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Abstract

In the eye of many control scientists, the theory of the scenario approach is a tool

for determining the sample size in certain randomized control-design methods,

where an uncertain variable is replaced by a random sample of scenarios. This

point of view is rooted in the history of the scenario approach and stands on a

long track record of successful applications. However, in the last two decades,

the theory of the scenario approach has gone beyond its original motivations

and applications, and has unveiled some fundamental relationships between the

complexity of a design and its generalization capabilities. The new knowledge

brought by the theory provides a solid ground for a framework where data can be

exploited in a flexible and wise manner, throughout a large variety of engineering

activities. By this paper we aim at providing an access point to a set of state-

of-the-art results in the theory of the scenario approach that can be valuable

to target important challenges in modern control-design and decision-making

at large. In the first part of the paper, we introduce a set-up for decision-

making where the role of prior knowledge and user preferences can, and should,

be distinguished from the role of data. Then, we show that the theory of the

scenario approach offers a platform for conjugating heuristic approaches, which
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in complex contexts are unavoidably based on incomplete and possibly imprecise

information, with a solid theory for certifying the validity of the output of the

decision process.

Keywords: data-driven methods, scenario approach, control, generalization.

1. Introduction

1.1. The era of data

Opportunities and challenges intertwine in the era of data. On the one hand,

pervasive networks of smart sensors collect, process and store measurements in

extremely fast, reliable and cheap ways. On the other hand, control scientists

are haunted by the question of how one can take advantage of the increasing

availability of data, either to improve existing control systems or to bring order

to newly born systems of systems.

The weaving of opportunities with old and new challenges is apparent in

many fields; we mention below but a few, in full awareness that many others

could have deserved to be included in the list.

• Automotive systems control. The availability and smart processing

of real-time traffic measurements has made it possible to deploy auto-

matic and effective coordinated ramp metering strategies for freeways,

Papageorgiou & Papamichail (2014); Seo et al. (2017). Complex systems

of systems arise not only from the conscious striving to go beyond ordinary

solutions, at the frontier of automotive technology (e.g., in the control of

autonomous vehicles and of the systems arising from their interconnection

Guanetti et al. (2018)), but also as technology-driven side-effects: for ex-

ample, it has become urgent to deal with the disrupting effects of having

many (ordinary) human drivers in (ordinary) cars, all relying simulta-

neously on the same (ordinary) mapping and route planning software,

Macfarlane (2019).

• Power generation and dispatchment. At the dawn of the Second

Industrial Revolution, connecting steam turbines to dynamos made large
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scale power generation possible. Since then, energy has been generated

and rationally distributed by leveraging well-understood physical laws, but

the increasing penetration of renewable energy poses new and significant

challenges to the planning and operation of modern power grids. In partic-

ular, power generation now depends on uncertain, hardly predictable phe-

nomena, ranging from weather conditions to individual and social human

behaviors. The underpinning for modern decisions and control schemes in

this field has necessarily to include, besides physics, economic and social

sciences, as well as conceptual tools to integrate historical and real-time

data in the decision process, Li et al. (2020).

• Real-time control of biological systems. Feedback, as a mechanism

to ensure homoeostasis, has long been recognized as a central feature of

life, Cannon (1939); Hoagland & Dodson (1995), and control scientists

have been increasingly at work to design feedback loops to re-establish

homoeostasis in medical patients. A remarkable example is the develop-

ment of an artificial pancreas for keeping blood glucose into a healthy

range. The reader is referred to the recent review Quiroz (2019) for an ac-

count of how the control algorithms have evolved from the first closed-loop

algorithms, which computed insulin infusion rates with poor information

about the process to be controlled, towards personalized and data-based

algorithms. Personalization has been made by a combination of a better

understanding of glucose metabolism with the great availability of histor-

ical and real-time data that are offered by sensors now available in the

market.

• Medical computer-aided diagnosis. A wise combination of domain

knowledge, which remains fundamental to direct design efforts, and of

data availability has fostered major progresses in medical computer-aided

diagnosis. We just recall here the case of the automated classification of

images of skin lesions as benign or malignant, which might soon become

a widely available tool at the disposal of smartphone customer users, see
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Esteva et al. (2017).

• Machine-Learning-in-the-loop technologies. Traditionally, an auto-

matic classifier returns a result to a human being who is then responsible

to make an informed decision (in the skin lesions example, this human

being is a medical doctor or directly the patient). More and more often,

however, classification algorithms, or other machine learning algorithms

that are trained on data in a black-box manner, can be found in automated

control loops, where they play the role of soft sensors, similarly to tradi-

tional state estimators. Examples range again from automotive systems

(where classifiers are used inter alia for obstacle detection and avoidance,

Gruyer et al. (2017); Devi et al. (2020)) to medical applications such as

the artificial pancreas, Cappon et al. (2019). The more black-box learning

algorithms enter safety-critical decision loops, the more urgent the need

for a solid, scientific understanding of their limits and potentials.

Overall, it is clear that the increasing availability of computational power

and of distributed large-scale optimization techniques enables the deployment

of innovative data-driven decisions and control schemes, but it is also clear that

this extraordinary potential cannot be fully expressed until it gets backed by a

solid theoretical understanding.

1.2. Indirect vs. direct methods

In traditional model-based control, the “driving power” of data is often em-

ployed by engineers in the modeling of the reality to be controlled. In a typical

workflow, first principles dictate the model class into which a reasonable rep-

resentative of the reality should be sought, and experimental data are used to

find the best parameter values to be plugged into the model equations. At the

end of this modeling effort, the engineer has obtained a model that describes

with a sufficient accuracy the way in which reality is expected to behave in

response to signals that are under control. At the final stage of the workflow,
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the engineer is called to make decisions, set-up policies and control mechanisms

so as to optimize the objective values.

The increasing intricacy of many modern problems challenges this traditional

design workflow: in fact, the input-output behavior of many modern systems

is hardly captured by the class of models that can be found in the traditional

system modeling toolboxes. Even in those lucky cases where, in the eyes of

the data-analyst, available models look like acceptable descriptors of the real-

ity, it is often the case that, in the hands of the control engineer, they lead to

unsatisfactory control performances. The reason is that the metric according

to which a model is said to capture “well” the hidden nature of the complex

system is usually not tailored to the needs of the control engineer, whose goal

is optimizing specific objective functions. This explains why the recent history

of feedback control has witnessed a surge of the so-called “direct methods” (see

e.g. Åström & Hägglund (1995); Safonov & Tsao (1995); Hjalmarsson et al.

(1998); Guardabassi & Savaresi (2000); Gerencsér et al. (2002); Hjalmarsson

(2002); Campi et al. (2002); Van Heusden et al. (2011); Bazanella et al. (2011);

Moore (2012); Hou & Wang (2013); Formentin et al. (2014); Hori et al. (2016);

Sutter et al. (2017); Karimi & Kammer (2017); Apkarian & Noll (2018); Novara & Milanese

(2019); Formentin et al. (2019); Chiluka et al. (2021)), where one uses the avail-

able information that is carried by experiments directly to design a controller

that minimizes the cost function of interest; this is opposed to the traditional

indirect methods where significant effort is spent in preliminarily approximating

reality by means of a model.

The development of “direct methods” for decisions and control is part of a

broader scientific trend, which is largely technology-driven and is not limited to

the control community (the reader is referred to the box “Direct, goal-oriented

approaches: a cultural, technology-driven trend” for more discussion on this

point).

Direct, goal-oriented approaches: a cultural, technology-driven

trend.
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According to a highly influential paper, Breiman et al. (2001), two cultures

abide in statistical sciences. The classic one aims at using data for mod-

eling the data generation mechanism: if successful, this culture generates

powerful tools not only to control but also to describe reality (control en-

gineering practice reflects this culture when, e.g., the transfer function of

a simple second-order linear system is estimated from noisy data); on the

other hand, as the complexity of the data generation mechanism increases,

modeling becomes more and more an ambitious task, prone to detrimental

oversimplifications. Hence, the other culture aims at using data to inform

problem-oriented procedures, and to issue certificates on the statistical ef-

fectiveness of such procedures: this task can be accomplished under much

milder and realistic assumptions even in the presence of very complex data

generating mechanisms.

