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Abstract Scenario optimization is a broad methodology to perform optimization
based on empirical knowledge. One collects previous cases, called “scenarios”, for
the set-up in which optimization is being performed, and makes a decision that
is optimal for the cases that have been collected. For convex optimization, a solid
generalization theory has been developed that provides guarantees of performance,
and constraint satisfaction, of the scenario solution. In this paper, we open a new
direction of investigation: the risk that a performance is not achieved, or that con-
straints are violated, is studied jointly with the complexity (as precisely defined in
the paper) of the solution. It is shown that the joint probability distribution of risk
and complexity is concentrated in such a way that the complexity carries fundamen-
tal information to tightly judge the risk. This result is obtained without availing of
extra knowledge on the underlying optimization problem than that carried by the
scenarios, in particular, no extra knowledge on the distribution by which scenarios
are generated is assumed, so that the result is broadly applicable. This deep-seated
result unveils a fundamental and general structure of data-based optimization and
suggests practical approaches for risk assessment.

1 Introduction: scenario programs and the generalization issue

The scenario approach is a framework to perform optimization in uncertain envi-
ronments where one has access to a record of past cases for the set-up where the
present decision has to be made. The prototype convex scenario program is written
as

min
x∈X

cTx

subject to: x ∈
⋂

i=1,...,N

Xδi , (1)
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where x ∈ Rd is a vector of optimization variables and c is a constant vector of
weights; X ⊆ Rd is a convex set and Xδi are instances of a family {Xδ} of con-
vex constraints parameterized by δ. Parameter δ is modeled as a random variable
defined over a probability space (∆,F ,P), and δi, i = 1, . . . , N , is an independent
random sample of δ values.1 The interpretation of (1) is that the δi’s are obser-
vations (or “scenarios”) of an uncertain phenomenon (e.g. demand in the energy
market or temperature in a given environment), and one makes a decision which
is optimal according to the cost function cTx (e.g. minimize energy production or
minimize the ranges for the forecast of monthly temperatures) while also satisfying
the constraints that come from previous cases δi’s (e.g. energy balance for a record
of demands or including in the ranges the temperatures that have been recorded in
the past). See [5,45,21] for broader presentations of data-based optimization.

Program (1) is convex, and this sets its fundamental structure: the optimization
domain, X , as well as the constraints, x ∈ Xδi , are convex and the cost function is
linear. Note that linearity of the cost function is not a limiting assumption within
a convex set-up because any program with a convex, but nonlinear, cost function
can be re-written as one with a linear cost function by an epigraphic reformulation,
[6]. Convexity makes solving program (1) computationally tractable even in high
dimensions and in the presence of many optimization variables.

Albeit clearly not all problems are convex, the set-up of (1) is truly vast and en-
compasses problems that come from a variety of fields that range from finance, [38,
39,40,27], to control, [15,25,50,41,26], from prediction, [10,18,19,20], to machine
learning, [9,32]. A first common situation is the minimization of a loss function
`(v, δ) that depends on one’s choice v and on an uncertain variable δ.2 Given a
sample of scenarios, solving the worst-case program

min
v

max
i=1,...,N

`(v, δi)

is equivalent to (1) after one introduces a new variable z ∈ R, called the “perfor-
mance variable”, and set x = (v, z), cTx = [0 · · · 0 1]x = z, and Xδi = {(v, z) : z ≥
`(v, δi)}. In this context, enforcing the constraints x ∈ Xδi , i = 1, . . . , N , leads to
worst-case optimization over the scenarios; in other words, one makes a choice such
that no other selection of the optimization variable v would lead to a better value
simultaneously over all the scenario-based loss functions `(v, δi). In finance, this
set-up is known as empirical Value at Risk (VaR), [24]. More generally, constraints
x ∈ Xδi in (1) reflect needs of various type that go from saturation limits in control
applications to obstacle avoidance in mobile robotics, from resource availability in
management problems to bandwidth capacity in telecommunications.

1.1 Generalization theory

In recent years, a broad stream of literature has dealt with the generalization prop-
erties of sample-based solutions in stochastic programming, [31,33,2,28,29,3,38,43,
34]. In this section, we specifically refer to the properties of the solution obtained
by solving (1). In (1), one fundamental feature is that the scenarios are observations

1 No limitations are imposed on ∆ like e.g. that ∆ is a subset of a Eucledian space or of a
vector space, nor is ∆ endowed with a metric or a topology. ∆ is just a generic set that forms a
probability space together with F and P. Hence, ideas like “the sample δi, i = 1, . . . , N , covers,
or fills up, ∆” are void of any meaning. This generality in the definition of ∆ is important for the
widespread applicability of the theory.

2 Assume that function `(v, δ) is convex in v for any given value of δ, while its dependence on
δ is arbitrary.
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so that the generalization features of the solution cannot rely on testing it against
new scenarios drawn from an available distribution of uncertainty.

To describe the existing generalization results, start by introducing the notation
x∗N for the solution to program (1),3 and the following definition of risk.

Definition 1 (risk) The risk of a given x ∈ X is defined as

V (x) = P{δ ∈ ∆ : x /∈ Xδ}.

Hence, V (x) is the probability with which constraints are not satisfied by x. Note
that V (·) is a deterministic function from X to [0, 1]. The risk of x∗N is the random
variable V (x∗N ) obtained by computing V (·) corresponding to the solution x∗N of
(1). Note that V (x∗N ) is stochastic through the dependence of x∗N on δ1, . . . , δN . ut

When the constraints stem from an uncertain loss function `(v, δ) as described
above, V (x) = V (v, z) quantifies the probability that in a new case the loss associ-
ated with v exceeds z, so that the risk of (v∗N , z

∗
N ) is the probability that applying

the choice v∗N results in a loss greater than z∗N . More generally, V (x∗N ) is a measure
of the probability that some undesired event or condition occurs when the solution
x∗N is applied. If V (x∗N ) ≤ ε, then the risk for the solution to violate the random
constraints x ∈ Xδ is no more than ε. According to the stochastic programming
terminology, this is expressed that x∗N is a chance-constrained feasible point at level
ε, [22,43].

Together with the optimal cost value cTx∗N , V (x∗N ) represents the fundamental
quantity to evaluate the level of satisfaction one has in the solution x∗N . Interest-
ingly, the optimal cost value cTx∗N becomes available to the user after the solution
x∗N has been computed. In contrast, the value of V (x∗N ) depends on the distribution
of δ, which in real applications is normally unknown or only imprecisely known:
hence, V (x∗N ) cannot be computed even after the optimization process has been
completed. The problem of estimating V (x∗N ) has attracted much attention over
the past 10 years, and deep results have been established which (in a sense that we
shall discuss in detail later) affirm that the distribution of V (x∗N ) can be bounded
even when no knowledge on the distribution of δ is a priori available. This problem
has been first studied in [8,12] and then extended in various directions including
constraint violation, [13], regularization, [11], non-convex optimization, [1,26,23],
multi-stage problems, [46], and risks at various empirical levels, [17]. Moreover, pa-
pers [16,37] introduce algorithms to attain a solution carrying reduced risks. See
also [36,29,4,30,35,51] for studies on the connection between scenario optimization
and chance-constrained problems. All these results have put the scenario approach
on solid quantitative grounds, a fact that has had a role in the widespread accep-
tance of this methodology in various application domains. In the next subsection,
we specifically describe the mathematical results that are relevant to place the con-
tribution of this paper in context, and then introduce the new perspective of this
paper.

1.2 Previous results and the approach of this paper

In the paper [12], the fundamental relation

PN{V (x∗N ) ≤ ε} ≥ 1−
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i (2)

3 Throughout, we assume that a solution exists. If more than one solution exists, a solution is
singled out by means of a convex tie-break rule according to the approach of [7].
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has been established. Equation (2) bounds the cumulative probability distribution
of V (x∗N ), the bound is universally valid for any scenario program in the form of
(1) and, importantly, it is not improvable since it is exact (i.e. PN{V (x∗N ) ≤ ε} =

1 −
∑d−1
i=0

(
N
i

)
εi(1 − ε)N−i) for a class of problems, the so-called “fully-supported”

problems. The right-hand side of (2) is the cumulative distribution of a Beta vari-
able with (d,N − d + 1) degrees of freedom. Figure 1 displays in dashed blue line
the corresponding density when d = 400 and N = 1000 (respectively, number of
optimization variables and number of scenarios). In the same figure one can also see
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Fig. 1 Beta probability density for d = 400, N = 1000 (dashed blue) and probability density of
V (x∗N ) for two non fully-supported scenario programs (solid brown and red).

in solid brown and red lines the density of V (x∗N ) for two scenario programs that are
not fully-supported (these two programs are presented in detail in the simulation
Section 3). For these problems, equation (2) holds with strict inequality.

