible
penalty on the system performance.

The performed analysis for constant d values offers the
possibility to evaluate the throughput penalty in specific
instants over the lifetime of the considered many-core archi-
tecture. We also analyzed how the d value of various cores
changes over time according to its aging trend. To this end,
on the basis of an envisioned average workload, we com-
puted the cores of the system to have an average aging
trend shown in Fig. 4a, and, therefore, an average MTTF of
the cores approximately equal to five years. Thus, we set the
dRmax¼1 ¼ 1B, at the beginning of the lifetime of the system,
while we set Rmin ¼ 0:3 (from the graph it is possible to see

that it is a reasonable reliability value after the MTTF) and
dRmin¼0:3 ¼ 10 M. Fig. 9a shows the reliability curves for four

different cores within the architecture, each one aging with
a different trend according to the actual specific stress it is
affected during the lifetime; in fact, according to the map-
ping strategy and DVFS tuning, each core is subject to a dif-
ferent load over the time. For this reason, to show the
adaptive capabilities of the technique, we represent in the
figure four highly different situations: in particular, Core 1
is characterized by an aging trend similar to the envisioned
one, while the other ones diverges from that trend due to a
load different from the expected one; finally, Core 4 has an
oscillating trend since it is subject to a highly variable load
over the time. Fig. 9b shows how the system adapts at run-
time the d value according to the actual aging of each core.

To apply online testing on cores running at different
voltages/frequency sets, six VF sets (i.e., voltage levels) are
defined for our system which have totally 29 VF levels.
Table 3 shows these different VF sets, corresponding voltage,
and available frequencies in each set. The target VF level to
be assigned to the core under test is chosen among all the
options in each VF set. Table 4 show the share of each VF set
from the total number of tested cores at the end of the simula-
tions for 16, 22, and 32 nm technology, respectively. As can
be noticed from the table, the share of each VF set is almost
equal and fair for all the three experiment setups. As the sets
with higher VF levels consume more power, their shares are
a bit lower than the sets with lower VF levels; as a conclusion
the sets with lower VF levels have a better chance to use the
available power than the other sets.

Fig. 9. Adaptive tuning of the d parameter for four cores characterized by
different aging trends. In the two figures, corresponding curves, related
to the same core, are represented with the same line pattern.

TABLE 3
Voltage-Frequency Sets for Test

Technology 16 nm

VF set for test Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
VF Level 1-5 6-10 11-15 16-20 21-25 26-29
Voltage(V) 0.47 0.51 0.56 0.59 0.63 0.68
Frequency(GHz) 0.4-0.64 0.4-1 0.4-1.54 0.4-2 0.4-2.6 0.4-3.1

Technology 22 nm

VF set for test Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
VF Level 1-5 6-10 11-15 16-20 21-25 26-29
Voltage(V) 0.49 0.54 0.6 0.65 0.7 0.74
Frequency(GHz) 0.4-0.67 0.4-1.1 0.4-1.6 0.4-2.1 0.4-2.8 0.4-3.2

Technology 32 nm

VF set for test Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
VF Level 1-5 6-10 11-15 16-20 21-25 26-29
Voltage(V) 0.52 0.58 0.63 0.69 0.75 0.8
Frequency(GHz) 0.4-0.68 0.4-1.13 0.4-1.6 0.4-2.2 0.4-2.8 0.4-3.2

Tech. VF level

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

16 nm 15% 15% 16% 17% 18% 19%
22 nm 16% 16% 16% 17% 17% 18%
32 nm 16% 16% 16% 17% 17% 18%

TABLE 4
The Share of Each VF Set from the Total Number of Tested

Cores (Percent) for 16, 22, and 32 nm Technologies

Fig. 10 shows the power consumption of the systemwhile
running a group of random applications on the implemented
frameworkwith andwithout our online testing technique for
different application setups when d is set to 10 M (i.e., the
worst case scenario). We run the system for 250 seconds
while applications enter and leave the system at runtime. As
it can be observed from the power curves, the total power
consumption does not violate the TDP for both approaches.
This shows that even though, a dedicated power budget was
not allocated to the test purpose, the DPM unit has efficiently
honored the TDP bound even when the TDP is changed at
runtime. The power curves show that the small throughput
penalties are experienced in scenarioswhen the system is fre-
quently busy and the total chip power consumption is most
of the time close to the upper bound.