In the context of statistical learning, Vapnik, Vapnik (2013) (Section

1.9), formulated the following principle to be applied in the presence of

restricted information: “When solving a given problem, try to avoid solv-

ing a more general problem as an intermediate step”. In the wake of

this advice, many recent advances in machine learning (in the fields of su-

pervised classification and regression, Krizhevsky et al. (2012); clustering,

Ghasedi Dizaji et al. (2017); reinforcement learning, Silver et al. (2016);

etc.) share an agnostic approach with respect to the “true” or “best” de-

scription of the system at hand and focus on directly optimizing a cost

function that maps the possible options that are available to the decision

maker into a value that quantifies the level of satisfaction with the selected

option.

Generally speaking, direct approaches become more urgent as technol-

ogy enables one to address problems of increasing complexity, which is the

trend that applied science is nowadays experiencing at an increasingly fast

pace. The reader is also referred to Norvig (2017) for a thought-provoking

discussion on matters related to the topic of this box.
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1.3. This paper

In this paper, we present a framework for direct data-driven decision-making

that can benefit from a series of technical results that have sprout from the

theory of the scenario approach in the last two decades.

In the next Section 2, the scenario approach is introduced at a rather infor-

mal level as a general methodology to govern, in a well-grounded manner, the

interplay between prior knowledge and data in decision-making. Some space

(the whole Section 2.4) is devoted to introducing the probabilistic point of view,

which allows one to assess the quality of a decision not only with respect to the

data collected before the decision is made, but also with respect to the infinitely

larger set of the unseen cases (those that can occur at the time the decision is

applied). The section ends with a non-technical preview (on a simple example

in Section 2.5) of the kind of statistical evaluations that are possible thanks to

the theory of the scenario approach. This prepares the ground for the following,

more technical, Section 3.

Section 3 provides an easily accessible, but technical, gallery of results: mov-

ing from simple decision schemes that are based on convex worst-case opti-

mization, the reader is gradually introduced to the state-of-the-art of the the-

ory, which encompasses non-convex optimization and general decision-making

schemes.

2. A set-up for direct data-driven decision-making: the scenario ap-

proach

2.1. When is a decision good?

Many decision and control problems can be abstracted as the problem of

choosing an object x from within a decision set X . For example, in control-

design, x is a vector of parameters representing a controller in a given class; in

financial portfolio optimization, x is a vector where each element is the amount

of money to be invested in a given asset; in classification, x encodes, according
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to some predefined rule, a function that maps any possible relevant object into

a label belonging to {0, 1}, etc.

We will denote by x∗ the specific object that represents the final output of

the decision process. The quality of x∗ can be judged in relation to intrinsic

and extrinsic criteria as described in what follows.

1) INTRINSIC QUALITY

We call “intrinsic” a quality of x that depends only on x itself, in the light of

cemented knowledge and preferences that are available to the decision-maker.

Here are some examples.

Example (Filter Design). If x is a digital filter, a good x may be expected to

have a cut-off frequency in a certain range, to be physically realizable, possibly

simple and cheap to implement, etc.

Example (Prediction interval). If x is an interval used to predict an unknown

variable, its width should be small for the prediction to be informative.

Example (Home temperature control system). If x is a temperature controller,

it should be designed so that, in nominal conditions, the control operates fast

enough, overshooting and oscillations are limited, energy consumption is mini-

mized, etc.

2) EXTRINSIC QUALITY

The “extrinsic” quality refers to the performance of x in relation to various oper-

ating situations that may occur when x is applied. A bit more formally, we can

think of the occurrence of a situation as an assignment of values to a vector of

variables that we denote with the symbol δ, and, hence, extrinsic quality refers

to the couple (x, δ): for every δ, x attains a performance as measured by a suit-

able indicator and the extrinsic quality refers to the variability of performances

achieved by x as δ takes value in its range of variability.

Example (Filter Design). If the aim of the filter x is to work in a mobile device

as an audio channel equalizer and the frequency response of the channel is δ,
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then the extrinsic quality of x refers to the performance of x in relation to a

variety of channels δ and “high extrinsic quality” may refer to the ability of x to

perform well over a large portion of δ’s that may be encountered in the lifespan

of the device.

Example (Prediction interval). Suppose that x is used to predict how effective a

medical therapy is. Since the effectiveness depends on the patient δ to whom the

therapy is administered, the extrinsic quality may refer to how large the portion

of potential patients for which x provides a correct prediction is.

Example (Home temperature control system). The performance of a building

temperature controller x can be affected by the weather conditions and the minute

actions of people in the building (which are partly unpredictable and will certainly

differ from hour to hour and from day to day). Here, δ can be identified with

a vector that includes quantities such as the external temperature and other

weather conditions, the average amount of people in the building in a given time

horizon, the number and the size of windows that happen to be open, etc., and

the extrinsic quality may refer to the capability of the controller to keep the

temperature within admissible limits for various δ.

2.2. The limits of knowledge

In traditional decision processes, the intrinsic quality and the extrinsic qual-

ity of a candidate solution are often judged at the decision-making stage on the

ground of available models.

Example (Traditional control design). Let x be a controller to be applied to a

linear plant whose poles (expressed in a vector δ) are somewhat uncertain. If the

variability of δ is known, imposing suitable phase and gain margins may ensure

that the design will work well for all the relevant values of δ.

On the other hand, when we move from simple to complex application do-

mains, we often experience that δ refers to articulated and elusive portions of

the real world for which it is extremely difficult to obtain a satisfactory and com-

plete model and, hence, an a priori assessment of the extrinsic quality becomes
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impractical. Under these circumstances, one may advocate the use of first-hand

data, i.e., observed instances of δ, along a direct decision-making approach. This

is the condition in which the scenario approach finds its natural application, as

explained in the next section (see also the box “When should we consider using

the scenario approach?” for a quick summary of the main ideas).

2.3. The principles of the scenario approach

We shall denote the empirical instances of δ that are available at the decision-

making stage by δ(1), . . . , δ(N), and refer to them as “scenarios”. When the

variability of δ is difficult to describe by means of a model, the fact that δ

impacts on the extrinsic performance suggests a different way of proceeding and,

at an informal level, the scenario approach prescribes to choose the candidate

solution x that

(i) works well for the scenarios δ(1), . . . , δ(N)

and, subject to (i),

(ii) optimizes the intrinsic quality.

In this way, the intrinsic quality is pursued directly while the scenarios δ(1), . . . , δ(N)

are used as an empirical substitute of the infinite amount of situations δ that

could occur in a future use of the decision to heuristically secure the extrinsic

quality.

In applications, (i) and (ii) must be formulated quantitatively and choosing

suitable indicators is highly problem-dependent. Moreover, while the applica-

tion may suggest the meaning of the expression “x works well for δ”, still the

decision-maker retains the right of deciding whether to enforce that the solution

works well for all the N scenarios δ(i) or rather to neglect some of them. There

is also much flexibility in constructing the indicator of the intrinsic quality and

the domain in which the solution x is sought: they are typically based on prior

knowledge and background preferences, but, as we shall see in Section 2.5, they

can also be influenced by informal reasoning, second-hand information, guesses
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Figure 1: A decision is required to work well for a large amount of situations δ, characterized
by high uncertainty and complexity. In the scenario approach, the decision x∗ is obtained
by an algorithm that incorporates prior knowledge to direct the decision, while instances
δ(1), . . . , δ(N) are used as a substitute of the multitude of unobserved situations.

and even conjectures about the variability of δ. The workflow for the scenario

approach is illustrated in Figure 1.

Importantly, making a wise decision based on observations requires tools to

gain confidence in that the decision is good both intrinsically and extrinsically.

