
1

Closed-form Operational Boundaries for Buck

Converters With Constant On-Time Control
F. Bizzarri, Senior Member, IEEE, P. Nora, A. Brambilla Member, IEEE,

Abstract—In this paper, we provide three operational boun-
daries in closed analytical form for a Constant ON-Time buck
converter working in continuous current mode. Two of these
boundaries are related to the sudden appearance of pulse-
bursting induced by either (i) the hysteresis of the comparator
that drives the input of the block implementing the circuit control
algorithm (hysteresis condition), or (ii) by a period doubling
bifurcation (bouncing condition). The third operational boundary
corresponds to the saturation condition of the circuit controller
which does no longer guarantee an OFF-time larger than the
minimum allowed one. These stability boundaries are provided
both for the adaptive and the fixed ON-time working modes.

I. INTRODUCTION

Switching DC-DC converters are typical hybrid non linear

dynamical systems, which play a significant role in nowadays

industrial power supply systems. Among possible control

strategies of these circuits one can find the ripple-based

Constant ON-Time (COT) one. This control scheme has the

advantages of simplicity, low cost, fast load transient response,

and high conversion efficiency under light-load conditions.

COT converters are thus an attractive choice for powering

demanding, high-speed digital loads such as FPGAs, ASICs,

and CPUs. For the same reasons, COT converters are also

largely used in low cost consumer electronics. For a successful

design of a COT converter it is mandatory to guarantee that

the circuit operates in a pulse-bursting free regime [1]–[6],

viz. avoiding sub-harmonic oscillations. This is necessary to

prevent the undesirable consequences of excessive ripple am-

plitudes in the inductor current and output voltage waveforms.

Furthermore, whenever sub-harmonic oscillations occur, rich

frequency spectra are observed that may translate in unpre-

dictable electro-magnetic emissions. These are a well known

design aspects, and researches are still working to propose

novel analysis techniques and possible technical solutions [7]–

[10]. In particular, the availability of operational boundaries,

allowing to identify safe regions of operation in the circuit

parameter space, is extremely important. Such boundaries are

even much more significant if derived and presented in closed-

form formula, since they represent effective and simple design

rules that can be exploited as a first aid in the converter design,

for both specific and general purpose applications.
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Fig. 1. The schematic of the COT converter. Re models the equivalent series
resistance (ESR) of the Co output capacitor. The Rp resistors model both the
ON-state resistance of the S high-side switch and the D low-side switch.

In [11], the authors derived a straightforward novel suffi-

cient condition, overcoming in term of reliability the popular

one presented in [1], [4], and other papers to avoid pulse-

bursting. In that work the COT buck converter was studied in

fixed ON-time working mode only. In this paper we consider

both the adaptive and the fixed ON-time working modes. In

particular, in the first case the COT control mimics pseudo-

constant-frequency regime during steady-state operation by

means of a suitable implementation of the ON-phase timer.

The basic idea is to calculate the duration of this phase to

emulate the duty cycle of a fixed-frequency buck controller.

We provide three operational boundaries in closed analy-

tical form for a COT buck converter working in continuous

current mode (CCM) (viz. continuous conduction mode). The

converter control algorithm, which involves a minimum OFF-

phase duration, interplays with the hysteresis of the comparator

driving the input of the block implementing the circuit control

algorithm. The expression of the adaptive ON-time takes into

account also possible mismatches of the actual circuit w.r.t.

the ideal one.

II. THE COT BUCK CONVERTER CONTROL ALGORITHM

The dynamics of the COT converter state variables (ıL, vC)
is divided in three phases according to a proper control

algorithm. The input variable of the algorithm is the output

voltage of the comparator (see Fig. 1) whose generic (in, out)
transfer characteristic is reported in Fig. 2(a).

The ON-phase starts as soon as, being zero the comparator

output, the vr − vo signal gets positive. The controller catches

the positive edge of this signal, the output of the comparator

becomes positive, and the S switch is closed for the ∆tON fixed

ON-time interval. At the end of the ON-phase, S is opened and

kept open for the ∆tmin
OFF fixed time interval (minimum OFF-

phase). This phase is mandatory in many practical designs.

At the end of this phase, the controller checks the output of

the comparator. If the output is zero, the S switch remains
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Fig. 2. (a) Asymmetric hysteretic (in, out) transfer characteristic of the
comparator (Hy > 0). (b) A typical CCM steady-state periodic trajectory of
the COT buck converter in the (ıL, vC) state plane. η is the unit vector normal
to the ρ0S(ıL, vC) switching manifold and f ON is the vector field governing
the circuit dynamics at the beginning of the ON-phase. Since η ·f ON < 0,
the trajectory penetrates the R

− region.

open (OFF-phase) until the condition triggering the ON-phase

becomes true again.