In the later paper [14], it was observed that optimization problems encountered
in applications are often not fully-supported, [48,47,42,49]. Moreover, by counting
the number of support constraints for the case at hand, one knows that the problem
is not fully-supported, and, hence, can be unwilling to use the theory of [12] that is
tight for fully-supported problems only. Based on this observation, a new approach
was introduced in [14] where one waits before forming an evaluation on V (x∗N ), and
the evaluation is based on the number of support constraints that have been found
in the scenario program at hand.

The present paper builds on the approach initiated in [14] and we herein fully
develop a new theory for the study of the joint distribution of the risk and the
complexity in scenario programs. This theory reveals a fundamental correlation
structure that links the risk to the complexity and has important applicative impli-
cations. We start by making formal the concept of support constraint, taken from
[7], and that of complexity.

Definition 2 (support constraint and complexity) A constraint x ∈ Xδi of
the scenario program (1) is called a support constraint if its removal changes the
solution x∗N . The complexity of the scenario program (1) is the number of its support
constraints. ut

In paper [7] it is shown that the number of support constraints of (1) is always
less than or equal to d, the number of optimization variables, and, in case of fully-
supported problems, (1) has d support constraints with probability 1, whenever
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N ≥ d.

Support constraints are always active constraints. The converse is not true in gen-
eral, and an active constraint need not be a support constraint as it can be easily
understood by considering a situation where, after finding the solution, one more
active constraint is added: removing this constraint does not change the solution
and this constraint is not of support. In extreme cases, situations can occur where no
support constraints exist. When all the active constraints are support constraints,
which is the typical case, keeping the support constraints and removing all the
other constraints leaves the solution unchanged. Following [14], we call this situa-
tion non-degenerate. Non-degeneracy rules out situations in which the constraints
accumulate anomalously with nonzero probability.

Definition 3 (non-degeneracy) Program (1) is called non-degenerate if its solu-
tion coincides with probability 1 (with respect to the sample δi, i = 1, . . . , N) with
the solution that is obtained after eliminating all the constraints that are not of
support. ut

If (1) is non-degenerate, we can reconstruct the solution x∗N by only using the sup-
port constraints. The number of support constraints is therefore a measure of the
complexity of representation of x∗N in terms of a scenario program that has a re-
duced number of constraints. For short, we at times speak of “complexity of the
solution” to mean the complexity of the program that has generated the solution.

Let s∗N be the complexity of program (1) and (s∗N , V (x∗N )) be the bi-variate variable
of complexity and risk. Since δi, i = 1, . . . , N , are independent random elements
from (∆,F ,P), the N -dimensional sample (δ1, δ2, . . . , δN ) is a random element from
(∆N ,FN ,PN ) (note that the probability is a product probability due to indepen-
dence of δi, i = 1, . . . , N), and so (s∗N , V (x∗N )) is a bi-variate random variable over
(∆N ,FN ,PN ). In this paper we study the distribution of (s∗N , V (x∗N )), that is, the
joint distribution of complexity and risk, and Theorem 1 establishes a deep-seated
result that this distribution is concentrated so that the risk V (x∗N ) can be esti-
mated from the complexity s∗N . Figure 2 displays a 99% region for the distribution
of (s∗N , V (x∗N )) when d = 800 and N = 2000. Given the value of s∗N , which can be
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Fig. 2 99% region for the distribution of (s∗N , V (x∗N )) when d = 800 and N = 2000. Horizontal
axis: value of s∗N ; vertical axis: value of V (x∗N ).
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easily computed4, V (x∗N ) is estimated to be in the line segment that is obtained
by cutting the 99% region with the vertical line that originates from the value of
s∗N . Importantly, the result in Theorem 1 holds independently of the probability
P so that it can be used without requiring any additional information on how δ
distributes. In simple words, this means that the complexity carries universal infor-
mation for the judgement of the risk, and this fact makes the theory of this paper
broadly usable in applications where the underlying distribution that generates the
δ’s is not or only partly known.

Before closing this opening section we feel advisable to make explicit two facts
that are consequences of what has been discussed so far.
(i) First we would like to compare, and better contrast, the result from [12] with that
of this paper. Figure 3 displays the distribution of (s∗N , V (x∗N )) for an example dis-
cussed in Section 3, along with the corresponding marginal distribution of V (x∗N )
(brown line in the figure). The marginal has been already displayed in Figure 1.
Similarly, Figure 4 shows the distribution of (s∗N , V (x∗N )) for another example also
discussed in Section 3, and the marginal of V (x∗N ) is that displayed in red in Figure
1. The two bi-variate distributions are pretty different, but both are concentrated

Fig. 3 Distribution of (s∗N , V (x∗N )) for another example discussed in Section 3.

in the 99% region of Figure 2. The to marginals for V (x∗N ) have a dissimilar shape.
As a result, if one studies the distribution of the sole V (x∗N ), as is done in paper
[12], then the problem arises that various behaviors are encountered depending on
the scenario program at hand, so that tight results valid for all cases are not possi-
ble. On the other hand, adopting the broader point of view of studying jointly s∗N
and V (x∗N ) sheds light on the structure of dependence between these two variables
and the value of the hidden variable V (x∗N ) can be estimated from the value of the
easy-to-measure variable s∗N independently of all other elements that characterize
each single problem.
(ii) Strictly connected with point (i), a second fact is worth mentioning. For a given
problem, one can investigate a number of specificities beyond complexity, which

4 To this purpose, it is enough to eliminate one by one the constraints and recompute the
solution, the scenario constraints are those whose elimination determines a change in the solution.
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Fig. 4 Distribution of (s∗N , V (x∗N )) for an example discussed in Section 3.

includes the shape of the constraints, its location in the optimization domain etc.
and possibly use prior knowledge to refine the judgement of the risk. When doing
so one has to keep in mind that the margin of improvement in the judgment of the
risk is limited to only reducing the remaining spread in the value of V (x∗N ) after
having evaluated s∗N which already contains much of the information to judge the
value of V (x∗N ).

1.3 Structure of the rest of paper

In the next section, we introduce the main result, Theorem 1, and discuss its use.
An example is provided in Section 3 that aims to illustrate the theory. In Section 4,
we broaden our point of view even beyond optimization and show that the theory of
this paper carries over to more general decision problems. We show in particular that
this allows one to deal with partial violation of the scenario constraints, which leads
to a more flexible scheme for optimization where one can trade risk for performance.
All the proofs are presented in Section 5.

2 Main result and its practical use

Studying the program (1) that is based on N scenarios requires considering infinitely
many other scenario programs that have the same structure as (1) with, however,
an arbitrary number of scenarios:

min
x∈X

cTx

subject to: x ∈
⋂

i=1,...,m

Xδi , (3)

where m = 0, 1, 2, . . . is any integer and it is meant that the “subject to” line is
dropped when m = 0, and δi, i = 1, . . . ,m, is an independent sample from (∆,F ,P).
Hence, notice that (1) is the same as (3) when m = N .
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Assumption 1 (existence and uniqueness) For every m and for every sample
δi, i = 1, . . . ,m, program (3) admits solution. If more than one solution exists, one
solution is singled out by the application of a convex tie-break rule, which breaks the
tie by minimizing an additional convex function t1(x), and, possibly, other convex
functions t2(x), t3(x), . . . if the tie still occurs. This is the same approach as in
[7]. The so-obtained solution is indicated with x∗m and it will be simply called the
“solution” of (3). ut

An example of a tie-break function is the norm of x, t1(x) = ‖x‖. Another example
is the lexicographic rule, which consists in minimizing the components of x in suc-
cession, i.e. t1(x) = x1, t2(x) = x2, . . . .

The definition of support constraint in Definition 2 extends in an obvious man-
ner to (3): a constraint x ∈ Xδi of (3) is called a support constraint if its removal
changes the solution x∗m. We introduce the following non-degeneracy assumption.

