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Abstract

The purpose of the K dissimilar paths problem is to find a set of K paths, between the
same pair of nodes, which share few arcs. The problem has been addressed from an appli-
cation point of view and integer programming (IP) formulations have also been introduced
recently. In the present work it is assumed that each arc is assigned with a cost, and the
goal is then to find K dissimilar paths while simultaneously minimizing the total cost. Some
of the previous formulations: one minimizing the number of repeated arcs, another one min-
imizing the number of arc repetitions, as well as modifications that bound the number of
paths in which the arcs appear, are extended with a cost function. Properties of the resulting
bi-objective problems are studied and the ε-constraint method is adapted to solve them using
a decreasing and an increasing strategy for updating ε. These methods are tested for finding
sets of 10 paths in random and grid instances to assess the efficiency of the ε-constraint
methods and the performance of the formulations to calculate shortest and dissimilar paths.
Results show that minimizing the number of arc repetitions produces efficient solutions with
higher dissimilarities faster than minimizing the number of repeated arcs. The cost range
of the solutions is similar in both approaches. Additionally, bounding the number of paths
in which each arc appears improves the quality of the solutions as to the dissimilarity while
worsening its cost.

Keywords: K alternative paths; Cost; Dissimilarity; IP formulations; Bi-objective opti-
mization

1 Introduction

The present paper addresses the determination of sets of K paths between two nodes in a net-
work, with two goals: the minimization of the total cost of the K paths; and the maximization
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of their dissimilarity. The first goal translates into one of the most well studied network opti-
mization problems, the shortest path problem. This problem arises in many contexts, whenever
a path is needed which minimizes the sum of the values associated with its arcs, and several
polynomial algorithms are known to solve it (Ahuja et al., 1993). One related problem has also
interested researchers: the bi-objective shortest path problem, dedicated to the case where the
objective functions are linear. A survey about this problem was presented by Raith and Ehrgott
(2009). Bi-objective path problems involving different types of objective functions have also been
studied. These works have been reviewed in the more general survey by Cĺımaco and Pascoal
(2012). The problem addressed in the present work looks for sets of K paths, so the previous
studies do not apply to the linear integer approach considered in the following. The literature on
bi-objective integer programming, on the other hand, is rich for general problems and also when
considering particular problems (Ehrgott and Gandibleux, 2000; Ulungu and Teghem, 1994).

The situation is different for the second goal. The term dissimilarity is often found in the
literature intending to measure the diversity between two entities, and, in practical terms, it is
useful in a number of situations, whenever we look for alternative solutions. Nevertheless, we
are not aware of the existence of a universal definition for it. On the contrary, it is usual to
find different specifications of this concept, according to the context in which it arises, although,
in general, when talking about paths, the dissimilarity is measured according to the amount of
network resources that are shared. For instance, Constantino et al. (2015) study an arc routing
problem with an additional constraint on the number of shared nodes, whereas Hughes et al.
(2021) study a problem where path conflict is found whenever an arc or a node is used more
than once. In the present work, we focus on arc dissimilarity.

Perhaps, the most straightforward application of the arc dissimilarity problem is found in
navigation systems and map-based services. These systems provide the fastest path from a
source location s to a target location t, as well as a set of alternative paths, giving the user more
options to choose from. Recently, Li et al. (2021) presented a study where the quality of the
alternative paths produced by several different methods within this framework is evaluated by
the end users.

In more specific applications, the alternative paths are designed to fit their intended purpose.
For instance, in hazardous materials routing, where spatially dissimilar paths are sought to
reduce the impact of an accident over the traversed regions, Akgün et al. (2000) suggest that
when computing the similarity between two paths, the area of the intersection of a buffer zone
defined for each path should be considered. Differently, Dadkar et al. (2008) propose a system to
derive a set of routes so as to strike a balance between the quality of the worst path (regarding
travel time, accident probability and population exposure) and the largest amount of overlap
between any two paths. Dell’Olmo et al. (2005)’s approach combines these two ideas. They
start with a set of Pareto-optimal paths found by a multi-objective shortest path algorithm.
Then, for each path previously found, a buffer zone approximating the impact area of a material
being released after an accident is constructed and a dissimilarity index for every pair of paths
is derived to find the most spatially different routes. Both Erkut et al. (2007) and Batta and
Kwon (2013) present surveys on this type of problems. More recently, Jabbarzadeh et al. (2020)
extend these studies to the impact of disruption on hazardous materials shipment, in the case
of railway transport.

Another class of applications for this problem is related with the unpredictability of the
routes, in order to prevent robberies, when collecting or transporting cash, or to ensure more
efficient street patrols. In this case, besides spatial dissimilarity, time dissimilarity is also rele-
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vant. Calvo and Cordone (2003), address a real-world case, submitted by a security company
operating in Milan, Italy. It is required that space and time are covered and the response to
alerts is secured, using as few guards as possible and so that each guard desirably performs
a different route every night. The authors propose both an integer linear programming (ILP)
model and a heuristic to approach this problem. Constantino et al. (2017) study a dissimilar
arc routing problem that arises in a Portuguese company. The firm needs to collect safes from
parking meters located along the streets, minimizing the total collecting time and avoiding sim-
ilar tours. In this case, the similarity between two tours is assessed on the basis of the number
of tasks that are visited by both in the same time periods of the day. The authors address this
problem through both an ILP model and a heuristic where the total collecting time is minimized
and constraints are used to prevent the selection of similar tours. Talarico et al. (2015) study a
k-dissimilar vehicle routing problem, where the aim is to generate a set of k alternative solutions
of a single vehicle routing problem instance, in such a way that each alternative solution differs
from all the others by at least a given threshold. Again, an ILP model and a heuristic are the
approaches used to deal with the problem. Tikani et al. (2021) extend such applications given
them a time-dependent perspective, while still taking the risk of robberies and the effects of
traffic congestion into account. They propose an evolutionary algorithm for finding solutions
for the problem, which includes a caching mechanism and fuzzy logic approach to dynamically
adjust the rates of operators during the searching process.

In some reliability and survivability problems in telecommunications, it is common to require
pairs of paths linking two nodes, which minimize a cost function and simultaneously can work
as alternatives in case a failure occurs along the first one (Hu, 2003; Gomes et al., 2020).
Such paths are known as the primary and the backup paths. Ideally the two paths would be
disjoint, however it is not always possible to meet this requirement, therefore, a more flexible
approach imposes only that the overlap between them does not exceed a certain value. Another
telecommunications problem that also seeks for the minimization of shared resources consists in
minimizing the number of shared risk link groups (SRLG) in pairs of paths. In this case each
arc is associated with a given set of risk groups and the goal is to find alternative paths that
have as few groups in common as possible (Gomes et al., 2016; Pascoal and Cĺımaco, 2020).
In either case, the simultaneous minimization of the path cost is also involved in the problem.
Related problems were surveyed in the recent work (Cĺımaco and Craveirinha, 2019).

Finally, Chang et al. (2020) study the k-discriminative paths problem, defined as the problem
of finding k paths between two given nodes in a network, such that the total path overlapping and
the total path length is minimized, while imposing an upper-bound on maximal path length and
on the maximal length of overlapping segments. This problem is discussed having in mind sev-
eral applications including queries for emergency-purpose applications, queries for pre-schedule
transportation plan, and queries with multiple sources and destinations for regional evacuation.
In the work a heuristic strategy based on the ant colony optimization is presented and tested.

It is worth noting that all the above mentioned works deal with arc dissimilarity in the
context of different and specific multi-objective problems, where often the presence of other
type of constraints has a significant impact on the solutions to be obtained. In a recent study,
Moghanni et al. (2020) addressed the single-objective arc dissimilarity problem – several different
integer linear programming models where proposed and compared in terms of the solutions’
dissimilarity and of the run time. Based on this study, good ILP approaches to the single
objective problem were identified. In this paper, we analyse if that study’s findings hold in the
bi-objective context. The conclusions to be drawn from the present work will be useful for the
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applications community for two reasons: the proposed models can be used in various contexts
by performing adequate adjustments; and, furthermore, they allow a better understanding on
the trade-off between the two objective functions in different types of networks, avoiding the
distorting effects caused by the presence of other constraints, involved in the above mentioned
studies.

