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Abstract

Many real-world domains are subject to a struc-
tured non-stationarity which affects the agent’s
goals and the environmental dynamics. Meta-
reinforcement learning (RL) has been shown suc-
cessful for training agents that quickly adapt to re-
lated tasks. However, most of the existing meta-RL
algorithms for non-stationary domains either make
strong assumptions on the task generation process
or require sampling from it at training time. In
this paper, we propose a novel algorithm (TRIO)
that optimizes for the future by explicitly track-
ing the task evolution through time. At training
time, TRIO learns a variational module to quickly
identify latent parameters from experience sam-
ples. This module is learned jointly with an opti-
mal exploration policy that takes task uncertainty
into account. At test time, TRIO tracks the evolu-
tion of the latent parameters online, hence reduc-
ing the uncertainty over future tasks and obtain-
ing fast adaptation through the meta-learned policy.
Unlike most existing methods, TRIO does not as-
sume Markovian task-evolution processes, it does
not require information about the non-stationarity
at training time, and it captures complex changes
undergoing in the environment. We evaluate our al-
gorithm on different simulated problems and show
it outperforms competitive baselines.

1 Introduction
The ability to generalize and quickly adapt to non-stationary
environments, where the dynamics and rewards might change
through time, is a key component towards building lifelong
reinforcement learning (RL) [Sutton and Barto, 2018] agents.
In real domains, the evolution of these environments is of-
ten governed by underlying structural and temporal patterns.
Consider, for instance, a mobile robot navigating an outdoor
environment where the terrain conditions are subject to sea-
sonal evolution due to climate change; or where the robot’s
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actuators become less effective over time, e.g., due to the nat-
ural degradation of its joints or to the system running out of
power; or where the designer changes its desiderata, e.g., how
the robot should trade off high-speed movement and safe nav-
igation. The commonality is some unobserved latent vari-
able (e.g., the terrain condition, the joints’ friction, etc.) that
evolves over time with some unknown temporal pattern (e.g.,
a cyclic or smooth change). In this setting, we would expect
a good RL agent to (1) quickly adapt to different realizable
tasks and (2) to extrapolate and exploit the temporal structure
so as to reduce the uncertainty over, and thus further acceler-
ate adaptation to, future tasks.

Meta-RL has proven a powerful methodology for training
agents that quickly adapt to related tasks [Duan et al., 2016;
Wang et al., 2016; Finn et al., 2017; Hospedales et al., 2020].
The common assumption is that tasks are i.i.d. from some
unknown distribution from which the agent can sample at
training time. This assumption is clearly violated in the
lifelong/non-stationary setting, where tasks are temporally
correlated. Some attempts have been made to extend meta-
RL algorithms to deal with temporally-correlated tasks [Al-
Shedivat et al., 2018; Nagabandi et al., 2018; Clavera et al.,
2019; Kaushik et al., 2020; Kamienny et al., 2020; Xie et
al., 2020]. However, current methods to tackle this problem
have limitations. Some of them [Al-Shedivat et al., 2018;
Xie et al., 2020] model the task evolution as a Markov chain
(i.e., the distribution of the next task depends only on the
current one). While this allows capturing some cyclic pat-
terns (like seasonal climate change), it is unable to capture
more complex behaviors that are frequent in the real world
[Padakandla, 2020]. Other works [Kamienny et al., 2020]
consider history-dependent task-evolution processes but as-
sume the possibility of sampling them during the training.
While this assumption seems more reasonable for cyclic pro-
cesses, where the agent experiences a “cycle” infinite many
times, it is difficult to imagine that the agent could sam-
ple from the same non-stationary process it will face once
deployed. Finally, some works [Nagabandi et al., 2018;
Clavera et al., 2019; Kaushik et al., 2020] do not explic-
itly model the task evolution and only meta-learn a policy
for fast adaptation to changes. This makes it difficult to han-
dle task-evolution processes other than what they are trained
for. These limitations raise our main question: how can we
build agents that are able to extrapolate and exploit complex
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history-dependent task-evolution processes at test time with-
out prior knowledge about them at training time?

In this paper, we consider the common piecewise stationary
setting [Chandak et al., 2020; Xie et al., 2020], where the task
remains fixed for a certain number of steps after which it may
change. Each task is characterized by an unobserved latent
vector of parameters which evolves according to an unknown
history-dependent stochastic process. We propose a novel al-
gorithm named TRIO (TRacking, Inference, and policy Opti-
mization) that is meta-trained on tasks from the given family
drawn from different prior distributions, while inferring the
“right” prior distribution on future tasks by tracking the non-
stationarity entirely at test time. More precisely, TRIO meta-
trains (1) a variational module to quickly infer a distribution
over latent parameters from experience samples of tasks in the
given family, and (2) a policy that trades off exploration and
exploitation given the task uncertainty produced by the infer-
ence module. At test time, TRIO uses curve fitting to track
the evolution of the latent parameters. This allows comput-
ing a prior distribution over future tasks, thus improving the
inference from the variational module and the fast adaptation
of the meta-learned policy. We report experiments on differ-
ent domains which confirm that TRIO successfully adapts to
different unknown non-stationarities at test time, achieving
better performance than competitive baselines.

2 Preliminaries

We model each task as a Markov decision process (MDP)
[Puterman, 1994]Mω = (S,A,Rω,Pω, p0, γ), where S is
the state space, A is the action space, Rω : S × A× S → R
is the reward function, Pω : S × A → ∆(S) is the state-
transition probability function, p0 is the initial state distribu-
tion, and γ ∈ [0, 1] is the discount factor. We assume each
task to be described by a latent vector of parameters ω ∈ Ω ⊂
Rd that governs the rewards and the dynamics of the environ-
ment, and we denote by M := {Mω : ω ∈ Ω} the family
of MDPs with this parameterization (i.e., the set of possible
tasks that the agent can face). We consider episodic inter-
actions with a sequence of MDPs Mω0

