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The relationship between premature atrial complexes (PACs) and atrial fibrillation (AF),

stroke andmyocardium degradation is unclear. Current PAC detectors are beat classifiers

that attain low sensitivity on PAC detection. The lack of a proper PAC detector hinders

the study of the implications of this event and its monitoring. In this work a PAC and

ventricular detector is presented. Two PhysioNet open-source databases were used: the

long-term ST database (LTSTDB) and the supraventricular arrhythmia database (SVDB).

A combination of heart rate variability (HRV) and morphological features were used to

classify beats. Morphological features were extracted from the ECG as well as on the

4th scale of the discrete wavelet transform (DWT). After feature selection, a random

forest algorithm was trained for a binary classification of PAC (S) vs. others and for a

multi-labels classification to discriminate between normal (N), S and ventricular (V ) beats.

The algorithm was tested in a 10-fold cross-validation following a patient-wise train-test

division (i.e., no beats belonging to the same patient were included both in the test and

train set). The resultant median sensitivity, specificity and positive predictive value (PPV)

were 99.29, 99.54, and 100% for (N), 95.83, 99.39, and 35.68% for (S), 100, 99.90,

and 79.63% for (V ). The proposed method attains a greater PAC and ventricular beat

sensitivity and PPV than the state-of-the-art classifiers.

Keywords: machine learning, ECG diagnosis, atrial fibrillation, beat classifier, supraventricular ectopic beat,

premature ventricular contractions, premature atrial contractions, stroke

1. INTRODUCTION

Premature atrial complexes (PACs) have always been considered benign. However, several recent
studies link them to high risk of developing atrial fibrillation (AF) and stroke (Binici et al., 2010;
Gladstone et al., 2015; Huang et al., 2017).

About 25–30% of ischemic strokes remain unexplained (cryptogenic) (Gladstone et al., 2015).
One of the possible causes is that the thromboembolic events are caused by occult or silent AF. AF
is the most common prevalent arrhythmia, affecting around 2% of global population. When AF
is present without any perceived symptoms that enable its diagnosis, it is denominated silent AF.
Prediction of the appearance of these episodes of AF could reduce the incidence rate of cryptogenic
strokes. Several recent studies link frequent PACs to first time appearance of AF (Thong et al., 2004;
Binici et al., 2010; Chong et al., 2011; Suzuki et al., 2013). Others have studied PACs as the possible
direct reason for stroke (Huang et al., 2017). Furthermore, frequent PACs have been studied as a
measure of cardiac tissue deterioration (Binici et al., 2010; Chong et al., 2011; Larsen et al., 2015;
Huang et al., 2017) and as a possible cause for left ventricular remodeling (Pacchia et al., 2012).
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All these studies point at the important and undervalued
impact PACs may have on the cardiac electrophysiogy. However,
manual beat annotation of long-term electrocardiogram (ECG)
recordings is extremely time consuming and requires of
specialized professionals. A PAC detector with high sensitivity
able to assume this task is still missing. Such a detector would
enable to study PAC implications in AF onset and cardiac
tissue remodeling. It could be used to monitor patients for
the occurrence of frequent PACs and determine stroke risk
or possible silent AF or short paroxysmal AF (PAF) episodes.
In addition, it could enhance the performance of arrhythmia
detectors as PAC beats tend to increase AF false positives
(Langley et al., 2012; Sörnmo et al., 2018).

To the extent of our knowledge, no proper detector explicitly
designed for PAC is present in literature, most PAC detectors are
actually beat classifiers (Llamedo and Martinez, 2012; Luz et al.,
2016) that attain low PAC detection sensitivity. In this work we
present a PAC detector not requiring any ECG delineation to
extract morphological information. In addition, the extension
of the methodology to also ventricular beat detection and beat
classification is explored.

2. MATERIALS AND METHODS

2.1. Data
Two PhysioNet public databases (Goldberger and Amaral, 2012)
were used in this study: the long term ST database (LTSTDB)
and supraventricular database (SVDB). Signals were 2-lead ECGs
acquired at 250 and 128Hzwith a duration of 21–24 h and 30min
for the LTSTDB and SVDB, respectively. These databases were
selected because they are the ones containing a higher number of
PACs and manual beat annotations. The LTSTDB was originally
built so as to represent a wide variety of ST segments. The
SVDB contains a high number of supraventricular events. While
the LTSTDB contains PACs together with different ST-segment
variations, the SVDB contains a high number and variety of
different possible PAC occurrences: bigeminy, trigeminy, and
atrial runs. Both datasets were combined into a single dataset to
use their complementary PAC representations for training and
testing the model.