This is done by revisiting four of the models presented: one which intends to minimize the
number of arcs repeated in the paths; another one which intends to minimize the number of
arc repetitions; as well as variants of these two resulting from imposing an upper bound on
the number of presences of each arc in the solution. These models are extended by adding
a linear objective function that depends on the arc costs, resulting in a bi-objective problem.
Two ε-constraint algorithms are described for solving the bi-objective problems, which differ on
the strategy used for updating the parameter ε. The performance of the formulations in the
bi-objective context is assessed by means of a set of empirical tests.

The rest of this text is organized into five parts. Section 2 is dedicated to review general
concepts of bi-objective optimization and of the ε-constraint method. In Section 3, notation
and the K dissimilar paths problem are introduced. Recent formulations for the K dissimilar
paths problem are also reviewed. In Section 4 the K shortest and dissimilar paths problem is
defined. Moreover, the ε-constraint methods described in Section 2 are adapted, based on the
formulations for the K shortest and dissimilar paths problem. Finally, the methods developed
are tested and computational results of these experiments are presented in the next section.
Concluding remarks are provided in Section 6.

2 Bi-objective optimization

In this section we cover some concepts of bi-objective optimization problems. Let a bi-objective
optimization problem (BOP) be defined as

minimize {f(x) = (f1(x), f2(x)) : x ∈ X} (1)

where f1, f2 : Rn → R are two objective functions and X ⊆ Rn is a set of feasible solutions. The
image of set X under the objective function f is denoted as Y = f(X). In general the func-
tions f1, f2 are conflicting, therefore there is no single solution which simultaneously optimizes
both. Thus, instead of searching for an optimal solution, in bi-objective optimization we search
for compromise solutions, that is, solutions which cannot be improved in one of the objective
functions without worsening the other. In the following we adopt the definition below of Pareto
optimality or efficiency.

A feasible solution of (1), x1 ∈ X, is said to dominate another feasible solution for the same
problem, x2 ∈ X, if

1. fi(x
1) ≤ fi(x2), for i = 1, 2, and

2. fi(x
1) < fi(x

2), for at least one index i ∈ {1, 2}.

The solution is called efficient or Pareto optimal if there is no other feasible solution, x ∈ X,
which dominates x̂. If x̂ is efficient, then its outcome vector f(x̂) is called a non-dominated point.
Some dominated solutions are dominated for only one of the objective functions. The feasible
solution x̂ ∈ X is weakly efficient if there is no x ∈ X such that f1(x) < f1(x̂) and f2(x) < f2(x̂).
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The corresponding outcome vector f(x̂) is then said to be weakly non-dominated. The set of all
efficient solutions is denoted by XE and called the efficient set. The set of all non-dominated
points ŷ = f(x̂) ∈ Y , x̂ ∈ XE , is denoted by YN and called the non-dominated set.

The ideal and the nadir points of (1) are lower and upper bounds on the set of non-dominated
points, respectively. They give an indication of the range of the values that the non-dominated
points can attain (Ehrgott, 2005). The point yI = (yI1 , y

I
2), where yIk = minx∈X{fk(x)}, for

k = 1, 2, is called the ideal point of the BOP (1). Moreover, the point yN = (yN1 , y
N
2 ) where

yNk = maxx∈XE
{fk(x)}, k = 1, 2, is called the nadir point of the BOP (1).

In bi-objective optimization, the worst value of the second objective function is attained
among the solutions that minimize the first objective function and vice versa, which makes it
easy to compute the nadir point. Moreover, the ideal and the nadir points can be obtained
by computing the lexicographic optimal solution with respect to (f1, f2) and the lexicographic
optimal solution with respect to (f2, f1), thus avoiding the presence of weakly efficient solutions.

Traditional approaches to the bi-objective optimization problems are based on scalarization.
This involves a single objective optimization problem related to the BOP (1) by means of a
real-valued scalarizing function which typically depends on the objective functions of the BOP,
auxiliary scalar or vector variables, or scalar or vector parameters. Sometimes the feasible set of
the BOP is additionally restricted by new constraints related to the objective functions of the
BOP or the new variables introduced.

One of the simplest methods to solve bi-objective problems is the weighted-sum method (Co-
hon, 1978), which solves the weighted-sum problem minx∈X λ1f1(x) +λ2f2(x), where λ1, λ2 ≥ 0
are parameters such that λ1 +λ2 = 1. This method solves a sequence of weighted-sum problems
of this type, where the parameters λ1, λ2 vary in order to obtain different solutions. All the
weighted-sum problems are of the same type as the original, given that the feasible region does
not change. However, the method requires the normalization of the two objective functions if
they represent different quantities. Furthermore, it is unable of finding solutions within the
convex hull formed by the extreme non-dominated points (Ehrgott, 2005).

Together with the weighted-sum approach, the ε-constraint method is probably the best
known technique to solve bi-objective optimization problems. In this case there is no aggregation
of objectives. Instead, only one of the original objective functions is minimized, while the other
is transformed to a constraint. The scalar ε represents the upper bound on the objective function
involved in the new constraint, and by varying this scalar in an appropriate way, all efficient
solutions can be generated. The method was first introduced by Haimes et al. (1971), and
extensive discussions about the topic can be found in Chankong and Haimes (1983) or Mavrotas
(2009). In the following some more details are given on this method. For easiness of presentation,
without loss of generality, we consider that f1 is the objective function to minimize and f2 is
the objective function included in the constraints.

As explained above, in the ε-constraint method, the BOP (1) is replaced by the ε-constraint
problem

minimize {f1(x) : x ∈ X ∧ f2(x) ≤ ε} (2)

where ε ∈ R. Furthermore, updating ε as f̂2 − ∆, where f̂2 is the value of a feasible solution
with regard to the second objective and ∆ > 0 is a small number, guarantees an improvement
of the second objective. The solution of this problem may be an efficient solution of the BOP,
although in a general case only the weakly efficiency can be ensured.

It can be shown that with appropriate choices of ε all non-dominated solutions can be found.
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These ε values are equal to the actual objective function values of the efficient solution one would
like to find.

The choice of which function to optimize and which to include in the constraints, as well
as the strategy adopted for updating the bound ε, can vary and may depend on the particular
form of the problem. An outline of a generic ε-constraint method is given in Algorithm 1.

Algorithm 1: The ε-constraint method – Decreasing ε version

1 (yI1 , y
I
2)← ideal point for (f1, f2) in X; (yN1 , y

N
2 )← nadir point for (f1, f2) in X

2 YE ← {(yI1 , yN2 )}
3 x̄← (yI1 , y

N
2 ); ε← yN2 −∆

4 while ε ≥ yI2 do
5 x∗ ← optimal solution of problem (2)
6 if f1(x

∗) > f1(x̄1) then YE ← YE ∪ {(f1(x̄), f2(x̄))}
7 x̄← x∗; ε← f2(x

∗)−∆

8 YE ← YE ∪ {(f1(x̄), f2(x̄))}

The set YE stores the non-dominated points of the problem as they are computed. A new
solution is found for each value of ε, and the parameter ε is updated according with its objective
value. The variable x̄ is an auxiliary variable that stores the latest solution found until it is
concluded whether it is efficient or it is dominated. The line 8 in the pseudo-code corresponds
to a dominance test for solution x̄. As a result, in case x̄ is an efficient solution, its image is
included in the set YE .

Algorithm 1 is illustrated in Figure 1a. Point 1, image of x∗1, is the first non-dominated
point to be computed. Then ε1 is set to f2(x

∗
1)−∆, where ∆ is a suitably chosen and problem

dependent value. Then the solution corresponding to point 2, image of x∗2, is obtained. The
procedure is then repeated for ε2 = f2(x

∗
2) − ∆ and the new solution corresponds to point 3,

image of x∗3. Comparing points 2 and 3, it can be concluded that point 2 is weakly dominated,
because it is dominated by point 3. Therefore, point 2 is not inserted in set YE . Instead, the next
step consists of computing the solution corresponding to point 4, image of x∗4, and when this is
compared to x∗3, the latter solution is inserted in the set YE . These instructions are repeated
until ε reaches the ideal value for f2, thus computing the solution represented by point 5, which
is also a non-dominated point.

f1

f2

yI1 yN1

yI2

yN2
ε1
ε2
ε3

ε4

•1
•2
•3

•4
•5

(a) Decreasing ε (Algorithm 1)

f1

f2

yI1 yN1

yI2

yN2 ε5
ε4
ε3
ε2
ε1

•4

•3

•2
•1

(b) Increasing ε (Algorithm 2)

Figure 1: The ε-constraint method

The ε-constraint algorithm has two main drawbacks (Gadegaard et al., 2018). One is the
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weakly dominated solutions which can be found along the process, as shown above. In this case
the method presumably may solve more ε-constraint programs than what is actually required,
that is, more problems than the number of non-dominated points. The other is that the new
constraint may ruin the structure of the underlying problem, making it harder to solve. The
first of these drawbacks can be overcome by:

• Comparing the solutions as they are computed, and filtering the dominated, as shown in
Algorithm 1.