,Mω1
, . . . from the

given family M, which, as in the common piece-wise station-
ary setting [Xie et al., 2020], remain fixed within an episode.
The evolution of these tasks (equivalently, of their parame-
ters) is governed by a history-dependent stochastic process
ρ, such that ωt ∼ ρ(ω0, . . . , ωt−1). The agent interacts with
each MDPMωt for one episode, after which the task changes
according to ρ. At the beginning of the t-th episode, an ini-
tial state st,0 is drawn from p0; then, the agent chooses an
action at,0, it transitions to a new state st,1 ∼ Pωt(st,0, at,0),
it receives a reward rt,1 = Rωt(st,0, at,0, st,1), and the
whole process is repeated for Ht steps.1 The agent chooses
its actions by means of a possibly history-dependent policy,
at,h ∼ π(τt,h), with τt,h := (st,0, at,0, st,1, rt,1, . . . , st,h)
denoting a h-step trajectory, and the goal is to find a policy
that maximizes the expected cumulative reward across the se-

1The length Ht of the t-th episode can be a task-dependent ran-
dom variable (e.g., the time a terminal state is reached).

quence of tasks,

argmax
π

Eωt∼ρ

[
T−1∑
t=0

E

[
Ht−1∑
h=0

γhrt,h
∣∣Mωt , π

]]
. (1)

This setting is conceptually similar to hidden-parameter
MDPs [Doshi Velez and Konidaris, 2013], which have been
used to model non-stationarity [Xie et al., 2020], with the
difference that we allow complex history-dependent task-
generation processes instead of i.i.d. or Markov distributions.

Meta-learning setup. As usual, two phases take place. In
the first phase, called meta-training, the agent is trained to
solve tasks from the given family M. In the second phase,
namely meta-testing, the agent is deployed and its perfor-
mance is evaluated on a sequence of tasks drawn from ρ. As
in [Humplik et al., 2019; Kamienny et al., 2020], we assume
that the agent has access to the descriptor ω of the tasks it
faces during training, while this information is not available
at test time. More precisely, we suppose that the agent can
train on any taskMω (for a chosen parameter ω) in the fam-
ily M. These assumptions are motivated by the fact that, in
practical applications, the task distribution for meta-training
is often under the designer’s control [Humplik et al., 2019].
Furthermore, unlike existing works, we assume that the agent
has no knowledge about the sequence of tasks it will face at
test time, i.e., about the generation process ρ. This introduces
the main challenge, and novelty, of this work: how to extrapo-
late useful information from the family of tasks M at training
time so as to build agents that successfully adapt to unknown
sequences of tasks at test time.

3 Method
Imagine to have an oracle that, only at test time, provides
the distribution of the parameters of each task before actu-
ally interacting with it (i.e., that provides ρ(ω1, . . . , ωt) be-
fore episode t+ 1 begins). How could we exploit this knowl-
edge? Clearly, it would be of little use without an agent that
knows how the latent parameters affect the underlying envi-
ronment and/or how to translate this uncertainty into optimal
behavior. Furthermore, this oracle works only at test time,
so we cannot meta-train an agent with these capabilities us-
ing such information. The basic idea behind TRIO is that,
although we cannot train on the actual non-stationarity ρ, it
is possible to prepare the agent to face different levels of task
uncertainty (namely different prior distributions generating
ω) by interacting with the given family M, so as to adapt to
the actual process provided by the oracle at test time. More
precisely, TRIO simulates possible priors from a family of
distributions pz(ω) = p(ω|z) parameterized by z and prac-
tices on tasks drawn from them. Then, TRIO meta learns
two components. The first is a module that infers latent vari-
ables from observed trajectories, namely that approximates
the posterior distribution p(ω|τ, z) of the parameters ω under
the prior pz given a trajectory τ . Second, it meta-learns a
policy to perform optimally under tasks with different uncer-
tainty. A particular choice for this policy is a model whose
input is augmented with the posterior distribution over pa-
rameters computed by the inference module. This resembles



Algorithm 1 TRIO (meta-training)

Require: Task family M, hyperprior p(z), batch size n
1: Randomly initialize θ and φ
2: while not done do
3: Sample prior parameters {zi}ni=1 from p(z)
4: Sample task parameters {ωi}ni=1 from {pzi(ω)}ni=1
5: Collect {τi}ni=1 using policy πθ in MDPs {Mωi}ni=1
6: Update θ by optimizing (4) using {τi}ni=1
7: Update φ by optimizing (3) using {zi, ωi, τi}ni=1
8: end while

Ensure: Meta-policy πθ and inference network qφ

Algorithm 2 TRIO (meta-testing)

Require: Meta-policy πθ, inference network qφ, stream of
tasks ωt ∼ ρ, initial prior parameters ẑ0

1: Initialize Dω = ∅
2: for t = 0, 1, . . . do
3: Interact withMωt using πθ, qφ, ẑt and collect τt
4: Predict ω̂t using qφ(τt, ẑt) and set Dω = Dω ∪ {ω̂t}
5: Fit Gaussian processes using Dω and predict ẑt+1

6: end for

a Bayes-optimal policy and allows trading off between gath-
ering information to reduce task uncertainty and exploiting
past knowledge to maximize rewards.

At test time, the two models computed in the training phase
can be readily used in combination with ρ (which replaces the
simulated priors) to quickly adapt to each task. Obviously, in
practice we do not have access to the oracle that we imag-
ined earlier. The second simple intuition behind TRIO is that
the process ρ can be tracked entirely at test time by resort-
ing to curve fitting. In fact, after completing the t-th test
episode, the inference model outputs an approximate poste-
rior distribution of the latent parameter ωt. This, in combi-
nation with past predictions, can be used to fit a model that
approximates the distribution of the latent variables ωt+1 at
the next episode, which in turn can be used as the new prior
for the inference model when learning the future task.

Formally, TRIO meta-trains two modules represented by
deep neural networks: (1) an inference model qφ(τ, z), pa-
rameterized by φ, that approximates the posterior distribution
p(ω|τ, z), and (2) a policy πθ(s, qφ), parameterized by θ, that
chooses actions given states and distributions over latent pa-
rameters. At test time, TRIO learns a model f(t) that approx-
imates ρ(ω0, . . . , ωt−1), namely the distribution over the t-th
latent parameter given the previous ones. We now describe
each of these components in detail, while the pseudo-code of
TRIO can be found in Algorithm 1 and 2.

