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Abstract: The growing interest in Electrical Vehicles (EVs) opens new possibilities in the use of Li-ion
batteries in order to provide ancillary grid services while they are plugged to recharging stations.
Indeed, Vehicle-to-Grid (V2G), Vehicle-to-Building (V2B), Vehicle-to-Home (V2H) as well as Vehicle-
to-Vehicle (V2V) services can be carried out depending on the particular installation and on the
connection to the distribution grid of the considered recharging station. Even if these are interesting
and challenging opportunities, the additional charging/discharging cycles necessary to provide
these services could decrease the expected life of EV batteries. For this reason, it is of paramount
importance to study and develop reliable models of the batteries, which take the aging phenomena
affecting the reliability of the Li-ion cells into account to evaluate the best charging/discharging
strategy and the economic revenues. To this aim, this paper focuses on a battery pack made up with
Li-ion nickel–manganese–cobalt (NMC) cells and proposes a semiempirical Electrothermal Aging
Model, which accounts for both calendar and cycle aging. This modeling phase is supported by
several experimental data recorded for many charge and discharge cycles at different C-rates and for
several temperatures. Thus, it is possible to analyze and compare scenarios considering V2G services
or not. Results show that the considered battery is subjected to a life reduction of about 2 years, which
is a consequence of the increased Ah charge throughput, which moves from 120,000 Ah over 10 years
(scenario without V2G services) to almost 230,000 Ah over 8 years (scenario with V2G services).

Keywords: electrical vehicles; vehicle to grid; aging model; Li-ion NMC batteries

1. Introduction

Nowadays, the transportation industry and the automotive one in particular is going
through a transition from Internal Combustion Engine (ICE) vehicles to Electrical Vehicles
(EVs), with the main goal of meeting EU targets to reduce the CO2 emissions from the
road transport sector. In this scenario, battery technology is the heart of this transition as
main parts in terms of performances, affordability and reliability of hybrid and full electric
vehicles [1–3]. In this scenario, Lithium-ion (Li-ion) batteries play a key role due to their
high gravimetric energy density (Wh/kg), volumetric energy density (Wh/L) and power
density (W/kg) [4].

However, the growth of e-mobility introduces some new problems in the electric grid
that are important to analyze. Indeed, the average consumption for a Battery Electric Vehicle
(BEV) is around 0.18 kWh/km and the average annual distance is around 11,500 km (EU
average). Thus, each BEV is expected to need almost 2070 kWh in one year [5]. According
to these data, the impact of EV charging on the daily load curve could be a serious problem
because, even if the installed capacity could supply this new demand, the distribution
system components (such as transformers and lines) would be overloaded, with consequent
congestions and reduction of their lifetime [6].

For this reason, electric vehicle integration in the grid has to be smart and controlled.
Considering that private vehicles spend 95% of their lifetime being parked [7], if they were
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plugged EVs they could allow the bidirectional flow of power, enabling the Vehicle-to-
Everything (V2X) service and the interaction of the vehicle with other systems: Vehicle-to-
Building (V2B) and Vehicle-to-Home (V2H) to increase the self-consumption coming from
distributed generation (DG); Vehicle-to-Vehicle (V2V) to allow mutual support between
vehicles; Vehicle-to-Grid (V2G) to turn the electric vehicle from a potential threat to a
distributed battery energy storage system able to provide all or some grid services.

However, the full implementation of V2G has still some important issues to be solved:
a widespread charging infrastructure to allow vehicles connection; favorable policies and a
renewed electricity market that allows adequate revenues; an EV equipped with advanced
power electronics devices and with a battery pack that does not suffer too much from the
additional cycling; an aggregator to integrate and coordinate all these distributed resources
through data communication; and an intelligent energy management, as a unique actor
participating on the electricity market.

Among all these aspects, understanding the aging phenomena of the battery is of
particular importance to describe its performances and reliability in terms of lifetime [8,9],
allowing to perform the previous services. Each battery, whether it is used or not, suffers
from a continuous reduction of its useful capacity (the amount of charge that can be
extracted from the battery, measured in Ah) and an increase in the internal series resistance,
which leads to a decrease in the available output power. A battery reaches the end of life
(EOL) when the capacity loss, measured with respect to the nominal one, equals either
20% [10–12] or 30% [13].

Therefore, the modeling of the aging phenomena is a key issue. First, an aging model
could be used to quantify the increased capacity fade due to the additional cycling of the
batteries subjected to V2G and compare them to the unavoidable calendar aging loss of a
parked EV. Based on this model, a battery-management system could be implemented to
avoid highly detrimental operating conditions for the vehicle, working on middle state of
charge (SOC), depth of discharge (DOD) and C-rate stress factors. At a higher level, the
knowledge of the aging status for more EVs could be used by an aggregator to provide
V2G services in an optimized way considering all the different EVs parked. Finally, the
battery initial cost and its aging are fundamental to evaluate the proper revenue for the
driver and the aggregator that provides ancillary services [14].

This paper presents an analysis of a Li-ion nickel–manganese–cobalt (NMC) batteries
considering an electro-thermal model in order to analyze different scenarios for the Vehicle-
to-Grid (V2G) services in terms of battery degradation. To this aim, an overview of the aging
models that were developed has been presented and, after that, an aging model is developed
starting from experimental data to analyze a V2G scenario. The paper is organized as
follows: Section 2 describes the Li-ion batteries’ aging phenomena; Section 3 provides a
literature review of the models used to describe these phenomena; Section 4 presents the
electrothermal model used in this paper to describe a Li-ion NMC battery; Sections 5 and 6
present the calendar aging model and the cycle aging model respectively; in Section 7
different V2G scenario are presented and compared in terms of battery degradation; and,
finally, Section 8 draws the conclusions of the paper.

2. Aging Phenomena

Aging occurs whenever the performance of a battery deteriorates over time, due to a
continuous reduction of its useful capacity and an increase of the internal series resistance,
which leads to a decrease in the available output power [8,15]. The chemical components
stored in each cell at the beginning of its life are at a high energy state, which one would
like to exploit to convert chemical energy into electrical energy and vice versa according to
Equation (1).