Finally, to demonstrate how our test scheduling in a ther-
mal-aware manner avoids hotspots, we study the effect of
considering square factor (SF) in Equation (2). For this we
monitored several thermal snapshots during system run-
time and we compared it against a modified version in
which such parameter is not considered in Equation (2)
(dubbed as non-thermal-aware scheduling). Fig. 11 shows
the heat maps while running non-thermal-aware and
thermal-aware test scheduling in a thermal snapshot while
the maximum number of cores under test is set to 4 (i.e.,
t#Test ¼ 4). As can be seen, the non-thermal-aware schedul-
ing selects four neighboring cores which results in hotspot,
but the thermal-aware strategy selects cores which are far
from each other to avoid thermal hotspots.

8 CONCLUSIONS

This paper proposed a new power-aware online testing
strategy for many-core systems in the dark silicon era. The
approach consists of a dynamic test scheduling strategy for
software based self test applications able to perform testing
activities in a transparent way with respect to the execution
of the nominal workload. The goal of the approach is to
guarantee the reliability of the system by detecting the
occurred permanent faults, while minimizing the overhead
on the system’s performance and satisfying the limited
available power budget. Our experimental results show
that the proposed power-aware online testing approach can
1) efficiently utilize temporarily free cores and available

power budget for the testing purposes, within less than 1
percent penalty on system throughput, 2) adapt to the cur-
rent aging status of each core, and 3) cover and balance all
the VF levels during the various test.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” IEEE
Micro, vol. 32, no. 3, pp. 122–134, May/Jun. 2012.

[2] M. Taylor, “Is dark silicon useful? harnessing the four horsemen
of the coming dark silicon apocalypse,” in Proc. Des. Autom. Conf.,
2012, pp. 1131–1136.

[3] M. Kaliorakis, M. Psarakis, N. Foutris, and D. Gizopoulos,
“Accelerated online error detection in many-core microprocessor
architectures,” in Proc. VLSI Test Symp., 2014, pp. 1–6.

[4] M. Kaliorakis, N. Foutris, D. Gizopoulos, M. Psarakis, and
A. Paschalis, “Online error detection in multiprocessor chips:
A test scheduling study,” in Proc. Int. On-Line Testing Symp., 2013,
pp. 169–172.

[5] P. Parvathala, K. Maneparambil, and W. Lindsay, “FRITS—a
microprocessor functional BIST method,” in Proc. Int. Test Conf.,
2002, pp. 590–598.

[6] M.-H. Haghbayan, A.-M. Rahmani, M. Fattah, P. Liljeberg, J.
Plosila, Z. Navabi, and H. Tenhunen, “Power-aware online testing
of manycore systems in the dark silicon era,” in Proc. Conf. Des.,
Autom. Test Eur., 2015, pp. 435–440.

[7] M.-H. Haghbayan, A.-M. Rahmani, P. Liljeberg, J. Plosila, and
H. Tenhunen, “Energy-efficient concurrent testing approach for
many-core systems in the dark silicon age,” in Proc. Int. Symp.
Defect Fault Tolerance VLSI Nanotechnol. Syst., 2014, pp. 270–275.

[8] L. Wang, et al., “Dark vs. dim silicon and near-threshold comput-
ing extended results,” Dept. Comput. Sci., Univ. Virginia, Charlot-
tesville, VA, USA, Tech. Rep. TR-2013-01, 2012.

[9] A.-M. Rahmani, M.-H. Haghbayan, A. Kanduri, A. Weldezion,
P. Liljeberg, J. Plosila, A. Jantsch, and H. Tenhunen, “Dynamic
power management for many-core platforms in the dark silicon
era: A multi-objective control approach,” in Proc. Int. Symp. Low
Power Electron. Des., 2015, pp. 1–6.

[10] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA
challenges in the dark silicon era: Temperature, reliability, and
variability perspectives,” in Proc. Des. Autom. Conf., 2014,
pp. 185:1–185:6.