• Or transforming every sub-problem into a lexicographic problem with respect to (f1, f2),
i.e., minimizing f1 and considering the best value for f2 whenever there is a tie in function
f1. Then the solution is certainly efficient, and the conditions in lines 8 and 9 of Algorithm
1 can be skipped.

• Or deleting the dominated solutions from the set of computed solutions after they have
been found.

Additionally, the objective function can be perturbed in order to avoid the computation of these
weakly efficient solutions (Mavrotas, 2009).

Like in Algorithm 1, in traditional implementations of the ε-constraint method for mini-
mization problems, the values of ε decrease as solutions are computed. The region defined by
the ideal and the nadir points, however, may as well be swept by increasing the parameter ε
rather than by decreasing it. The solutions of problems (2) are still weakly solutions regardless
of the policy for updating ε. In practical terms the difference is that by increasing ε the feasible
regions in the sequence of sub-problems become larger and each sub-problem is a relaxation of
the previous, as stated next.

Proposition 1. Let x∗ and x′ be optimal solutions for the constrained problems

minimize {f1(x) : x ∈ X ∧ f2(x) ≤ ε∗} (3)

and
minimize

{
f1(x) : x ∈ X ∧ f2(x) ≤ ε′

}
(4)

respectively, where ε∗ ≤ ε′. Then the following hold: i. x∗ is a feasible solution of problem (4);
ii. f1(x

∗) ≥ f1(x′).

The first point in Proposition 1 implies that x∗ can be used as a feasible solution and the
starting point for solving problem (4), which is expected to speed up the resolution of each
sub-problem. On the other hand, a consequence of the second point in the result is that the
same solution may be obtained more than once, thus requiring more sub-problems to be solved.
Additionally, ε needs to be updated differently in order to progress the search in the image
space when a solution is repeated. In this case ε should be updated as max{ε, f2(x∗)}+ ∆, if x∗

denotes the optimal solution for the previous sub-problem.
The outline of the ε-constraint method when the parameter ε is increased is provided in

Algorithm 2.
Like what happens with Algorithm 1, weakly efficient solutions can still be obtained with Al-

gorithm 2. However these can be easily discarded after being compared with the latest computed
solution.
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Algorithm 2: The ε-constraint method – Increasing ε version

1 (yI1 , y
I
2)← ideal point for (f1, f2) in X; (yN1 , y

N
2 )← nadir point for (f1, f2) in X

2 YE ← {(yN1 , yI2)}
3 x̄← (yN1 , y

I
2); ε← yI2 + ∆

4 while ε ≤ yN2 do
5 x∗ ← optimal solution of problem (2)
6 if f1(x

∗) < f1(x̄1) then YE ← YE ∪ {(f1(x̄), f2(x̄))}
7 x̄← x∗; ε← max{ε, f2(x∗)}+ ∆

8 YE ← YE ∪ {(f1(x̄), f2(x̄))}

The application of Algorithm 2 is illustrated in Figure 1b. In this case point 1 is the first
to be obtained, and then ε is set to ε1, thus generating point 2. At this point ε is updated
to ε2, which produces a problem with an optimal solution that corresponds again to point 2.
Nevertheless, that solution is discarded and ε is set to ε3, which allows point 3 to be obtained.
The procedure continues until ε reaches the second coordinate of the nadir point, that is, yN2 .

3 The K dissimilar paths problem

Let (N,A) be a directed graph with |N | = n nodes and |A| = m arcs, and let s and t denote
given source and terminal nodes, respectively, both in N . The goal of the K dissimilar paths
problem in (N,A) is to find a set of K paths from node s to node t, such that the paths in the
set are “diverse” enough. Needless to say, this notion permits a wide range of interpretations
and, thus, many different dissimilarity measures have been proposed in the literature. With
this regard we follow Erkut and Verter (1998), where index D is introduced for measuring the
dissimilarity between two given paths, pi and pj , as follows:

D(pi, pj) = 1− 1

2

(
L(pi ∩ pj)
L(pi)

+
L(pi ∩ pj)
L(pj)

)
(5)

where L(p) denotes the number of arcs in the sequence p. Moghanni et al. (2020) used the
same metric to evaluate four new linear integer formulations for the K dissimilar paths. In
the same work, those models were also assessed as to the quality of their linear programming
gaps and run times. Although two of the proposed models clearly stand out, both as to the
quality of integrality gaps as with regard to the balance between run times and dissimilarities,
we extended our study to two other models from the same work, in order to test their behaviour
in the bi-objective context.

Next, we revisit the four models mentioned above. The formulations presented may be
grouped into two pairs, based on the strategy used to model the problem:

• minimizing the number of repeated arcs (i.e., the number of arcs used more than once) in
the paths;

• minimizing the number of arc repetitions (i.e., the number of copies of the repeated arcs)
in the paths.
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In turn, the elements of each pair differ due to the presence of an extra constraint that imposes
a bound on the maximum number of occurrences of each arc in the solution. The bound used in
this “capacity” constraint is obtained solving a simple auxiliary problem that aims at finding a
set of K paths with the minimum maximum number of arc occurrences (see (Moghanni et al.,
2020) for more details).

In the following, we use the acronyms MRA (from Minimizing Repeated Arcs) to designate
the models associated to the first strategy, and MAR (from Minimizing Arc Repetitions) to des-
ignate the models associated to the second strategy. To differentiate the unconstrained and the
constrained versions of the two pairs, we add an A to the later.

3.1 Minimization of the number of repeated arcs

Let the binary variables xkij be 1 if the arc (i, j) lies in the k-th path from node s to node t, or
0 otherwise, for any arc (i, j) ∈ A and k = 1, . . . ,K. The MRA model for the K dissimilar path
is as follows:

minimize v1(x, y) =
∑

(i,j)∈A

yij (6a)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =


1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . ,K (6b)

yij ≤
K∑
k=1

xkij , (i, j) ∈ A (6c)

(K − 1)yij ≥
K∑
k=1

xkij − 1, (i, j) ∈ A (6d)

xkij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . ,K (6e)

The constraints (6b) are flow conservation constraints that define a set of K paths from node
s to node t. The constraints (6c) and (6d) relate the x and the y variables, in a way that yij
is 1 if and only if arc (i, j) ∈ A is used in more than one path, or 0 otherwise. Therefore, the
objective function counts the number of arcs that are used in more than one of the K paths.

Using the same variables, the corresponding constrained model is obtained by adding the
conditions:

K∑
k=1

xkij ≤ R, (i, j) ∈ A (7)

where R is the optimal value of the auxiliary problem mentioned above. Then, the MRAA model
is:

minimize v1(x, y) =
∑

(i,j)∈A

yij

subject to (6b)− (6d)
K∑
k=1

xkij ≤ R, (i, j) ∈ A

xkij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . ,K

(8)
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Observe that not all the feasible solutions of (6) satisfy the new constraints, thus, even though the
two problems have the same objective function, their optimal solutions may be quite different.