LixCy + Li1−x MO2 � yC + LiMO2 (1)

Unfortunately, the anode, cathode, separator and electrolyte interact between each
other during cycling and storage in such a complex way that many side reactions occur
in the cell, depending on factors such as SOC, temperature and C-rate [16]. These side
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reactions evolve toward a more stable, lower energy state, in an irreversible way that leads
to electrolyte degradation, loss of active material at the anode/cathode or loss of cyclable
lithium, where all contribute to capacity fade and resistance increase.

2.1. Aging on the Negative Electrode-Electrolyte Interface

The critical area where the side reactions take place is the interface between electrolyte
and electrodes. Particularly, the main aging process happens at the carbon electrode–
electrolyte interface, with the development of the so-called Solid Electrolyte Interphase
(SEI) [16–18]. The typical graphite anode works outside the electrolyte stability window, so,
during the first cycles of a new cell, a reaction between intercalated Li+ and the electrolyte
solution creates this SEI, forming a protective layer that prevents further degradation of
the graphite anode and allows a stable operation, as SEI is permeable to Li+. However,
the SEI is porous and some electrolyte can diffuse and reach the anode surface. Moreover,
charging and discharging the cell with the intercalation/deintercalation of Li+ causes up
to 10% variation in the volume of the graphite anode, cracking the SEI. Both phenomena
lead to a continuous thickening of the SEI layer, with an irreversible loss of cyclable lithium
and electrolyte. Furthermore, as the SEI layer increases, so too does the cell resistance. The
solvent particles may also interact with the electrode causing graphite exfoliation, which
results in loss of active material and gas formation [16]. It is important to state that lithium
titanium oxide (LTO) cells do not face any SEI formation, with batteries that have shown
lower capacity fade and longer lifetime compared to the graphite-based one [17]. The
price to pay is a lower energy density for LTO batteries, due to the lower voltage for the
single cell. In addition to surface film formation and active material degradation, another
aging mechanism occurring at the anode surface is lithium plating. When the intercalation
reaction becomes too slow and the potential too low, lithium ions start to deposit onto the
anodic graphite forming a metallic structure. This consumes cyclable lithium and it is also
a safety risk, as metallic lithium can form dendrites and lead to hazardous short-circuits
between the electrodes [13].

2.2. Aging on the Positive Electrode-Electrolyte Interface

The aging phenomena occurring at the cathode can be classified into surface film
formation and active material degradation. In the first case, the coating may arise from
the side reactions between the electrolyte and the cathode. Instead, during the charge
and discharge of the cell, cathodic materials may face changes in the lattice structure with
the dissolution of the transition metal ions [13]. This results in loss of active material,
with ions that might also migrate to the anode SEI surface and increase its thickness.
Lithium manganese oxide (LMO) cells are the most sensible to degradation due to crystal
deformation and dissolution of manganese Mn2+ ions inside the electrolyte, followed by
lithium iron phosphate (LFP) and NMC. However, all these phenomena have lower impact
on aging than those occurring at the anode interface, as the cathode does not operate at
high voltage (around 4.5 V) where film formation and degradation are enhanced [8].

2.3. Calendar and Cycle Aging

Although the aging phenomena described before occur whether the battery is used or
not, it is typical to divide battery degradation into calendar aging and cycle aging.

Calendar aging refers to the storage conditions, i.e., when the battery is not operating.
In this condition, the capacity fade can be divided into a reversible capacity loss (RCL),
also called self-discharge, that can be recovered recharging the battery after the storage,
and an irreversible capacity loss (ICL), which is permanently lost [15]. The main parameter
affecting calendar aging is the storage temperature T: the higher it is, the easier side
reactions will occur. SOC is another important factor, as cell stored at high SOC show
increased capacity fade. This could be explained by the higher potential disequilibrium at
the electrode–electrolyte interface due to higher SOC [18–21].
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Cycle aging is associated with battery operation, i.e., with the charge and discharge
cycles. While aging on storage is due to side reactions resulting from the thermodynamic
instability of materials in presence, cycling adds kinetically induced effects, such as volume
variations, or concentration gradients [15]. Therefore, cycle aging will also depend on other
factors such as middle SOC, SOC variation, that is, DOD, and the C-rate.

3. Aging Models Literature Review

The cross-interaction of temperature, SOC and C-rate on the battery-aging mechanisms
makes it challenging to create suitable models for lifetime prediction. In the current
literature, three main categories can be identified, namely electrochemical–mechanical
models, equivalent circuit models and empirical models.

3.1. Electrochemical-Mechanical Models

The goal of electrochemical–mechanical models is to describe the aging phenomena
using physical equations. These models focus on SEI formation and on its evolution at
graphite anodic surface, because this is the dominant phenomena that leads to a capacity
reduction.

Purewal et al., in [22], tested NMC batteries developing a model for both chemical
and mechanical degradation in good agreement with the capacity loss predictions of the
companion paper [13]. They focused on modelling fatigue crack growth at the graphite
particle surface from repeated diffusion-induced stresses (DIS) during cycling and growth
of the SEI film thickness under diffusion-limited processes. Another study [23], also
takes into account Li+ diffusion according to Fick’s law, adding the description of the
intercalation/deintercalation current with Butler–Volmer equation and focusing on thermal
aspects, building a unique thermal–electrochemical model. They pointed out how SEI
growth is faster during charge than discharge and that temperature rise in Li-ion batteries
accelerates the SEI layer growth [23]. In [24], a different point of view is highlighted by
studying the effect of the potential drop across SEI and consequent capacity fading. Based
on Eyring equation, ref. [11] tried to use a simple expression to describe the kinetics of
the electrochemical side reactions occurring during battery aging. The result is a model
able to compute the number of cycles according to the specific temperature, DOD and
C-rate operation, until reaching the EOL, set at the 80% of available nominal capacity.
The model [11] performs quite well as a cross-over one, linking internal processes to
external phenomena, but it has no calendar-aging behavior included. In [18], the effects of
an extended cycling in mild conditions are highlighted, due to the formation of lithium
plating, predicted by a physics-based model. It takes into account how SEI formation and
growth produces a linear increase in the capacity loss in the first stage. In a second stage,
when SEI growth has reduced anode porosity, the lithium-plating reaction becomes the
predominant one, in a positive feedback loop that makes the aging process during cycling
strongly nonlinear [18].