Assumption 2 (non-degeneracy) For every m, the solution x∗m to program (3)
coincides with probability 1 (with respect to the sample δi, i = 1, . . . ,m) with the
solution that is obtained after eliminating all the constraints that are not of support.

ut

Assumption 2 is a mild condition that excludes that the constraints accumulate
anomalously at the solution. More comments on this assumption is provided in Sec-
tion 4.1 where it is shown that this assumption can be relaxed in a more abstract
set-up.

The following theorem is our main result in this first part of the paper, it char-
acterizes the support of the distribution of the bi-variate variable (s∗N , V (x∗N )),
where s∗N is the complexity of the solution (the number of support constraints) and
V (x∗N ) is its risk (the probability that a new constraint is not satisfied).

Theorem 1 Consider program (1) with N > d. Given a “confidence parameter”
β ∈ (0, 1), for any k = 0, 1, . . . , d consider the polynomial equation in the t variable(

N

k

)
tN−k − β

2N

N−1∑
i=k

(
i

k

)
ti−k − β

6N

4N∑
i=N+1

(
i

k

)
ti−k = 0. (4)

This equation has exactly two solutions in [0,+∞), which we denote with t(k) and
t(k) (t(k) ≤ t(k)) . Let ε(k) := max{0, 1 − t(k)} and ε(k) := 1 − t(k). Under
Assumptions 1 and 2, it holds that

PN{ε(s∗N ) ≤ V (x∗N ) ≤ ε(s∗N )} ≥ 1− β. (5)

ut

Proof: The proof is given in Section 5.

The theorem assigns lower and upper bounds on V (x∗N ) that hold with high confi-
dence 1−β. The bounds depend on the random variable s∗N , the number of support
constraints, which can be assessed by the user after computing the solution x∗N . A
more explicit way of writing (5) is

PN
(

d⋃
k=0

{s∗N = k and ε(k) ≤ V (x∗N ) ≤ ε(k)}

)
≥ 1− β. (6)

Hence, a user who computes the number of support constraints and claims the risk
to be between the limits ε(k) and ε(k) (where k is the assessed number of support
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Fig. 5 Profile of curves ε(k) and ε(k). (a) N = 500, d = 200; (b) N = 1000, d = 400; (c) N = 2000,
d = 800; (d) N = 4000, d = 1600. The three curves are for β = 0.1, β = 0.01; β = 0.001.

constraints) incurs a probability 1 − β of making a wrong statement. This result
holds true for all convex scenario programs in the form of (1). Figure 5 shows the
confidence regions obtained from Theorem 1 for various values of N and d. For
practical values of N and d, the two functions ε(·) and ε(·) are close enough to
each other so that, after evaluating s∗N , tight and useful information about V (x∗N )
is obtained. As N grows, the two functions get progressively closer and eventually
converge to one another.

2.1 Distribution-free has little cost

As we have seen, Theorem 1 applies independently of the distribution P, that is, it
is a distribution-free result. Hence, it can be used without knowledge of P, a fact
that plays an important role in applications. In this section we show that there are
problems with a completely specified probability P where the bi-variate variable
(s∗N , V (x∗N )) has a distribution whose support is not too dissimilar to what is found
by applying Theorem 1. Hence, the price paid for a distribution-free result is small
relatively to knowing that one of these problems is being run. The interpretation is
that the number of support constraints carries the fundamental information to judge
the risk, and the residual uncertainty in the risk after that the number of support
constraints has been seen (two samples of scenarios that lead to the same number
of support constraints may carry a different risk) is only marginally increased by
requiring that the result can be applied with no knowledge on P.

To put the above discussion on solid grounds, consider a fully-supported problem
in dimension k, [12]. For such a problem, the number of support constraints is k
with probability 1. It is not hard to embed this problem into another one that has
d optimization variables while the problem continues to have k support constraints
with probability 1, so that s∗N = k with probability 1. If we now apply Theorem 1
in [12] to this problem we see that the distribution of V (x∗N ) is a Beta(k,N −k+ 1)

distribution, i.e., PN{V (x∗N ) ≤ ε} = 1−
∑k−1
i=0

(
N
i

)
εi(1− ε)N−i. Now let α(k) be the
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Fig. 6 Profile of curves ε(k), ε(k) and α(k), α(k), N = 2000, d = 800, β = 0.001.

value such that 1 −
∑k−1
i=0

(
N
i

)
α(k)i(1 − α(k))N−i = β (i.e., α(k) is the threshold

value that clips the left tail of the Beta distribution with probability β) and, sim-
ilarly, let α(k) be the threshold value that clips the right tail with probability β,

i.e., 1−
∑k−1
i=0

(
N
i

)
α(k)i(1− α(k))N−i = 1− β. In order for equation (6) to be true

for this problem it is necessary that

ε(k) ≤ α(k) and α(k) ≤ ε(k), (7)

for, otherwise, just one side on the inequality ε(k) ≤ V (x∗N ) ≤ ε(k) would be
violated with a probability that exceeds β. Figure 6 profiles ε(k) and ε(k) against
α(k) and α(k). The fact that the curves are close to each other shows that the price
payed for a distribution free result is marginal as compared to only considering
fully-supported problems.

2.2 Computational aspects

The discussion in the previous section suggests an easy way to compute function
t(·) and t(·) in Theorem 1. The two relations in (7) give respectively t(k) ≥ 1−α(k)
and t(k) ≤ 1 − α(k). Hence, the two solutions of equation (4) must lie in the two
bold intervals in Figure 7. To determine t(k), a bisection procedure can be run

Fig. 7 Intervals to which ε(k) and ε(k) belong.

starting from the extreme points 0 and 1− α(k), while, to determine t(k), one first
checks if polynomial (4) has the same sign in 1 − α(k) and 1 (in which case one
comes to know that t(k) > 1 so that ε(k) in Theorem 1 has value 0) and, when
the signs in 1− α(k) and 1 are different, a bisection procedure with initial extreme
points 1−α(k) and 1 is run to find t(k). A MATLAB code implementing these two
bisection procedures is provided in Appendix A. The reader can cut and paste into
the MATLAB workspace the code for a handy implementation.
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3 An example

1000 points pi are independently extracted in R400 according to a probability density
P and presented to us. We want to translate the negative orthant in R400 (i.e., the
domain where all components are negative or zero) so that the translated orthant
contains all the given points while the translation shift is minimized. This amounts
to solve the scenario program

min
x∈R400

400∑
j=1

xj

subject to: xj ≥ pi,j , i = 1, . . . , N, (8)

where j denotes component.

Program (8) was solved for two different probability densities P. In the first case,

Fig. 8 Distribution of (s∗N , V (x∗N )) for the the first probability density, N = 1000, d = 400. The
blue region is the 99.9% region given by Theorem 1.

Fig. 9 Distribution of (s∗N , V (x∗N )) for the second probability density, N = 1000, d = 400. The
blue region is the 99.9% region given by Theorem 1.

the points were given by relation pi = qi + ci where the qi’s were independently
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drawn from a 400-dimensional Gaussian distribution with unitary variance, G(0, I),
and the ci’s were vectors with 400 equal components taken from [0, 5] with uniform
distribution. In the second case, the pi’s were again given by pi = qi + ci with the
qi’s generated as in the previous case but the ci’s were this time vectors of equal
components with value 0 with probability 99% and a value taken from a Gaus-
sian distribution G(0, 4) with probability 1%. Program (8) was solved 100000 times
for both probability densities and each time the values of s∗1000 and V (x∗1000) were
recorded. This gave the empirical distributions reported in Figures 8 and 9,5 where
the region given by Theorem 1 for β = 0.001 is also displayed.

For the second probability density, the simulation set-up as above was then re-
peated for N = 2000 and N = 4000, while all other quantities were kept the same
as for N = 1000. The results are on display in Figures 10 and 11. One can notice

Fig. 10 Distribution of (s∗N , V (x∗N )) for the second probability density, N = 2000, d = 400. The
blue region is the 99.9% region given by Theorem 1.

Fig. 11 Distribution of (s∗N , V (x∗N )) for the second probability density, N = 4000, d = 400. The
blue region is the 99.9% region given by Theorem 1.

5 These are the same empirical distributions as in Figures 3 and 4 (in Figures 3 and 4 only some
values of k were displayed).
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the evolution of the empirical distribution, which, for any given k, tends to move
towards lower values of the risk while the random spreads also progressively reduce.