[11] M. Haghbayan, A. Rahmani, P. Liljeberg, J. Plosila, and H.
Tenhunen, “Online testing of many-core systems in the dark
silicon era,” in Proc. Int. Symp. Des. Diagnostics Electron. Circuits
Syst., 2014, pp. 141–146.

[12] X. Kavousianos and K. Chakrabarty, “Testing for SoCs with
advanced static and dynamic power-management capabilities,”
in Proc. Conf. Des., Autom. Test Eur., 2013, pp. 737–742.

[13] C. Bolchini, M. Carminati, M. Gribaudo, and A. Miele, “A light-
weight and open-source framework for the lifetime estimation of
multicore systems,” in Proc. IEEE Int. Conf. Comput. Des., 2014,
pp. 166–172.

[14] JEDEC Solid State Tech. Association, “Failure mechanisms and
models for semiconductor devices,” JEP122G, 2010.

[15] P. Mercati, A. Bartolini, F. Paterna, T. Rosing, and L. Benini, “A
Linux-governor based dynamic reliability manager for Android
mobile devices,” in Proc. Conf. Des., Autom. Test Eur., 2014, pp. 1–4.

Fig. 10. The power consumption of the system with and without online
testing approach for different experiment setups, (a) 16 nm, (b) 22 nm,
and (c) 32 nm.

Fig. 11. Heat maps while running non-thermal-aware and thermal-aware
test scheduling.

[16] S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique,
M. Li, and J. Henkel, “TSP: Thermal safe power: Efficient
power budgeting for many-core systems in dark silicon,” in
Proc. Int. Conf. Hardware/Softw. Codes. Syst. Synthesis, 2014,
pp. 10:1–10:10.

[17] M. Shafique, S. Garg, T. Mitra, S. Parameswaran, and J. Henkel,
“Dark silicon as a challenge for hardware/software co-design,” in
Proc. Int. Conf. Hardware/Softw. Codes. Syst. Synthesis, 2014,
pp. 13:1–13:10.

[18] M.-H. Haghbayan, A.-M. Rahmani, A. Weldezion, P. Liljeberg,
J. Plosila, A. Jantsch, and H. Tenhunen, “Dark silicon aware
power management for manycore systems under dynamic work-
loads,” in Proc. Int. Conf. Comput. Des., 2014, pp. 509–512.

[19] K. Ma and X. Wang, “PGCapping: Exploiting power gating for
power capping and core lifetime balancing in CMPs,” in Proc. Int.
Conf. Parallel Archit. Compilation Techn., 2012, pp. 13–22.

[20] Z. Chen and D. Marculescu, “Distributed reinforcement
learning for power limited many-core system performance
optimization,” in Proc. Des. Autom. Test Eur. Conf. Exhib., 2015,
pp. 1521–1526.

[21] J. Howard, et al., “A 48-Core IA-32 message-passing processor
with DVFS in 45nm CMOS,” in Proc. Int. Solid-State Circuits Conf.,
2010, pp. 108–109.

[22] Intel. (2014). Haswell Xeon 5 [Online]. Available: http://www.
intel.com/

[23] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco,
“Software-based online detection of hardware defects mecha-
nisms, architectural support, and evaluation,” in Proc. Int. Symp.
Microarchit., Dec. 2007, pp. 97–108.

[24] S. Nomura, M. Sinclair, C.-H. Ho, V. Govindaraju, M. de Kruijf,
and K. Sankaralingam, “Sampling + DMR: Practical and low-over-
head permanent fault detection,” in Proc. Int. Symp. Comput.
Archit., 2011, pp. 201–212.

[25] Y. Xia, M. Chrzanowska-Jeske, B. Wang, and M. Jeske, “Using a
distributed rectangle bin-packing approach for core-based SoC
test scheduling with power constraints,” in Proc. Int. Conf. Comput.
Aided Des., 2003, pp. 100–105.

[26] H. Yu, S. Reddy, C. Wu-Tung, P. Reuter, N. Mukherjee,
T. Chien-Chung, O. Samman, and Y. Zaidan, “Optimal core wrap-
per width selection and SOC test scheduling based on 3-D bin
packing algorithm,” in Proc. Int. Test Conf., 2002, pp. 74–82.