Table 1 gathers the number of beats per beat class in
each database. In this study only 5 categories were originally
considered as in Llamedo and Martinez (2011): Normal
(N), Supraventricular (S), Ventricular (V), Junctional (J),
and unclassifiable (Q) beats. We considered as PACs all S
beats in which: atrial premature beats (A), aberrated atrial
premature beats (a) and PACs (S) annotations were included.
Instead, V comprehended the categories: premature ventricular
contractions (V), fusion of ventricular and normal beats (F) and
ventricular escape beats (E). Finally, N beats included normal
beats N, bundle branch block beats (B) and atrial escape beats
(e). J and Q classes were excluded for the successive analysis as
they were underrepresented in both databases. Throughout the
text, N, S, and V will be used to refer to the classifiers categories.
As mentioned above, While S refer just to PACs, V represent
ventricular beats (that include not only V but also E and F).

2.2. Preprocessing
The preprocessing carried out was the same as in De Chazal
et al. (2004). Firstly, all signals were resampled to 250 Hz to
homogenize the sampling frequency of the datasets. Secondly,
to obtain a baseline corrected signal, two median filters of 200
and 600 ms length were applied to obtain the baseline wander
estimate which was then subtracted from the original raw one.
Thirdly, a finite impulse response (FIR) low pass filter with cut
off frequency of 35 Hz and equal ripple in the pass- and stop-
bands was applied to remove powerline and high frequency noise.
The full preprocessing was performed on MATLAB 2020a, The
Mathworks Inc.

2.3. Feature Extraction
To classify each beat into one of the three categories considered
in section 2.1, a set of features (185 in total) was extracted to
describe twomain properties of the ECG: the heart rate variability
andwavemorphology. To these features, the first and last 40 beats
were not considered.

2.3.1. HRV Features
For each individual beat, a set of features was computed taking
into account the neighboring beats. RR intervals are defined
as the distance of two consecutive R peaks of each beat.
dRRs are instead the series of the difference of consecutive
RRs, namely dRRn = RRn+1 − RRn. Both the RR and
dRR of the corresponding beat (RRi, dRRi), the previous beat
(RRi−1, dRRi−1) and the following one (RRi+1, dRRi+1) were
analyzed. Four different time windows were considered for the
extraction of the heart rate variability (HRV) features: 1 or 5
min windows preceding the current beat; 2 or 10 min windows
centered on the current beats. From each time window the
mean and standard deviation of the RR intervals, along with
the standard deviation of the dRR intervals, the percentage
of successive interval differences greater than 10, 20, 30, 40,
and 50 ms (pNN50) and the root mean square of successive
differences (RMMSD)were computed. A total of 41HRV features
were measured.

2.3.2. Morphological Features
Morphological information of the P wave, QRS complex, PR
segments and the whole beat were extracted using, a fixed
window. The window dimensions, using the R peak as reference
(i.e., t = 0), for the ECG segments considered were: [–300,
40] ms for the P wave segment, [–70, 60] ms for the QRS
complex, [–288, 0] ms for the PR interval and [–300, 250] ms
for the whole beat (Censi et al., 2007). The following segments
will be referred as the P wave, QRS complex and PR interval,
respectively throughout the rest of the paper. However, it should
be noted that as no ECG delineation is performed, the reported
segments may not precisely account for these ECG regions (i.e.,
it is not an exact selection of the onset and offset of the ECG
segment, but rather an approximate estimation). Nevertheless,
the scope of this selection is to account for their intra-patient
variability not to extract any precise parameter which could
describe any of the ECG regions described above. Therefore,
given that for the same patient the same ECG portion would
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TABLE 1 | PhysioNet and simplified beat annotations per database.

Simp. Annotations N S V J Q

Beat Annotations B N e A a S V F E J j Q

LTSTDB 88,720 6,727,000 22 5,482 29 30,820 39,840 476 71 1 6 2

SVDB 1 162,100 0 0 1 12,090 9,930 23 0 9 0 80

B stands for bundle branche block beat, N for normal beat, A for atrial premature beat, a for aberrated atrial premature beat, e for atrial escape beat, S for supraventricular premature

or ectopic beat (atrial or nodal), V for premature ventricular contraction, F fusion of ventricular and normal beat, E for ventricular escape beat, J for nodal (junctional) premature beat, j

for nodal (junctional) escape beat and Q for unclassifiable beat.

FIGURE 1 | Outline of the final working classifier pipeline. The input consists of a 2-Lead ECG and the output on the classification of the beat of one of the three

categories N, S and V. Outliersr. stands for outliers removal.

FIGURE 2 | Example P-wave intra-patient models built using a different number of surrounding beats for the raw signal (top) and the W4s(l) DWT decomposition.