4 A more abstract theory

The theory developed in previous sections can be carried over to a more abstract
set-up which incorporates only the salient features that play a role in the deriva-
tion of the results. Such an abstract theory is presented here, followed by two ap-
plication examples that illustrate its usefulness: in Section 4.1, the upper bound
V (x∗N ) ≤ ε(s∗N ) is studied under a more general condition than the non-degeneracy
Assumption 2, while Section 4.2 deals with the possibility of relaxing the constraints
so as to improve the value of the cost function.

In analogy with Section 2, for any given m = 0, 1, 2, . . . start by considering an
independent sample δi, i = 1, . . . ,m, from (∆,F ,P). The optimization domain X
of Section 2 is here substituted by a generic set Z, called the “decision set”.6. To
any δ there is associated a set Zδ ⊆ Z. In Section 2, x∗m was generated by program
(3), that is, program (3) there defined maps (one for any m) from ∆m to X . Here,
we consider generic maps

Mm : ∆m → Z, m = 0, 1, 2, . . .

and write z∗m = Mm(δ1, . . . , δm). The interpretation is that z∗m is a decision made
according to a rule Mm applied to a set of scenarios δ1, . . . , δm. Throughout this
Section 4 the word “decision” refers to z∗m, and the symbol “z” will only be used in
relation to a decision.

The following assumption applies to Mm.

Assumption 3 (properties on Mm)
(i) Mm is permutation-invariant: Mm(δ1, . . . , δm) = Mm(δi1 , . . . , δim) if δi1 , . . . , δim
is a permutation of δ1, . . . , δm;
(ii) given m values δi, i = 1, . . . ,m, augment them with n more values δm+1, . . . , δm+n,
where m and n are generic integers. If the decision z∗m obtained from the first m
values of δ is in the sets associated with the extra n values of δ, that is, z∗m ∈ Zδi
for i = m+ 1, . . . ,m+ n, then it holds that Mm+n(δ1, . . . , δm+n) = z∗m, that is, the
decision obtained after adding the new δ’s remains unchanged.
(iii) instead, if δi, i = 1, . . . ,m, is augmented with values δm+1, . . . , δm+n such that
one or more δi, i = m + 1, . . . ,m + n, has associated a set which does not contain
z∗m, that is, z∗m /∈ Zδi for one or more i = m + 1, . . . ,m + n, then it holds that
Mm+n(δ1, . . . , δm+n) 6= z∗m. ut

Notice that Assumption 3 does not require that z∗m is in Zδi , i = 1, . . . ,m.

The notion of risk of a z ∈ Z is an obvious extension from Section 2: V (z) =
P{δ ∈ ∆ : z /∈ Zδ}. Also the notion of support constraint carries over from Section
2, but we here prefer to speak of “support element” since, as we have remarked
above, z∗m is not forced to be in Zδi , i = 1, . . . ,m, that is the Zδi ’s do not act here
as constraints: Zδi is called a support element if Mm−1(δ1, . . . , δi−1, δi+1, . . . , δm) 6=
Mm(δ1, . . . , δm). The number of support elements is denoted by s̃∗m. Finally, the
assumption of non-degeneracy remains essentially unchanged.

6 Z can be any set, without any Euclidean structure. We change notation from X to Z because
in some applications Z is the same as X augmented with extra elements; concrete examples of
decision sets are provided in Sections 4.1 and 4.2
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Assumption 4 (non-degeneracy of Mm)
For every m, the decision z∗m = Mm(δ1, . . . , δm) coincides with probability 1 (with
respect to the sample δi, i = 1, . . . ,m) with the decision that is obtained after elim-
inating all the elements that are not of support. ut

The fact that the set-up of this section encompasses as a particular case that of
Section 2 is shown in Section 5.2.

We are now ready to state the main theorem of this section, Theorem 2. The essence
of this theorem is that the thesis of Theorem 1 carries over to the present more ab-
stract set-up. One difference with Theorem 1 is that in Theorem 2 the number of
support elements is not a-priori upper bounded (as it was the number of support
constraints in Theorem 1, which could not exceed d), so that we here have to also
account for the case k = N (number of support elements equal to the number of
scenarios), which leads to considering equation (10).

Theorem 2 Given a “confidence parameter” β ∈ (0, 1), for any k = 0, 1, . . . , N−1
consider the polynomial equation in the t variable(

N

k

)
tN−k − β

2N

N−1∑
i=k

(
i

k

)
ti−k − β

6N

4N∑
i=N+1

(
i

k

)
ti−k = 0, (9)

and, for k = N , consider the polynomial equation

1− β

6N

4N∑
i=N+1

(
i

k

)
ti−N = 0. (10)

For any k = 0, 1, . . . , N − 1 equation (9) has exactly two solutions in [0,+∞),
which we denote with t(k) and t(k) (t(k) ≤ t(k)). Instead, equation (10) has only
one solution in [0,+∞), which we denote with t(N), while we define t(N) = 0. Let
ε(k) := max{0, 1− t(k)} and ε(k) := 1− t(k), k = 0, 1, . . . , N . Under Assumptions
3 and 4, it holds that

PN{ε(s̃∗N ) ≤ V (z∗N ) ≤ ε(s̃∗N )} ≥ 1− β. (11)

ut

Proof: The proof is given in Section 5.

Theorem 2 allows one to evaluate the risk for decision problems of various type.
We next apply this Theorem 2 to two specific setups.

4.1 Application no.1: A theorem for the scenario program (1) with a relaxed
degeneracy condition

In Section 2, Theorem 1 was proven under the non-degeneracy Assumption 2. We
here show that a statement on the generalization properties of (1) can be obtained
under the milder condition that the instance at hand of (1) is non-degenerate, a
condition that can be directly verified on the program that is being run as opposed
to Assumption 2 which pertains to all choices of scenario samples.

Given a sample δi, i = 1, . . . ,m, the scenario program (3) defines a solutions x∗m,
possibly after a tie-break rule is applied as indicated in Assumption 1. Here, we
introduce a decision z∗m generated by (3) which consists of x∗m augmented with the
values of the δi’s that correspond to active constraints of (3), where each of these
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δi’s is equipped with an integer number that indicates how many times the same
value of δi has been seen (that is, if δ1 is active, δ3 takes on the same value as δ1,
and no other δi takes on the same value, then the value of δ1 is included in the
decision, followed by the number 2). Hence, formally,

z∗m =
(
x∗m,

{
(δ;n) where δ = δi for some i ∈ {1, . . . ,m} such that Xδi is active

for problem (3), and n = number of times with which the same value δ

appears in (3)
})
,

and Z is the set of all z = (x, {(δ(j);n(j)), j = 1, . . . , p}) for some integer p ≥ 0,
where x ∈ X , δ(j) ∈ ∆, n(j) ∈ N, j = 1, . . . , p. Given a δ, let Zδ = {z ∈ Z : x ∈
Xδ and Xδ is non-active at x}. Hence, V (z) is defined as the probability of the set of
δ’s such that either x /∈ Xδ or Xδ is active at x. Clearly, V (x∗m) ≤ V (z∗m) as the latter
also includes active constraints. An easy inspection shows that Assumption 3 holds
with these definitions. Moreover, the support elements are here those associated
to the δi’s such that Xδi is active at x∗m and it follows immediately that the non-
degeneracy Assumption 4 also holds. Hence, Theorem 2 can be applied to this
context to obtain a result on V (z∗N ). From this result we next show that a statement
on V (x∗N ) can be obtained. First, since V (x∗m) ≤ V (z∗m), we drop in the event
of equation (11) the left inequality and write PN{V (x∗N ) ≤ ε(s̃∗N )} ≥ 1 − β or,
equivalently, PN{V (x∗N ) > ε(s̃∗N )} ≤ β. Next, we want to express a judgement on
V (x∗N ) only when the active constraints coincide with the support constraints of
(1) (which implies that the instance at hand of (1) is non-degenerate). Note that
the validity of this condition is verified by inspecting program (1) for the sample δi,
i = 1, . . . , N , that is being used and this is very different from enforcing the non-
degeneracy Assumption 2 which refers to all possible extractions of m constraints.
When in the instance at hand of program (1) the active constraints coincide with
the support constraints, s̃∗N in Theorem 2 (number of active constraints) coincides
with s∗N in Theorem 1 (number of support constraints). Moreover, if N > d, then
we certainly have s̃∗N = s∗N ≤ d, so that the polynomial equation (10) in Theorem 2
can be dropped as it never happens that s̃∗N = N . We have obtained the following
corollary of Theorem 2.