On one hand, these models, which require a detailed understanding of the underlying
chemical processes, give good results in the description and prediction of microscale
phenomena, perhaps affecting different batteries with similar structures, such as with a
graphite anode. On the other hand, the link between all these different effects and their
global description in a macroscale way are still a great challenge for an overall modelling
of battery aging.

3.2. Equivalent Circuit Models

Equivalent circuit models are based on the Electrochemical Impedance Spectroscopy
(EIS) technique, which is recognized as a nondestructive characterization technique to
understand the electrochemical processes in a cell and how they change over time [25].
EIS can be performed applying an ac sinusoidal current or voltage over a wide range
of frequencies (from mHz to kHz and more), measuring the voltage or current response
respectively, and evaluating the equivalent cell impedance. Equivalent circuits with a
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single voltage sources in series with a variable number of RLC series/parallel branches
are usually proposed [25–28]. The evolution of these RLC parameters are usually obtained
with accelerated tests where cells are subjected to different temperature, SOC, DOD and
C-rates. Equivalent circuit models come from a macroscale approach describing the overall
effects of multiple factors impacting the battery aging, which can refer to the single battery
technology. Furthermore, the use of an equivalent circuit could help in more general and
effective description of multiple aspects related to the battery, such as its management
system. One drawback of this approach is that it requires a large amount of experimental
data, leading to time- and cost-consuming processes for the model evaluation.

3.3. Empirical Models

The last and widest class is the one of empirical models. Empirical models focus
on the battery as a black box, testing the battery at different combinations of tempera-
tures T and SOCs for calendar aging tests. For cycle aging tests, different current profiles
are used, with different charging/discharging C-rates. The final evaluation is based on
the capacity-fade measurement, which is periodically characterized depending on spe-
cific charging/discharging operations defined time-by-time by the authors, and on the
measurement of the internal resistance, according to the pulse-resistance test [25,29].

Instead of focusing on a specific circuit, the empirical models pull out experimental
trends for the description of capacity fade and internal resistance as function of time, for
calendar aging, or function of the number of cycles, for cycle aging.

For example, ref. [12] focuses on the cycle aging of LFP 2.3 Ah batteries by evaluating
the influence of temperature (−18, 0, 25, 40 ◦C), DOD (20%, 40%, 60%, 80%, 100%) and
C-rate once at a time, so when the other two parameters are set at their nominal values. A
prediction model is developed according to the exponential trends obtained for the number
of remaining cycles as function of T, DOD and C-rates, with a maximum error between
experiments and simulations of 5.4%. However, there is no focus on calendar aging aspects
in [12], but they are pointed out in [30] by Grolleau et al. In this paper, the model is built
based on the Arrhenius relationship for capacity fade during calendar aging, which is
commonly used in the literature.

Wang et al. also focused on LFP 2.2Ah batteries in [31], using a different approach,
based on a test matrix made up of six temperatures (−30, 0, 15, 25, 45, 60 ◦C) five DOD (90%,
80%, 50%, 20%, 10%) and four constant C-rates (C/2, 2 C, 6 C and 10 C) and developed a
predicting model. To sum up, empirical models represent a widely exploited solution to
provide a powerful prediction of aging evolution under different stress factors, without
a detailed comprehension of physical–chemical models, making them suitable as blocks
inside a global system model such as a vehicle model [32]. The drawback, also in this case is
the required wide data set, although an optimal design of experiments could be developed
to reduce time and cost consumption [32].

4. Electrical and Thermal Model

Li-ion batteries are the most used in EVs due to their high energy and power density,
high efficiency and long cycle lifetime. Li-Ion batteries identify a large family of batteries
that work with Li+ ion flow, having different material at the anode, cathode and electrolyte
for the single cell [9]. For EV applications, the automotive industry mainly focuses on
the nickel–cobalt–aluminum (NCA, LiNiCoAlO2) and nickel-manganese-cobalt (NMC,
LiNixMnyCo1-x-yO2) technology (Table 1) [2]. Both technologies have a cell voltage greater
than 4 V when fully charged, and they require an efficient active management system to
ensure high safety levels.



Electronics 2022, 11, 1042 6 of 30

Table 1. Li-ion chemistry of some EV batteries (2017 data).

Model Chemistry Cell Manufacturer

Tesla Model S, X NCA Panasonic
BWM i3 NMC Samsung

Nissan Leaf NMC AESC
Renault Zoe NMC LGChem

Volkswagen e-Golf NMC Samsung

So, focusing on NMC type, in Li-ion cell modeling, it is of paramount importance to
predict and analyze its behavior in different operating conditions. Three main types of
models can be found in the literature to describe a Li-ion NMC battery: electrochemical,
empirical and electrical models [14].

Electrochemical models resort to chemical kinetics and thermodynamics, involving
coupled partial differential equations and a deep knowledge of electrochemistry. They
are able to predict many phenomena occurring inside a cell through complex modeling.
Empirical models consider the battery as a black box, connecting the external variables of
interest with few equations obtained from the analytical fitting of large sets of experimental
data. Thus, they do not focus on the underlying chemical processes. Electrical models try to
represent the cell with an electric circuit that shows the same current-voltage characteristic
at the external terminals. The cell layers are modeled by electric components such as
resistors, capacitors and voltage sources, where the complexity of the model can vary in a
wide range depending on the number of adopted parameters.

To sum up, electrochemical models are complex and quite inefficient from the com-
putational point of view at a system level, where the cell is a part of a structure, such as
a battery, that in turn belongs to a system, e.g., an electric vehicle. Empirical modeling is
easy to use, but each model is specific for one application. This requires large sets of experi-
mental data and it can be affected by large errors with reduced fidelity of the simulations.
On the other hand, electric circuit models (ECMs) are easier to manage, computationally
more efficient than electrochemical ones, and with a good accuracy in predicting the battery
performances under different conditions. In this paper, an electrical model is used to predict
the cell battery behavior [33].