3.2 Minimization of the number of arc repetitions

Considering the same set of variables xkij , (i, j) ∈ A, k = 1, . . . ,K, the MAR formulation is the
following:

minimize v2(x,w, u) =
∑

(i,j)∈A

uij (9a)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =


1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . ,K (9b)

K∑
k=1

xkij ≤ K wij , (i, j) ∈ A (9c)

uij =

K∑
k=1

xkij − wij , (i, j) ∈ A (9d)

xkij ∈ {0, 1}, wij ∈ {0, 1}, uij ≥ 0, (i, j) ∈ A, k = 1, . . . ,K (9e)

Constraints (9c), together with (9d) and the non-negativity constraints of the variables uij ,
ensure that the binary variables wij are equal to 1 if and only if the arc (i, j) ∈ A is used in at
least one path, or 0 otherwise. Constraints (9d) define the auxiliary variables uij , that count
the number of times that arc (i, j) is repeated, for (i, j) ∈ A. These variables are implicitly
integers. Like before, (9b) are flow conservation constraints that define sets of K paths between
the nodes s and t. The objective function v2 counts the number of repetitions of all the arcs in
the K paths.

Finally, the constrained version of the model above, MARA, is formulated as follows:

minimize v2(x,w, u) =
∑

(i,j)∈A

uij

subject to (9b)− (9d)
K∑
k=1

xkij ≤ R, (i, j) ∈ A

xkij ∈ {0, 1}, wij ∈ {0, 1}, uij ≥ 0, (i, j) ∈ A, k = 1, . . . ,K

(10)

Both formulations (9) and (10) admit optimal solutions that contain loops. Nevertheless, it
was shown that both have a loopless optimal solution and that such solution can be obtained by
applying a polynomial in time algorithm to any given optimal solution Moghanni et al. (2020).

4 The bi-objective K dissimilar paths problem

Let us now consider that each arc in the network is associated with a cost value cij ∈ R+, for
any (i, j) ∈ A. Additionally, given K vectors xk ∈ {0, 1}m, k = 1, . . . ,K, their total cost is
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defined as the sum of all their arc costs, that is
∑

(i,j)∈A cij
∑K

k=1 x
k
ij . If xk is the characteristic

vector of a path between nodes s and t, its cost defines the cost of the K paths.
As mentioned before, besides finding dissimilar paths that can serve as alternative routes, it

is of interest to find paths which are relatively short in terms of distance or cost. This is the
solution of a BOP with the goals of minimizing the number of arcs shared by the paths and
minimizing their total cost. We will refer to the two objective functions as a cost objective and
an overlaps objective, respectively. The resulting bi-objective problem will be called the shortest
and dissimilar K paths problem.

Following the two approaches for the K dissimilar paths problem reviewed in Section 3, we
formulate two versions of the K shortest and dissimilar paths problem. One of the versions
focuses the minimization of the total cost as well as of the number of repeated arcs in the set of
K paths; the other one focuses the minimization of the total cost as well as of the total number
of arc repetitions. Each version is, in turn, associated to two models, the difference between
them being the inclusion of constraint (7). Next, we introduce the four models.

4.1 Minimization of the number of repeated arcs

The bi-objective problem that results from extending formulation MRA, (6), is formulated as:

minimize v3(x, y) =
∑

(i,j)∈A

cij

K∑
k=1

xkij (11a)

minimize v1(x, y) =
∑

(i,j)∈A

yij (11b)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =


1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . ,K (11c)

yij ≤
K∑
k=1

xkij , (i, j) ∈ A (11d)

(K − 1)yij ≥
K∑
k=1

xkij − 1, (i, j) ∈ A (11e)

xkij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . ,K (11f)

where the decision variables have the same meaning as in Section 3. Hereinafter this model will
be designated as BORA. We now analyse some properties of this formulation and of its solutions.

Proposition 2. Any efficient solution of problem (11) is loopless.

Proof. Let (x∗, y∗) be an efficient solution of (11). By contradiction, assume that the k′-th path
defined by x∗ contains one loop, defined by the set L ⊆ A. (The reasoning can be replicated if
more than one loop exists or several paths contain several loops.)

Let x∗A−L ∈ {0, 1}Km be a vector that results from removing the loop L from x∗, that is,
the components of x∗A−L are equal to 0 when (i, j) ∈ L and k = k′, and equal to x∗ for all other
components. Moreover, let y∗A−L ∈ {0, 1}m be a vector equal to y∗ for the positions (i, j) ∈ A−L
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and satisfying the constraints (11d) and (11e) for the remaining positions. Then,

v3(x
∗, y∗) = v3(x

∗
A−L, y

∗
A−L) +

∑
(i,j)∈A−L

cijx
∗k′
ij > v3(x

∗
A−L, y

∗
A−L),

because all the arc costs are positive. Similarly, v1(x
∗, y∗) ≥ v1(x∗A−L, y∗A−L), because A−L ⊆ A

and therefore the set of repeated arcs in x∗A−L is contained in the set of repeated arcs in x∗.
Additionally, a set of K paths is still obtained if the loop formed by L is deleted, therefore,

x∗A−L defines a feasible solution of problem (11) such that

v3(x
∗, y∗) > v3(x

∗
A−L, y

∗
A−L) and v1(x

∗, y∗) ≥ v1(x∗A−L, y∗A−L).

Thus, x∗ is dominated by x∗A−L, which contradicts the assumption.

Two questions need to be discussed before applying the ε-constraint method to this problem:
the factor ∆ which is used to update ε and which objective function to optimize versus which
one to constrain.

Regarding the first point, the function v1 is intrinsically integer, therefore ∆ = 1 is a natural
choice if v1 is constrained. The cost function v3 is also integer when the arc costs are integers
too, and then ∆ = 1 is a suitable choice if v3 is constrained, but in a more general case a
small ∆ can be fixed. However, it is difficult to find the right value that does not prevent any
non-dominated point from being computed.

As to the second point, the two objective functions are bounded by

1 ≤ v3(x, y) ≤ K(n− 1) max
(i,j)∈A

{cij} and 0 ≤ v1(x, y) ≤ m,

for any feasible solution (x, y) of (11). Thus, in general, the range of v3 is larger than that
of v1, which suggests that restricting function v1 may yield fewer sub-problems to solve than
restricting function v3. Moreover, the sub-problems to solve in each case are:

minimize v3(x, y) =
∑

(i,j)∈A

cij

K∑
k=1

xkij

subject to (6b)− (6d)∑
(i,j)∈A

yij ≤ ε

xkij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . ,K

(12)

and
minimize v1(x, y) =

∑
(i,j)∈A

yij

subject to (6b)− (6d)∑
(i,j)∈A

cij

K∑
k=1

xkij ≤ ε

xkij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . ,K

(13)

The first of these problems is close to an extension of K shortest path problems. The first point
in the result below follows from a reasoning similar to Proposition 2; the second is due to the
fact that formulation (13) is closer to formulation (6).

12



Proposition 3. 1. Any optimal solution of problem (12) is loopless.

2. At least one optimal solution of problem (13) is loopless.

The loops in a given optimal solution can be discarded by applying a simple algorithm with
time of O(Km) presented in Moghanni et al. (2020). Nevertheless, experiments revealed that
problem (13) is harder than problem (12). For this reason, in the following we consider that
function v3 is minimized, while function v1 is restricted, and ∆ = 1 will be used.

1

4

3

2

5

i j
cij

1

1

2

1

1

1

(a) Network

Paths from 1 to 5
p1 = 〈1, 3, 5〉
p2 = 〈1, 4, 3, 5〉
p3 = 〈1, 2, 4, 3, 5〉

P2 v3(P2) v1(P2)
{p1, p1} 4 2
{p1, p2} 6 1
{p1, p3} 6 1

(b) Efficient solutions for BORA and BOAR

Figure 2: Finding K = 2 shortest and dissimilar paths from node 1 to node 5

In order to illustrate the possible consequences of swapping the sub-problems in hand, we
consider the problem of finding K = 2 paths from node 1 to node 5 in the network in Figure 2a.
Figure 2b lists all those paths and the possible solutions, P2, together with the corresponding
objective values. There are three efficient solutions for BORA, listed in the rightmost table:
{p1, p1}, {p1, p2} and {p1, p3}, the latest two of them have total cost 6 and in both cases the arc
(3, 5) is shared by the two paths. The ε-constraint method finds a set of efficient solutions, each
one corresponding to one non-dominated point. As a consequence, only one of those solutions,
either {p1, p2} or {p1, p3}, is computed and stored.

Nevertheless, the solution {p1, p3} is longer than the {p1, p2}, and therefore the dissimilarity
of the solution is 0.625 in the first case, whereas it is 0.583 in the second. This means that listing
the solutions according to the minimization of different objective functions may change the order
by which the solutions are computed, originating different sets of non-dominated solutions, and
thus translate into solutions with different dissimilarities.