Corollary 1 Consider program (1) with N > d. Given a “confidence parameter”
β ∈ (0, 1), for any k = 0, 1, . . . , d consider the polynomial equation in the t variable(

N

k

)
tN−k − β

2N

N−1∑
i=k

(
i

k

)
ti−k − β

6N

4N∑
i=N+1

(
i

k

)
ti−k = 0. (12)

This equation has exactly two solutions in [0,+∞), which we denote with t(k) and
t(k) (t(k) ≤ t(k)) . Let ε(k) := max{0, 1 − t(k)} and ε(k) := 1 − t(k). We say
that the instance at hand of program (1) satisfies the condition “A = S” if the
active constraints coincide with the support constraints (so that this instance is
non-degenerate). Under Assumptions 1, it holds that

PN{V (x∗N ) > ε(s∗N ) and “A = S” holds } ≤ β. (13)

ut

4.2 Application no.2: optimization with constraints relaxation

In this section, we consider scenario programs where, unlike (1), one is allowed to
violate constraints for the purpose of improving the cost value. We assume that
constraints violation has itself a cost and in the limit when this cost goes to infinity
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the original problem (1) is recovered.

Matters of convenience suggest that constraints are written in this section as f(x, δ) ≤
0, where f(x, δ) is a convex function in x for any given δ (referring back to the no-
tation in Section 1, we therefore have that Xδ = {x : f(x, δ) ≤ 0}). The reason for
this choice is that the value of the function f is used to express the “regret” for
violating a constraint: for a given δ, the regret at x is f(x, δ) and the steepness of
this function describes the marginal increase of regret when the solution is moved in
a given direction. In this set-up, we consider the following scenario program, which
generalizes (1):

min
x∈X

ξi≥0,i=1,...,N

cTx+ ρ

N∑
i=1

ξi

subject to: f(x, δi) ≤ ξi, i = 1, . . . , N, (14)

where, as before, δi, i = 1, . . . , N , is an independent random sample from ∆. Note
that (14) has d+N optimization variables, namely, x and ξ, i = 1, . . . , N . If ξi > 0,
the constraint f(x, δi) ≤ 0 is relaxed to f(x, δi) ≤ ξi and this generates the regret
ξi. Parameter ρ is used to set a suitable trade-off between the original cost function
and the cost generated by the regret for violating constraints. When ρ → ∞, one
goes back to the original program (1) where no constraint violation is allowed.

The following assumption is the equivalent of the existence and uniqueness As-
sumption 1 for the generalized set-up of this section.

Assumption 5 (existence and uniqueness) Consider programs as in (14) where
N is substituted with an index m = 0, 1, . . . and δi, i = 1, . . . ,m, is an independent
sample from (∆,F ,P). For every m and for every sample δi, i = 1, . . . ,m, these
programs admit solution. If for one of these programs more than one solution exists,
one solution is singled out by the application of a convex tie-break rule, which breaks
the tie by minimizing an additional convex function t1(x), and, possibly, other con-
vex functions t2(x), t3(x), . . . if the tie still occurs.7 ut

Moreover, we make the following assumption.

Assumption 6 For every x, P{δ : f(x, δ) = 0} = 0. ut

This is a non-accumulation assumption on functions f(x, δ), and, when constraints
f(x, δi) ≤ 0 are enforced in the scenario program as is done in (1), it implies the
non-degeneracy Assumption 2.

Let x∗m, ξ
∗
i,m, i = 1, . . . ,m, be the solution of (14) with m in place of N . The

abstract theory of Section 4 does not apply directly to x∗m, ξ
∗
i,m, i = 1, . . . ,m, and

we have first to define the concept of decision z∗m. This is x∗m augmented with the
values of the δi’s that correspond to constraints f(x, δi) ≤ 0 that are violated at the
solution (i.e. f(x∗m, δi) > 0), where each of these δi’s is equipped with an integer
number that indicates how many times the same value of δi has been seen. Formally,

z∗m =
(
x∗m,

{
(δ;n) where δ = δi for some i ∈ {1, . . . ,m} such that ξ∗i,m > 0, and

n = number of times with which the same value δ appears in (14) with m

in place of N
})
,

7 Note that only the tie with respect to x is broken by t1(x), t2(x), t3(x), . . . . On the other
hand, for a given x∗m the values of ξi, i = 1, . . . ,m, remain univocally determined at optimum by
relation ξ∗i,m = f(x∗m, δi), so that no tie on ξi, i = 1, . . . ,m, can persist after the tie on x is broken.
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and Z is the set of all z = (x, {(δ(j);n(j)), j = 1, . . . , p}) for some integer p ≥ 0,
where x ∈ X , δ(j) ∈ ∆, n(j) ∈ N, j = 1, . . . , p. We take as Zδ the set of z ∈ Z for
which f(x, δ) ≤ 0 and (δ(j);n(j)), j = 1, . . . , p, are arbitrary both in number (i.e.
p is any positive integer) and value. Correspondingly, V (z) = V (x, {(δ(j);n(j)), j =
1, . . . , p}) is defined as the probability of the set of δ’s such that x /∈ Xδ. Assumptions
3 and 4 are satisfied in this context, as we next show. Condition (i) in Assumption
3 is clearly true. To show (ii), argue as follows. If z∗m ∈ Zδi for i = m+1, . . . ,m+n,
then f(x∗m, δi) ≤ 0 for i = m + 1, . . . ,m + n. Hence, augmenting the solution of
(14) with m in place of N with ξi = 0 for i = m + 1, . . . ,m + n gives a feasible
point x∗m, ξi = ξ∗i,m, i = 1, . . . ,m, ξi = 0, i = m+ 1, . . . ,m+ n for (14) with m+ n
in place of N that attains the same value as the optimal value of (14) with m in
place of N . It is claimed that this is the optimal solution of (14) with m + n in
place of N . Indeed, if a better solution x̄, ξ̄i, i = 1, . . . ,m + n existed for (14) with
m + n in place of N , then x̄, ξ̄i, i = 1, . . . ,m would be superoptimal for (14) with
m in place of N since the dropped ξ̄i, i = m + 1, . . . ,m + n give a non-negative
contribution. To the optimal solution x∗m+n = x∗m, ξ∗i,m+n = ξ∗i,m, i = 1, . . . ,m,
ξ∗i,m+n = 0, i = m + 1, . . . ,m + n of (14) with m + n in place of N there corre-
sponds z∗m+n = (x∗m+n, {(δ;n), where δ = δi for some i ∈ {1, . . . ,m+ n} such that
ξ∗i,m+n > 0, and n = number of times with which the same value δ appears in (14)
with m + n in place of N}) = (x∗m, {(δ;n), where δ = δi for some i ∈ {1, . . . ,m}
such that ξ∗i,m > 0, and n = number of times with which the same value δ ap-
pears in (14) with m in place of N}), which is the same as z∗m, showing the validity
of (ii). Condition (iii) in Assumption 3 instead easily follows from the fact that if
z∗m /∈ Zδī for some ī ∈ {m+ 1, . . . ,m+ n}, then either x∗m+n has to move to a new
location where f(x, δī) ≤ 0 (and therefore z∗m+n 6= z∗m) or δī has to be added to
the solution z∗m to obtain z∗m+n (and, again z∗m+n 6= z∗m). Turn now to assess the
non-degeneracy Assumption 4. Consider program (14) with m in place of N and
eliminate a δi such that f(x∗m, δi) < 0. The decision associated with the remaining
m − 1 δi’s is the same decision as that associated with the original program (14)
with m in place of N because the constraint corresponding to the eliminated δi is
non-active. Hence, none of the δi such that f(x∗m, δi) < 0 is of support. We further
claim that all δi’s such that f(x∗m, δi) ≥ 0 are of support with probability 1. Elimi-
nate any one of them from the program (14) with m in place of N . If the eliminated
one is such that f(x∗m, δi) > 0, then the decision clearly changes, so that the δi
is of support. Suppose instead that the eliminated one is such that f(x∗m, δi) = 0
and, for the sake of contradiction, suppose also that the decision does not change.
It follows that x∗m is obtained by a program that does not contain δi and, due to
the independence of δ1, δ2, . . . , δm, it is easily seen that Assumption 6 implies that
f(x∗m, δi) = 0 only happens with probability 0. Hence, with probability 1 the δi’s
such that f(x∗m, δi) ≥ 0 are of support, and they give the original decision since the
simultaneous elimination of the other δi’s for which f(x∗m, δi) < 0 (non-active) does
not change the decision. This means that the problem is non-degenerate.