While the intrinsic quality is directly measured (and optimized), replacing the

large set of the unseen situations δ’s with a sample of scenarios is heuristic in

nature and, when applied naively, may suffer from excessive empiricism: the

final decision x∗ performs well with respect to the instances δ(1), . . . , δ(N) but it

may fall short for other instances of δ that eventuates after the decision x∗ has

been implemented. The aim of the theory of the scenario approach is precisely

that of taking control on this issue. This is important because only a trustful

evaluation of the actual extrinsic quality along with the evidence about the

intrinsic quality gives the decision-maker a handle to judge the solution. Based

on a fair judgment, the decision-maker can:

11



(i) decide whether to “buy” the solution or to discard it;

(ii) decide how to subsequently use the solution, if the latter is part of a bigger

decision process;

(iii) if the solution is not satisfactory, go back to the original choices in the

problem formulation and re-calibrate them to construct solutions which

are better aligned with the desires (for example, the definition of the

intrinsic criterion can be modified, the size of the sample δ(1), . . . , δ(N)

can be re-tuned, etc.);

(iv) re-design the decision set X itself from which x∗ is selected.

The main mathematical tool the scenario approach is based on is probabil-

ity theory and the concepts introduced at a high-level in this section will be

better formalized in the light of probability theory in the next section. Before

proceeding, however, we feel advisable to highlight here two cornerstones of the

theory as it will emerge in the remainder of this article.

1. While one way of quantifying the extrinsic quality is by validation, this

requires using many data points for testing rather than designing. One

key message of the scenario approach is that data can be used to simulta-

neously make a design while also evaluating its extrinsic quality. This is

made possible by an exploitation of the information contained in the data

beyond what traditional approaches can do.

2. In modern control and decision problems that deal with complex systems,

besides scenarios one wants to exploit prior knowledge that comes from

various sources, often including some that, while not completely trustwor-

thy, can still be of help to obtain a satisfactory solution. If prior knowledge

turns out to be lacking or even defective, its use may downgrade the qual-

ity of the solution. Importantly, in the scenario approach the correctness

of the evaluation of the extrinsic quality (which is not directly observable)

remains intact independently of the correctness of the prior. This fact
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(which may came to the reader’s surprise) is established in subsequent

sections and is named “separation principle”. The separation principle

implies that the decision-maker can always correctly judge the impact of

the prior information on the solution in terms of intrinsic (which is di-

rectly measurable) and extrinsic quality and decide to discard a prior if

it is deemed unreliable. In this respect, it can be said that the scenario

approach meets the pressing need in modern data-driven decision-making

for a sound integration of domain knowledge and priors having uneven

levels of trustworthiness with first-hand information given by data.

When should we consider using the scenario approach?

The scenario approach employs the data to directly target a design prob-

lem, without going through an intermediate step aiming at finding a de-

scription of the mechanism that generates δ. The scenario approach is of

interest when:

(I) the value taken by δ can significantly impact on the performance;

(II) δ is made up of many variables, possibly interconnected, which take

value according to mechanisms that are difficult, too expensive or

even impossible to describe satisfactorily.

Because of (I), neglecting the variability of δ is not an option as this would

lead to poor decisions. At the same time, (II) makes it impractical to find a

description of the mechanism underlying the generation of δ. Hence, a good

decision can be pursued heuristically driven by a direct use of the data.

In this context, the scenario approach provides a theory to quantify the

extrinsic quality of a decision and drives the user towards a wise selection.

Examples of applications where (I) and (II) apply are ubiquitous and

can e.g. be found in:

• the stock market values; Pagnoncelli et al. (2012); Calafiore (2013);
Ramponi & Campi (2018);
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• the electrocardiogram, or a set of features extracted from an electro-
cardiogram, of a patient in cardiac arrest, Carè et al. (2018).

• the values of the power generation and load in a power system with
intermittent and distributed power sources, Modarresi et al. (2019);
Geng & Xie (2019);

• a demand profile for selling products, Carè et al. (2014);

• input-output data collected from a plant in different operating condi-
tions, e.g., a car with different tires and road conditions, Rallo et al.
(2016);

• inflows and outflows in a system of rivers or other weather-dependent
phenomena, Nasir et al. (2018);

• the transfer function of a communication channel in mobile commu-
nication, Carè et al. (2015);

• instances of disturbances, Campi et al. (2009b), or actuation errors,
Carè et al. (2019), in a largely unpredictable environment.

2.4. Mathematical foundations: a probabilistic framework

Probability is, first and foremost, a measuring tool that allows us to make

statements such as “x∗ performs well for a large portion of situations δ”. In

fact, if we accept that various instances of δ present themselves according to a

probability distribution P, i.e., that

δ is distributed according to P,

then it is possible (at least in principle) to quantify the portion of the δ’s for

which x∗ does not perform satisfactorily.

In what follows, the probability that the solution x∗ does not perform

satisfactorily is denoted with V (x∗), which we call the risk of the

solution x∗.

The risk V (x∗) is a number between 0 and 1 and is an indicator of the extrinsic

quality of x∗. A good enough extrinsic quality can then be formalized by means

of a condition of the kind V (x∗) ≤ ǭ, where ǭ is a domain-dependent user-chosen

threshold.

It must be remarked that, from the decision-maker point of view, there is a

large gap between accepting that δ is distributed according to some probability P

and assuming that such P is known. In fact, when δ is the outcome of a complex
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generation mechanism, the availability of a satisfactory description of P is often

precluded. The theory of the scenario approach recognizes this gap and is built

upon the premise that

P exists but is not known to the decision-maker.

P manifests itself through:

observations δ(1), . . . , δ(N), which are modeled as independent draws

from P (according to a standard terminology, observations are inde-

pendent and identically distributed, “i.i.d.”).

While this i.i.d. assumption is limiting (relaxing this assumption is at present

an open and thrilling research endeavor), it is worth remarking that many ap-

plications can be cast within, or drawn back to, this i.i.d. set-up. For example,

stock prices at equispaced time intervals are definitely not independent; however,

logarithmic return increments are independent according to the Black-Scholes

model, Black & Scholes (1973) (the reader is referred to the box “How to get

i.i.d. scenarios in practice” for more general strategies to recast a problem into

an i.i.d. framework).

Draws δ(1), . . . , δ(N) are first-hand knowledge on the problem and the sce-

nario approach provides a well-principled framework to estimate V (x∗) from the

data. The estimate remains correct even when any partial or insecure knowledge

on P that has been used at the time the decision problem was formulated turns

out to be incorrect (the reader should trace this requirement back to point 2

at the end of the previous Section 2.3). Moreover, the theory is grounded on

finite-sample results that are rigorously valid for any sample size (the reader

is referred to the box “Asymptotic results in the era of data: the tantalizing

horizon” for a discussion on the value of finite-sample results).

How to get i.i.d. scenarios in practice.

In many problems, scenarios are naturally i.i.d.; this is the case for exam-

ple in all problems where data are draws from a population, with myriad
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applications in machine learning, prediction and classification. Otherwise,

various techniques can be used to draw the problem back to the i.i.d.

set-up. Here, two families of strategies of wide applicability to recast non-

independent data into an independent sample are briefly touched upon.

• Prediction-based strategies: Sometimes, at least a rough predic-

tor for a forthcoming observation is available (e.g., the Weather Bu-

reau provides us with weather predictions). Then, any observation at

time t can be decomposed into a prediction part, based on the best of

our knowledge until time t, and a prediction error. Often, prediction

errors at different time instants are only lightly correlated and the

sequence of the prediction errors can, at least in first approximation,

be treated as an independent sequence.

• Segmentation: The states visited by a Markov Chain do not form

an independent sequence, but an observed trajectory can be seg-

mented into independent episodes by exploiting the visit of a recur-

rent state, restart events after entering an absorbing state, etc., see,

e.g., Vidyasagar (2014).

Instead, even when the assumption that data are identically distributed

is not overall realistic, still it is often an acceptable approximation over

relatively short time windows, or after suitable domain-dependent prepro-

cessing such as the removal of seasonal trends.

Asymptotic results in the era of data: the tantalizing horizon.