To conclude this section, we consider the bi-objective version of formulation MRAA, obtained
by adding the set of constraints (7) to formulation MRA to model the dissimilarity constraints.

The sub-problems to solve in case of the bi-objective extension of formulation MRAA are as
follows:

minimize v3(x, y) =
∑

(i,j)∈A

cij

K∑
k=1

xkij

subject to (6b)− (6d)
K∑
k=1

xkij ≤ R, (i, j) ∈ A∑
(i,j)∈A

yij ≤ ε

xkij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . ,K

(14)
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and
minimize v1(x, y) =

∑
(i,j)∈A

yij

subject to (6b)− (6d)
K∑
k=1

xkij ≤ R, (i, j) ∈ A

∑
(i,j)∈A

cij

K∑
k=1

xkij ≤ ε

xkij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . ,K

(15)

Hereinafter the corresponding formulation will be designated as BORAA.

1

2

3

4

5

i j
cij

1

1

1 1

1

1

(a) Network

Paths from 1 to 5
p1 = 〈1, 3, 5〉
p2 = 〈1, 2, 3, 5〉
p3 = 〈1, 3, 4, 5〉
p4 = 〈1, 2, 3, 4, 5〉

(b) Paths from 1 to 5

P3 v3(P3) v1(P3) v2(P3)
{p1, p1, p1} 6 2 4
{p1, p1, p2} 7 3
{p1, p1, p3} 7 3
{p1, p1, p4} 8 2
{p1, p2, p3} 8 2

(c) Efficient solutions for BORA or BOAR

P3 v3(P3) v1(P3) v2(P3)
{p1, p1, p4} 8 2 2
{p1, p2, p3} 8 2 2

(d) Efficient solutions for BORAA and BOARA

Figure 3: Finding K = 3 shortest and dissimilar paths from node 1 to node 5

Figure 3 illustrates the effect of adding constraints (7) to the previous problem, when seeking
for K = 3 paths. There is only one efficient solution for BORA, the set {p1, p1, p1} listed in
Figure 3c. When imposing that the arcs cannot appear more than twice (R = 2) in the paths
from 1 to 5 that solution becomes unfeasible. Therefore, there are two efficient solutions in this
case, listed in Figure 3d.

The two questions discussed earlier regarding the sub-problems to solve by the ε-constraint
method, (12) or (13), also arise when analysing (14) and (15). Since adding the constraints (7)
does not alter the premises of the previous discussion, the same line of reasoning applies. Thus,
also in this case, we consider that function v3 is minimized, while function v1 is restricted, and
∆ = 1 will be used.
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4.2 Minimization of the number of arc repetitions

Considering again the variables defined in Section 3, the bi-objective problem can be written as:

minimize v3(x,w, u) =
∑

(i,j)∈A

cij

K∑
k=1

xkij (16a)

minimize v2(x,w, u) =
∑

(i,j)∈A

uij (16b)

subject to
∑

j∈N :(i,j)∈A

xkij −
∑

j∈N :(j,i)∈A

xkji =


1 i = s
0 i 6= s, t
−1 i = t

, k = 1, . . . ,K (16c)

K∑
k=1

xkij ≤ K wij , (i, j) ∈ A (16d)

uij =

K∑
k=1

xkij − wij , (i, j) ∈ A (16e)

xkij ∈ {0, 1}, wij ∈ {0, 1}, uij ≥ 0, (i, j) ∈ A, k = 1, . . . ,K (16f)

designated as BOAR in the following. The reasoning used in Proposition 2 holds to prove the
result below.

Proposition 4. Any efficient solution of problem (16) is loopless.

Moreover, the function v3 is common to the previous problem and, like before, function v2
assumes integer values, therefore the value of ∆ can be set to 1 if v2 is the function chosen to
include in the constraints. Additionally,

0 ≤ v2(x,w, u) ≤ Km,

for any feasible solution (x,w, u). Once again, in general, the range of v3 is larger than that
of v2. Furthermore, the minimization of function v3 is also easier than the minimization of v2
and it produces loopless solutions. Therefore, v3 will be the function to minimize and v2 the
function to restrict, and ∆ = 1 will be chosen. In this case the sub-problems to be solved in the
ε-constraint method are:

minimize v3(x,w, u) =
∑

(i,j)∈A

cij

K∑
k=1

xkij

subject to (9b)− (9d)∑
(i,j)∈A

uij ≤ ε

xkij ∈ {0, 1}, wij ∈ {0, 1}, uij ≥ 0, (i, j) ∈ A, k = 1, . . . ,K

(17)

where the parameter ε > 0 is updated as new solutions are found.
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Again, the constrained version of (16) is obtained by adding the constraints (7) to the model,
thus:

minimize v3(x,w, u) =
∑

(i,j)∈A cij
∑K

k=1 x
k
ij

subject to (9b)− (9d)
K∑
k=1

xkij ≤ R, (i, j) ∈ A∑
(i,j)∈A

uij ≤ ε

xkij ∈ {0, 1}, wij ∈ {0, 1}, uij ≥ 0, (i, j) ∈ A, k = 1, . . . ,K

(18)

hereinafter designated as BOARA. Like before, the premises of the discussion regarding (16) also
hold when analysing (18). Therefore, we consider that function v1 is minimized, while function
v2 is restricted, and that ∆ = 1 is used.

Figure 3 illustrates also the effect of adding constraints (7) to (16). There are five efficient
solutions for BOAR, all the sets listed in Figure 3c. When imposing that the arcs cannot appear
more than twice (R = 2) in the paths from 1 to 5, many of those solutions become unfeasible,
remaining two efficient solutions, listed in Figure 3d.

To conclude this section, we consider the bi-objective version of formulation MRAA, obtained
by adding the set of constraints (7) to formulation MRAA to model the dissimilarity constraints.
Revisiting the problem depicted in Figure 3, the five sets of paths listed in Figure 3c are all
efficient solutions for formulation BOAR. When preventing each arc from appearing in more than
R = 2 paths from 1 to 5, the first three solutions in that table become unfeasible, and then
there are two efficient solutions for formulation BOARA, shown in Figure 3d. It is interesting to
observe that, unlike what happened when adding the new constraints to problem BORA, in this
case the number of efficient solutions decreases.

5 Computational results

Empirical experiments were run in order to evaluate the presented methods and formulations
from an empirical point of view. The purpose of the tests is bifold: i. to assess the extent to which
the ε-constraint algorithm is efficient when increasing ε and when compared to the decreasing
strategy; ii. to compare the performance of the introduced formulations for solving the bi-
objective problem of finding sets of K shortest and dissimilar paths, based on the dissimilarity
index (5).

The two ε-constraint algorithms were implemented for the four formulations presented in
Section 4. The following codes were implemented:

• codes DEC.BORA, DEC.BORAA, DEC.BOAR and DEC.BOARA, for finding the non-dominated set
using Algorithm 1 for formulations (11), (16), (14) and (18), respectively;

• codes IEC.BORA, IEC.BORAA, IEC.BOAR and IEC.BOARA, for finding the non-dominated set
using Algorithm 2 for formulations (11), (16), (14) and (18), respectively.

The eight variants of the methods were coded in C language, calling CPLEX 20.1 to solve the
intermediate mixed-integer programs. As mentioned earlier, for all codes, the cost function
was selected as f1 to be minimized, and the overlaps function f2 was included in the set of
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constraints. The update of the parameter ε consisted of decreasing or increasing as described in
Algorithms 1 or 2, taking ∆ = 1.

The codes ran for two sets of instances, namely random graphs and grids, such that:

• Random graphs, Rn,m,δ, with n = 100, 500 nodes, obtained generating randomly m = dn
arcs, with d = 5, 10, 15, and δ = 100m

n(n−1)% the density of the graph, equal to 5%, 10% and

15% if n = 100 and 1%, 2% and 5% if n = 500.

• Grid graphs, Gp,q, comprising the following sizes: p× q = 4× 36, 12× 12, 5× 45, 15× 15.

In either case each arc (i, j) ∈ A was associated with an integer cost value, cij , uniformly obtained
in {1, 2, . . . , 100}. The results presented in the following correspond to average values obtained
after finding sets of K = 10 paths over 20 different instances generated for each dimension of
these data sets.