Since all conditions of the abstract theory are satisfied, Theorem 2 applies. In the
present context, V (z∗N ) = V (x∗N ) and s̃∗N = number of δi such that f(x∗N , δi) ≥ 0,
which gives us the following corollary of Theorem 2.

Corollary 2 Consider program (14) and let x∗N be the x component of its solution.
Given a “confidence parameter” β ∈ (0, 1), for any k = 0, 1, . . . , N − 1 consider the
polynomial equation in the t variable

(
N

k

)
tN−k − β

2N

N−1∑
i=k

(
i

k

)
ti−k − β

6N

4N∑
i=N+1

(
i

k

)
ti−k = 0, (15)
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and for k = N consider the polynomial equation

1− β

6N

4N∑
i=N+1

(
i

k

)
ti−N = 0. (16)

For any k = 0, 1, . . . , N − 1 equation (15) has exactly two solutions in [0,+∞),
which we denote with t(k) and t(k) (t(k) ≤ t(k)). Instead, equation (16) has only
one solution in [0,+∞), which we denote with t(N), while we define t(N) = 0. Let
ε(k) := max{0, 1− t(k)} and ε(k) := 1− t(k), k = 0, 1, . . . , N . Under Assumptions
5 and 6, it holds that

PN{ε(s̃∗N ) ≤ V (x∗N ) ≤ ε(s̃∗N )} ≥ 1− β. (17)

where s̃∗N = number of δi such that f(x∗N , δi) ≥ 0. ut

Corollary 2 provides a quantitative evaluation of risk in the context of optimization
with constraint relaxation. By a comparison with Theorem 1, we see that the number
of support constraints s∗N of the scenario program (1) is here substituted by s̃∗N .
s̃∗N accounts for the constraints of (1) that are violated, i.e. f(x, δi) > 0, plus those
that are active, i.e. f(x, δi) = 0, at x = x∗N . One can prove that f(x∗N , δi) = 0 in
at most d cases with probability 1, showing that functions ε(·) and ε(·) have to be
evaluated at an integer equal to the number of violated constraints plus at most an
excess of d to compute the bound for the risk.

Example 1 A manufacturer produces goods in d different workplaces and xj , j =
1, . . . , d, is the quantity planned to be produced in workplace j. For the production,
n different resources are employed. The quantity of resource k, k = 1, . . . , n, used
in workplace j to produce a unitary amount of goods is subject to random fluctu-
ation and is denoted by qj,k(δ). Each resource is available in a limited amount ak.
The goal of the manufacturer is to maximize the production while keeping low the
probability of being in need of resources that exceed the available amount.

Assuming that a record {qj,k(δi), j = 1, . . . , d, k = 1, . . . , n}, i = 1, . . . , N , of
values for {qj,k(δ), j = 1, . . . , d, k = 1, . . . , n} is available, the problem is modeled
according to the scenario approach as follows

min
xj≥0, j=1,...,d

−
d∑
j=1

xj

subject to:


∑d
j=1 qj,1(δi)xj ≤ a1,

...∑d
j=1 qj,n(δi)xj ≤ an,

i = 1, . . . , N. (18)

A simulation was performed with d = 50, n = 2 and N = 2000, which gave the re-
sult −

∑50
j=1 x

∗
j,2000 = −16.66, s∗2000 = 4. With the choice β = 10−6, an application

of Theorem 1 provided the following interval for the risk that the available amounts
of resources are exceeded: 0 ≤ V (x∗N ) ≤ 0.014.
Further, the manufacturer decides to increase the production and towards this goal
accepts some rise in the risk of running out of resources. To design the new produc-
tion strategy, the manufacturer uses the constraints relaxation approach presented
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in this section and solve the optimization problem

min
xj≥0,j=1,...,50

ξi≥0,i=1,...,2000

−
50∑
j=1

xj + ρ

N∑
i=1

ξi

subject to:

max


50∑
j=1

qj,1(δi)xj − a1,

50∑
j=1

qj,2(δi)xj − a2, 0


2

≤ ξi

i = 1, . . . , 2000. (19)

Notice that this is the same as (14) with8

f(x, δ) =

max


50∑
j=1

qj,1(δ)xj − a1,

50∑
j=1

qj,2(δ)xj − a2, 0


2

. (20)

As for the value of ρ, its selection can be tricky, because how ρ impacts on produc-
tion/risk can be difficult to forecast, and we here refer to an approach that can be of
general utility in other applications as well. The manufacturer sets out to solve (19)
for an array of values of ρ. For each value, the production increase is calculated from
the solution, while Corollary 2 gives an interval for the corresponding risk. Selecting
β = 10−6, the intervals that were found for 22 distinct values of ρ are displayed in
Figure 12, where the abscissa gives the corresponding values of s̃∗2000.9 In the same
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Fig. 12 Cost = −
∑50

j=1 x
∗
j,2000 vs. risk. In abscissa is the the number s̃∗2000 of scenarios for which

f(x∗2000, δi) ≥ 0.

8 Notice that, strictly speaking, this choice of f(x, δ) does not satisfy Assumption 6. Reason
is that setting to zero f(x, δ) when

∑50
j=1 qj,1(δ)xj − a1 and

∑50
j=1 qj,2(δ)xj − a2 are negative,

as is done in (20), generates regions with positive volume in the domain in R50 for x where
f(x, δ) = 0. However, an easy inspection of the derivations in Subsection 4.2 shows that the
requirement of Assumption 6 that, for every x, P{δ : f(x, δ) = 0} = 0 can be relaxed to requiring
that, for every x, P{δ : x is on the boundary of the constraint {f(x, δ) ≤ 0}} = 0, and theory
goes through unaltered with the only modifications that, throughout, “f(x, δ) = 0” becomes “x
is on the boundary of the constraint {f(x, δ) ≤ 0}”, “f(x, δ) < 0” becomes “x is in the interior
of the constraint {f(x, δ) ≤ 0}”, and “f(x, δ) ≥ 0” becomes “x violates or is on the boundary
of the constraint {f(x, δ) ≤ 0}”. While we have preferred in the general presentation the simpler
formulation of Assumption 6, this second formulation leads to zero volume regions in the domain
in R50 for x in the present example.

9 Since the intervals in Figure 12 are obtained by a repeated application of Corollary (2), the
confidence that ε(s̃∗2000) ≤ V (x∗2000) ≤ ε(s̃∗2000) for all the 22 values of ρ simultaneously is 1−22 ·β.
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figure, the plot of cot = −
∑50
j=1 x

∗
j,2000 is also profiled. A suitable trade-off between

production and risk can be obtained by a direct inspection of the figure. In this
case, the value of ρ that gives s̃∗2000 = 46 was selected, resulting in a good 50% of
production increase, while the estimated interval for the risk moved from [0, 0.014]
to [0.009, 0.047]. ut

5 Proofs

5.1 Proof of Theorem 2

We start by showing that equation (9) has two solutions in [0,+∞) and that equa-
tion (10) has one solution in [0,+∞).

Denote by ϕk(t), k = 0, 1, . . . , N − 1, the polynomial in the left-hand side of (9)
and by ϕN (t) the polynomial in the left-hand side of (10), which we rewrite here
by making explicit the number H = 3N of terms in the rightmost summations:10

ϕk(t) =

{(
N
k

)
tN−k − β

2N

∑N−1
i=k

(
i
k

)
ti−k − β

2H

∑N+H
i=N+1

(
i
k

)
ti−k, 0 ≤ k < N

1− β
2H

∑N+H
i=N+1

(
i
N

)
ti−N , k = N.