The Li-ion cell is just the basic unit of a bigger system which is the battery pack
(Figure 1). In EVs, the cells are connected in series and parallel to reach certain current and
voltage levels. Furthermore, to safely mange the cells, they are installed in modules and
packs. In modules, cells are gathered into a frame to protect them from external shocks and
more modules are connected to create a battery pack. At module level, it is necessary to
control and manage temperature with a Thermal Management System (TMS) and voltage
with a Battery Management System (BMS).

The BMS is necessary to achieve the cell balancing at module level, whereas TMS is
needed because cells are subjected to different temperatures depending on their position
inside the battery pack. In this paper, BMS and TMS are considered ideal, assuming
a perfect cell balancing and a uniform battery temperature due to an efficient cooling
system. In order to validate this hypothesis, some tests have been performed using 15 cells
connected in a single series branch and 16 cells connected in two parallel branches of 8 series
cells. The module is discharged with a constant current of 31 A for 600 s. Preliminary tests
show that single cell parameters vary uniformly by around 2% of their nominal values. At
the end of the test, the final SOC unbalance is around 1% between different cells for the
series-connected module and 1.5% for the parallel-connected module (Figure 2).
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The 15 series cells module is also used to validate the TMS approximation. During the
1200 s discharge transient, the cell temperatures is monitored and the maximum observed
variation between two cells is less than 1 ◦C with active TMS control. The maximum
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difference has been observed between the eighth cell (central cell in the module) and the
first cell.

A battery pack consists of a series connection of 100 NMC cells in order to reach a
nominal voltage level of 370 V, which has been chosen to develop the electrothermal model.
Three series branches are parallel connected to reach a capacity of 93 Ah and a nominal
energy of 34.4 kWh according to the technical specifications of actual EVs (Table 2).

Table 2. Energy and voltage ratings of Li-ion batteries installed on selected EVs (2017 data).

Model Energy [kWh] Battery Voltage [V]

Tesla Model S, X 40, 60, 85 300
BWM i3 33.2 353

Nissan Leaf 24, 40 350
Renault Zoe 22, 41 400

Volkswagen e-Golf 35.8 323

4.1. Thermal Model

Assuming a uniform battery temperature T, it is possible to model the thermal behavior
using a first-order thermal circuit (Figure 3), where Cth is the cell heat capacity, Rth is the
convective thermal resistance and Plosses the internal battery power losses. A first-order
model is chosen due to the model simplicity and based on the hypothesis of an ideal TMS
control. The two parameters are calculated as indicated in Equation (2) where m is the
cell mass, ct the specific heat capacity, h the heat transfer coefficient and A the convective
exchange surface area. The heat transfer coefficient and the specific heat capacity are
estimated using experimental data. Considering the entire battery pack, it is possible to
assume the same network adapting the mass to the entire battery and the exchange area
according to the cell position. In this paper, it has been considered that the 300 cells are
arranged in 15 rows of 20 cells each. The heat transfer coefficient changes based on the
adopted cooling fluid (h = 20–250 for forced air convection, h = 1600–2600 for forced glycol
convection). T can be found solving the network shown in Figure 3.

Cth = ct · m, Rth =
1
h

A (2)
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Figure 3. Cell thermal model.

4.2. Electrical Model

The electrical model used in this paper is shown in Figure 4. A single RC branch model
is used where each component is written as a function of SOC and of the temperature T [34].
The temperature has been calculated using the previous thermal model.
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Figure 4. Cell electric model.

The SOC is computed using Equation (3), where Qe is the charge extracted from the
cell and CQ is the cell capacity. Qe is calculated based on the discharge current I as shown
in Equation (4).

SOC = 1 − Qe

CQ
(3)

Qe(t) =
t∫

t0

I(τ)dτ + Qe(t0) (4)

when computing SOC, it is important to point out that in general cell capacity CQ is not
a constant value. It depends on many factors, such as: the storage time, because of self-
discharge; the operating temperature and the discharge current, which are related to each
other, because the higher the discharge current the more the cell heats up; and the aging
effects related to capacity fade on a long time scale. Peukert’s law Equation (5) is typically
used when computing cell capacity where CQ is the cell capacity, In is the nominal cell
current and t is the time. Due to the factor k being greater than 1, a discharge with a C-rate
of, e.g., 2C (twice the nominal current to discharge the cell in 1 h) affects the cell capacity,
which will be lower and cause the cell to be discharged in less than half an hour.

CQ = Intk (5)

Nevertheless, some useful hypotheses can be created for the Li-ion cell. First, CQ
has very small changes in the temperature range in which the cell typically operates.
Second, Li-ion cells do not suffer from self-discharge in practice. In addition, coefficient k in
Equation (4) is slightly greater than 1 (1.03–1.05), so, if the cell is discharged from 0.25 C to
2 C (twice the nominal current to discharge the cell in 1 h), CQ changes its value of only few
percent compared to the nominal one. For these reasons, CQ can be considered constant on
a short time scale. Long time-scale effects could be considered only in an aging model.

The analyzed Li-ion cell is a 31 Ah NMC pouch cell, whose specifications are reported
in Table 3. The cell was iteratively tested with the pulse discharge characterization tests,
subjected to partial constant current discharges followed by a rest phase to recover the
Open Circuit Voltage (OCV), as in Figure 5.



Electronics 2022, 11, 1042 10 of 30

Table 3. Technical specifications of the Li-ion cell considered for this study.

Characteristic Value

Nominal Capacity 31 Ah
Nominal Voltage 3.7 V

Voltage range 3.4–4.2 V
Maximum continuous current 155 A

Maximum peak current 310 A

Operating temperatures Charge: 0 ◦C–40 ◦C
Discharge: −20 ◦C–60 ◦C

Thickness 8.4 mm
Width 215 mm
Length 220 mm
Weight 1 kg
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To simplify the electrical parameters calculation during the simulation phase, some
look-up tables are used. In particular, three different temperatures (5, 20 and 40 ◦C) and
seven SOC breakpoints (0, 10, 25, 50, 75, 90, 100%) are chosen.

Regarding the estimation procedure of the electrical parameters, each temperature is
considered independently and simulated data is fitted over the experimental one using the
nonlinear least squares algorithm, allowing us to obtain the results shown in Figure 6.