3.1 Task Inference
As mentioned before, the inference module aims at ap-
proximating the posterior distribution p(ω|τ, z) of the la-
tent variable ω given a trajectory τ and the prior’s param-
eter z. Clearly, computing the exact posterior distribution
p(ω|τ, z) ∝ p(τ |ω)pz(ω) is not possible since the likeli-
hood p(τ |ω) depends on the true models of the environ-

ment Pω and Rω , which are unknown. Even if these mod-
els were known, computing p(ω|τ, z) requires marginalizing
over the latent space, which would be intractable in most
cases of practical interest. A common principled solution is
variational inference [Blei et al., 2017], which approximates
p(ω|τ, z) with a family of tractable distributions. A conve-
nient choice is the family of multivariate Gaussian distribu-
tions over the latent space Rd with independent components
(i.e., with diagonal covariance matrix). Suppose that, at train-
ing time, we consider priors pz(ω) in this family, i.e., we con-
sider pz(ω) = N (µ,Σ) with parameters z = (µ, σ) given by
the mean µ ∈ Rd and variance σ ∈ Rd vectors, which yield
covariance Σ = diag(σ). Then, we approximate the posterior
as qφ(τ, z) = N (µφ(τ, z),Σφ(τ, z)), where µφ(τ, z) ∈ Rd
and Σφ(τ, z) = diag(σφ(τ, z)) are the outputs of a recurrent
neural network with parameters φ.

To train the inference network qφ, we consider a hyperprior
p(z) over the prior’s parameters z and directly minimize the
expected Kullback-Leibler (KL) divergence between qφ(τ, z)
and the true posterior p(ω|τ, z). Using standard tools from
variational inference, this can be shown equivalent to mini-
mizing the evidence lower bound (ELBO) [Blei et al., 2017],

argmin
φ

E
[
Eω̂∼qφ [log p(τ |ω̂, z)] + KL

(
qφ(τ, z)

∥∥pz)], (2)

where the outer expectation is under the joint process
p(τ, ω, z). In practice, this objective can be approximated
by Monte Carlo sampling. More precisely, TRIO samples
the prior’s parameters z from p(z), the latent variable ω from
pz(ω), and a trajectory τ by interacting withMω under the
current policy. Under a suitable likelihood model, this yields
the following objective (full derivation in Appendix A):

argmin
φ

n∑
i=1

(
‖µφ(τi, zi)− ωi‖2 + Tr(Σφ(τi, zi))

+
λ

Hi
KL(qφ(τi, zi)‖pzi)

)
. (3)

Here we recognize the contribution of three terms; (1) the first
one is the standard mean-square error and requires the mean-
function µφ(τ, z) to predict well the observed tasks (whose
parameter is known at training time); (2) the second term en-
codes the intuition that this prediction should be the least un-
certain possible (i.e., that the variances of each component
should be small); (3) the last term forces the approximate pos-
terior to stay close to the prior pz(ω), where the closeness is
controlled as usual by a tunable parameter λ ≥ 0 and by the
length Hi of the i-th trajectory.

3.2 Policy Optimization
The agent’s policy aims at properly trading off exploration
and exploitation under uncertainty on the task’s latent param-
eters ω. In principle, any technique that leverages a given
distribution over the latent variables can be used for this pur-
pose. Here we describe two convenient choices.

Bayes-optimal policy. Similarly to [Zintgraf et al., 2019],
we model the policy as a deep neural network πθ(s, z),
parametrized by θ, which, given an environment state s and a



Gaussian distribution over the task’s parameters, produces a
distributions over actions. The former distribution is encoded
by the vector z = (µ, σ) which is obtained from the prior and
refined by the inference network as the data is collected. This
policy is meta-trained to directly maximize rewards on the
observed trajectories by proximal policy optimization (PPO)
[Schulman et al., 2017],

argmax
θ

n∑
i=1

Hi−1∑
h=0

γhrh,i, (4)

where the sum is over samples obtained through the same pro-
cess as for the inference module. Similarly to the inference
network, the policy is meta-tested without further adaption.
Intuitively, being provided with the belief about the task un-
der consideration, this “Bayes-optimal” policy automatically
trades off between taking actions that allow it to quickly in-
fer the latent parameters (i.e., those that are favorable to the
inference network) and taking actions that yield high rewards.

Thompson sampling. Instead of using an uncertainty-
aware model, we simply optimize a task-conditioned policy
πθ(s, ω) to maximize rewards (recall that we have access to
ω at training time). That is, we seek a multi-task policy, per-
haps one of the most common models adopted in the related
literature [Lan et al., 2019; Humplik et al., 2019]. Then, at
test time, we can use this policy in combination with Thomp-
son sampling [Thompson, 1933] (a.k.a. posterior sampling)
to trade-off exploration and exploitation in a principled way.
That is, we sample some parameter ω ∼ qφ(τ, z) from the
posterior computed by the inference network, choose an ac-
tion according to πθ(s, ω), feed the outcome back into the in-
ference network to refine its prediction and repeat this process
for the whole episode. As we shall see in our experiments, al-
though simpler than training the Bayes-optimal policy, this
approach provides competitive performance in practice.

3.3 Tracking the Latent Variables
As we discussed in the previous sections, before interacting
with a given task, both the inference network qφ(τ, z) and
the policy πθ(s, z) (assuming that we use the Bayes-optimal
model) require as input the parameter z of the prior under
which the task’s latent variables are generated. While at
meta-training we explicitly generate these parameters from
the hyperprior p(z), at meta-testing we do not have access
to this information. A simple workaround would be to use
non-informative priors (e.g., a zero-mean Gaussian with large
variance). Unfortunately, this would completely ignore that,
at test-time, tasks are sequentially correlated through the un-
known process ρ. Therefore, we decide to track this process
online, so that at each episode twe can predict the distribution
of the next task in terms of its parameter ẑt+1. While many
techniques (e.g., for time-series analysis) could be adopted
to this purpose, we decide to model ρ as a Gaussian pro-
cess (GP) [Williams and Rasmussen, 2006] due to its flexibil-
ity and ability to compute prediction uncertainty. Formally,
at the end of the t-th episode, we have access to estimates
ω̂0, . . . , ω̂t of the past latent parameters obtained through the
inference network after facing the corresponding tasks. We

use these data to fit a separate GP for each of the d dimen-
sions of the latent variables, while using its prediction one-
step ahead ẑt+1 = (µ̂t+1, σ̂t+1) as the prior for the next
episode. Intuitively, when ρ is properly tracked, this reduces
the uncertainty over future tasks, hence improving both infer-
ence and exploration in future episodes.