Intra-patient models built using (A) 80, (B) 20, and (C) 4 beats.

be extracted for each of the mentioned segments, any variability
produced by a premature atrial or ventricular beat, should be
detected even if the ECG region is not accurately delineated. Prior

extraction of the ECG segments, an intra-patient template was
created using the neighboring beats. Three different templates
were computed using 80 (40 prior and 40 posterior the beat
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FIGURE 3 | Example of each of the beat classes N, S, and V for the whole beat, the P wave, PR segment and QRS complex. Each row represent one of the three

beat types and each column the mentioned ECG segments. Continuous lines represent the beat segment itself whereas dashed lines represent the corresponding

intra-patient models built with the 40 beats before and after the beat of study (80-beat intra-patient model).

of study), 20 (10 prior and 10 posterior the beat of study)
and 4 beats (2 prior and two posterior the beat of study)
each. Three templates were computed to represent the instant
beat differences with respect to the short-term neighboring
beats (4-beat template) and compare each beat with respect
to the long-term (80-beat template) and the mid-term (20
beats). While the short-term could be especially useful for the
detection of isolated PACs, the long and midterm could be
more relevant in identifying PACs in bigeminy, trigeminy or in
atrial runs.

The surrounding beats’ segments were aligned through cross-
correlation and then averaged. Outlier segments, according to the
maximum cross-correlation value obtained for alignment, were
excluded from the mean and thus, from the computation of the
intra-patient template.

Once the intra-patient templates were computed, each
beat of the subject was compared with the templates using
cross-correlation. At the end of the process, for each
beat, the following parameters were extracted and used
as features:

• Maximum cross-correlation value of each segment with
respect to the different intra-patient templates created with the
neighboring beats (80, 20, and 4).

• Lag corresponding to the cross-correlation value
described above.

• Median standard deviation of the beats used to create the
intra-patient template.

The features enumerated above were computed for each lead of
the ECG independently. A total of 72 morphological features
were computed for each beat.

2.3.2.1. Discrete Wavelet Transform
Morphological features were computed also on a filtered version
of the ECG obtained through the discrete wavelet transform
(WT). The WT for a continuous signal s(t) if defined as follows:

Wss(b) =
1
√
s

∫ −∞

+∞
s(t)ψ

(

t − b

s

)

ds, s > 0 (1)

This transform maps the input signal into the time-frequency
plane by means of the prototype wavelet function ψ(t),
dependent of the scaling (s) and translation (b) parameters. Low
values of s enable the WT to localize fast transitions, whereas
higher values localize coarser changes instead. Instead, the
translation parameter b correspond to their location (Martínez
et al., 2004).

A computationally feasible version of the WT is the discrete
WT (DWT) which discretizes the time-scale by means of a
dyadic sampling i.e., s = 2k and b = 2kl for k, l ∈ Z.
The same implementation followed in Llamedo and Martinez
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TABLE 2 | The ten most relevant features for each cross-validation KFold for the

bi-label and the multi-label classification.

Bi-label classification Multi-label classification

dRRi dRRi

Beat cross-corr. DWT, L2, 20-beat

intr.temp

Beat cross-corr. DWT, L2, 20-beat

intr.temp

Beat cross-corr. L1, 20-beat intr.temp Beat cross-corr. L1, 20-beat intr.temp

Beat cross-corr. L1, 4-beat intr.temp

Beat cross-corr. L1, 80-beat

intr.temp.

Beat cross-corr. L1, 80-beat

intr.temp.

Beat cross-corr. L2, 4-beat intr.temp Beat cross-corr. L2, 4-beat intr.temp

Beat cross-corr. L2, 80-beat

intr.temp.

Beat cross-corr. L2, 80-beat

intr.temp.

dRRi+1 dRRi+1

dRRi−1 dRRi−1

P cross-corr. L1, 80-beat intr.temp. P cross-corr. L1, 80-beat intr.temp

P cross-corr. L2, 80-beat intr.temp. P cross-corr. L2, 80-beat intr.temp.

PR cross-corr. L1, 80-beat intr.temp

QRS cross-corr. DWT, L2, 20-beat

intr.temp.

QRS cross-corr. DWT, L2, 20-beat

intr.temp.

QRS cross-corr. DWT, L2, 4-beat

intr.temp.

QRS cross-corr. DWT, L2, 4-beat

intr.temp.

QRS cross-corr. L1, 4-beat intr.temp. QRS cross-corr. L1, 4-beat intr.temp.

QRS cross-corr. L1, 80-beat

intr.temp.

QRS cross-corr. L1, 80-beat

intr.temp.

QRS cross-corr. L2, 20-beat

intr.temp.

QRS cross-corr. L2, 20-beat

intr.temp.

QRS cross-corr. L2, 4-beat intr.temp. QRS cross-corr. L2, 4-beat intr.temp.

QRS cross-corr. L2, 80-beat

intr.temp.

QRS cross-corr. L2, 80-beat

intr.temp.

RRi RRi

Intr.temp stands for intra-patient template. L1 and L2 refer to leads 1 and 2, respectively.