Table 1: Description of the column headings

Heading Description
T̄ Average total run time, in seconds
T̄R Average run time for finding R Moghanni et al. (2020), in seconds

¯|YE | Average number of computed non-dominated solutions
N̄ Average number of solved sub-problems

f̄ jmin Average value for the minimum value of fj in each set of paths, j = 1, 2
f̄ jmax Average value for the maximum value of fj in each set of paths, j = 1, 2
D̄min Average value for the minimum of AvDi in each set of paths
D̄max Average value for the maximum of AvDi in each set of paths

All the tests ran on a 64-bit PC with an Intel ®Core™ i7-6700 Quad Core at 3.40GHz with
64GB of RAM. For all of them we used a time limit of 300 seconds for each of the sub-problems
solved along the generation of the non-dominated set. To ease the reading, the test statistics
are summarized in Table 1. In this table AvDi stands for the average dissimilarity of a given set
of K paths. The results are obtained over the 20 instances solved for each type of network.

In the following we discuss the results of the application of the bi-objective Algorithms 1 and
2 to the integer programming formulations (11), (14), (16) and (18) for the instances described
above. We first consider the results for the formulations that aim at minimizing the number of
repeated arcs and afterwards focus on the minimization of the number of arc repetitions.

5.1 Minimization of the number of repeated arcs

The average results obtained when finding the non-dominated set for the unconstrained formu-
lation that looks for the repeated arcs minimization are presented on Tables 2 and 3.

Table 2 summarizes the results in terms of the number of solved sub-problems and run
times. In average, when talking about the decreasing version of the ε-constraint algorithm, the
number of solved sub-problems was N̄ = |ȲE | + 1. This number increased by around 0.5 more
sub-problems solved when the parameter ε is increased. When applied to grids this code did
not solve all the sub-problems in 300 seconds time. In that case the algorithm proceeds using
the best solution found within that time, even if it may be a sub-optimal solution. Moreover,
only one solution was found on rectangular grids, which means that the only problem solved
consisted in the single objective minimization of the cost function. In general, in this case, the
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Table 2: Number of sub-problems and run times (in seconds) for the unconstrained version of
minimizing the number of repeated arcs

DEC.BORA IEC.BORA

Instance ¯|YE | N̄ T̄ T̄ /N̄ N̄ T̄ T̄ /N̄

R100,500,5 3.21 4.21 15.702 3.72 4.73 12.563 2.65
R100,1000,10 4.00 5.00 32.314 6.46 5.45 28.793 5.28
R100,1500,15 3.70 4.70 26.685 5.67 4.75 23.654 4.97
R500,2500,1 5.25 6.25 185.250 29.64 6.63 166.059 25.04
R500,5000,2 4.75 5.75 199.338 34.66 6.25 190.491 30.47
R500,7500,5 4.95 5.95 281.739 47.35 6.30 265.316 42.11

G∗
12,12 7.00 8.00 2 702.111 337.76 8.50 2 102.347 247.33

G∗
4,36 1.00 2.00 601.260 300.63 3.00 301.550 100.51

G∗
15,15 13.00 14.00 4 501.274 321.51 14.60 3 901.978 267.25

G∗
5,45 1.00 2.00 603.415 301.70 3.00 304.764 101.58

∗ Sub-problems interrupted after 300 seconds.

solution is simply formed by K = 10 paths (see Figures 2 and 3), all equal to the shortest path
and with fully overlapping arcs.

The average run times for solving the same problem are also presented in Table 2. The
average time for solving each sub-problem was shorter when applying the increasing version of
the ε-constraint algorithm, and this speedup is observed for the total run times as well. It can
also be noted that the difference in the run times of the two versions increases with the size of
the instance and that its magnitude is bigger in the case of the grid instances. The partial run
times depend mainly on n in the random instances and also tend to increase with d. The biggest
random instances were solved by code IEC.BORA in less than 266 seconds. The results obtained
for grids follow the same trend, with the difference that the corresponding sub-problems are
harder to solve than on the random networks. In this case, IEC.BORA required about 3 900
seconds to find 13 efficient sets of paths in 15× 15 grids.

Table 3: Characteristics of the non-dominated points for the unconstrained version of minimizing
the number of repeated arcs

Instance ¯|YE | f̄1min f̄1max f̄2min f̄2max D̄min D̄max

R100,500,5 3.21 906.80 1 530.60 2.21 4.42 0.000 0.518
R100,1000,10 4.00 555.50 1 097.50 1.00 4.15 0.015 0.855
R100,1500,15 3.70 387.00 827.50 0.80 3.55 0.010 0.905
R500,2500,1 5.25 1 239.40 2 044.30 1.93 6.31 0.013 0.833
R500,5000,2 4.75 761.00 1 218.20 1.10 5.10 0.006 0.867
R500,7500,5 4.95 481.00 895.80 0.70 4.75 0.010 0.936

G∗
12,12 7.00 6 596.00 9 386.50 16.00 22.00 0.010 0.779

G∗
4,36 1.00 14 676.00 14 676.00 38.00 38.00 0.000 0.000

G∗
15,15 13.00 7 842.00 12 417.75 16.00 28.00 0.003 0.864

G∗
5,45 1.00 18 660.50 18 660.50 48.00 48.00 0.000 0.000

∗ Sub-problems interrupted after 300 seconds.
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According to Table 3, and as expected, the range of the cost, f1, is larger than the range
of the number of repeated arcs, f2. The latter is rather small, which results in a small number
of non-dominated points, between 3 and 4 for random networks with 100 nodes and around 5
for random networks with 500 nodes. Also, the number of elements in YE seems to be close
to the range of the number of repeated arcs, given by function f2. This indicates that there is
approximately one non-dominated point for each of those values. As pointed out by the example
in Figure 2, different solutions may be associated to the same non-dominated point and, when
this happens, the associated dissimilarities may differ as well. For this reason, in some cases, the
average dissimilarities of the solutions obtained by IEC.BOAR and DEC.BOAR may be different.
In the tested instances, this situation rarely occurred and in that case the difference was always
smaller than 0.006. Therefore, the reported values are averages of those values.

In the random instances the average maximum dissimilarity grows with d, and specially with
n, varying from 0.518 to 0.936. The average minimum dissimilarity, on the other hand, is always
nearly 0. As mentioned, this is explained by the fact that most of the determined sets contain
one solution formed by paths that coincide with the shortest.

Few conclusions can be drawn from the results on grids, due to the interruptions. As noted
before, only one solution was found on rectangular grids. In this case, the solution is formed by
several shortest paths, which is confirmed by the average values D̄min in Table 3, always close
to 0.

Table 4: Number of sub-problems and run times (in seconds) for the constrained version of
minimizing the number of repeated arcs

DEC.BORAA IEC.BORAA

Instance ¯|YE | T̄R N̄ T̄ T̄ /N̄ N̄ T̄ T̄ /N̄

R100,500,5 7.84 0.793 8.84 45.406 5.13 10.31 43.799 4.24
R100,1000,10 11.05 1.507 12.05 70.850 5.90 14.70 76.057 5.17
R100,1500,15 11.45 1.955 12.45 42.264 3.39 16.85 51.157 3.03
R500,2500,1 12.25 1.891 13.25 334.251 25.22 15.18 333.326 21.95
R500,5000,2 15.15 27.864 16.15 221.579 13.72 21.45 254.715 11.87
R500,7500,5 11.30 59.171 12.30 185.666 15.09 17.50 216.820 12.38

G∗
12,12 28.95 0.123 29.95 6 714.120 224.17 30.95 6 133.271 198.16

G∗
4,36 3.00 0.232 4.00 1 319.615 329.90 5.00 745.411 149.08

G∗
15,15 40.70 0.180 41.70 11 251.766 269.82 42.85 10 687.353 249.41

G∗
5,45 7.00 0.681 8.00 2 604.887 325.61 9.00 2 007.209 223.02

∗ Sub-problems interrupted after 300 seconds.