(21)

Let us start with ϕN (t). By construction, ϕN (0) = 1 and ϕN (t) is strictly decreasing
with ϕN (t) → −∞ as t → +∞. Hence, ϕN (t) has a unique root t(N) in [0,+∞),
and, moreover,

ϕN (t) > 0 for t ∈ [0, t(N)), while ϕN (t) < 0 for t ∈ (t(N),+∞). (22)

Turn now to ϕk(t), k = 0, 1, . . . , N − 1. Notice first that the following recursive
equation holds

ϕk(t) = − β

2N
+ (k + 1)

∫ t

0

ϕk+1(τ) dτ, k = 0, 1, . . . , N − 1, (23)

as it can be verified by a direct calculation. Using (23), we want to show that all
the ϕk(t), k = 0, 1, . . . , N − 1, follow the same pattern: a. ϕk(0) = − β

2N < 0; b.
with the sole exception of ϕN−1(t) that is increasing in t = 0+, ϕk(t) is initially
decreasing, then it is increasing with ϕk(t) > 0 at its maximum, and then decreasing
again; c. ϕk(t) → −∞ as t → +∞. Facts a,b,c are obtained by using (23) for
k = N − 1 (and recalling the properties of ϕN (t)), and then proceeding backward,
k = N − 2, N − 3, . . . , 0, where the only point that deserves an explanation is that
ϕk(t) > 0 at its maximum. To show this, notice that from (21) we have

ϕ0(1) = 1− β

2N

N−1∑
i=0

1− β

2H

N+H∑
i=N+1

1 = 1− β > 0,

and, looking again at (23), ϕ0(1) > 0 would not be possible if it were ϕk(t) ≤ 0 ∀t
for some k. From a,b,c, it follows that each ϕk(t), k = 0, 1, . . . , N − 1, has exactly
two roots, t(k) and t(k), in [0,+∞). Moreover,

ϕk(t) < 0 for t ∈ [0, t(k)) ∪ (t(k),+∞), while ϕk(t) > 0 for t ∈ (t(k), t(k)). (24)

10 The reason for introducing H is that the theorem will be proven in a slightly more general
form where H is any integer ≥ 1 and not just 3N . The choice H = 3N is typical, and this is why
Theorem 2 was stated with H = 3N . However, the extra generality allowed by other values of H
can turn out to be useful to tighten the bounds ε(·) and ε(·) in some cases when N is not too large.
This issue is not further discussed in this paper.
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We next prove relation (11). For all positive integers k = 0, 1, . . . define

Fk(v) = Pk{V (z∗k) ≤ v ∧ s̃∗k = k}, (25)

where z∗k = Mk(δ1, . . . , δk), s̃∗k = number of support elements, and ∧ is the “and”
operator. In words, Fk(v) is the probability that, with a sample of k instances of δ,
all of them are of support and the decision has risk no more than v. The Fk’s are
generalized distribution functions, [44]. Functions F0, F1, . . . are different from one
problem to another and, as we shall show, for a given problem the left-hand side of
(11) can be computed from F0, F1, . . ..

Start by noting that the events {s̃∗N = k1} and {s̃∗N = k2} are not overlapping
for k1 6= k2, so that

PN{ε(s̃∗N ) ≤ V (z∗N ) ≤ ε(s̃∗N )} =

N∑
k=0

PN{ε(k) ≤ V (z∗N ) ≤ ε(k) ∧ s̃∗N = k}. (26)

Focus on one event Sk := {ε(k) ≤ V (z∗N ) ≤ ε(k) ∧ s̃∗N = k} ⊆ ∆N and, for
each sample δ1, . . . , δN ∈ Sk, evaluate the indexes of the δi’s that correspond to the
support elements. Group together all the samples with the same indexes. In this
way, Sk is partitioned in

(
N
k

)
subsets. All these subsets have the same probability

because δ1, . . . , δN are independent and identically distributed. Hence,

PN{ε(s̃∗N ) ≤ V (z∗N ) ≤ ε(s̃∗N )} =

(
N

k

)
PN{A}, (27)

where A is one of these subsets, say the one where the indexes are 1, 2, . . . , k, that
is,

A := {ε(k) ≤ V (z∗N ) ≤ ε(k) ∧ s̃∗N = k ∧ δ1, . . . , δk are of support}.

We show below that set A is equal to

B := {ε(k) ≤ V (z∗k) ≤ ε(k) ∧ s̃∗k = k ∧ z∗k ∈ Zδi , i = k + 1, . . . , N}

up to a zero probability set.

We first show that A ⊆ B up to a zero probability set. Since in A the support
elements are the first k, by the non-degeneracy Assumption 4, z∗N = z∗k up to a zero
probability set. Thus, ε(k) ≤ V (z∗N ) ≤ ε(k) implies ε(k) ≤ V (z∗k) ≤ ε(k) up to a zero
probability set. Moreover, z∗k ∈ Zδi , i = k + 1, . . . , N , because if z∗k /∈ Zδī for some
ī ∈ {k+1, . . . , N}, then z∗N 6= z∗k by property (iii) in Assumption 3. We finally show
that all the δ1, . . . , δk are of support for Mk(δ1, . . . , δk), which gives s̃∗k = k. Indeed,
if one among δ1, . . . , δk, say δ1, were not of support, then Mk−1(δ2, . . . , δk) = z∗k.
But then, by adding δk+1, . . . , δN – which correspond to Zδi such that z∗k ∈ Zδi –
one would obtain MN−1(δ2, . . . , δN ) = z∗k = z∗N by property (ii) in Assumption 3,
and, hence, δ1 would not be of support for MN (δ1, . . . , δN ), which is a contradiction.

Next we show that B ⊆ A up to a zero probability set. Since in B it holds that
z∗k ∈ Zδi , i = k+1, . . . , N , by property (ii) in Assumption 3 we obtain that z∗N = z∗k
and, thus, relation ε(k) ≤ V (z∗k) ≤ ε(k) implies that ε(k) ≤ V (z∗N ) ≤ ε(k). We
next show that s̃∗N = k ∧ δ1, . . . , δk are of support, which is equivalent to say that
δ1, . . . , δk are the only support scenarios for MN (δ1, . . . , δN ), up to a zero probability
set. First, none of the δk+1, . . . , δN can be of support for MN (δ1, . . . , δN ). Indeed, re-
move one of these scenarios, say δN , from the sample δ1, . . . , δN . Since δ1, . . . , δN−1
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is δ1, . . . , δk with the addition of δi, i = k+1, . . . , N , for which z∗k ∈ Zδi , by property
(ii) in Assumption 3 one obtains MN−1(δ1, . . . , δN−1) = z∗k = z∗N . This shows that
δN is not of support. To next show that δ1, . . . , δk are of support for MN (δ1, . . . , δN )
up to a zero probability set, proceed by contradiction, and assume that at least one
of the first k scenarios is not of support with non-zero probability. Since δk+1, . . . , δN
are not of support, then the support scenarios for MN (δ1, . . . , δN ) would be with
non-zero probability a strict subset of δ1, . . . , δk. However, since properties (ii)-(iii)
in Assumption 3 imply that the decision obtained from a strict subset of δ1, . . . , δk
must be different from z∗k (indeed, to be the same, by property (iii), the Zδi corre-
sponding to the missing scenarios must include z∗k; but, then, by property (ii), adding
all the missing scenarios except one the solution would still be z∗k, contradicting the
assumption that all the δ1, . . . , δk are of support for Mk(δ1, . . . , δk)), then we would
have that the decision obtained from the support scenarios of MN (δ1, . . . , δN ) would
be different from z∗k, and, hence, different from z∗N = MN (δ1, . . . , δN ), with non-zero
probability. This, however, contradicts the non-degeneracy Assumption 4.

We next show that

PN{B} =

∫
[ε(k),ε(k)]

(1− v)N−kdFk(v). (28)

Indeed, owing to the independence of δ1, . . . , δN , (1−v)N−k is the conditional prob-
ability that z∗k ∈ Zδi , i = k + 1, . . . , N , given that V (z∗k) = v and s̃∗k = k. Then,
recalling the definition of Fk in (25), (28) follows from [44, Chapter II, Section 7,
Equation (17)].

Since PN{A} = PN{B} (which follows from the fact that A = B up to a zero
probability set), substituting (28) in (27) and further (27) in (26) yields

PN{ε(s̃∗N ) ≤ V (z∗N ) ≤ ε(s̃∗N )} =

N∑
k=0

(
N

k

)∫
[ε(k),ε(k)]

(1− v)N−kdFk(v). (29)

Equation (29) provides the fundamental formula by which PN{ε(s̃∗N ) ≤ V (z∗N ) ≤
ε(s̃∗N )} can be computed from F0, F1, . . .. To proceed in the evaluation of the right-
hand side of (29), we have now to characterize the distributions F0, F1, . . ., which
is done in the following.