Since the comparator is typically characterized by hystere-

sis, as shown in Fig. 2(a), the OFF-phase can start only if, in the

time interval ∆tON+∆tmin
OFF, the vr−vo voltage decreased below

the −Hy threshold, thus resetting the comparator output. If

this is not the case, at the end of the minimum OFF-phase

a subsequent ON-phase is immediately re-started. In case

Hy = 0, to allow the beginning of the OFF-phase, vr − vo
must be still negative at the end of the minimum OFF-phase.

There are many reasons for adding hysteresis to the regu-

lation comparator. For example, one may want to ensure a

more “valid” triggering signal for the ∆tON timer, and more

generally to improve the switching noise immunity of the

regulation circuit. However, as it will be appreciated in the

following, a too large hysteresis can introduce undesirable side

effects, and other methods for noise immunity enhancement

should rather be considered.

In the (ıL, vC) state plane (sketched in Fig. 2(b)) the vr −
vo = 0 and vr − vo = −Hy switching conditions induced by

the cntr block leads to the switching manifolds

ρǫS(ıL, vC) : vr −
Ro(ıLRe + vC)

Re +Ro

= ǫ (1)

where ǫ ∈ {0,−Hy}.

In adaptive COT control (i.e., pseudo constant-frequency in

CCM operation and low losses), the ON-phase lasts

∆tON =
vo +

s
k

fsw

p

q + vin

k

, (2)

where vo is the converter output voltage, vin is the sup-

ply voltage, fsw is the nominal switching frequency, and

k ∈ [1, kMAX]. k allows adjusting the desired switching fre-

quency below fsw, and it is under user control (typically

implemented by adding or changing external resistors). The

p, q, and s parameters are used to model possible mismatches

of the actual circuit w.r.t. the ideal one (p = 1, q = s = 0).

Beside non-ideality factors, the ON-time governed by (2) is

lower-bounded by a fixed constant value ∆tmin
ON . This means

that, whenever ∆tON < ∆tmin
ON , the COT buck converter starts

working with a non-adaptive ON-time. A minimum control-

lable ON-time limitation is common in DC-DC converters

architectures. The v†in value of the vin supply voltage such

that the operation mode switches from adaptive to fixed ON-

time can be easily inferred from (2).

III. FUNDAMENTALS OF CCM STEADY-STATE DYNAMICS

The ıL current is always positive thanks to the D diode in

Fig. 1. Actually, in modern architectures such as synchronous

buck converters, to enhance converter efficiency the diode

is replaced by a low-side MOSFET which is operated as a

synchronous rectifier. Consequently, “diode” D, that actually

works as a controlled switch in perfect “diode emulation”, is

modeled as a piecewise-linear ideal component with ıD = 0
for vD ≤ 0 and vD = 0 for ıD ≥ 0. In the following we

assume that the COT buck converter operates in CCM only,

consequently ıL is always positive, ıD > 0, and thus vD = 0.

Figure 2(b) shows a sketch of the typical CCM steady-

state evolution of the COT buck converter. This circuit is

designed in such a way that the vC voltage can be considered

almost constant along the periodic steady state behaviour of

the circuit, in practice its ripple can be neglected. In particular,

being δ ≡ (̄ıL, v̄C) in Fig. 2(b) the first point of the ON-phase,

v̄C can be derived through the ρ0S(ıL, vC) switching manifold

exploiting an estimate of ı̄L. An approximation of the latter

can be obtained as

ı̄L =
vr
Ro

−
∆ıON

L

2
, (3)

where

∆ıON

L =
p
(
s
k
+ vr

) (

vin −
(

Rp

Ro
+ 1

)

vr

)

fswLo

(
vin

k
+ q

) (4)

is the ıL steady-state ripple approximating as linear w.r.t. time

the charging of the inductor, assuming vo fixed at vr during the

entire periodic steady-state evolution of the COT converter, and

neglecting the voltage drop across Re. In case ∆tON = ∆tmin
ON ,

∆ıON

L =
vin −

vr(Ro+Rp)
Ro

Lo

∆tmin
ON . (5)

At the end of the ON-phase, corresponding to α in Fig. 2(b),

ıL = ı̄L +
∆ıON

L

2 , and the minimum OFF-phase starts (the vin
voltage source is disconnected). At β this phase is concluded

and, since the switching boundary ρ
−Hy

S (ıL, vC) is typically

crossed at γ, a point in between δ and α, the comparator output

is zero and the OFF-phase is continues.