Tables 4 and 5 summarize the results obtained by the codes that implement the constrained
versions of BORA, DEC.BORAA and IEC.BORAA. Besides the values presented before, Table 4 in-
cludes the average time for solving the auxiliary problem for finding the bound R to use in
the new constraints (7). These values are small compared to the times required for solving the
bi-objective problems. Still they seem to increase fast with n, or even with d, and the bigger
instances were solved in 59.171 seconds. The first remark about the constrained version of BORA
is that the number of non-dominated points it obtained is (two or three times) bigger than what
was reported for the unconstrained one in Table 2. In general, the constrained sub-problems
were easier to solve for the sparser instances, but more difficult in most cases. This effect is
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Table 5: Characteristics of the non-dominated points for the constrained version of minimizing
the number of repeated arcs

Instance ¯|YE | f̄1min f̄1max f̄2min f̄2max D̄min D̄max

R100,500,5 7.84 1 264.37 1 825.05 3.74 11.05 0.514 0.814
R100,1000,10 11.05 953.80 1 191.75 2.80 14.55 0.829 0.958
R100,1500,15 11.45 784.25 934.10 2.40 16.25 0.903 0.982
R500,2500,1 12.25 1 516.00 2 107.56 3.63 15.88 0.624 0.911
R500,5000,2 15.15 1 057.70 1 329.35 3.30 22.05 0.730 0.940
R500,7500,5 11.30 818.25 937.35 2.15 16.70 0.899 0.984

G∗
12,12 28.95 7 296.00 10 563.90 16.00 44.00 0.558 0.919

G∗
4,36 3.00 16 415.50 17 252.90 74.00 76.00 0.556 0.651

G∗
15,15 40.70 8 764.75 13 672.05 16.00 56.00 0.557 0.937

G∗
5,45 7.00 21 035.00 22 853.00 90.00 96.00 0.556 0.694

∗ Sub-problems interrupted after 300 seconds.

magnified by the general increase in the number of non-dominated points. Therefore, the to-
tal run times for solving the constrained problems were only shorter than when solving their
constrained versions for the smaller and sparser instances, with average degree 5.

Additionally, the increasing version of the method was between about 11% and 20% faster
than the decreasing version to solve the sub-problems in the 100 node random instances, and be-
tween 4% and 10% faster than the decreasing version in the 500 node instances. Moreover, when
applying the code IEC.BORAA, the number of solved sub-problems increased from 16% to 35%,
and from 15% to 42%, compared to DEC.BORAA, again in 100 and 500 node random instances,
respectively. The result of this trade-off is that IEC.BORAA only outperformed DEC.BORAA in the
sparser random instances. The improvement in the partial run times is bigger for grids, and
therefore IEC.BORAA was always faster than DEC.BORAA for these instances, despite the increase
in the number of sub-problems that were solved. In terms of the total time, IEC.BORAA was
between 5% and 43% faster than DEC.BORAA.

Figure 7 compares the costs and dissimilarities and puts in evidence some characteristics
of the sets of non-dominated points for the unconstrained and the constrained problems when
counting the number of repeated arcs. For the unconstrained problem, the costs decrease and
the maximum dissimilarities worsen with the average degree of the random instances, regardless
of its number of nodes. The trend is similar for the constrained version of the problem, but the
minimum cost of the solutions increases from 22% to 103%, whereas the maximum cost increases
only from 3% to 20%, both in the random instances. The same happens to the maximum
dissimilarity, but specially with the minimum dissimilarity, which is in accordance with the
situation illustrated in Figure 3. In a nutshell, more solutions are found in the constrained
version of the problem, with higher costs, but slightly better maximum dissimilarities and also
fairly better minimum dissimilarities.

The comparison is less clear for the grids due to the limitations of the code. Nevertheless,
the general conclusions are similar to the above: more non-dominated points are found for the
constrained problem than for the unconstrained one, with higher costs and better dissimilarities,
in particular the minimum dissimilarities. In average, less than 16 in 500 node random networks
and than 41 in 15× 15 grids.

20



5.2 Minimization of the number of arc repetitions

A comparison of the results of DEC.BOAR and IEC.BOAR is summarized in Tables 6 and 7. The
average number of non-dominated points computed by the methods was between 24 and 39 for
the random instances and between 102 and 189 for grids. All sub-problems were solved within
300 seconds. The partial run times of the increasing version of the ε-constraint method were
shorter than those of the decreasing version. Nevertheless, the difference between them does not
compensate the bigger number of sub-problems solved by the former, and therefore DEC.BOAR

was faster than IEC.BOAR for all instances. For the networks R500,7500,5, the code DEC.BOAR

computed 34 solutions in average time of 517.432 seconds. The method IEC.BOAR obtained the
same solutions in an average time of 568.557 seconds. For the most difficult grid instances,
G15,15, 188 efficient solutions were found in 718.547 seconds.

Table 6: Number of sub-problems and run times (in seconds) for the unconstrained version of
minimizing the number of arc repetitions

DEC.BOAR IEC.BOAR

Instance ¯|YE | N̄ T̄ T̄ /N̄ N̄ T̄ T̄ /N̄

R100,500,5 24.68 25.68 51.483 2.00 31.31 57.516 1.83
R100,1000,10 28.55 29.55 108.051 3.65 35.20 117.345 3.33
R100,1500,15 27.25 28.25 104.745 3.70 32.15 109.738 3.41
R500,2500,1 38.12 39.12 339.510 8.67 50.93 401.132 7.87
R500,5000,2 34.15 35.15 389.859 11.09 42.85 438.223 10.22
R500,7500,5 34.36 35.36 517.432 14.63 41.15 568.557 13.81

G12,12 139.35 140.35 701.966 5.00 158.90 743.731 4.68
G4,36 102.80 103.80 639.974 6.16 130.20 755.640 5.80
G15,15 188.20 189.20 718.547 3.79 213.25 729.979 3.42
G5,45 167.60 168.60 1 605.432 9.52 205.85 1 799.108 8.73

Table 7 shows that the range of f1 is wider than that of the number of arc repetitions,
f2, and also that not all the values in the range of f2 correspond to one non-dominated point.
Moreover, like for the previous problem, the average minimum dissimilarity in each efficient set
of K paths is either 0 or near 0. The cost of the solutions increases with n and with d in the
random instances, while it is bigger in the rectangular grids as well. Additionally, the average
maximum dissimilarity is better for the bigger random instances and for the square grids. The
best average results in random networks were obtained in the R500,7500,5 instances, with 0.017
minimum dissimilarity and 0.977 maximum dissimilarity.

Finally, Tables 8 and 9 show the results obtained by the codes DEC.BOARA and IEC.BOARA, the
constrained versions of the codes for minimizing the number of arc repetitions. In this case the
number of non-dominated points is smaller than for the corresponding unconstrained problem.
The number of sub-problems to solve when increasing ε can be 53% bigger than without the
constraints, which slows down the method when compared with a decreasing implementation.

Taking Table 9 into account, the sub-problems are more difficult when including the con-
straints (7) than without them. The minimum cost of the solutions increased, due to paths
that may not satisfy the new constraints. However, the most noticeable change was, again, the
improvement of the minimum dissimilarity to at least 0.556, for rectangular grids. The max-
imum dissimilarity also increased, but less, which indicates that the constraints affect mostly
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Table 7: Characteristics of the non-dominated points for the unconstrained version of minimizing
the number of arc repetitions

Instance ¯|YE | f̄1min f̄1max f̄2min f̄2max D̄min D̄max

R100,500,5 24.68 906.80 1 821.40 11.42 39.78 0.000 0.826
R100,1000,10 28.55 555.50 1 137.20 4.70 36.90 0.012 0.931
R100,1500,15 27.25 387.00 888.30 2.70 31.85 0.010 0.970
R500,2500,1 38.12 1 239.40 2163.90 8.50 56.50 0.013 0.910
R500,5000,2 34.15 761.00 1 246.10 5.75 45.60 0.006 0.933
R500,7500,5 34.36 481.00 917.10 2.63 40.78 0.017 0.977

G12,12 139.35 6 596.00 10 363.80 40.00 196.85 0.010 0.919
G4,36 102.80 14 676.00 17 337.50 214.00 342.00 0.000 0.675
G15,15 188.20 7 842.00 12 629.90 40.00 251.25 0.008 0.936
G5,45 167.60 18 660.50 22 169.40 228.00 431.80 0.000 0.757

Table 8: Number of sub-problems and run times (in seconds) for the constrained version of
minimizing the number of arc repetitions