The electromotive force is mainly influenced by SOC and, practically, it does not
change with temperature. Both resistances show lower values for middle SOC and they
increase when temperatures decrease, which hinders the cell reaction. The capacitance, that
accounts for the cell transient response, increases with temperature and it also shows two
peaks around 20% and 80% SOC, which might be due to the internal phase transitions of
the cell components.

Regarding the thermal parameters, a cell specific heat capacity of 810.53 J/kgK and
a convective heat transfer coefficient between the cell and the environment (air natural
convection) equal to 5 W/m2K are obtained.
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5. Calendar Aging Model

Aging models aim at the description of the degradation of the cell until reaching the
EOL. As described in Sections 2 and 3, they can be classified into three categories, namely,
electrochemical models, empirical models and electrical models. Electrochemical models
precisely describe the most important aging phenomena, such as SEI formation, lithium
plating and mechanical degradation due to fatigue crack growth at the anode surface,
according to the physical equations that govern them.

Electrical models rely on the same electric circuit described previously, but updating
the parameters to keep track of the degradation through the years. This is done either
with empirical equations that fit experimental data from accelerated aging tests or by using
machine learning (ML) and artificial neural networks (ANN) to obtain the evolution of the
parameters from periodic tests, such as the electrochemical impedance spectroscopy (EIS).

Empirical models also rely on extensive experimental campaigns, aiming at the esti-
mation of the State of Health (SOH) to keep track of cell degradation. They consider the
battery as a black box, which is tested for different combinations of temperatures and SOC
for calendar aging tests and with different DOD and charging/discharging C-rates for cycle
aging tests. Instead of focusing on a specific circuit, the empirical models estimate SOH
by pulling out experimental trends for capacity fade and internal resistance as function of
time, for calendar aging, or function of the number of cycles, for cycle aging.

To sum up, in this case electrochemical models are complex and difficult to manage
at system level. Electrical and empirical models are commonly used, although they rely
upon extensive experimental campaigns and have to be used for specific applications in
order to reduce large errors in the prediction of SOH. From this point of view, ML and
ANN represent the most promising solutions to adapt each model to its own cell, with its
own chemistry, with a good accuracy in predicting the battery degradation under different
conditions. In this work, semiempirical models have been developed to estimate the aging
of the battery pack modeled in Section 4. The semiempirical models use experimental
data to determine the variables of the chemical equations used to describe the reactions of
interest at a macroscopic level. Among them, the Arrhenius Equation (6) is very often used
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when describing the reaction rate k of SEI formation, which is the main aging phenomena,
and its temperature dependence [15–18].

k = A · e−
EA
RT (6)

where A is a pre-exponential factor related to the total number of collision that could lead to
the reaction, which has the dimensions of s−1 for first-order reactions, while the exponential
is related to the probability of happening for the reaction that depends on the temperature T
in K, gas constant R equal to 8.314 J mol−1K−1 and the activation energy EA in J mol−1 (the
minimum amount of energy that must be provide to start the reaction). Taking the natural
logarithm of Equation (7) and considering the dependence between ln(k) and the inverse of
temperature, an equation of a straight line is obtained Equation (8). The corresponding plot,
also called an Arrhenius plot, is the way to demonstrate that the reaction rate obeys the
Arrhenius equation and to compute factors A and EA from the gradient and the intercept.

ln(k) = − EA
RT

+ ln(A) (7)

This relationship has been used to develop both the calendar and cycle aging models
taking into account the capacity-fade evolution from experimental data. Due to a lack of
data, the resistance increase has been neglected from the aging models, but it is commonly
known to be the less-strict aging process, with capacity fade leading the degradation of the
battery to the EOL defined at 80% of residual nominal capacity [18–21].

To develop the calendar aging model, NMC Li-ion cell with a nominal capacity of
63 Ah have been tested at five different temperatures (10 ◦C, 25 ◦C, 33 ◦C, 40 ◦C, 55 ◦C) and
eight different storage SOCs (10%, 20%, 35%, 50%, 65%, 80%, 90%, 100%) for 450 days, with
periodic characterization aimed at measuring the residual capacity after 30, 90, 180, 270, 360
and 450 days. The capacity fade evolution as a function of T and SOC is shown in Figure 7.
To model the evolution of capacity loss Qloss% as a function of time t, measured in days,
the Arrhenius equation could be rearranged as in Equation (9), where the pre-exponential
factor A and the activation energy EA are functions of the SOC. The exponential term
depends on the absolute temperature T and the time evolution goes with a power law
tz. The z exponential factor can be obtained by computing the natural logarithm of Qloss%
Equation (9), obtaining Equation (10).

Qloss%(SOC, T, t) = A(SOC) · e−
EA(SOC)

RT tz (8)

ln(Qloss) = ln(A · tz)− EA
R

1
T

(9)
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Figure 7. Experimental capacity-fade evolution from calendar aging test after 30 (a) 90 (b) 180 (c) 270
(d) 360 (e) 450 (f) days.

The Arrhenius plot is evaluated from Equation (9), after 270 days and for all storage
SOCs, in order to verify that the capacity fade evolution obeys Equation (8). First, the
linear relationship is verified at any SOC level, confirming the possibility of describing the
capacity fade with Equation (8). After that, the activation energy EA is obtained for all SOC
as the slope of the fitted line multiplied by the gas constant R. The activation energy as
a function of SOC is estimated with a third order polynomial function Equation (11) as
highlighted in Figure 8 where SOC is expressed as a percentage (from 0 to 100).

EA(SOC) = 0.05977 · SOC3 − 16.14 · SOC2 + 1232 · SOC + 10710 (10)
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Once all values for EA are obtained, Equation (9) can be rearranged further as reported
in Equation (12) to obtain the logarithm of pre-exponential factor ln(A) as the intercept of
the linear fitted curves for all SOC values. A third order polynomial function is used also
in this case for ln(A) as in Figure 9. The pre-exponential coefficient A can be expressed as a
function of SOC according to Equation (13).

ln(Qloss) +
EA
RT

= ln(A) + z ln(t) (11)

A(SOC) = e2.38·10−5SOC3−0.006571·SOC2+0.5233·SOC+0.475 (12)
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Finally, the exponential coefficient z of the time is evaluated as the slope in
Equation (12). Its value depends on both SOC and T ranging between 0.69 and 0.83,
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so that a fitted surface z (SOC, T) is computed to match all possible operating conditions
(Figure 10).
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The complete calendar model equation is reported in Equation (13). The developed
model is able to follow the evolution of the capacity fade with errors within 1%. In Figure 11,
some examples for different SOCs and temperature are shown.