If the same argument used to derive (29) is repeated with z∗m, m = 0, 1, . . ., in
place of z∗N and with 0 in place of ε(s̃∗N ) and and 1 in place of ε(s̃∗N ), relation

PN{0 ≤ V (z∗m) ≤ 1} =

m∑
k=0

(
m

k

)∫
[0,1]

(1− v)N−kdFk(v)

is found. Since V (z∗m) takes value in [0, 1], the right-hand side of this equality is
clearly equal to 1, which shows that F0, F1, . . . must satisfy the following generalized
moment conditions:

m∑
k=0

(
m

k

)∫
[0,1]

(1− v)m−kdFk(v) = 1, m = 0, 1, . . . . (30)

Equation (30) provides a characterization of F0, F1, . . . under which the right-hand
side of (29) can be evaluated, and program (32) below returns a lower bound to
PN{ε(s̃∗N ) ≤ V (z∗N ) ≤ ε(s̃∗N )}. That is,

PN{ε(s̃∗N ) ≤ V (z∗N ) ≤ ε(s̃∗N )} ≥ γ, (31)
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with (C denotes the positive cone of generalized distribution functions)

γ = inf
Fk, k=0,1,...

N∑
k=0

(
N

k

)∫
[ε(k),ε(k)]

(1− v)N−kdFk(v) (32)

subject to:

m∑
k=0

(
m

k

)∫
[0,1]

(1− v)m−kdFk(v) = 1, m = 0, 1, . . .

Fk ∈ C, k = 0, 1, . . . .

The last part of the proof consists in showing that γ ≥ 1−β, from which (11) follows.

Consider the following truncated version of (32):

γH = inf
F0,F1,...,FN+H

N∑
k=0

(
N

k

)∫
[ε(k),ε(k)]

(1− v)N−kdFk(v) (33)

subject to:

m∑
k=0

(
m

k

)∫
[0,1]

(1− v)m−kdFk(v) = 1, m = 0, 1, . . . , N +H,

F0, F1, . . . , FN+H ∈ C.

Since in (32) and (33) the cost function only depends on F0, F1, . . . , FN and (33) is
less constrained than (32), we have that

γ ≥ γH . (34)

The dual of (33) is

γ∗H = sup
λ0,λ1,...,λN+H

N+H∑
m=0

λm (35)

subject to:

N+H∑
m=k

λm

(
m

k

)
(1− v)m−k

≤
{(

N
k

)
(1− v)N−k · 1[ε(k),ε(k)](v), k = 0, 1, . . . , N

0, k = N + 1, . . . , N +H
,

v ∈ [0, 1],

where 1 denotes the indicator function. The following derivation, provided for self-
containedness, shows that γH ≥ γ∗H (weak duality): for every F0, F1, . . . , FN+H

feasible for (33) and λ0, λ1, . . . , λN+H feasible for (35) it holds that

N∑
k=0

(
N

k

)∫
[ε(k),ε(k)]

(1− v)N−kdFk(v)

=

N∑
k=0

∫
[0,1]

(
N

k

)
(1− v)N−k · 1[ε(k),ε(k)](v)dFk(v)

≥
N+H∑
k=0

∫
[0,1]

N+H∑
m=k

λm

(
m

k

)
(1− v)m−kdFk(v)

=

N+H∑
m=0

λm

m∑
k=0

(
m

k

)∫
[0,1]

(1− v)m−kdFk(v)

=

N+H∑
m=0

λm,
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so that taking the inf on the left-hand side and the sup on the right-hand side yields

γH ≥ γ∗H . (36)

Inequalities (31), (34), and (36) give

PN
{
ε(s̃∗N ) ≤ V (z∗N ) ≤ ε(s̃∗N )

}
≥ γ ≥ γH ≥ γ∗H , (37)

from which the theorem can be proven by showing that γ∗H ≥ 1− β.

To show that γ∗H ≥ 1 − β, perform the substitution t := 1 − v and rewrite (35)
as

γ∗H = sup
λ0,λ1,...,λN+H

N+H∑
m=0

λm (38)

subject to:

N+H∑
m=k

λm

(
m

k

)
tm−k

≤
{(

N
k

)
tN−k · 1[1−ε(k),1−ε(k)](t), k = 0, 1, . . . , N

0, k = N + 1, . . . , N +H
,

t ∈ [0, 1].

Consider now
λm = − β

2N , m = 0, 1, . . . , N − 1,
λm = 1, m = N,

λm = − β
2H , m = N + 1, N + 2, . . . , N +H.

. (39)

We want to show that the selection of λm’s in (39) is feasible for (38), which gives

the sought inequality because for these λm’s we have that
∑N+H
m=0 λm = 1− β, and

γ∗H ≥ 1− β because γ∗H is the sup over all the feasible choices of the λm’s.

Consider first the constraints in (38) for k > N . These are trivially satisfied since for
the λm’s in (39) the left-hand side of the inequality is negative for t ∈ [0, 1]. When
instead k ≤ N , for the λm’s in (39), the left-hand side of the inequality in (38) co-
incides with the polynomial ϕk(t) in (21). Since ϕk(t) ≤

(
N
k

)
tN−k, k = 0, 1, . . . , N ,

and since ϕk(t) ≤ 0 for t outside the interval [1 − ε(k), 1 − ε(k)] (see (24), (22),
and the definitions of ε(k) and ε(k) in Theorem 2), also the constraints in (38) for
k ≤ N are satisfied.

Wrapping up, the selection of λm’s in (39) is feasible for (38) and, hence, γ∗H ≥ 1−β,
which used in (37) gives

PN {ε(s̃∗N ) ≤ V (z∗N ) ≤ ε(s̃∗N )} ≥ 1− β.

This concludes the proof. ut

5.2 Proof of Theorem 1

The optimization programs (3) complemented with a convex tie-break rule as spec-
ified in Assumption 1 define a family of maps Mm from the sample δ1, . . . , δm to the
solution x∗m. We show that this family of maps satisfies the assumptions of Theorem
2 so that Theorem 1 follows from Theorem 2 with the positions z∗m = x∗m, s̃∗m = s∗m
and Zδ = Xδ, and by noting that equation (10) in Theorem 2 can be dropped in
the context of Theorem 1 since N > d implies s̃∗N < N .
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Consider Assumption 3. First of all note that the maps Mm are permutation invari-
ant (point (i) in Assumption 3) because the solution to (3) clearly does not depend
on the order in which constraints are sampled. Consider now (ii) in Assumption
3. In (3) the solution is selected as the feasible point that achieves the smallest
cost cTx and, if a tie occurs, the tie is broken by minimizing the convex functions
t1(x), t2(x), . . .. By adding extra constraints that are satisfied at x∗m, the feasibility
domain shrinks while x∗m remains feasible. Hence, x∗m remains the optimal solution
and (ii) follows. Referring to (iii), if some δi’s are added such that at least one δi
corresponds to a constraint that is not satisfied by x∗m, then the solution x∗m has
to change and move to a feasible point, and this gives (iii). Finally, notice that the
non-degeneracy Assumption 4 is guaranteed by Assumption 2. ut
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A MATLAB code

The following MATLAB code returns ε(k) and ε(k) for user assigned k, N , and β.

function [epsL, epsU] = epsLU(k,N,bet)

alphaL = betaincinv(bet,k,N-k+1);

alphaU = 1-betaincinv(bet,N-k+1,k);

m1 = [k:1:N];

aux1 = sum(triu(log(ones(N-k+1,1)*m1),1),2);

aux2 = sum(triu(log(ones(N-k+1,1)*(m1-k)),1),2);

coeffs1 = aux2-aux1;

m2 = [N+1:1:4*N];

aux3 = sum(tril(log(ones(3*N,1)*m2)),2);

aux4 = sum(tril(log(ones(3*N,1)*(m2-k))),2);

coeffs2 = aux3-aux4;

t1 = 1-alphaL;

t2 = 1;

poly1 = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t1))) ...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t1)));

poly2 = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t2))) ...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t2)));

if ((poly1*poly2) > 0)

epsL = 0;

else

while t2-t1 > 1e-10

t = (t1+t2)/2;

polyt = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t))) ...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t)));

if polyt > 0

t1=t;

else

t2=t;

end

end

epsL = 1-t2;

end

t1 = 0;

t2 = 1-alphaU;

poly1 = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t1))) ...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t1)));

poly2 = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t2))) ...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t2)));

if ((poly1*poly2) > 0)

epsL = 0;

else

while t2-t1 > 1e-10

t = (t1+t2)/2;

polyt = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t))) ...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t)));

if polyt > 0

t2=t;

else

t1=t;

end

end

epsU = 1-t1;

end

end