Traditionally, statistics has been dominated by asymptotic results. The

usage of these results in practice always introduces approximations and

is acceptable only when the number of data points is large compared to

the dimension of the solution that is being tuned on the data set. The

present era where data are ubiquitous and largely available may seem to

have lessened the need for finite-sample results and have favored the usage
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of asymptotics. However, this evaluation turns out to be incorrect. The

reason lies in the fact that in our present times the greater availability

of data fares hand in hand with the increasing scale of the problems. As

problems become larger-scale, they require solutions of higher dimension

to be satisfactorily resolved so that, as new data become available, the

decision maker is tantalized to resort to more articulated and complex

solutions sets. This results in a sort of receding horizon that jeopardizes

the use of asymptotic statistics.

2.5. The operation of the scenario approach illustrated on a simple example

This section illustrates, and complements, various aspects touched upon in

previous sections of this article. It is meant to provide the reader with a more

transparent understanding of the operation of the method before delving into

the more technically-oriented presentation of Section 3.

Suppose that the severity of a disease can be quantified by a real number y,

and yet an accurate assessment of y requires a medical test that is too invasive

to be applied on a vast scale. On the other hand, a simpler inspection delivers

a number u that carries information on y and

our aim is to construct an interval predictor that associates to a

given value of u a range of values for y.

To do so, we follow a workflow in line with Figure 1.

Leveraging prior knowledge

We start by collecting the opinions of some experts. Most of them express

the educated guess that y should increase linearly with u, while a few of them,

with a reputation of being contrarians, are more doubtful and say that they

could even expect a negative correlation between u and y for values of u that

are above average. None of the experts expects that the dispersion of the values

of y changes significantly with u. Moving from this latter observation,
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we set out to construct an interval predictor that maps u into in-

tervals I(u) = [ϕ(u) − h
2 , ϕ(u) +

h
2 ] of fixed width h, where both

the function f(·) and the width parameter h have to be suitably

designed based on further assessments of the problem.

Next we decide to trust the first group of scientists and take ϕ(u) = a+ b ·u,

a linear function of u with a and b tunable parameters.

Owing to these choices, we are only left to select three parameters, a, b and

h, which form the decision variable x = (a, b, h).

The quality criteria

The indicator of the intrinsic quality of an interval predictor I(u) is the width

h: the smaller h the more accurate the prediction. While pursuing this intrinsic

quality, we also have to keep control on the extrinsic quality, represented by

the reliability of the predictor: we must ensure that the portion of patients for

which y ∈ I(u) is large enough. More formally, letting V (x) = P{y /∈ I(u)},

where P is the probability according to which patients (corresponding to pairs

(u, y)) distribute, we would like that V (x∗) ≤ ǭ for a suitably small ǭ.

The scenario approach: let the data speak

Suppose that 100 patients are independently drawn from P and tested (with

both the invasive and the simpler test), and the corresponding 100 scenarios

δ(i) = (u(i), y(i)), i = 1, . . . , 100, are at our disposal. Based on these scenarios,

we choose (a∗, b∗, h∗) by the following rule.

RULE: the parameters a∗, b∗ and h∗ are those that yield the interval

predictor with minimum width h subject to the condition that y(i) ∈

I(u(i)), i = 1, . . . , 100.

Figure 2 gives the result generated by the RULE using the data that are
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Figure 2: A sample of 100 scenarios: each scenario is a data point in the (u, y) space. The
function ϕ(u) = a∗+ b∗ ·u is represented by the dashed line. For each value of u the predicted

interval is I(u) = [ϕ(u)− h∗

2
, ϕ(u) + h∗

2
].

shown in the same picture.

Assessing the quality of the solution

The intrinsic quality can be assessed from the value of h∗ as soon as the predic-

tor is constructed. In the outcome shown in Figure 2, h∗ turned out to be only

moderately satisfactory (and indeed in this toy example it is even visually clear

that the interval predictor includes large portions of empty space).

While h∗ is an observable quantity, V (x∗) cannot be directly computed be-

cause it depends on probability P, which is not known.

An evaluation of V (x∗) can however be performed by using the scenario

theory and, to understand the type of results the scenario theory offers, in the

next points we first analyze what has been observed in a campaign of simulated

examples where P was artificially manufactured, and hence it was known.
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The distribution of V (x∗)

Simulation campaign #1. Our first simulation campaign consists of repeated

constructions of the predictor according to the RULE, with different sets of

data.

• In M = 1000 repetitions, we generated a data set made up of N = 100

observations, (δ(1), . . . , δ(100)) according to the same distribution that was

used to generate the data points in Figure 2;

• for each one of the 1000 data sets, we constructed a predictor by computing

x∗ = (a∗, b∗, h∗) according to the RULE;

• for each x∗, we computed V (x∗) (note that we can compute the exact

value of V (x∗) because we are running an artificial example where we

know the distribution according to which the pairs (u, y) are generated;

this would be impossible if data were real data generated from an unknown

distribution).

The histogram of the 1000 values of V (x∗) is given in Figure 3. The true

distribution of V (x∗) computed analytically is represented by the dashed line

in the same figure (the histogram tends to this distribution as M → ∞).

Let us consider the quality threshold ǭ = 0.11. In our 1000 simulations,

the condition V (x∗) < ǭ was always satisfied. By an analytical computation,

we found that P
100{(δ(1), . . . , δ(100)) : V (x∗) > ǭ} = 7.73 · 10−4 (note that the

distribution of (δ(1), . . . , δ(100)) is P100 because scenarios are i.i.d. draws). Since

7.73 ·10−4 is a small number, it is not surprising that this event did not happen

in our 1000 experiments.

The knowledge of the value 7.73 · 10−4 can be used to make statements like

the following one:

if we run an experiment and build a predictor based on 100 scenar-

ios, the resulting predictor will have a risk smaller than 11% with

confidence 1− 7.73 · 10−4.
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Figure 3: Histogram of M = 1000 values of V (x∗). The distribution of V (x∗), to which the
histogram tends when M → ∞, is represented by the dashed line.

A natural question now is how this story changes for a different data gener-

ation mechanism, that is, for a different P.

Simulation campaign #2. We made a second simulation campaign as before

but, this time, we replaced the probability distribution of (u, y) with a new

one: u is uniform over [0, 1] and the distribution of y given u is uniform over

[0.9u, 0.9u+ 0.1]. Unlike the distribution in campaign #1, this distribution fits

very well our linear a priori belief leading to a small value of h∗ (see Figure 4).

The histogram of V (x∗) for this second simulation campaign is shown in Figure

5, together with the exact distribution of V (x∗).

Surprisingly, the true distribution is the same as that for campaign #1. This

is a symptom of a general fact: any distribution of (u, y) with a density leads

exactly to the same distribution of V (x∗). More on the invariant distribution of

V (x∗) will be provided in the next technical Section 3, however, we anticipate

that it is a Beta distribution with expected value equal to 3
N+1 . Interestingly,

the number 3 at the numerator coincides with the number of optimization vari-
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Figure 4: An interval predictor obtained in the second simulation campaign.

Figure 5: Histogram of M = 1000 values of V (x∗) for another distribution of (u, y). The true
distribution of V (x∗), to which the histogram tends when M → ∞, is given by the dashed
line and it is exactly the same as that in Figure 3.
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ables (a, b, h). This is not a fortuitous circumstance: should we use for example

a predictor that has 4 optimization variables (a, b, c, h), V (x∗) would distribute

like a Beta with expected value equal to 4
N+1 . In this case, the probability of

the event V (x∗) > 0.11 would increase to 3.4 · 10−3.

The separation principle

The above simulation campaigns have revealed a fundamental, and unexpected,

property of the RULE: the distribution of V (x∗) remains the same irrespective

of the actual mechanism by which data are generated. As a consequence, we

can trust our judgment on V (x∗) despite the possible incorrectness of the pri-

ors which were used in the formulation of our optimization problem. This is a

manifestation of the so-called “separation principle”.