4 Related Works
Meta-reinforcement learning. The earliest approaches to
meta-RL make use of recurrent networks [Hochreiter and
Schmidhuber, 1997] to aggregate past experience so as to
build an internal representation that helps the agent adapt to
multiple tasks [Hochreiter et al., 2001; Wang et al., 2016;
Duan et al., 2016]. Gradient-based methods, on the other
hand, learn a model initialization that can be adapted to
new tasks with only a few gradient steps at test time [Finn
et al., 2017; Rothfuss et al., 2018; Stadie et al., 2018;
Liu et al., 2019]. Some approaches of this kind have been
used to tackle dynamic scenarios [Nagabandi et al., 2018;
Clavera et al., 2019; Kaushik et al., 2020]. [Al-Shedivat
et al., 2018] use few-shot gradient-based methods to adapt
to sequences of tasks. Unlike our work, they handle only
Markovian task evolution processes and use the knowledge
of non-stationarity at training time. Another line of work,
which has recently gained considerable attention, considers
context-based methods that directly take the task uncertainty
into account by building and inferring latent representations
of the environment. [Rakelly et al., 2019] propose an off-
policy algorithm that meta-trains two modules: a variational
autoencoder that builds a latent representation of the task the
agent is facing, and a task-conditioned optimal policy that, in
combination with posterior sampling, enables structured ex-
ploration of new tasks. [Zintgraf et al., 2019] design a similar
model, with the main difference that the policy is conditioned
on the entire posterior distribution over tasks, thus approx-
imating a Bayes-optimal policy. All of these methods are
mainly designed for stationary multi-task settings, while our
focus is on non-stationary environments. For the latter setup,
[Kamienny et al., 2020] meta-learn a reward-driven represen-
tation of the latent space that is used to condition an optimal
policy. Compared to our work, they deal with continuously-
changing environments and assume the possibility of “sim-
ulating” this non-stationarity at training time, an assumption
that might be violated in many real settings.

Non-stationary reinforcement learning. Since most real-
world applications involve environments that change over
time, non-stationary reinforcement learning is constantly
gaining attention in the literature (see [Padakandla, 2020] for
a detailed survey). [Xie et al., 2020] aim at learning dynamics
associated with the latent task parameters and perform online
inference of these factors. However, their model is limited
by the assumption of Markovian inter-task dynamics. Simi-
lar ideas can be found in [Chandak et al., 2020], where the
authors perform curve fitting to predict the agent’s return on
future tasks so as to prepare their policy for changes in the
environment. Here, instead, we use curve fitting to track the
evolution of the latent task parameters and we learn a policy
conditioned on them.



5 Experiments
Our experiments aim at addressing the following questions:

• Does TRIO successfully track and anticipate changes in
the latent variables governing the problem? How does it
perform under different non-stationarities?

• What is the advantage w.r.t. methods that neglect the
non-stationarity? How better an oracle that knows the
task evolution process can be?

To this end, we evaluate the performances of TRIO in com-
parison with the following baselines:

• Oracles. At the beginning of each episode, they have
access to the correct prior from which the current task
is sampled. They represent the best that the proposed
method can achieve.

• VariBAD [Zintgraf et al., 2019] and RL2 [Wang et al.,
2016], which allow us to evaluate the gain of tracking
non-stationary evolutions w.r.t. inferring the current task
from scratch at the beginning of each episode.

• MAML (Oracle) [Finn et al., 2017]. To evalu-
ate gradient-based methods for non-stationary settings,
we report the “oracle” performance of MAML post-
adaptation (i.e., after observing multiple rollouts from
the current task).

Furthermore, we test two versions of our approach: Bayes-
TRIO, where the algorithm uses the Bayes-optimal policy
model, and TS-TRIO, where we use a multi-task policy in
combination with Thompson sampling. Additional details
and further results, can be found in Appendix C.

5.1 Minigolf
In our first experimental domain, we consider an agent who
is playing a minigolf game day after day. In the minigolf do-
main [Tirinzoni et al., 2019], the agent has to shoot a ball,
which moves along a level surface, inside a hole with the
minimum number of strokes. In particular, given the posi-
tion of the ball on the track, the agent directly controls the
angular velocity of the putter. The reward is 0 when the ball
enters the hole,−100 if it goes beyond the hole, and−1 other-
wise. The problem is non-stationary due to different weather
conditions affecting the dynamic friction coefficient of the
ground. This, in turn, greatly affects the optimal behavior.
Information on how this coefficient changes are unknown a-
priori, thus they cannot be used at training time. However, the
temporal structure of these changes make them suitable for
tracking online. At test time, we consider two realistic mod-
els of the ground’s friction non-stationarity: A) a sinusoidal
function, which models the possible seasonal behavior due to
changing weather conditions; and B) a sawtooth-shaped func-
tion, which models a golf course whose conditions deteriorate
over time and that is periodically restored by human operators
when the quality level drops below a certain threshold.

Results. Let us first analyze the tracking of the latent vari-
ables in Figure 1 (bottom). As we can see, the proposed al-
gorithms are able to successfully track the a-priori unknown
evolution of the friction coefficient in both sequences.