(2011) and implemented in Demski and Soria (2016) was
performed. In Llamedo and Martinez (2011) b = l for
l ∈ Z so as to maintain the same sampling frequency in all
scales. A quadratic spline was used as prototype wavelet ψ(t),
retaining ECG information at determined scales (Martínez et al.,
2004). The fourth scale of the DWT [W4s(l)] retains useful
information of the ECG (Llamedo and Martinez, 2011). This
ECG decomposition was also used to extract morphological
information described above in the Morphological features
section using the mentioned implementation characteristics.
The resultant set of morphological features were composed
by the same intra-patient cross-correlation information but
computed using the filtered ECG signal and the [W4s(l)] ECG
decomposition. A total of 72 DWT morphological features were
computed for each beat.

2.4. Model Definition and Training
The selected classification model was a random forest (RF)
evaluated in a patient-wise, 10-fold cross-validation i.e., no beats
belonging to the same patient were included in the training and
test set.

TABLE 3 | Classifier performance considering single beats regardless of

the patient.

#Beats Acc. (%) Se. (%) Sp. (%) PPV (%)

S (binary class.) 48,032 98.15 89.83 98.78 35.23

Normal (N) 6,126,250 97.88 97.90 96.57 99.85

Supraventricular (S) 48,032 98.30 92.65 98.34 30.30

Ventricular (V) 40,312 99.51 95.69 99.53 57.87

Acc., Se., Sp. stand for accuracy, sensitivity, specificity, respectively.

TABLE 4 | Patient-based classifier performance, median (IQR range) for the binary

classification (S–Other).

LTSTDB (S) SVDB (S) LTSTDB+SVDB (S)

#Pat. 63 72 135

Accuracy (%) 99.84 (99.53–99.95) 97.82 (92.34–99.49) 99.48 (96.31–99.87)

Sensitivity (%) 94.12 (85.85–99.98) 91.78 (75.68–98.05) 92.86 (82.60–99.63)

Specificity (%) 99.85 (99.53–99.95) 98.63 (94.85–99.66) 99.57 (98.13–99.91)

PPV (%) 21.21 (3.36–45.07) 66.67 (31.19–82.88) 40.87 (14.90–73.36)

NPV (%) 99.99 (99.99–100) 99.77 (99.26–99.97) 99.99(99.70–100)

Values are expressed as median (25–75th) percentile.

TABLE 5 | Patient-based classifier performance, median (IQR range) for the

multi-class classification.

Normal (N) Supraventricular (S) Ventricular (V)

#Pat. 139 132 123

Acc. (%) 99.05 (95.40–99.74) 99.35 (95.78–99.84) 99.87 (99.34–99.99)

Se. (%) 99.29 (94.96–99.78) 95.83 (87.50 -100) 100 (95.84–100)

Sp. (%) 99.54 (96.62–100) 99.39 (95.84–99.87) 99.90 (99.53–100)

PPV (%) 100 (99.78–100) 35.68 (9.63–69.57) 79.63 (15.71–97.39)

NPV (%) 62.61 (27.61–84.73) 99.99 (99.73–100) 100 (99.96–100)

Values are expressed as median (25–75th) percentile. Acc., Se., Sp. stand for accuracy,

sensitivity, specificity, and respectively.

2.4.1. Train-Test Dataset Definition
The dataset was divided into 10 different subsets. Given
the unbalance occurrence of S among different patients, the
data subsets were conformed so as to maintain a similar
proportion of S in each Kfold. At each iteration of the cross-
validation, 9 of the 10 subsets were used for training and
the remaining was used to test the performances. To prevent
patient bias during training, a 10,000 upper bound limit was
set for the number of beats of each class used for training
the algorithm.

2.4.2. Feature Processing
To remove possible outliers an upper and lower bound was
set for the features containing RR and dRR information. Values
out of the established boundaries were reevaluated as the lower
or upper limit (depending on which threshold they exceeded).
Based on the cardiac refractory period, the minimum RRmin

considered was 250 ms. On the other hand, if we accept
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TABLE 6 | Patient-based classifier performance, median (IQR range) for the multi-class classification.

LTSTDB SVDB

S V S V

#Pat. 63 60 72 66

Acc. (%) 99.76 (99.37–99.92) 99.93 (99.68–99.99) 97.13 (90.49–99.39) 99.76 (98.98–99.95)

Se. (%) 95.65 (88.89 -100) 99.81 (96.83 -100) 96.20 (84.70–100) 100 (85.74–100)

Sp. (%) 99.76 (99.37–99.93) 99.95 (99.76–99.99) 97.74 (91.46–99.54) 99.84 (99.44–100)

PPV (%) 13.36 (2.29–44.56) 45.83 (2.72–91.73) 57.58 (25.03–80.73) 93.66 (67.95–98.87)

NPV (%) 99.99 (99.99–100) 100 (99.99–100) 99.84 (99.43–100) 100 (99.90–100)

Values are expressed as median (25–75th) percentile. Acc., Se., Sp. stand for accuracy, sensitivity, specificity, and respectively.