Going back to our example, in the result in Figure 2 using the prior that

u and y are linearly correlated led to a poor result in terms of the width of

the prediction interval (which might suggest that our trust in the majority of

the experts was misplaced). Nonetheless, the result that V (x∗) ≤ 0.11 holds

with high confidence remains intact. Next, we may want to give a chance to the

minority opinion and move to consider a quadratic function ϕ(u) = a+b·u+c·u2

so as to incorporate a possible negative correlation for high values of u. By using

again the RULE, extended to the additional parameter c, we found the much

thinner interval predictor in Figure 6. In this latter case, the confidence in the

result that V (x∗) ≤ 0.11 is 1 − 3.4 · 10−3 (just slightly lower than before as a

consequence of having used one more optimization variable).

From the simple example to more general problems

Many real life problems differ from the above simple example in some important

respects:

• situations are typically described by large dimensional objects and not
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Figure 6: An interval predictor obtained by fitting a function ϕ(u) = a+ b · u+ c · u2.

just (u, y) pairs;

• the impact of prior knowledge cannot always be described as clearly as

in this simple example where there is a single decision variable, h, that

accounts for the intrinsic quality of the solution, while prior beliefs affect

the shape of the predictor through the other decision variables (a, b, . . .);

• the distribution of V (x∗) is not an invariant as the distribution of data

changes.

These differences do not prevent the theory of the scenario approach to be appli-

cable. The last point is of particular interest and we anticipate that the reason

why the distribution of V (x∗) was invariant in the example of this section was

that the complexity (as defined in the next technical section) of the solution was

the same irrespective of the sample of scenarios at hand. Importantly, when

this circumstance does not turn out to be correct, universal statements certi-

fying V (x∗) independently of the data generation mechanism are still possible.

Moreover, the scenario theory is much more general than what the previous
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example has shown and includes a rich framework for the evaluation of the risk

based on the complexity of the solution when this is not constant, as well as

schemes allowing for the removal of some data points with the aim to strike a

suitable balance between reliability (extrinsic quality) and accuracy (intrinsic

quality).

3. The Theory of the Scenario Approach

To better illustrate the nature of the results, we start from a special but no-

table set-up (which encompasses as a special case the simple example of Section

2.5) and we will then move gradually towards more general frameworks.

3.1. Convex worst-case optimization

Let x ∈ R
d be the decision vector. To make precise the somehow informal

description of Section 2.3, let us introduce two real functions c(x) and f(x, δ)

as follows:

• c(x) is a cost function (to be minimized), which is used as a quantifier of

the intrinsic quality of x;

• f(x, δ) models the “regret” for employing x when δ occurs. Condition

f(x, δ) ≤ 0 indicates a satisfactory performance and, correspondingly,

V (x) = P{δ : f(x, δ) > 0} is the indicator of the extrinsic quality of x.

In this section, we assume that X is a convex set; c(x) is convex; and f(x, δ)

is convex in x for all δ (while the dependence of f on δ is arbitrary).1

The decision process aims at finding the decision with optimal intrinsic qual-

ity (i.e., minimum cost c(x)) among all the candidate decisions that perform

“well” for all the observed scenarios. In formal terms, this leads to the following

1As we shall see in Section 3.3, recent developments of the scenario approach remove these
convexity assumptions.
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mathematical program:

min
x∈X⊆Rd

c(x)

subject to: f(x, δ(i)) ≤ 0, i = 1, . . . , N. (1)

As is clear, one primary goal behind using (1) is that of safeguarding against

the worst, which motivates enforcing the constraints f(x, δ(i)) ≤ 0 for all the

scenarios. Although suitable to various contexts, this conservative standpoint

may result in a poor value of c(x∗), in which case one may want to resort to

more flexible alternatives as discussed in Section 3.4.

In the remainder of this section we will assume that, for any N , the feasibility

domain of the scenario program (1) has an interior point and that the solution

to (1) is unique.2.

Before proceeding with the description of the theoretical results, it is worth

remarking that the example of Section 2.5 fits into this framework of convex

worst-case optimisation if (a, b, h) is identified with x, and (u, y) with δ. In fact,

building a predictor by applying the RULE in Section 2.5 amounts to solving (1)

with the cost function c(x) = h and the regret function f(x, δ) = |a+b·u−y|−h;

note also that, in that context, the risk V (x∗) (x∗ is the solution to problem

(1)) is the probability with which a new observation (u, y) falls outside the pre-

diction model of width h∗.3

The scenario theory for convex worst-case optimization

2The uniqueness assumption is introduced to simplify the presentation; if the solution is not
unique, a suitable tie-break rule can be introduced, Campi & Garatti (2008); other variations
on the theme are possible, see e.g. Calafiore (2010b); Nasir et al. (2016) for contributions
about unfeasible problems

3Interval Predictor Models as in Figures 2, 4 and 6 are obtained from convex worst-case
optimisation problems that have a special structure for which specific theoretical results are
available, see in particular Carè et al. (2015) and Carè et al. (2014). For other contributions
on Interval Predictor Models, the reader is also referred to Campi et al. (2009a); Calafiore
(2010a); Patelli et al. (2013); Crespo et al. (2016); Lacerda et al. (2018); Garatti et al. (2019);
Wang et al. (2020).
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In Campi & Garatti (2008), it is proven that the cumulative distribution func-

tion of V (x∗) is (first-order) stochastically dominated by a Beta distribution

with parameters (d,N − d+ 1). In mathematical terms,

P
N{V (x∗) ≤ v} ≥ 1−

d−1
∑

i=0

(

N

i

)

vi(1− v)N−i. (2)

Importantly, this result is universal, in the sense that it is valid irrespective of

P. An upper-bound ǭ for V (x∗) can then be obtained from (2) as follows. Let β

be a small number, say β = 10−5, and let ǭ be the value that solves the equation

d−1
∑

i=0

(

N

i

)

vi(1− v)N−i = β, 4 (3)

then V (x∗) ≤ ǭ holds with high probability 1−β. Since the Beta distribution is

unimodal and thin tailed, ǭ gets close to its mean (which is d
N+1 ) for a relatively

small number of observations. Thus, roughly, ǭ depends on the ratio between d

and N .

In applications, ǭ can be used as a relevant information to compare decisions

coming from various decision spaces. For instance, in the example of Section

2.5 solving (3) for β = 1
1000 gives ǭ = 0.108 when d = 3 (linear predictor)

and ǭ = 0.125 when d = 4 (predictor centered around a quadratic function) and

these values complement the information coming from the intrinsic quality. The

reader is referred to the box “Dealing with multiple comparisons by the union

bound” for a more detailed discussion on the guarantees that can be attached

to a selection made out of competing alternatives.

As already mentioned, in the example of Section 2.5 the distribution of V (x∗)

4This equation can be easily solved by bisection. The MATLAB function betainv(1-β,d,N−

d+1) solves it and returns directly the value of ǭ. An approximate formula that can be useful
for a first pencil-and-paper estimation of ǭ is

ǭ ≤
1

N

(

d− 1 + ln
1

β
+

√

2(d − 1) ln
1

β

)

,

see Alamo et al. (2015).

27



is exactly a Beta distribution with parameters (d,N −d+1), irrespective of the

data generation mechanism, provided P has density. Thus, in that case, the

inequality “≤” in (2) holds in fact with “=”, i.e.,

P
N{V (x∗) ≤ v} = 1−

d−1
∑

i=0

(

N

i

)

vi(1 − v)N−i (4)

(the density of this distribution when N = 100 and d = 3 is the dashed curve

in Figures 3 and 5). The existence of problems for which the inequality in (2)

is an equality (examples can be found for any d and N) shows that (2) cannot

be improved unless it is specialized to subclasses of problems.

The notion of complexity

In the proof of (2) developed in Campi & Garatti (2008), a key role is played

by the notion of complexity.

The complexity of x∗ is an integer s∗ ∈ {0, 1, . . . , N} such that x∗ can

be obtained by solving a problem similar to (1) that only contains

a subsample of scenarios from δ(1), . . . , δ(N) whose cardinality is s∗

while no subsamples of scenarios with cardinality lower than s∗ exist

that give the same solution x∗.5

For an example, we can go back to Figure 2 and note that the same solution

(a∗, b∗, h∗) would have been obtained with just 3 points, those that lie on the

boundary of the prediction model. Instead, any subsample of scenarios that

does not include these 3 points leads to a different solution, so that s∗ = 3 in

this case.