As shown in Figure 1 (top), Bayes-TRIO achieves the best
results in this domain. It is worth noting that its performance
overlaps with the one of its oracle variant for the whole si-
nusoidal task sequence, while in the sawtooth ones perfor-
mance drops occur only when the golf course gets repaired
(i.e., when its friction changes abruptly). Indeed, before these
abrupt changes occur, the agent believes that the next task
would have a higher friction and, thus, it strongly shoots the
ball towards the goal. However, as the friction abruptly drops,
the agent overshoots the hole, thus incurring a highly nega-
tive reward. This behavior is avoided in few episodes, when
the agent recovers the right evolution of the friction coeffi-
cient and restores high performance. A similar reasoning ap-
plies to TS-TRIO, which, however, obtains much lower per-
formance, especially in sequence A. The main cause of this
problem is its naı̈ve exploration policy and the way TS han-
dles task uncertainty. In fact, since its policy is trained con-
ditioned on the true task, the agent successfully learns how to
deal with correct friction values; however, even when negli-
gible errors in the inference procedure are present, the agent
incurs catastrophic behaviors when dealing with small fric-
tion values and it overshoots the ball beyond the hole. When
the friction is greater, as close to the peaks of sequence B,
the errors in the inference network have less impact on the
resulting optimal policies, and TS-TRIO achieves the same
performance as Bayes-TRIO.
VariBAD achieves high performance in situations of low
abrasion, but its expected reward decreases as friction in-
creases. This is due to the fact that, at the beginning of each
episode, the agent swings the putter softly seeking informa-
tion about the current abrasion level. While this turns out
to be optimal for small frictions, as soon as the abrasion in-
creases, these initial shots become useless: if the agent knew
that a high friction is present, it could shoot stronger from the
beginning without risking to overshoot the ball. A similar be-
havior is observed for RL2. Finally, MAML (Oracle) suffers
from worse local maxima than context-based approaches and
performs significantly worse.

5.2 MuJoCo
We show that TRIO successfully scales to more complex
problems by evaluating its performance on two MuJoCo
benchmarks typically adopted in the meta-RL literature. We
consider two different environments: 1) HalfCheetahVel, in
which the agent has to run at a certain target velocity; and
2) AntGoal, where the agent needs to reach a certain goal
in the 2D space. We modify the usual HalfCheetahVel re-
ward function to make the problem more challenging as fol-
lows: together with a control cost, the agent gets as reward
the difference between its velocity and the target velocity;
however, when this difference is greater than 0.5, an addi-
tional −10 is added to model the danger of high errors in the
target velocity and to incentivize the agent to reach an ac-
ceptable speed in the smallest amount of time. For AntGoal,
we consider the typical reward function composed of a con-
trol cost, a contact cost, and the distance to the goal position.
At test time, the non-stationarity affects the target speed in
HalfCheetahVel and the goal position in AntGoal. We con-
sider different non-linear sequences to show that TRIO can
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Figure 1: Meta-test performance on different sequences of the selected domains. All plots concerning the Minigolf (MuJoCo) domain are
averages and standard deviations of 20 (5) policies, each of which is tested 50 times on the same episode; each task is composed of 4 (1)
episodes. (top) Expected rewards per task. (bottom) Latent-variable tracking per task. The figures report the true latent variable of each task
(True task), the posterior mean of TRIO at the end of each task (Bayes-Posterior and TS-Posterior), and the GP prediction of TRIO for the
next task (Bayes-GP and TS-GP). For the first task, Bayes-GP and TS-GP are replaced by the initial prior given to the algorithm. For the
AntGoal sequences, we report only the x-coordinate of the goal position. Plots for the y-coordinate are very similar and can be found in
Appendix C.

track complex temporal patterns.

Results. Figure 1 reports two sequences for AntGoal and
one for HalfCheetahVel. As we can see, in all cases, TS-
TRIO and Bayes-TRIO successfully track the changes oc-
curring in the latent space. In HalfCheetahVel, our algorithms
outperform state-of-the-art baselines. In this scenario, TS-
TRIO achieves the best results. We conjecture that this hap-
pens due to its simpler task-conditioned policy model, which
potentially leads to an easier training process that ends up in
a slightly better solution. Interestingly, differently to what
reported in [Zintgraf et al., 2019], we also found RL2 to
perform better than VariBAD. This might be due to the fact
that we changed the reward signal, introducing stronger non-
linearities. Indeed, VariBAD, which uses a reward decoder
to train its inference network, might have problems in recon-
structing this new function, leading to a marginally worse so-
lution. Finally, MAML (Oracle) suffers from the same limi-
tation as in the Minigolf domain.

In AntGoal, both our algorithms reach the highest perfor-
mance. It is worth noting that, in line with the Minigolf do-
main, when the non-stationarity presents high discontinuities
(as in sequence B), TRIO suffers a perfomance drop which
is resolved in only a handful of episodes. MAML (Oracle)
achieves competitive performance with VariBAD; however,
we recall that MAML’s results are shown post-adaptation,
meaning that it has already explored the current task multi-
ple times. Finally, being the problem more complex, RL2,

compared to VariBAD, faces more troubles in the optimiza-
tion procedure, obtaining a worse behavior.

Finally, it has to be highlighted that, in both problems, our
algorithms are able to exploit the temporal patterns present in
the non-stationarity affecting the latent variables. Anticipat-
ing the task evolution before it occurs leads to faster adapta-
tion and higher performance.

6 Conclusions
We presented TRIO, a novel meta-learning framework to
solve non-stationary RL problems using a combination of
multi-task learning, curve fitting, and variational inference.
Our experimental results show that TRIO outperforms state-
of-the-art baselines in terms of achieved rewards during se-
quences of tasks faced at meta-test time, despite having no
information on these sequences at training time. Tracking
the temporal patterns that govern the evolution of the latent
variables makes TRIO able to optimize for future tasks and
leads to highly-competitive results, thus establishing a strong
meta-learning baseline for non-stationary settings.

Our work opens up interesting directions for future work.
For example, we could try to remove the need of task descrip-
tors at training time, e.g., by building and tracking a reward-
driven latent structure [Kamienny et al., 2020] or a represen-
tation to reconstruct future rewards [Zintgraf et al., 2019].
The main challenge would be to build priors over this learned
latent space to be used for training the inference module.
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A Derivations
We provide the detailed steps to derive the objective function optimized by TRIO to train the inference network. Recall that the
goal is to find the distribution qφ(τ, z) that minimizes the expected KL divergence with respect to the true posterior p(ω|τ, z),

argmin
φ

E
[
KL
(
qφ(τ, z)

∥∥p(ω|τ, z))],
where the expectation is under the joint process p(τ, ω, z). Fix a trajectory τ and a prior’s parameter z. Then, by the standard
decomposition used in deriving the variational lower bound [Blei et al., 2017],

KL
(
qφ(τ, z)