Qloss,%(SOC, T, t) = e2·38·10−5·SOC3−0.006571·SOC2+0.5233·SOC+0.475 · e
−(0.05977·SOC3−16.14·SOC2+1232·SOC+10710)

RT tz(T,SOC) (13)
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Figure 11. Examples of capacity fade prediction: experimental data (Exp.) vs model calculations
(Cal.).

When comparing calendar aging at 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C for a storage SOC
of 50% and at 25 ◦C with different storage SOCs (20%, 35%, 50%, 65%, 80%, 90%, 100%,
Figure 12), it is possible to recognize that the greater the temperature, the more calendar
aging is accelerated. Concerning SOC, the higher ones are not the most detrimental, as
storing at 50%, 60%, 80% and 90% lead to further degradation compared to SOCs of 35%
and 100%.
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6. Cycle Aging Model

The cycle aging model developed in this work has been developed using the experi-
mental results obtained using a NMC Li-ion cell with a nominal capacity of 1.5 Ah, that
have been tested at 50% DOD, starting from SOC 100%, at four temperatures (10 ◦C, 20 ◦C,
34 ◦C, 46 ◦C) and five constant charge/discharge C-rates (0.5 C, 2 C, 3.5 C, 5 C, 6.5 C). The
capacity fade evolution as a function of temperature and C-rate is shown in Figure 13.
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(10 ◦C, 20 ◦C, 34 ◦C and 46 ◦C).

This time, the evolution of the capacity loss Qloss% makes use of the Arrhenius equation
as in Equation (14), with a power law function of the Ahth, which is the amount of charge
processed by the cell during its lifetime. It is computed from Equation (15) as the product
of the nominal cell capacity Q0 by the number of cycles at a specific DOD.

Qloss%(Crate, T, Ah) = B(Crate) · e−
EA(Crate)

RT Ahth
z (14)

Ahth = Q0 · DOD · cycles. (15)

The pre-exponential factor B and the activation energy EA in Equation (14) are func-
tions of the C-rate (Crate), the exponential term depends on the absolute temperature T and
the charge throughput (Ah) evolution goes with a power law Ahz. The Arrhenius plot is
evaluated considering Equation (16) and a charge throughput of 1400 Ah in order to verify
that the capacity-fade evolution obeys Equation (14). Considering the three highest temper-
atures, i.e., 20◦, 34◦ and 46 ◦C, for 0.5 C, 2 C and 3.5 C, it is possible to see from Figure 13
that the activation energy can be computed from the slope using a linear approximation.

By adding the fourth temperature of 10 ◦C (last three point of Figure 14) there is still a
good approximation for the 0.5 C case (blue circles compared with blue line), but, moving to
2 C and 3.5 C rates, the data for 10 ◦C start to move away from an ideal characteristic, which
means that other phenomena different from SEI formation start to occur, whose description
is not included in Equation (14). Nevertheless, the model applies only for C-rates slightly
higher than 1 C, when the vehicle is fast charging. By considering an average value for the
activation energies at 0.5 C and 2 C, there is still the possibility to evaluate the cycle aging
evolution with the Arrhenius equation with slight mismatches, as demonstrated in the next
validations. The activation energy as a function of C-rate (Crate) is estimated with a linear
characteristic presented in Equation (16).

EA(Crate) = 28, 459 − 2971 · Crate (16)
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Finally, the coefficient z is evaluated as the slope in Equation (16). Its value depends 
on temperature T, being equal to 0.635 at 283.15 K, 0.575 at 293.15 K and 307.15 K and to 
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By rearranging Equation (13) as Equation (17), it is possible to evaluate the pre-
exponential B coefficient from the intercept of the linear characteristic. The fitting function
for the pre-exponential coefficient B as a function of C-rate equal a rational form as in
Equation (18) (Figure 15).

ln(Qloss) +
EA
RT

= ln(B) + z · ln(Ah) (17)

B(Crate) =
−3170Crate + 8653

Crate + 0.142
(18)
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Finally, the coefficient z is evaluated as the slope in Equation (16). Its value depends
on temperature T, being equal to 0.635 at 283.15 K, 0.575 at 293.15 K and 307.15 K and to
0.6024 at 319.15 K. As previously stated, the more the temperature reduces and the C-rate
increases, the less the model is accurate. This is perhaps due to the rise of other aging
phenomena, such as lithium plating. Resorting to curve fitting, a polynomial characteristic
is adopted for coefficient z(T) as in Equation (19). The cycle aging model equation is
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reported in Equation (20). By confining the cell operation to lower C-rates, it is possible
to accurately match the capacity-fade evolution of the cell at different temperatures and
C-rates (Figure 16).

z(T) = 1.594 · 10−4T2 − 9.677 · 10−2T + 15.25 (19)

Qloss%(Crate, T) =
−3170Crate + 8653

Crate + 0.142
e−

28450−2971Ctate
RT Ahz(T) (20)
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Cycle Aging Model Corrections

The operating temperature and the C-rate are not the only stress factors involved in
the aging processes. The DOD and the middle SOC around which the cell is cycled also
have an effect. All cells have been discharged with 50% DOD, which was only involved in
the computation of the total charge throughput. On the other hand, DOD and mid-SOC
influence on capacity fade has been highlighted in [17] for 2 Ah NMC Li-ion cells cycled at
35 ◦C and 1 ◦C. As it can be seen in Equation (21), the only inputs of the proposed model
are the DOD (∆DOD), middle SOC, as a function of the Open Circuit Voltage (V0), and the
charge throughput.