The transition between CCM and discontinuous current

mode (DCM) (viz. discontinuous conduction mode) can be

derived by imposing ∆ıON

L = 2vr/Ro, which translates in

vin −
vr(2Lo +∆tON(Ro +Rp))

Ro∆tON

> 0 . (6)

In CCM, the T = ∆tON +∆tOFF period of the steady

state solution can be achieved by solving the equation

∆ıON

L +∆ıOFF

L = 0, thus deriving

∆tOFF =
p(s+ kvr)(Rovin − (Ro +Rp)vr)

fswvr(Ro +Rp)(kq + vin)
, (7)

or, in case ∆tON = ∆tmin
ON ,

∆tOFF =

(
Rovin

(Ro +Rp)vr
− 1

)

∆tmin
ON . (8)
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IV. OPERATIONAL BOUNDARIES

A. Bouncing condition

The sufficient condition presented in [11] to avoid the

pulse-bursting phenomenon was obtained by imposing that the

ρ0S(ıL, vC) switching manifold is reflective for ıL ≥ 0, viz. the

periodic steady-state of the circuit belongs to the R+ region

only (see Fig. 2(b)). It translates in imposing that η ·f ON > 0
for ıL ≥ 0, and reduces to guarantee that

ı̄L(Ro(1 + Θ)− CoR
2
e(Ro+Rp))+

−(Lo + CoReRo)v̄C + CoRe(Re +Ro)vin > 0 ,
(9)

where Θ = Lo − CoReRp. Under the reasonable assumption

Θ > 0, if (9) is verified for ı̄L = 0 then it is satisfied for any

ıL ≥ 0.

Here we propose to weaken (9) satisfying it in the neig-

hbourhood of ı̄L given in (3). The above constraint can be

solved for instance as a function of vin. Since in general

we must have vin > vr for step-down operation, assuming

∆tON > ∆tmin
ON , and Rp ≪ Ro, it yields

vin >
spΘ+ k(pvrΘ− 2fswCoReLoq)

2CofswLoRe

≡ vBN
in . (10)

In the following we will show numerically that this con-

straint provides a good estimate of the bifurcation curve mar-

king the loss of stability of the periodic steady-state solution

through a period-doubling bifurcation.

In case ∆tON = ∆tmin
ON , the constraint in (9), in terms of vin,

simply becomes

vin >
Ro +Rp

Ro

vr . (11)

As it will be shown numerically, this condition turns out to be

completely non predictive of the appearance of the instability.

This means that the sufficient condition derived in [11], cannot

be reliably relaxed through the approximation of ı̄L, in case

of a non-adaptive ON-time control strategy, at least if one is

interested in identifying limit values of the vin voltage.

B. Saturation condition

At steady-state the condition on saturation of the controller

implies that the OFF-phase is not allowed since, exactly at

the end of the minimum OFF-phase, the vr − vo signal gets

positive, viz. T = ∆tON +∆tmin
OFF. The controller saturation is

often occurring in transient response. It is an indicator that the

COT architecture is fully exploited during load transient, i.e.

the rate-of-rise of inductor current cannot be further increased.

This operative boundary can be derived by imposing ∆tOFF =
∆tmin

OFF exploiting (7). As a function of vin it provides either

vin >
vr(Ro +Rp)((s+ kvr)p+ fswkq∆tmin

OFF)

pRo(s+ kvr)− fsw∆tmin
OFFvr(Rp +Ro)

≡ v∗in (12)

or, in case ∆tON = ∆tmin
ON ,

vin >
(Ro +Rp)(∆tmin

OFF +∆tmin
ON )

Ro∆tmin
ON

vr ≡ v∗in . (13)

C. Hysteresis condition

The effect of the comparator hysteresis manifests if in

the ∆tON + ∆tmin
OFF time interval its input does not trespass

(decreasing) the −Hy threshold. Assuming vC = v̄C during

the whole COT buck converter working period, the differential

comparator input decreases only during the ON-phase, since

during this phase the ıL current increases. This implies that

the −Hy threshold can be properly crossed merely in the ∆tON

time interval. To derive an approximate condition to avoid

forcing a sudden ON-phase immediately after the minimal

OFF-phase, it is sufficient to ensure that the variation of the

differential input of the comparator is larger than the Hy

hysteresis window, i.e.,

ReRo

Re +Ro

∆ıON

L > Hy . (14)

By exploiting Equations (2) and (4), the above inequality can

be rewritten as either

vin >
pRevr(Ro +Rp)(s+ kvr) + qkfswHyLo(Re +Ro)

pReRo(s+ kvr)− fswHyLo(Re +Ro)
︸ ︷︷ ︸

v
Hy

in

(15)

or, in case ∆tON = ∆tmin
ON ,

vin >
HyLo(Re +Ro) +Re(Ro +Rp)∆tmin

ON vr
ReRo∆tmin

ON

≡ vHy
in .