35 beats per minute (bpm) as the lowest possible heart rate
(considering an extreme case of bradycardia), the corresponding
RR interval would be 60 s/35 bmp = 1, 714.3 ms.
However, it is known that after a PAC a refractory pause
is caused due to the depolarization of the sinoatrial node,
and that the maximum this pause can be is double the
normal RR. Therefore, the maximum RR considered was
RRmax = 3428.6 ms (Sörnmo and Laguna, 2005). The
dependence among the different variables was computed using
Pearson’s correlation coefficient. Correlation sequence were
normalized so that the autocorrelations at zero lag were equal to
one. In addition, features with a variance lower than 0.05 were
excluded. Finally, a z-score transformation was applied to the
remaining features.

2.4.3. Model Definition
RF is a supervised tree-based ensemble machine learning model
trained with the "bagging" method. The concept behind bagging
is that the combination of several weak simple classifiers can
lead to high performance. RF builds a strong classifier by
adding together simple decision trees. A strong advantage of
this methodology is its resistance toward over-fitting which is
of great importance to reduce patient and database-dependent
bias and ensuring the extrapolation of the model to other
scenarios. A first train-test patient-wise split was performed
for hyper-parameter tuning. The train set was composed by a
random group of patients summing up to the 80% of S from
the whole dataset, while the test set were all the remaining
ones. A first random hyper-parameter search was carried out
to prove the most suitable ranges. Grid hyper-parameter search
was performed based on the results of the first random search.
The best-performing hyper-parameters chosen were: number
of estimators = 500, minimum samples for a split = 10,
minimum samples for a leaf =2, maximum tree depth =20 and
sample replacement in bootstrap aggregation = False. RF was
implemented in Python 3.8 version using the Scikit-learn library
version 0.24.0.

An outline of the full final model pipeline described is shown
in Figure 1.

The model was both assessed as a PAC detector or binary
classifier to discriminate S vs.Other, and as a multi-class classifier
for N, S and V discrimination following the same beat classifiers
strategy present in literature. As stated above, S category included

PAC with different notations across the two databases used (A, a
and S), while Other included both N (formed by B, N and e) and
V (formed by V , F and E) categories.

3. RESULTS

3.1. Total Features Computed
A total of 185 features were computed for 6126250 N, 48,032,
S and 40,312 V beats: 41 HRV features plus 144 morphological
features (from which 72 of the temporal signal and 72 of the
DWT). For each beat, a total of 48 intra-patient models were
computed: 4 segments (whole beat, P-wave, PR segment, QRS
complex), 3 beat windows used to construct each model (80, 20
and 4 beats) and 2 leads for both the raw signal and the [W4s(l)] of
the DWT. Figure 2 presents an example of P-wave intra-patient
models computed with 4, 20, and 80 neighboring beats for the
original and the WT of the ECG.

Figure 3 shows an example of an N, S, and V beat and
the corresponding P wave, PR interval and QRS complex. The
corresponding intra-patient model built using the 40 anterior
and posterior beats is also shown. It can be noted that for the
N beat, the P wave, PR segment and QRS complex match almost
perfectly the intra-patient model. In contrast, the S beat’s P wave
differs considerably from the intra-patientmodel, the PR segment
slightly differs and theQRS complex almostmatches it. Finally, all
V intervals differ from the corresponding intra-patient models.
Ventricular beats are not usually accompanied by a prior P wave.
This is the reason why it does not match the neighboring P waves.

3.2. Most Relevant Features
Feature importance was analyze at each Kfold for the binary and
multi-label classification. The top 10 most important features
according to the random forest model for each Kfold of the
cross-validation are gathered in Table 2 for the bi-label and
multi-label approach. A total of 20 features conformed the 100
most important features (10 for each Kfold) for the multi-label
classification and 18 for the binary one.

The most important features were shared between both
bi- and multi-label approaches with the exception of Beat
cross-correlation of Lead 1 (L1) with 4-beat intra-patient
template (intr.temp.) and PR cross-correlation of L1 with 80-beat
intr.temp. that were only included as the 10 most important for
the multi-label classifier and not for the binary one. The most
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relevant features were those accounting for RR disturbances, QRS
complex and Beat morphology for the temporal ECG signal. Only
three DWTmorphological features were included as top features.