Qlosses,cyc = (7.348 · 10−3(Vo − 3.667)2 + 7.6 · 10−4 + 4.081 · 10−3 · ∆DOD) · Ah0.5 (21)

All the experimental data used for the model in Equation (20) take into account a cell
discharged from the full charge condition with a 50% DOD, i.e., cycled around 75% middle
SOC. Therefore, to complete cycle aging model, a correction factor c1 has been introduced,
which improves the capacity-fade estimation. This correction factor is evaluated as the
ratio between the capacity fade obtained with the model in Equation (21) for the DOD
and mid-SOC from experimental data and the capacity fade obtained with the model in
Equation (21) for the DOD and mid-SOC at which the cycle is actually performed.

Another correction factor c2 has been considered in order to adjust the capacity-fade
estimation when considering large Li-ion cells with a greater amount of electrolyte, which is
a key factor for cycle life. The nominal capacity of the analyzed cells for the electrothermal
and the calendar aging model are 31 Ah and 63 Ah, respectively, while the ones for the cycle
aging model have a much lower capacity Q0 of 1.5 Ah. This correction is made necessary
because the expected lifetime for NMC Li-ion cell is evaluated in terms of full cycles in
different conditions and it could be estimated as indicated in Table 4.

Table 4. Example of estimated lifetime at 1 C-rate.

Temperature Number of Cycles at EOL (80%) Ah at EOL (80%)

10 ◦C 5500 328,000
25 ◦C 6000 362,000
45 ◦C 2500 153,000

Therefore, the relationship between the number of cycles, i.e., the Ah charge through-
put provided by the cell, and the nominal capacity of the cell is more than linear. For
example, at 25 ◦C, the 1.5 Ah cell of the model reaches the EOL, with 80% capacity left, after
almost 2700 cycles and more than 4000 Ah charge throughput, while a 60 Ah cell reaches
the same EOL after almost 6000 cycles, with more than 350,000 Ah of charge throughput.
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The c2 coefficient is also included in the model as a multiplication factor for the number
of cycles for the total charge throughput. Its characteristic depends on temperature as
data reported in Table 4 (showing different expected lifetimes), and it is computed as in
Equation (22).

c2(T) = −3.429 · 10−6 · T2 + 1.864 · 10−3 · T − 0.2396 (22)

The complete aging model structure is reported in Equation (23), while Figure 17
shows its behavior for different operating conditions. At different temperatures, the cell
achieves a good lifetime in terms of number of cycles between 10 ◦C and 25 ◦C. Increasing
the temperature, the aging process accelerates, reducing the number of cycles until EOL.
Mid-SOC also has an impact, as shallow cycles of 20% DOD do not lead to the same aging if
performed at different mid-SOCs. Particularly, the closer the cell operates around 50% SOC,
the smaller the aging. Deep cycling affects cell lifetime, both due to the increased charge
throughput and cycles depth. The last stress factor is the C-rate, with different behaviors at
different temperatures. It is important to remember that the model might not be accurate
at higher C-rates and lower temperatures where the Arrhenius plot starts to diverge from
the linear characteristics. Nevertheless, it is possible to highlight how cycling at C-rates
smaller than 1 C has always a more detrimental effect, particularly at high temperatures:
this could be qualitatively explained by the fact that cycle and calendar aging are never
separated, with the reactions responsible for the aging phenomena constantly ongoing.
Thus, at high temperatures, the higher the C-rate the more Li-ions are involved in the
charge and discharge processes instead of being consumed in the growth of SEI.

Qloss%(Crate, T, DOD, SOCmid, cyc) = c1(DOD, SOCmid) +
−3170Crate+8653

Crate+0.142 e−
28450−2971Ctate

RT (Q0DOD · c2(T) · cyc)z(T) (23)
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7. V2G Scenario

The electrothermal and aging models developed in previous sections are used to
simulate the aging and the evolution of capacity fade for the designed EV battery pack on
a timescale of 11 years. To this aim, two possible scenarios are evaluated, with and without
V2G services, based on the weekly average behavior of a typical driver.

7.1. The Scenario without V2G

In the first scenario, the possible behavior of an employee is considered, with two
daily journeys from home to work and vice versa from Monday to Friday. The length of
each journey corresponds to two NEDCs, with an average distance of 20 km. By adding
two extra journeys during Saturday, the average distance covered by the vehicle in one
year corresponds to almost 12,500 km, in line with the average European values.

On Monday morning, the vehicle starts with its battery charged at SOC 90%. The
thermal measurements are not presented in this section, as the battery pack equipped with
the glycol cooling system follows the ambient temperature profile of Figure 18. The current,
voltage and SOC profiles from the battery pack simulations are presented in Figure 19. On
Tuesday and Wednesday, the current, voltage and SOC profiles are similar, with the battery
discharging between SOC 69% and SOC 48% on Tuesday, and then SOC 27% at the end of
Wednesday. At this point, the battery faces the first of the two weekly recharges, assumed
to be a fast one and a slow one in order to consider both recharging modes. Furthermore, in
both scenarios the recharge is assumed to take place at night, as shown in Figure 20 for the
current, voltage and SOC profiles on Thursdays. During Fridays and Saturdays, the battery
pack is subjected to the same profiles as shown in Figure 18, while it is at rest on Sundays,
with an overnight slow charge that takes the SOC back to 90% to restart the weekly cycle
(Figure 21).
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Figure 21. Electrical simulation results on Sunday for the no-V2G scenario: (a) terminal voltage,
(b) terminal current, (c) SOC.

The estimations of current, SOC and temperature profiles during the week obtained
with the electrothermal model are used to compute the constant stress factors to be fed to
the aging models. The evaluation of capacity fade on a timescale of 11 years relies on a key
assumption: the battery pack developed ages as did the single cells studied in previous
sections. This is justified by the fact that the analyzed Li-ion cells belong to the same
chemistry, although the pack could be subjected to a slightly different aging compared to
the single cell, due to the previously discussed unbalances.

Once a global aging table is developed for the whole week, it is fed to the aging
models which process it considering the new updated battery capacity at the end of each
week. When reaching a residual capacity of 90% (corresponding to 83.7 Ah for the pack
under analysis), the aging table is updated, considering the variation of the weekly profiles
followed by the driver as the pack ages. Given the same driving profiles and charge
extracted from the battery, each cycle has an increasing DOD when the available capacity
of the pack decreases. Over a week, the battery SOC moves from 90% to 21% instead of
oscillating between 90% and 27% as in the first part of life, without operating at too low
SOC values (i.e., around 10%), or at too high ones (i.e., above 90%). The current voltage
and SOC profiles are similar to those determined for the first half of life.