The following is a key fact in convex worst-case scenario theory.

Key Fact. For any problem in the form of (1), it holds that s∗ ≤ d.

5It is worth noticing that, in the convex set-up, the scenarios that suffice to reconstruct x∗

are always a subset of the active constraints, which makes the evaluation of s∗ computationally
easy.
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Looking at the proof of (2) in Campi & Garatti (2008), one sees that (2)

deeply relies on the above Key Fact. Also, the fact that the predictor in Figure

2 turns out to have a complexity s∗ that is equal to d (= 3) is not by chance:

in Garatti et al. (2019), one can find a proof that this problem belongs to the

class of fully-supported problems, for which s∗ = d happens with probability

1.6 In Campi & Garatti (2008), it is proven that relation (4) holds for all fully-

supported problems and that all other problems are dominated by the fully-

supported class in the sense that (2) holds.

Dealing with multiple comparisons by the union bound.

In the prediction problem of Section 2.5, we know that V (x∗) > ǭ happens

with probability β = 1
1000 , where ǭ = 0.108 for d = 3 and ǭ = 0.125 for

d = 4. If the selection between d = 3 and d = 4 is made a posteriori (after

seeing the prediction interval), we might be advised by an “evil oracle”

that indicates a “bad” choice (for which V (x∗) > ǭ) whenever one exists.

However, no matter how evil the oracle is, the probability that a data set

verifies the condition V (x∗) > ǭ for one of the two choices cannot be larger

than 1
1000 + 1

1000 = 2
1000 . Therefore, the certificate “V (x∗) ≤ ǭ” is valid

with probability at least 1 − 2 · 10−3. This argument can be extended

to the case where one chooses a solution from M possibilities leading to

the conclusion that P
N{V (x∗) ≤ ǭ} ≥ 1 − Mβ (where, similarly to the

above example with d = 3 or d = 4, the value of ǭ depends on the choice

made). Since small values of β (such as 10−7 or 10−8) can be enforced

6A problem is fully-supported if s∗ = d with probability 1 and it is non-degenerate; a
problem is non-degenerate if, for any N , there is with probability 1 a unique choice of indexes
i1, i2, . . . , ik (with i1 < i2 < . . . < ik) from 1, 2, . . . , N such that: (a) problem (1) where

only the constraints f(x, δ(ij )) ≤ 0, j = 1, . . . , k, are enforced gives the same solution x∗

as with all constraints; (b) if k > 0, discarding further indexes from i1, i2, . . . , ik changes
the solution (irreducibility of the set of indexes). (Note that for k = s∗ one certainly finds
one such set of indexes, the definition of non-degeneracy requires that this set is unique
within all subsets of indexes whose cardinality k is equal to s∗ or larger.) Within convex
optimization, degeneracy requires an anomalous accumulation of active constraints to happen
and assuming non-degeneracy is therefore reasonable in many applications. Note for the
reader: the definition of fully-supportedness given in the scenario literature is sometimes
formulated differently from, but is equivalent to, that given here.
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with reasonable sample sizes, the value of Mβ can be easily kept small

even when large set of choices are tested out.

3.2. The wait-and-judge perspective

The results in Section 3.1 stand on the observation that the complexity s∗ is

upper bounded by d (see “Key Fact”) and culminate in result (2), which is tight

for fully-supported problems, that is, (4) holds. On the other hand, (2) is only

an upper bound for non fully-supported problems and the reader is referred to

Figure 7 for the distribution of V (x∗) in two non fully-supported examples.
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Figure 7: [This figure is taken from Garatti & Campi (2019)] The probability density function
of the Beta distribution, as given by the right-hand side of (2) with N = 1000 and d = 400,
is represented in blue continuous line. For a fully-supported problem, V (x∗) distributes as
the Beta distribution. The dotted and dashed lines show the distribution of V (x∗) for two
examples described in Garatti & Campi (2019): while these densities are dominated by the
Beta distribution in the sense of (2), using the Beta distribution to estimate V (x∗) produces
conservative evaluations in these two cases.

The conservatism inherent in the Beta result normally worsens in large scale

problems with a high dimensional optimization domain, which is a situation

that is encountered with increasing frequency in modern applications.7

7In some cases, one can use a Beta in dimension d̃ < d (where d is the actual dimension of
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In what follows, we present results for convex worst-case optimization that

establish a connection between V (x∗) and s∗ (rather than a connection between

V (x∗) and the upper bound d on s∗). The use of these results is that one waits

until the solution is determined and V (x∗) is then judged from the complexity

s∗ that has been measured at the solution (see also the box “Compression and

risk: a solid marriage”).

Compression and risk: a solid marriage.

The complexity s∗ is small when the sample δ(1), . . . , δ(N) can be slimmed

down to a small subsample that is sufficient to reconstruct the solution

x∗. Therefore, the complexity is related to the compressibility of the sam-

ple δ(1), . . . , δ(N). The idea that the compressibility of the information

carried by the data is related to generalization properties is not new in

machine learning, see e.g. Rissanen (1978); Littlestone & Warmuth (1986);

Rissanen (1986); Ming & Vitányi (1990); Barron et al. (1998); Graepel et al.

(2005); Moran & Yehudayoff (2016); Hanneke & Kontorovich (2019). What

is new in scenario optimization is the vast applicability of this concept be-

yond a machine learning context and that compressibility leads to extraor-

dinarily powerful results as in (2), (4). Recent research efforts have been

geared towards extending these results to general schemes beyond convex

optimization, see e.g. Campi (2010); Margellos et al. (2015); Esfahani et al.

(2015); Grammatico et al. (2016); Carè et al. (2017); Ramponi & Campi

(2018); Carè et al. (2018); Campi et al. (2018); Margellos et al. (2018);

Paccagnan & Campi (2019). Part of these results are outlined in Sections

3.3, 3.4 and 3.5.

We start by illustrating a simulation example; later, we present the general

theory. This section contains results from Campi & Garatti (2018); Garatti & Campi

the problem), in which case d̃ is called the “effective dimension”. Regularization mechanisms
have been used to achieve this result in Campi & Carè (2013), while Schildbach et al. (2013);
Zhang et al. (2015) present studies in specific contexts in which d̃ is derived from using the
concept of “support rank”.
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(2019, 2021), to which the reader is referred for the proofs and more details.

Example: orthant that includes random points

A population of points p in a 400-dimensional Euclidean space R
400 is dis-

tributed according to a probability P. We want to choose an x ∈ R
400 such

that
∑400

j=1 xj (subscript j denotes component) is minimized (intrinsic criterion)

while relation pj − xj ≤ 0, j = 1, . . . , 400, holds with high probability (in other

words, the negative orthant with vertex in x contains most of the probabilistic

mass of P – extrinsic criterion).

Worst-case scenario solution

We collected N = 1000 points p(1), . . . , p(1000) (these are the scenarios), and

solved the scenario program:

min
x∈R400

400
∑

j=1

xj

subject to: p
(i)
j − xj ≤ 0, j = 1, . . . , 400 i = 1, . . . , 1000, (5)

which is a convex scenario program in the form of (1) with d = 400 and

N = 1000, c(x) =
∑400

j=1 xj and f(x, δ) = maxj=1,...,400(pj − xj) (where, clearly,

δ = p).

Results of two simulation campaigns

Two simulation campaigns were performed for two different probability distri-

butions PA and PB. For each simulation campaign, we repeated 100 000 times

the sampling of N = 1000 scenarios, and computed the corresponding x∗ and

s∗. Every time, we also computed V (x∗) by exploiting the privilege (due to the

fact that we are in a simulated set-up) of knowing the real distribution of the
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points.

Figure 8: Empirical probability distribution of (s∗, V (x∗)) when points are generated by PA.
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Figure 9: Empirical probability distribution of (s∗, V (x∗)) when points are generated by PB.

Figure 8 shows the empirical bivariate distribution of the values (k, v) taken

by (s∗, V (x∗)) over the 100 000 trials in the case of probability PA. The reader

can notice that a blue slanted region is also represented in the (k, v) plane.