∥∥p(ω|τ, z)) =

∫
Ω

qφ(ω̂|τ, z) log
qφ(ω̂|τ, z)
p(ω̂|τ, z)

dω̂

=

∫
Ω

qφ(ω̂|τ, z) log
qφ(ω̂|τ, z)p(τ |z)

p(ω̂, τ |z)
dω̂

=

∫
Ω

qφ(ω̂|τ, z) log
qφ(ω̂|τ, z)
p(ω̂, τ |z)

dω̂ + log p(τ |z)

=

∫
Ω

qφ(ω̂|τ, z) log
qφ(ω̂|τ, z)

p(τ |ω̂, z)p(ω̂|z)
dω̂ + log p(τ |z)

= −
∫

Ω

qφ(ω̂|τ, z) log p(τ |ω̂)dω̂ +

∫
Ω

qφ(ω̂|τ, z) log
qφ(ω̂|τ, z)
p(ω̂|z)

dω̂ + log p(τ |z)

= −Eω̂∼qφ(τ,z)

[
log p(τ |ω̂)

]
+ KL

(
qφ(τ, z)

∥∥pz(ω)
)

+ log p(τ |z).

Since the log-evidence log p(τ |z) does not depend on φ, we have that

argmin
φ

E
[
KL
(
qφ(τ, z)

∥∥p(ω|τ, z))] = argmin
φ

E
[
− Eω̂∼qφ(τ,z)

[
log p(τ |ω̂)

]
+ KL

(
qφ(τ, z)

∥∥pz(ω)
)]
.

It only remains to specify a suitable likelihood model p(τ |ω̂). Since the actual likelihood would depend on the true task models
Pω̂ and Rω̂ , which are both unknown, we can use the following common workaround. Since at training time we explicitly
sample from the joint process p(τ, ω, z), so that the true task parameter ω that generated trajectory τ is known, we set

p(τ |ω̂) = e−Λ‖ω̂−ω‖2 ,

where Λ > 0 is some parameter. Intuitively, we say that a trajectory τ is more likely if samples ω̂ from the inference network
are close to the ground truth ω. This is also motivated by PAC-Bayesian theory2, where the likelihood model is typically
inversely proportional to the expected loss of the associated supervised learning algorithm (in our case, the inference network).
Moreover, from PAC-Bayesian theory we also known that Λ should increase with the amount of data available for fitting the
model, which in our case is the length H of trajectory τ . Therefore, we set Λ := H

λ , for a different parameter λ > 0. By
plugging this likelihood model into the derivation above and rescaling by Λ, we obtain

argmin
φ

E
[
KL
(
qφ(τ, z)

∥∥p(ω|τ, z))] = argmin
φ

E
[
Eω̂∼qφ(τ,z)

[
‖ω̂ − ω‖2

]
+
λ

H
KL
(
qφ(τ, z)

∥∥pz(ω)
)]

= argmin
φ

E
[
‖µφ(τ, z)− ω‖2 + Tr(Σφ(τ, z)) +

λ

H
KL
(
qφ(τ, z)

∥∥pz(ω)
)]
,

where the last step follows by noting that ω̂ − ω has distribution N (µφ(τ, z) − ω,Σφ(τ, z)) and using the closed-form of the
squared `2-norm of a multivariate Gaussian random variable. The objective stated in the paper is obtained by approximating
the outer expectation with samples (τi, ωi, zi) from the joint process p(τ, ω, z) = p(τ |ω)pz(ω)p(z).

B Additional Details on TRIO
B.1 Off-prior Inference Training

Empirically, we have found better performances if we adopt a combination of on-prior and off-prior data for meta-training
the inference network qφ. Indeed, if we adopted only on-prior data as described in Algorithm 1 (that is, by using the exact prior
parameters z sampled from the hyperprior p(z)), the inference network would be trained on trajectories collected by a policy πθ
whose state is augmented with a posterior distribution computed from the true prior. However, at test time, the prior itself is not
available and must be estimated. When such estimates are poor (e.g., at the beginning of a meta-test sequence, when GPs use

2See, e.g., “PAC-Bayesian supervised classification: the thermodynamics of statistical learning” [Catoni, 2007].



Algorithm 3 TRIO (meta-training with off-prior data)

Require: Task family M, hyperprior p(z), batch size n
1: Randomly initialize θ and φ
2: while not done do
3: Sample prior parameters {zi}ni=1 and {z̃i}ni=1 from p(z)
4: Sample task parameters {ωi}ni=1 from {pzi(ω)}ni=1
5: Collect trajectories {τi}ni=1 in MDPs {Mωi}ni=1 using policy πθ and the true prior pzi
6: Collect trajectories {τ̃i}ni=1 in MDPs {Mωi}ni=1 using policy πθ and the wrong prior pz̃i
7: Update θ by optimizing (4) using {τi}ni=1 (only on-prior data)
8: Update φ by optimizing (3) using {zi, ωi, τi}ni=1 ∪ {z̃i, ωi, τ̃i}ni=1 (both on-prior and off-prior data)
9: end while

Ensure: Meta-policy πθ and inference network qφ

few data points, or when abrupt changes occurs in the latent variables), these errors might affect the inference network, which
was trained only on correct priors and thus could produce a wrong posterior. In turn, the wrong posterior is fed into the policy,
which might take poor actions. While the predictions could become correct as more data is fed into the inference network (i.e.,
when the contribution of the prior vanishes), this behavior could still severely affect the agent’s behavior in early steps of the
episode, and thus its final performance.

For this reason, we combine on-prior data with off-prior data as shown in Algorithm 3. The idea is to make the inference
network more robust to misspecified priors by training it also with trajectories that are generated by an agent with wrong prior
knowledge. More precisely, we sample “wrong” prior parameters z̃ alongside the “true” ones z from the hyperprior p(z). Then,
we sample the task’s latent variable ω from the correct prior pz and collect (1) a trajectory τ fromMω using the agent’s policy
πθ in combination with the inference network qφ that uses the true prior parameters z, and (2) a trajectory τ̃ using the same
process with the wrong prior parameters z̃. Finally, we optimize the inference network qφ using both on-prior and off-prior data
(i.e., τ and τ̃ ), while we use only on-prior data to optimize the policy πθ.