3.3. Classifier Performance
The proposed model was evaluated for a binary classification
(S vs. Other) for evaluating explicit PAC detection and for a
multi-class classification, evaluating the proposed model as a
beat classifier. It should be noted that, the number of S per
patient varied considerably among patients and thus, not all had
the same weight when accounting the classifiers’ performance.
Therefore, the performance of the model could be assessed in two
ways: taking into consideration each beat as a separate sample,
regardless of the patient (Table 3), or by averaging the accuracy,
sensitivity and specificity values of every single patient regardless
of their number of N, S, and V beats (Tables 4–6). In addition,
patient-wise performance median and percentile values were
provided considering a patient division by database to enhance
comparability with other studies and to provide information
about the database dependencies on the results reported.

3.3.1. Binary Classification
The first row of Table 3 represent the accuracy, sensitivity,
specificity, positive predictive value (PPV, and negative predictive
(NPV) value results for S detection from a beat-wise perspective;
considering each beat as a sample independently of the patient it
came from. Although sensitivity values were slightly lower than
those reported in the same table for multi-label classification, the
PPV was higher. Table 4 instead present results from a patient-
wise performance. Following the interquartile range (IQR) of the
PPV presented in Table 4 a high patient-dependent influence
can be intuited. Low PPV values even with high sensitivity and
specificity are given by the extreme class imbalance of the dataset.

3.3.2. Multi-Label Classification
Figures 4, 5 display the classification distribution for the LTSTDB
and the SVDB, respectively. Each of the three sub-graphs shows
the classification of one of the three beat categories. Bars
represent the classification distribution of individual patients for
that specific beat type, in percentage. For example from patient
s20301, Figure 4 shows that all N beats (top subgraph) were
correctly classified, around 20 and 10% of S beats (middle sub-
graph) were misclassified as N and V , respectively and <10%
of all V beats (bottom sub-graph) were misclassified as S. From
both figures, it can be noted that most of the beats were correctly
classified in all patients as it can be also appreciated by the
overall results reported in Table 5. From results in Figures 4, 5
it can be derived that S and V misclassifications have a strong
patient-dependent component. Figure 6 shows the classification
distribution computed for each patient independently as in
Table 5. The presence of outliers show that even if the classifier
attained very high performance for most patients, for some of
them it failed to properly classify into the three categories. S
sensitivity attained the highest inter-patient variability values.

Results in Table 5 show the median and IQR of the accuracy,
sensitivity and specificity values for the patient-wise N, S, and V
classification performance. The three classes attained a sensitivity

TABLE 7 | Confusion Matrix of total classified beats in percentage.

Normal (N) Supraventricular (S) Ventricular (V)

Normal (N) 97.52% 1.94 % 0.54%

Supraventricular (S) 4.89% 93.44% 1.67%

Ventricular (V) 0.69% 3.79% 95.52%

The vertical and horizontal axis represent the true labels and predicted classes,

respectively.

and specificity higher than 99%, with the exception of S sensitivity
that was 95.83%. S sensitivity also attained a higher IQR than the
rest of the categories. PPVs for the S class were inferior to those of
the other categories, influenced by the presence of false positives
and class imbalance. Multi-class S sensitivity was slightly higher
than that of the binary classification. PPVs instead were superior
and with a lower IQR for the binary classification than for the
multi label one.

Finally, Table 7 shows the confusion matrix. It can be
observed that the majority of false negatives for N and V were
S whereas for Smost of the false negatives were N.

4. DISCUSSION

Explicit PAC detection in the ECG has not gained great attention,
as it can be noted by the low number of papers addressing
solely this problem (Visinescu et al., 2004; Krasteva et al., 2006).
Rather, extensive literature can be found regarding a broader
beat classification into supraventricular, ventricular and normal
categories (Llamedo and Martinez, 2012; Luz et al., 2016).

PACs in the ECG are characterized by two alterations:
disruption of the RR sequence and distortion of the P wave
morphology. While in Petrenas et al. (2017) four different types
of PACs were described based on how they altered the RR
interval, in Kistler et al. (2006) different P wave morphologies
were explored depending on the PAC site of origin. The
combination of HRV and morphological features included in
the method proposed in this study aimed to take advantage of
both characteristics.

Given that R peak detection is more robust against noise and
less patient-dependent thanmorphological ECG information, RR
interval-derived features are the most reliable to discriminate
PAC from normal beats. However, ventricular beats generate
RR sequence alterations similar to those induced by PACs and
thus, they need to be distinguished from PACs based on the
ECG morphology. The main appreciable differences on the ECG
between PAC and ventricular beats lie on the QRS complex and
P wave morphology. Nevertheless, whereas QRS distortions are
of high amplitude and can typically be reliably distinguished,
the P wave is more susceptible to noise and its morphology
may be easily altered by external sources rather than by an
electrophysiological disturbance.

The feature importance displayed in Table 2 is coherent with
this, pointing at the main role RR intervals and QRS complex
morphology features had on the S and V detection capacity.
The consistency found between the most relevant features for
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FIGURE 4 | Classification percentage of each of the LTSTDB signals’ beats. Each sub-graph represents the classification distribution of the beats of the three classes

considered: N, S, and V. Each bar in each sub-graph represents the total number of beats of that class of a single patient and how they have been classified (in

percentage). The x-axis represent the different patient IDs.