DEC.BOARA IEC.BOARA

Instance ¯|YE | N̄ T̄ T̄ /N̄ N̄ T̄ T̄ /N̄

R100,500,5 22.10 23.10 53.156 2.30 28.57 60.411 2.11
R100,1000,10 15.65 16.65 67.177 4.03 20.50 79.107 3.85
R100,1500,15 11.00 12.00 60.632 5.05 17.65 83.174 4.71
R500,2500,1 28.68 29.68 300.262 10.11 37.25 348.602 9.35
R500,5000,2 20.15 21.15 317.971 15.03 30.90 419.021 13.56
R500,7500,5 12.40 13.40 273.993 20.44 20.15 352.712 17.50

G12,12 120.10 121.10 559.768 4.62 137.65 595.977 4.32
G4,36 59.40 60.40 356.390 5.90 85.95 475.187 5.52
G15,15 159.45 160.45 607.412 3.78 184.85 630.729 3.41
G5,45 114.95 115.95 1 082.416 9.33 154.20 1 295.232 8.39

the solutions with small cost, containing many arc repetitions. This is also shown in Figure 8,
in Appendix. Here, it is interesting to note that the cost and dissimilarity of the constrained
solutions are almost a subset of the images obtained for the unconstrained problems.

5.3 Overall Comparison

We now compare the constrained versions of the minimization of the number of repeated arcs
and of the minimization of the number of arc repetitions. As noted in the previous sections,
adding constraints on the number of each arc presences affects differently formulations BORA and
BOAR:

• For the first of these approaches, most efficient sets of paths found for BORA became unfea-
sible and were excluded after adding the constraints. New sets of paths, with higher costs
and greater dissimilarities, were obtained with BORAA. The sub-problems associated with
this formulation were easier to solve than in the unconstrained formulation. Thus, in spite
of more sub-problems being solved, the total run times decreased for all the instances,
except the densest with 500 nodes.
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Table 9: Characteristics of the non-dominated points for the constrained version of minimizing
the number of arc repetitions

Instance ¯|YE | f̄1min f̄1max f̄2min f̄2max D̄min D̄max

R100,500,5 22.10 1 264.36 1 900.94 12.00 37.57 0.514 0.853
R100,1000,10 15.65 953.80 1 195.50 4.70 22.20 0.830 0.959
R100,1500,15 11.00 784.25 934.10 2.70 17.35 0.903 0.982
R500,2500,1 28.68 1 516.00 2 152.50 9.62 44.00 0.627 0.923
R500,5000,2 20.15 1 057.70 1 324.15 5.95 33.90 0.730 0.947
R500,7500,5 12.40 818.25 937.35 2.75 19.90 0.900 0.984

G12,12 120.10 7 296.00 10 363.80 40.00 175.40 0.558 0.920
G4,36 59.40 16 415.50 17 470.00 220.00 303.65 0.556 0.746
G15,15 159.45 8 764.75 12 629.90 40.00 222.80 0.560 0.937
G5,45 114.95 20 215.50 22 265.30 232.00 383.80 0.556 0.796

• For the second approach, contrariwise, most efficient solutions found by BOAR are not
discarded when adding the extra constraints, while a few others with a greater cost and
slightly better maximum dissimilarity are found. The sub-problems associated with BOARA

were more difficult to solve than when not considering the constraints, but fewer sub-
problems are solved then, which results in a decrease of the total run time for most in-
stances, except the sparser ones.
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Figure 4: Average number of computed non-dominated points for the constrained problems

In order to compare the two constrained formulations, the number of efficient sets of K = 10
paths and the total run time required by the codes BOARA and BOARA are summarized in Figures 4
and 5. The reported times are the best, considering those of the decreasing and the increasing
versions of the ε-constraint method for each formulation.

According to Figure 4, |ȲE | increases slowly with the density of the network for BORAA, except
for R500,7500,5, while the opposite happens for BOARA. Moreover, this number is also considerably
bigger when minimizing the number of arc repetitions than when minimizing the number of
repeated arcs. In the grid instances the two models behave similarly to what was observed for
the random instances. Additionally, there are more solutions in square grids than in rectangular
grids.

In terms of the run time, the sub-problems of BORAA are more difficult to solve than those of
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Figure 5: Average total run times (in seconds) for the constrained problems

BOARA, in particular in the grid instances. This is balanced by the fact that fewer sub-problems
are solved in the case of the first model. Therefore, the difference in the total run times of the
codes is not significant in the random instances, besides for R500,2500,1, as shown in Figure 5.
The approach BOARA was clearly more efficient than BORAA in the grid instances.

In Figure 9, in Appendix, each rectangle shows the range of the cost and of the dissimi-
larity of the efficient solutions produced by the models in comparison, BOARA and BORAA. For
the random instances, we observe an almost full overlap between the rectangles associated with
each model, whereas, for the grid instances, BOARA gives slightly more costly and more dissim-
ilar solutions than BORAA. Based on this observation, it seems reasonable to conclude that the
two models behave similarly under the additional constraints. This finding together with the
information gathered from Figures 7 and 8, in Appendix, would mean that the extra constraints
permit to mitigate the shortcomings of BORA in relation to BOAR. To clarify this issue, the points
associated to the cost and dissimilarity of the efficient solutions found by both methods were also
represented, so that their distributions within the rectangles could be assessed (see Figure 6). In
fact, although the points are uniformly distributed in the interval defined by the best for the cost
and the best for the dissimilarity for both methods, the values of the points associated to BORA

are almost always worse and its distribution is slightly inconsistent, regardless of the type of
network under consideration. Therefore, although Figure 9 places the points in the same range,
the differences observed in the distributions associated to those points allows to differentiate the
quality of the solutions found by each one of the two models.

Finally, we also compared the distribution of the cost and dissimilarity points associated to
the efficient solutions produced by BOAR and BOARA, since the previous results indicate these
models as the most promising ones. Figure 6 shows that BOARA produces solutions in a narrower
range, higher in cost and dissimilarity, whereas BOAR seems more versatile, offering solutions
also in the lower range of both cost and dissimilarity. Thus, the first model seems more fitted
to applications where the focus is on finding sets of highly dissimilar paths, even if this means
substantially higher costs, while the latter seems more fitted to applications where the cost of
the solution is a major concern. In this way, both models are of interest in the context of the
bi-objective shortest-dissimilar K paths problem.
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Figure 6: Solutions for particular instances

6 Concluding remarks

This paper addressed the problem of finding sets of K paths that are as dissimilar as possible,
while minimizing their total cost. A bi-objective approach for finding efficient solutions to this
problem was introduced. The approach consists of a modification of the ε-constraint method
in two versions: decreasing and increasing the parameter ε. The two versions were empirically
tested on random and grid instances and the computational results were discussed.

The increasing ε-constraint method outperformed the original when applied to the formu-
lations based in BORA, as the number of non-dominated points is not very large and the sub-
problems are difficult to solve. Contrarily, the original version of the ε-constraint method was
more efficient than the increasing version when applied to BOAR. In both cases, the constrained
versions of the models, BORAA and BOARA, improved the average maximum dissimilarity of the
solutions up to 0.937. However, although the increase is quite significant in the first case it
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had very little impact in the latter. In turn, the average minimum dissimilarity of the solution
was greatly improved when using both BORAA and BOARA. In fact, the minimum dissimilarity for
unconstrained problems was near 0, while for the constrained version of the problems it was at
least 0.514 in the random networks, and 0.556 in the grid networks, preventing some solutions
of little practical interest for most applications from being found.

Finally, a detailed analysis of the results indicates that BOARA produces better and more
consistent results when compared to BORAA. The code BORA was faster than BOAR for the random
instances, because less non-dominated points were computed in that case, while the opposite
happened for the grid networks. As to the run times for the constrained versions of the problems,
either they were not affected by the new constraints or even decreased, and the two approaches
behaved similarly with this respect.
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A Appendix: Cost and dissimilarity for the unconstrained and
the constrained problems
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Figure 7: Cost and dissimilarity for the unconstrained and the constrained problems when
minimizing the number of repeated arcs
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Figure 8: Cost and dissimilarity for the unconstrained and the constrained problems when
minimizing the number of arc repetitions
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Figure 9: Cost and dissimilarity for the constrained problems

29