B.2 Gaussian Processes for Tracking Latent Variables
In all our experiments, we use a combination of a squared exponential kernel, a white-noise kernel, and a linear kernel. Formally,

K(xi, xj) = c exp

(
−d(xi, xj)

2

2l2

)
+ w(xi, xj) + σ2

0 + xixj , (5)

where w(xi, xj) = W if xi = xj else 0. Note that c, W , l and σ2
0 are the hyper-parameters of the kernel. We fix W to 0.01,

while we let the GP automatically tune the other hyper-parameters online by maximum likelihood on the data points observed
at test time. We chose this kernel model before actually defining the experimental domains in such a way that allows us to
capture many trends of practical interest. Notably, it turned out to be robust and effective in all the sequences we meta-tested,
despite it was not tuned for those sequences. Indeed, as the experiments show, it is able to capture complex behaviors and
adapt its hyper-parameters in a way that allows tracking the evolution of the latent space. Notably, despite its smooth nature,
this kernel leads to good performance even on test sequences with abrupt changes. It is worth noting that, for such sequences,
our approach can easily be integrated with techniques related to monitoring and control to improve performance even further.
For instance, we may combine curve fitting with change-point detection methods to reset the samples used for fitting GPs and
recover the same performance we have at the beginning of a meta-test sequence. We consider this an important consequence of
the simplicity and generality of the approach.

Finally, we note that GPs are sufficiently flexible to allow the introduction of additional prior knowledge. For instance, if one
has knowledge about the family of sequences that are faced at test time (e.g., as in [Kamienny et al., 2020; Al-Shedivat et al.,
2018]), it is possible to directly tune the kernel function and its hyper-parameters to obtain better performace.

B.3 Relaxing TRIO’s Assumptions
Non-stationary setting. We designed our algorithm for episodic interactions with a sequence of MDPs that, as in common
piece-wise stationary settings, do not change within the episode. We note that this assumption could be easily relaxed, as TRIO
can deal with latent variables evolving within the episode with only minor tweaks. This can be achieved by resetting the prior
before the episode itself ends. For instance, we can define a fixed episode length H and, every H steps, obtain a new prior
from the GPs. Intuitively, this works well as far as the underlying task does not change much in H steps.3 In case predicting
the new priors becomes computationally prohibitive as the number of data points used to fit the GPs rapidly grows, we can use
a sliding-window approach that selects only the most recent w samples.

3In practice, if the task evolves significantly in short periods of time (e.g., with continuous non-smooth or abrupt changes), there might be
no learning algorithm able to track the changes and perform well.



Availability of task identifier and hyperprior at training time. Since TRIO aims at training models that generalize to
unknown and off-distribution task sequences, the possibility to train on chosen tasks from the given family while knowing
the corresponding latent parameters is a quite important requirement. It is intuitively justified by the fact that, in practice,
the designer often controls the training tasks. While this is common in simulated settings [Humplik et al., 2019], it has been
done in real environments as well [Clavera et al., 2019]. In order to relax this assumption, we could take inspiration from
recent works build latent representations of the environment dynamics and rewards [Rakelly et al., 2019; Zintgraf et al., 2019;
Xie et al., 2020]. For instance, if we only had the possibility to interact with tasks sampled from an unknown and uncontrollable
distribution, or if we only had access to interaction data with multiple unknown tasks, we could first fit an auto-encoder to embed
the environment models into a low-dimensional latent space. Then, we could take the decoder as our environment simulator
and apply TRIO’s meta-training procedure in its original form. Of course, as for all meta-learning algorithms, the resulting
performance would highly depend on the training distribution and its difference with respect to the task generation process
encountered at test time. It is possible that further adaptation at test time can alleviate this issue. While building these kind
of task embeddings is a simple approach, we do not exclude that better solutions exist whose study is an exciting direction for
future work.

C Additional Details on the Experiments
C.1 Domains
Minigolf
We briefly recap how the Minigolf domain works, while referring the reader to [Tirinzoni et al., 2019] for the detailed descrip-
tion. The goal of the agent is to shoot a ball of a given radius r inside a hole of diameterD in the minimum number of shots. We
consider a one-dimensional scenario in which the agent always hits the ball towards the hole, which will move with constant
deceleration d = 5

7gω, where ω is the dynamic friction coefficient of the ground and g is the gravitational acceleration. At each
step, the agent selects action a within the range [1e−5, 10] that determines the angular speed s of the putter according to the
formula s = al(1 + ε), where l is the lenght of the putter and ε ∼ N (0, 0.3). The angular velocity of the putter will determine
the initial velocity v0 = sl of the ball. For each distance x0 from the current position to the hole, the agent successfully com-

pletes the task, obtaining reward 0, if v0 ranges from vmin =
√

2dx0 to vmax =
√

(2D − r)2 g
2r + v2

min. In the case in which
v0 exceeds vmax the ball will overcome the hole and the episode ends with a reward of −100. On the other hand, if v0 < vmin,
the episode goes on, and the agent can try to shoot again from the position x = x0 − v20

2d . At the beginning of a trial, the agent
starts from a random position x0 between 2000cm and 0cm far from the hole.

At meta-training time, we generate tasks with friction in the range [0.01, 2]. Prior means are sampled uniformly from the
range [−1, 1], while variances are sampled uniformly from the range [0.01, 0.2]. Once a task has been sampled, it gets rescaled
in the task range [0.01, 2].

The meta-test sequences presented in Figure 1 are defined as: ωA(t) = −0.199 sin(0.1t) + 0.30845 and ωB(t) = 0.5075 +
0.398( t

50 −
⌊
0.5 + t

50

⌋
). At meta-test time, we sample tasks from a normal distribution whose mean is set to ω(t) rescaled in

[−1, 1], and whose variance is 0.001. In both sequences, we use a wrong initial prior for our algorithms by setting the friction
mean to 1 and the standard deviation to 0.2 (note that mean has to be rescaled in [−1, 1]).

HalfCheetahVel
In this domain, the only latent variable is the target velocity. During training, the possible target velocities belong to the interval
[0, 1.5]. Our algorithms sample uniformly prior means from the range [−1, 1], while variances are sampled uniformly from the
range [0.01, 0.3]. Once tasks are sampled, they get rescaled in the interval [0, 1.5].