FIGURE 5 | Classification of each of the SVDB signals’ beats. Each sub-graph represents the classification distribution of the beats of the three classes considered:

N, S, and V. Each bar in each sub-graph represents the total number of beats of that class of a single patient and how they have been classified (in percentage). The

x-axis represent the different patient IDs.

the binary and the multi-class classifiers could be explained
by the fact that the same ECG characteristics (RR intervals
and QRS complex) can be used to distinguish both S and
V classes from N as well as from themselves. Therefore, the
features better representing these ECG characteristics were the
ones attaining a higher relevance in both binary and multi-
class classifiers.

Observing Table 2 one could intuitively guess that the model
detects an RR alteration and it discriminates between S and V
or Other (in the multi-label or binary approach, respectively) by
checking if the QRS complex morphology is or not altered.

Even if the DWT has been proved useful for extracting
relevant ECG information (Martínez et al., 2004; Llamedo and
Martinez, 2012), according to Table 2 morphological features
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FIGURE 6 | Accuracy Sensitivity and Specificity box plot for N, S, and V detection calculated for each patient independently.

extracted from the DWT seemed to have a lower impact on the
overall classifier’s performance.While the morphological features
obtained using the raw signal accounted for any morphological
signal changes, morphological DWT features accounted for
changes occurring only at a determined frequency band. Results
suggest that the morphological changes induced in the 4th
scale of the DWT captured by cross-correlation with respect to
the intra-patient templates, were not as representative as those
capturing morphological changes in the temporal signal.

It is known that ECG signals acquired from different patients
have a considerable inter-patient variability. These dissimilarities
hider the definition of universal measures that could serve
as descriptors of eletrophysiological events (as PAC or V).
As a result, ECG delineators and beat classifiers attaining
high performance across different patients and databases are
rather challenging. By extracting morphological features that
do not depend on precise measures but on the analysis of the
evolution of the ECG signal itself, the inter-patient dissimilarity
problematic is bypassed. In contrast, classifiers as De Chazal
et al. (2004) and Zhang et al. (2014) depended on a proper ECG
delineation to extract morphological information.

Two approaches were taken to study the proposed model: a
proper PAC detector by discriminating between two categories
(S–Other) and a beat classifier to discriminate among three
different classes (N, S, and V). Sensitivity values increased
slightly for multi-label approach but with a reduction in PPV
in comparison to the binary classification. Although PAC
detection was the main target of the development of this model,
results obtained for the multi-label approach shows that the
classifier can be successfully adapted to the detection of also
ventricular beats without major performance degradation in PAC
detection performance.

Great care was taken in this work so as to not only maintain a
balance among the three beat categories in the train set but also
among the number of beats belonging to different patients, in
order to avoid a patient-biased trained model. As it can be seen
in the results in Figures 4, 5 as well as in Table 5, the detector
performance varies among patients, evidencing the strong inter-
patient influence on discriminating different beat types. One
factor contributing to this could be the differences between
lead placement on patients for acquiring Holter recordings.
Different lead placement for Holter monitoring would influence

amplitudes for the ECG segments, specially for regions as the
P-wave. In patients with ECG signals attaining a lower P-wave
amplitude, morphological distortions would be less evident and
thus more difficult to detect.

4.1. Related Work
From the published methods, an initial distinction can be made
based on if a proper patient-wise train-test division was made.
As demonstrated by Llamedo and Martinez (2012), there exists
a strong bias introduced in algorithms trained and tested with
beats belonging to the same patients. A second distinction
can be made based on the database used for testing the
methodology. The Association for the Advancement of Medical
Instrumentation (AAMI) guidelines recommend the open-
source MITBIH Arrhythmia database available at Physionet as
a common framework for reporting performance as it is the
only one that contains the five superclasses of arrhythmias.
However, as discussed by Luz et al. (2016) this database
is highly unbalanced and provides misleading results about
supraventricular and ventricular beats detection. A standardized
train-test division of the MITBIH arrhythmia database was
proposed by De Chazal et al. (2004), which has been used by
many authors as Yu and Chen (2007), Yu and Chou (2008), Mar
et al. (2011), and Zhang et al. (2014). However, most S and V
occur in single patients in both sets and extrapolation of the
performance to other patients is rather doubtful. Llamedo and
Martinez (2012) performed an exhaustive analysis about how the
databases used for testing changed significantly the performance
reported by the same methodology. Therefore, it is important to
understand that comparison between algorithms is not trivial and
that it should be interpreted with care.