This region is precisely introduced in the theoretical developments presented

below, and, for the time being, we just notice that the distribution of (s∗, V (x∗))

appears to be supported on this slanted region. A similar picture for PB is given

in Figure 9. In this second case, the slanted region is exactly as in the first case

and it happens again that the support of the distribution of (s∗, V (x∗)) belongs

to it.

We next make overt that the marginal distributions of V (x∗) under PA and

PB are those represented in Figure 7 as dashed yellow and dotted red lines re-

spectively. As already discussed in Section 3.2, the Beta distribution of Figure 7

only sets an upper limit to these marginals. The present simulations in Figures

8 and 9 suggest that more information can be gained from the lens of a bivariate

point of view where one variable, the risk, is estimated from the other, the com-
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plexity (which is a measurable quantity). We anticipate that this result is true

in high generality and that the precision in the evaluation of V (x∗) that can

be achieved thanks to this new lens is comparable to the precision that comes

in fully-supported problems from using relation (4), indeed a remarkable finding.

A general result

As is clear from our simulations, the distribution of the pair (s∗, V (x∗)) can

take various forms. However, in the two examples that we have just seen this

distribution was confined in the slanted region which, for easy reference, is again

displayed in Figure 10.
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Figure 10: The slanted blue area is the region to which at least 1 − β = 99.9% of the
probabilistic mass of (s∗, V (x∗)) belongs for any non-degenerate convex scenario problem (as
defined in Footnote 6) in the form of (1) when d = 400 and N = 1000. Moreover, for any
problem in the form of (1) (degenerate or non-degenerate) at least 1 − β = 99.9% of the
probabilistic mass of (s∗, V (x∗)) lies below the upper boundary of the blue area. For the sake
of comparison, in the figure a red interval is represented which is a 99.9% confidence interval
of the risk for a fully-supported problem in dimension 200 (the interval has been obtained by
using the Beta distribution).

The rule by which the boundaries of the slanted region are constructed is as

follows.
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Rule to compute the boundaries of the slanted region

Assume N > d. Given a confidence parameter β ∈ (0, 1), for any

k = 0, . . . , d consider the polynomial equation in the t variable

(

N

k

)

tN−k −
β

2N

N−1
∑

i=k

(

i

k

)

ti−k −
β

6N

4N
∑

i=N+1

(

i

k

)

ti−k = 0. (6)

For any k = 0, 1, . . . , d, equation (6) has exactly two solutions in

[0,+∞), which we denote with t(k) and t̄(k) (t(k) ≤ t̄(k)). Define

ǫ(k) := max{0, 1− t̄(k)} and ǭ(k) := 1− t(k), k = 0, . . . , d. Function

ǫ(k) is the lower boundary of the slanted region and ǭ(k) its upper

boundary.

A MATLAB code for computing the values of ǫ(k) and ǭ(k) according to

this rule is available in the Appendix A of Garatti & Campi (2019).

We now have the following result (it is assumed that the solution x∗ exists

and is unique, possibly after the use of a suitable tie-break rule).

Wait-and-judge result for convex scenario optimization. For any non-

degenerate problem (as defined in Footnote 6) in the form of (1), it holds that

P
N{ǫ(s∗) ≤ V (x∗) ≤ ǭ(s∗)} ≥ 1− β; (7)

moreover, for any problem in the form of (1), it holds that

P
N{V (x∗) ≤ ǭ(s∗)} ≥ 1− β. (8)

Hence, referring to Figure 10, in non-degenerate problems the distribution

of (s∗, V (x∗)) is confined to the blue slanted region (but a small portion whose

probability is no more than β) whereas in degenerate problems the distribution

of (s∗, V (x∗)) can expand below the lower boundary of the slanted region, while

the upper boundary, that sets a limit to V (x∗), is always valid (this latter result

is proven in the recent paper Garatti & Campi (2021)).
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For the use of this result, the crucial fact to remark is that the quantity

on the horizontal axis (complexity) is measurable, while the vertical axis corre-

sponds to the value of the risk V (x∗) that, in real life, is hidden to the decision-

maker and can only be estimated. Thus, from Figure 10, one obtains a rule to

bound V (x∗) based on the observable s∗ and the result in (7) provides sample-

dependent bounds of the kind ǫ(s∗) ≤ V (x∗) ≤ ǭ(s∗) (or just V (x∗) ≤ ǭ(s∗),

in degenerate cases thanks to (8)) that are valid with high probability 1 − β.

The interval [ǫ(k), ǭ(k)] for a given k is comparable to the one that can be gen-

erated when working with a fully-supported problem in dimension d = k. One

of these intervals with d = 200, is represented in Figure 10. The quantitative

similarity between [ǫ(k), ǭ(k)] and the intervals in the fully-supported case is a

quite remarkable fact and reveals the value of the information conveyed by the

complexity. From results in Campi & Garatti (2018); Garatti & Campi (2019),

one also sees that β impacts on ǫ(k) and ǭ(k) logarithmically so that taking very

small values of β enlarges only marginally the interval [ǫ(k), ǭ(k)]; moreover, for

any k,

ǭ(k)− ǫ(k) → 0

as N → ∞, i.e., the interval gets more and more informative as the number of

data increases, see Campi & Garatti (2020).

3.3. Non-convex worst-case optimization

When the assumption of convexity is dropped, the bound s∗ ≤ d loses va-

lidity. For example, let x = (x1, x2) ∈ [−1, 1]2, c(x) = x2, δ ∈ [−1, 1] and

f(x, δ) = −|x1 − δ| − x2. An instance of the corresponding scenario program is

pictured in Figure 11, and the reader can easily check that any subsample of the

6 observed scenarios yields a solution x∗ different from the one obtained with all

the scenarios, so that s∗ = 6 > 2 = d in this case. Moreover, the same example

reveals that a constraint need not be active to be necessary to reconstruct the

solution in the non-convex case. This circumstance suggests that degeneracy
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becomes quite a common circumstance (the reader may want to think of the

case in which one more constraint is added in Figure 11 that “shields” the global

minimum that opens up after removing one of the 6 constraints in that figure

and observe that this generates a degenerate situation).
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Figure 11: An instance of a non-convex scenario program where d = 2 but s∗ = 6.

Remarkably, the results in the recent paper Garatti & Campi (2021) do not

require that s∗ ≤ d and are applicable even in the degenerate case, leading to

the following result (x∗ is assumed to exist and to be unique, possibly after the

use of a suitable tie-break rule).

Wait-and-judge result for non-convex scenario optimization. Use equa-

tion (6) to compute ǭ(k) for k = 0, 1, . . . , N (note that the range of k is here

extended till N).8 Then, for any problem in the form of (1), where c(x) and

f(x, δ) need not be convex in x and X is any set, it holds that

P
N{V (x∗) ≤ ǭ(s∗)} ≥ 1− β. (9)

8The construction for k = 0, 1, . . . , N − 1 is exactly as indicated in the “Rule to compute
the boundaries of the slanted region”; for k = N , however, equation (6) has only one solution
t̄(N), and one defines t(N) = 0, so that ǭ(N) = 1.
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The curve ǭ(k) for N = 1000 and β = 0.1% is displayed in Figure 12. Note

that, for k in the range [0, 400], ǭ(k) is exactly as in Figure 10.
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Figure 12: The blue area is the region to which at least 1−β = 99.9% of the probabilistic mass
of (s∗, V (x∗)) belongs for any non-convex scenario problem in the form of (1) when d = 400
and N = 1000.

3.4. Tuning of the extrinsic quality

In (1), all scenario constraints are rigidly enforced, so expressing an attitude

to safeguard against the worst. This, however, can lead to conservative designs:

the presence of just one ill scenario can forbid a whole set of candidate solutions

and confine the choice to solutions with poor intrinsic quality c(x) (see, e.g.,

Shapiro et al. (2009); Ramponi (2018); Assif et al. (2020)). On the other hand,

in many applications, c(x) and V (x) are seen as conflicting objectives and in this

section we focus on a class of decision schemes that allow the decision-maker to

compromise between intrinsic and extrinsic quality.