[27] M. H. Haghbayan, S. Safari, and Z. Navabi, “Power constraint
testing for multi-clock domain SoCs using concurrent hybrid
BIST,” in Proc. Int. Symp. Des. Diagnostics Electron. Circuits Syst.,
2012, pp. 42–45.

[28] R. Chou, K. Saluja, and V. Agrawal, “Scheduling tests for VLSI
systems under power constraints,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 5, no. 2, pp. 175–185, Jun. 1997.

[29] F. Vartziotis, X. Kavousianos, K. Chakrabarty, R. Parekhji, and A.
Jain, “Multi-site test optimization for multi-Vdd SoCs using
space- and time- division multiplexing,” in Proc. Conf. Des. Autom.
Test Eur., 2014, pp. 1–6.

[30] P. Venkataramani and V. Agrawal, “ATE test time reduction
using asynchronous clock period,” in Proc. Int. Test Conf., 2013,
pp. 1–10.

[31] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos,
“Power-aware optimization of software-based self-test for L1
caches in microprocessors,” in Proc. Int. On-Line Testing Symp.,
2014, pp. 154–159.

[32] M. Fattah, P. Liljeberg, J. Plosila, and H. Tenhunen, “Adjustable
contiguity of run-time task allocation in networked many-core
systems,” in Proc. Asia South Pacific Des. Autom. Conf., 2014,
pp. 349–354.

[33] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Smart hill
climbing for agile dynamic mapping in many-core systems,” in
Proc. Des. Autom. Conf., 2013, pp. 1–6.

[34] C.-L. Chou, U. Ogras, and R. Marculescu, “Energy- and perfor-
mance-aware incremental mapping for networks on chip with
multiple voltage levels,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 27, no. 10, pp. 1866–1879, Oct. 2008.

[35] J. Blome, S. Feng, S. Gupta, and S. Mahlke, “Self-calibrating online
wearout detection,” in Proc. Int. Symp. Microarchit., 2007,
pp. 109–122.

[36] N. Ali, M. Zwolinski, B. Al-Hashimi, and P. Harrod, “Dynamic
voltage scaling aware delay fault testing,” in Proc. Eur. Test Symp.,
2006, pp. 15–20.

[37] X. Kavousianos, K. Chakrabarty, A. Jain, and R. Parekhji, “Test
schedule optimization for multicore SoCs: Handling dynamic
voltage scaling and multiple voltage islands,” IEEE Trans. Com-
put.-Aided Des. Integr. Circuits Syst., vol. 31, no. 11, pp. 1754–1766,
Nov. 2012.

[38] T. Yoneda, K. Masuda, and H. Fujiwara, “Power-constrained test
scheduling for multi-clock domain SoCs,” in Proc. Des., Autom.
Test Eur., 2006, pp. 1–6.

[39] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Proc. Int.
Symp. Microarchit., 2009, pp. 469–480.

[40] Z. Navabi,Digital System Test and Testable Design: Using HDL Mod-
els and Architectures. New York, NY, USA: Springer, 2010.

[41] B. Calhoun, S. Khanna, R. Mann, and J. Wang, “Sub-threshold cir-
cuit design with shrinking CMOS devices,” in Proc. Int. Symp. Cir-
cuits Syst., 2009, pp. 2541–2544.

[42] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S.
Velusamy, and D. Tarjan, “Temperature-aware microarchitecture:
Modeling and implementation,” ACM Trans. Archit. Code Optim.,
vol. 1, pp. 94–125, Mar 2004.

[43] (2010). TGG: Task Graph Generator [Online]. Available: http://
sourceforge.net/projects/taskgraphgen/, last Update: 2013-04-11.

[44] M. Fattah, A.-M. Rahmani, T. Xu, A. Kanduri, P. Liljeberg,
J. Plosila, and H. Tenhunen, “Mixed-criticality run-time task map-
ping for NoC-based many-core systems,” in Proc. Int. Conf. Paral-
lel, Distrib. Netw.-Based Process., 2014, pp. 458–465.

[45] M. Haghbayan, S. Karamati, F. Javaheri, and Z. Navabi, “Test pat-
tern selection and compaction for sequential circuits in an HDL
environment,” in Proc. Asian Test Symp., 2010, pp. 53–56.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