The EOL for a Li-ion battery is defined at 80% of residual capacity left, which corre-
sponds to 74.4 Ah for the pack under analysis. Although the battery pack has still enough
energy to fulfill the tasks for the driver’s behavior, this limit is set because the aging evolu-
tion becomes strongly nonlinear after the extension of the cycle, due to the rise of lithium
plating instead of SEI growth as the main aging process [20]. For the scenario without V2G,
the EOL is reached after 9 years and 9 months approximately, with calendar and cycling
contribution equal to 16.45% and 3.55%, respectively.

7.2. The V2G Scenario

In the V2G scenario, the driver’s behavior does not change during the considered
week. In addition, the battery pack is supposed to be grid connected and subjected to
further charge and discharge cycles in between the two daily journeys. These operations
are subjected to power and energy profiles that simulate the primary frequency regulation
and the energy traded on the Italian Ancillary Services Market (MSD), respectively.
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The power profile is obtained from the frequency oscillations data of the ENTSOE
system over one week in September 2012 [35]. The values are updated every 4 s and used
to compute the required regulation power. A droop characteristic (24) is considered, with a
statism σ = 3%, a discharge/charge efficiency η = 90% and a nominal power for frequency
regulation Pn = 50 kW, that corresponds to the nominal power for DC fast charging. The
regulation power Preg is set to zero in the dead band between 49.990 Hz and 50.010 Hz.

Preg =

(
− f − fn

fn
· 1

σ

)
Pn (24)

Example of the power profile for primary frequency regulation are highlighted in
Figure 22. The energy profile has a different structure, providing constant discharge values
on hourly basis. These profiles are obtained from the analysis of the differences between
the load profile forecast by the Italian TSO Terna and the actual load consumption curve,
over a period of 2 months in September and October 2018.
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The assumption is that the difference between the forecast load and the actual one
corresponds to the amount of energy that has been accepted on the MSD independently
of the final goal, which could refer to secondary or tertiary power regulation, congestion
relief or balancing. The net difference is scaled over the vehicle size and a per unit profile
with respect to the maximum observed unbalance (which could reach up to 2000 MW) is
considered. The maximum power that can be provided by the vehicle is selected in order
to avoid it reaching the limit SOC suddenly after being grid connected.

Limit SOC are set at 90% and 30%, in order to allow the battery pack to provide
sufficient energy for the journey back home without working at too low SOC.

With a maximum available DOD of 60%, corresponding to an energy of about 20 kWh,
a reasonable choice is to limit the power to 5 kW in the first half life, thus obtaining the
profiles reported in Figure 23. It is important to highlight that the power profile has frequent
oscillations, but it does not lead to a significant SOC variation of the battery pack that has
being almost energy neutral. On the other hand, the inbalances between the forecast and
the actual load consumption lead to a greater participation of the vehicle, that is sometimes
discharged or charged for several hours.
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Figure 23. Examples of energy profiles for the energy traded on the MSD.

As for the scenario without V2G, on Monday morning the vehicle starts with its battery
charged at SOC 90%. Current and voltage profiles have a similar evolution also during
the other days of the week until Saturday, thus, they are not reported. The additional
discharge in between the two daily journeys, due to V2G, is obtained by superimposing the
power and energy profiles computed in the previous section. The SOC evolution during
the different days is more interesting, and it is shown in Figure 24.
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Figure 24. SOC Evolution in V2G scenario during the week.

The battery pack is almost fully discharged on Mondays, but it can exploit the grid
request for downward production on Tuesdays and Wednesdays. This corresponds to a
load behavior with respect to a baseline program for the vehicle with p = 0. However, the
limit SOC at 90% is reached on Wednesdays (day #3) and, then, the energy profile is cut off.
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The opposite occurs twice on Fridays (day #5), where the vehicle discharge is limited to
SOC 30%. On Saturdays, the battery pack is subjected to the first slow charging up to SOC
50%. Finally, on Sundays (Figure 25) there is another recharge to restore the initial SOC of
90% at the end of the week.
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The current, SOC and temperature estimations are used to compute the constant stress
factors and to build a global aging table for each interval during the week in which the
battery is either in calendar or cycling mode. This table is fed again to the aging models in
order to evaluate the capacity fade on a timescale of 11 years for the V2G scenario. Similarly
to the previous case, the aging table is updated every time a residual capacity of 90% is
reached: at half-life the battery changes its discharge profile as the available energy has
decreased. Particularly, the maximum power provided by the vehicle for the energy profile
decreases from 5 to 4 kW, with SOC profiles similar to the ones for the first half of life.

For the V2G scenario, the EOL at 80% of capacity left is reached after 7 years and
10 months approximately, with calendar and cycling contribution equal to 7.80% and
12.20%, respectively. The additional cycling reduces the battery lifetime by almost 2 years
as it superimposes the calendar aging with shallow cycles. A comparison of the aging effect
in the two scenarios is shown in Figure 26.
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8. Conclusions

In this paper, a complete model of batteries has been presented for the nickel–
manganese–cobalt technology. The proposed modelling approach takes into account the
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three main characteristics of a battery pack: electrical, thermal and aging behaviors. The
final model has been used to simulate the battery pack of an EV in two scenarios, i.e., with
and without V2G. In this framework, the grid has been simulated considering additional
charge and discharge cycles due to power and energy profiles related to frequency and
energy regulations.

As a result of this work, it has been shown that the battery faces an increased degrada-
tion with respect to the scenario without V2G, which is due to the additional performed
cycles. Namely, the lifetime of the vehicle is reduced of almost 2 years for the V2G scenario
examined. The battery pack does not face a dramatic reduction of its useful life, considering
that the processed Ah charge throughput is almost doubled in the V2G scenario, moving
from around 120,000 Ah over 10 years to almost 230,000 Ah over 8 years to compensate
the corresponding degradation, a suitable revenue system is needed as well as a deeper
analysis to correct the service price accordingly.
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