According to the interpretation of f(x, δ) provided in Section 3.1, a violation

of the condition f(x, δ(i)) ≤ 0 yields a regret. The first scheme relaxes the rigid

enforcement of constraints by minimizing a weighted combination of the cost

c(x) and the sum of the (positive) regrets
∑N

i=1

[

f(x, δ(i))
]+

([·]+ is positive

part, that is, it returns its argument when it is positive and zero otherwise).
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This yields the following optimization program where the weight α assigned to

the regrets is a tunable trade-off parameter:9

min
x∈X⊆R

d,
ξi≥0,i=1,...,N

c(x) + α

N
∑

i=1

ξi

subject to: f(x, δ(i)) ≤ ξi i = 1, . . . , N. (10)

Let (x∗
α, ξ

∗
i,α) be the solution to (10) (assumed to exist and to be unique, possibly

after the use of a suitable tie-break rule). In this context, a suitable generaliza-

tion of the concept of complexity allows one to estimate the extrinsic quality of

x∗
α (i.e., quantity V (x∗

α) = P{δ : f(x∗
α, δ) > 0}).10 The generalized complexity

s∗α is the cardinality of a subsample S of scenarios from δ(1), . . . , δ(N) defined

as follows: S contains all the violated scenarios (i.e., the scenarios for which

f(x∗
α, δ

(i)) > 0)11 plus a minimum subsample of the remaining scenarios such

that the x-component of the solution to (10) with only S in place remains equal

to x∗
α. Then, exactly the same result as in “Wait-and-judge result for non-convex

optimization” holds (without requiring any convexity assumption) with the only

warning that x∗ and s∗ must be replaced in the present context by x∗
α and s∗α.

12

The value of α (which ranges from α = 0, corresponding to minimizing c(x) with

no concern for the observed scenarios, to α = ∞, corresponding to the worst-

case approach) influences s∗α (and, thereby, the bounds on V (x∗
α)) and c(x∗

α)

and represents a tuning knob in the hands of the decision-maker. By plotting

c(x∗
α1
), c(x∗

α2
), . . . against the bounds ǭ(s∗α1

), ǭ(s∗α2
), . . . for V (x∗

α1
), V (x∗

α2
), . . .,

9The set of all the optimal decisions x∗

α obtained from (10) as a function of α is known as

the Pareto frontier of the multi-objective problem of minimizing c(x) and
∑N

i=1

[

f(x, δ(i))
]+

.
10The need for a generalization of the concept of complexity can be recognized by noting

that problem (10) is not directly in the form of (1), in particular the number of optimization
variables x, ξi increases with N .

11The subsample S is with repetitions, i.e., if two scenarios δ(i) and δ(j) for which
f(x∗

α, δ
(i)) > 0 and f(x∗

α, δ
(j)) > 0 turn out to be coincident (δ(i) = δ(j)), then they both

appear in S.
12Also in this context a concept of non-degeneracy can be applied leading to the stronger

result that V (x∗

α) is both upper and lower bounded, see Garatti & Campi (2019).
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one obtains the so-called cost-risk plot (see Garatti & Campi (2019) for an ex-

ample) by which the user can perform a selection of a suitable value for α.

Program (10) is not the only scheme to tune the intrinsic vs. the extrinsic

quality. Alternatively, one can discard some of the constraints from the worst-

case program (1) and the reader is referred to the papers Campi & Garatti

(2011); Garatti & Campi (2013); Picallo & Dörfler (2019); Romao et al. (2020)

for studies in this direction.

3.5. A general theory for decision-making

The scenario theory carries over to an abstract decision-making framework

that encompasses all previous set-ups and many others as special cases. Here,

we briefly summarize the results in Garatti & Campi (2019, 2021), to which the

reader is referred for details.

For anyN = 0, 1, 2, . . . letMN be a map from any set of scenarios δ(1), . . . , δ(N)

to a decision z∗ ∈ Z, where Z is a generic decision set. The maps M0,M1, . . .

describe the rule according to which decisions are made based on observations

in an integrated data-driven set-up as in Figure 1. In order to evaluate whether

the extrinsic criterion is met, there should be a rule to decide whether a decision

z performs “well” when a situation δ occurs. This is expressed in mathematical

terms by saying that, to any situation δ, there is associated a set Zδ ⊆ Z which

models the set of the decisions that perform well for δ. The risk of a decision

z ∈ Z is then defined as V (z) := P{δ : z /∈ Zδ}.

No limiting assumptions on the domain of δ and on the map between δ

and Zδ are necessary. The freedom of the decision-maker in choosing the maps

M0,M1, . . . is also vast as long as the following three properties are satisfied:

• Permutation invariance:

for every N , every δ(1), . . . , δ(N) and every permutation (i1, . . . , iN) of

(1, . . . , N) it holds that

MN(δ(1), . . . , δ(N)) = MN (δ(i1), . . . , δ(iN )).
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• Stability in the case of confirmation:

for every integers N and n, if δ(1), . . . , δ(N), δ(N+1), . . . , δ(N+n) are such

that

∀i ∈ {1, . . . , n} : MN (δ(1), . . . , δ(N)) ∈ Zδ(N+i) ,

then

MN (δ(1), . . . , δ(N)) = MN+n(δ
(1), . . . , δ(N+n)).

• Responsiveness to contradiction:

for every integers N and n, if δ(1), . . . , δ(N), δ(N+1), . . . , δ(N+n) are such

that

∃i ∈ {1, . . . , n} : MN (δ(1), . . . , δ(N)) /∈ Zδ(N+i) ,

then

MN+n(δ
(1), . . . , δ(N+n)) 6= MN (δ(1), . . . , δ(N)).

Note that the properties of MN as written above do not imply that z∗ ∈ Zδ(i) ,

i = 1, . . . , N .

Complexity and degeneracy

Given the scenarios δ(1), . . . , δ(N), the complexity s∗ of the decision z∗ = MN(δ(1), . . . , δ(N))

is the cardinality of a minimum subsample S (with repetitions) of scenarios

from δ(1), . . . , δ(N) such that Ms∗(S) = z∗. The decision-scheme is said to

be non-degenerate if, for every N , there is with probability 1 a unique choice

of indexes i1, i2, . . . , ik (with i1 < i2 < . . . < ik) from 1, 2, . . . , N such that

Mk(δ
(i1), . . . , δ(ik)) = MN(δ(1), . . . , δ(N)) while, for k > 0, discarding further

indexes from i1, i2, . . . , ik changes the solution.

Guarantees

Similarly to “Wait-and-judge result for non-convex optimization” in Section
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3.3, using (6) one computes ǭ(k) for k = 0, 1, . . . , N . Then, equation (9) applies

where x∗ is replaced in the present context by z∗, while s∗ and V (z∗) have

to be interpreted according to the definitions of this section. Moreover, under

non-degeneracy, one can also compute ǫ(k), k = 0, 1, . . . , N , by extending till

k = N the rule for ǫ(k), k = 0, 1, . . . , d, in “Wait-and-judge result for convex

optimization” in Section 3.2 and equation (7) holds where again x∗ has to be

replaced by z∗, while s∗ and V (z∗) have to be interpreted according to the def-

initions of this section.

A bit of history

The “responsiveness to contradiction” property was a key property in important

generalization results in the history of statistical learning, Littlestone & Warmuth

(1986). This property, alone, is sufficient to derive various results within the sce-

nario theory that are applicable to a wide range of decision schemes, Campi et al.

(2018). On the other hand, the “stability in the case of confirmation” property

plays a special role in obtaining tight results (and, under non-degeneracy, small

ranges [ǫ(k), ǭ(k)]) and, when satisfied, confers considerable added value to the

scenario approach. Being naturally satisfied in optimization problems, this prop-

erty can be recognized as one of the main “secrets” behind the success of the

scenario approach in many applications.
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Carè, A., Campi, M. C., & Garatti, S. (2017). A coverage theory for least

squares. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 79 , 1367–1389.
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