De Chazal et al. (2004) used RR intervals and morphological
information of the segmented ECG as features and linear
discriminant (LDs) models as classifier. They used for training
and testing the MITBIH arrhythmia database divided by the
standard DB1 DB2 introduced by themselves. They reported a
sensitivity of 75.9%, a PPV of 38.5% and a FPR of 4.7%. In
two studies, Llamedo and Martinez (2011) and Llamedo and
Martinez (2012) developed a classifier including RR interval and
morphological features from different scales of the DWT. In a
first study (Llamedo and Martinez, 2011) used a LD classifier
(LDC) and tested their method on the DS2-Test set of the
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MITBIH obtaining a SVEB sensitivity of 77% and a PPV of
88%. In addition, they also tested the methodology on the whole
MITBIH Arrhythmia database reporting a SVEB sensitivity of
61% and a PPV of 73%. In a second study (Llamedo andMartinez,
2012) they used up to 8 public databases, among which were
the SVDB and the LTSTDB (containing the 82.01% of the total
PACs) to train and test their model. They used their previously
developed classifier together with and unsupervised clustering
method to construct their model. In addition they enabled it to be
assisted, semi-assisted or automatic. They obtained a sensitivity
and a PPV of 76 and 43% in the full MITBIH in automatic mode
that increased up to 89–88%, respectively, in assisted modality.
Similarly in the SVDB they obtained 47 and 50% that increased
to 74 and 79% sensitivity and PPV in automatic to assisted,
respectively. Finally in the LTSTDB they obtained 50% and 8%
sensitivity and PPV in automatic and 51 and 58% in assisted.
To the best of our knowledge (Llamedo and Martinez, 2012) are
the only ones reporting results using the SVDB and LTSTDB as
test set.

The classifier presented in this work attained a sensitivity and
PPV of 94.12 and 21.21% for the LTSTDB and 91.78 and 66.67%
for the SVDB as shown in Table 4. Results for both databases
were considerably higher in terms of sensitivity in comparison
with those reported in Llamedo and Martinez (2012) for the
automatic and assisted classification. PPVs were higher that the
ones reported by Llamedo and Martinez (2012) only in the fully
automatic mode. Nevertheless, PPV should be interpreted with
care as, given the high class imbalance (of more than 2 orders
of magnitude) S PPVs would increase if S sensitivity was equal
to zero, thus not detecting PACs at all. Therefore, sensitivity
values ought to be taken in consideration together with the
PPV. The beat classifier presented by Llamedo and Martinez
(2012) attains a higher PPV in the SVDB (76%) in the assisted
mode. However, the reported sensitivity in the LTSTDB using
that same methodology reaches only a 51% which would not
make it suitable for PAC detection. It is evident that using the
proposed methodology or the one presented by Llamedo and
Martinez (2012) is a matter of trade-off with regard to the
amount of false positives or false negatives as far as PAC detection
is concerned.

On the other hand the sensitivity and PPV values obtained
for V classification shown in Tables 5, 6 (100 and 93.66% for the
SVDB and 99.81 and 45.83% for the LTSTDB) were superior to
those reported by Llamedo and Martinez (2012) in the automatic
mode (sensitivity and PPV of 82 and 54% percent for the SVDB
and 43 and 11% for the LTSTDB). For the assisted mode they
obtained a sensitivity and PPV of 88 and 90% for the SVDB
and 95 and 99% for the LTSTDB. It should be noted that even
if some performance values are higher for S or V detection
for the assisted version of the classifier presented in Llamedo
and Martinez (2012), this version requires of the intervention
of a user to verify the final classification which could induced
human errors as well as variability among users in the final
classification. These results suggest that the proposed model
could be used not only for PAC, but also for V detection,

obtaining performance results for beat classification higher than
those present in literature.

The proposed model enabled the detection of almost all
PACs included in this study, implying an step ahead in PAC
detection, as the available methods’ sensitivity was always kept
low (De Chazal et al., 2004; Yu and Chen, 2007; Yu and Chou,
2008; Llamedo and Martinez, 2011, 2012; Mar et al., 2011; Luz
et al., 2013; Zhang et al., 2014). In addition, PPVs were higher
than those reported in literature for the databases included
in this study and for fully automatic algorithms. In order to
reduce false positives, the exploration of the the integration of
an unsupervised learning classifier to the one presented in this
work as Llamedo and Martinez (2012) did, could be considered
for future work.

5. CONCLUSION

In this work a PAC detector and a classifier for N, S, and
V beats is presented. In contrast with many methodologies
present in literature, the developedmethodology does not require
ECG delineation. Although comparison among methodologies
presented in different studies is not trivial, the former method
outperforms in terms of sensitivity and PPV the state-of-the-
art models for PAC detection. Further efforts should be made in
order to decrease the inter-patient variability, increase the PPV
and reduce false positives so as to be able to use the former
method in clinical trials.
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