The meta-test sequence for HalfCheetahVel presented in Figure 1 is defined as v(t) = 3
16 (− tanh( t+5

16 ) + sin( t+5
2 ) 16

t+5 ) +

0.75. As in Minigolf, we sample tasks from gaussian distribution with mean a rescaled version of v(t) and variance 0.00001.
As initial prior, we feed our algorithm with wrong prior knowledge: N (1.5, 0.01) (note that mean has to be rescaled in [−1, 1]).

AntGoal
In this domain, tasks are specified by their goal position in 2D space (two latent variables). At meta-training, the latent variables
are chosen in [−3, 3]2. For both coordinates, our algorithm samples prior with means from [−1, 1] and variances from [0.1, 0.4].
Once tasks are sampled, they are rescaled to the square [−3, 3]2.

The test sequences defined in Figure 1 are: xA(t) = 3 sin( 2π
15

√
16t+ 5), yA(t) = 3 cos( 2π

15

√
16t+ 5); xB(t) =

3 sin π
4 if t ≤ 20 else 3 sin 5π

4 and yB(t) = 3 cos π4 if t ≤ 20 else 3 cos 5π
4 . As initial prior, we use

N ([3 sin(0), 3 cos(0)],diag(0.01, 0.01)) for sequence A and N ([xB(0), yB(0)],diag(0.01, 0.01)) for sequence B. Figure 2
shows tracking of the goal’s Y-coordinate in these sequences, which was not reported in the main paper. Tasks are sampled for
x(t) and y(t) rescaled to [−1, 1] and variances diag(0.01, 0.01).

C.2 Hyperparameters
We use the PyTorch framework for our experiments. The main hyper-parameters can be found in Table 1, while greater details
can be found in our reference implementation (see code at https://github.com/riccardopoiani/trio-non-stationary-meta-rl).

https://github.com/riccardopoiani/trio-non-stationary-meta-rl
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Figure 3: Minigolf robustness experiment. We report Bayes-TRIO and its oracle performances when different numbers of additional signals
are present. More specifically, the last number in the legend is the number of additional latent variables. Bayes-Oracle performances are
reported when no additional latent variable is used.

C.3 Additional Results
Robustness to latent variables
In this experiment, we test the robustness of Bayes-TRIO to useless latent variables, i.e., those that are not required to behave
optimally. To do so, we add some useless state variables xi in the Minigolf domain that represent the distance between the
current position x of the ball and an unknown latent variable αi. More specifically, at each step, we have that xit = |x−αi|+ ε
where ε ∼ N (0, 1). Then, we run Bayes-TRIO on the same Minigolf domain with up to three useless states/latent-variables.
Figure 3 reports the results on the same sequences used in the main paper where the additional latent variables αi have, in each
episode, a uniform random value in the range [0, 2000cm]. We note that, in both cases, Bayes-TRIO does not seem severely
affected by the presence of multiple useless latent variables. This is an important result since, despite the inference network is
trained to predict the distribution of every latent variable, TRIO’s policy does not get distracted by these additional variables
(i.e., it does not change its behavior to make the inference network better at predicting useless information). It is possible that
even better performance could be achieved if we used a separate inference network for each latent variable.

Additional Test Sequences
We report two additional test sequences for the experiments of the main paper in Figure 4 and 5.

Minigolf sequence C is defined as ωC(t) = 0.995 tanh (t− 5) + 1.204. As initial prior we consider N (ρC(0), 0.2). We
should note that, in the last steps of the sequence, the friction values are outside the training interval [0.01, 2], and our method
still outperforms the considered baselines. This verifies that TRIO also generalizes out of the training distribution. Interestingly,
RL2 at higher abrasion levels performs better than VariBAD, contrary to what happens when the friction coefficient is small.

HalfCheetahVel sequence B is defined as vB(t) = 0.15 if t ≤ 30 else 1.125 if t ≤ 60, 0.75 otherwise. We use



Parameters Minigolf HalfCheetahVel AntGoal
Batch size 1280 6400 3200
Epochs 4 2 2
Minibatches 8 4 1 (B-TRIO) 2 (TS-TRIO)
Clip paramer 0.1 0.1 0.1
Max gradient norm 0.5 0.5 0.5
Entropy coefficient 0 0.01 0.01
Policy LR 0.00005 0.0007 0.0005
Inference LR 0.2s 0.001 0.001
Prior weight λ 1 0.1 0.1
Policy number of layers 2 2 2
Policy unit per layers 16 128 128
Policy activation function Tanh Tanh Tanh

Table 1: Main hyper-parameters used for training TRIO’s policy and inference networks.
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Figure 4: Meta-test performances on Minigolf Sequence C. Plots are averages and standard deviations of 20 policies, each of which is tested
50 times on the same episode; each task is composed of 4 episodes.

N (vB(0), 0.00001) as initial prior for TRIO. Interesting, we note that TRIO suffers performance drops only when the first
abprut change happens. At t = 60 indeed, it is true that TRIO believes that it needs to run at 1.125, however, while increasing
its velocity to reach the believed target speed, it is able to infer the correct latent space, thus avoiding further negative rewards.
We also note that for speeds close to 0 MAML has learned a good adaptation policy, comparable to the one of our oracles;
however, when higher speeds are required, the policy suffers from poor local maxima.

Regret plots
To favor the comparison between the baselines considered in our experiments, here we report the plots of their regret at test
time w.r.t. an oracle that always plays a near-optimal policy. Formally, given an algorithm A that receives return rt at episode t
and a clairvoyant algorithm A∗, receiving return r∗t at the same episode, the regret of A over a sequence of tasks of length T is
defined as RT (A) :=

∑T
t=1(r∗t − rt). Figure 6 reports the regret of the algorithms w.r.t. the best Oracle for the given problem.

More specifically, we use Bayes-Oracle for Minigolf, and TS-Oracle for the MuJoCo experiments.
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Figure 5: Meta-test performances on HalfCheetahVel Sequence B. Plots are averages and standard deviations of 5 policies, each of which is
tested 50 times on the same episode; each task is composed of 1 episodes.
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Figure 6: Meta-test regret on the presented sequences.
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