(16)

From (15) it is clear that, with an adaptive ∆tON, a limit value

exists for the Re resistance that does not allow the COT buck

converter to work for any finite value of vin, i.e.,

Rlim
e =

fswHyLoRo

pRo(s+ kvo)− fswHyLo

, (17)

which applies only in case pRo(s+ kvo)− fswHyLo > 0.

V. NUMERICAL RESULTS

In the following subsections two case studies are presented

in which some parameter values of the COT buck converter

reported in Fig. 1 are fixed, vr = 1.8V, Co = 44µF, Rp =
73mΩ, Ro = 1.1Ω, and ∆tmin

OFF = 25ns. Concerning ∆tON (see

(2)), fsw = 4MHz, k = 1, s = 6.6mV, p = 1, and q = 0,

∆tmin
ON = 125 ns. The remaining parameters are left free and

used to trace the operational boundaries introduced in Sec. IV.

Of course, one may focus on other subsets of free parameters

depending on the adopted overall design strategy. Simulation

results were obtained by PAN circuit simulator [12], [13] and

MPLAB® Mindi™ Analog Simulator.

At first, the operational boundaries presented in this paper

are graphically represented in the (Lo, vin) parameter plane

(see Fig. 3). We have stability above the traces at different

values of Hy . For low values of Hy , the hysteresis condition

turns out to be irrelevant as a function of Lo, since the

saturation condition (v∗in) is predominant. Nonetheless, for

Hy ≥ 0.5mV, it is evident that the Hy and Lo pair must

be properly chosen to prevent instability.

By considering the Hy = 1.5mV case, as soon as the

hysteresis boundary crosses the v†in limit, corresponding to the

transition from adaptive to fixed ON-time, a significant change
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Fig. 3. v
†
in is the boundary between adaptive (below the dashed line) and fixed

ON-time. v∗in represents the saturation condition. The black solid curves, for
several values of the Hy hysteresis-window amplitude, represent the hysteresis

condition. Re = 5mΩ. x-axis: Lo [µH]. y-axis: vin [V].

is observed. In particular, adopting a fixed ON-time turns out

to be convenient since a wider range of vin is allowed (the

solid curve lie below the dashed one which is the extension

of the boundary derived if the adaptive ON-time would still

operate). Fig. 3 shows the as and au points corresponding to

two different pairs of (Lo, vin) parameters. The former is in

the stable region and the latter in the unstable region. The

black trajectory in Fig. 5(a) corresponds to the as point in

Fig. 3, whereas the grey trajectory corresponds to au. The

inset highlights the presence of a “small turn” revealing that

the grey orbit exhibits a sub-harmonic oscillation. Analogous

considerations can be done for Fig. 5(b) and the bs, and bu
points in Fig. 3. It is interesting to note that even a small

amount of hysteresis added to the regulation comparator has a

significant impact on the inductance values needed to maintain

stable operation across the input voltage range. That is, an

apparently harmless change in the internal control circuit

might have a dramatic impact on the permissible selection

space for external components.

In Fig. 4 the discussed operational boundaries are shown

in the (Re, vin) parameter plane. The v
Hy

in thin black line

(hysteresis boundary) is the limiting factor until the COT buck

converter stops working with an adaptive ON-time, viz. v
Hy

in

trespasses v†in from below since both v∗in and vBN
in (black

Fig. 4. v
Hy

in and vBN

in represents the hysteresis condition and the bouncing

condition, respectively. vPD

in is a period-doubling bifurcation curve. Dashed
segments are the extensions of the solid ones computed with an adaptive ON-
time. Hy = 1mV, and Lo = 0.33µH. x-axis: Re [mΩ]. y-axis: vin [V].

thick line, bouncing boundary) lie below such a curve. This

remains true for Re values larger than that at the intersection

between v†in and vBN
in . In fact, even if for lower Re values

the vBN
in curve abruptly falls at the constant value provided

by (11), it can be noticed that such a curve move completely

away from vPD
in . The latter corresponds to the period doubling

bifurcation of the CCM periodic steady-state solution. vPD
in is

computed by monitoring the eigenvalues of the monodromy

matrix of such a limit cycle, having care of properly resorting

to the saltation matrix operator since the circuit is a switching

dynamical system exhibiting delayed events too [14], [15].

The vBN
in boundary provides a good approximation of vPD

in in

the adaptive ON-time mode. The black trajectory in Fig. 5(c)

corresponds to the cs point in Fig. 4, whereas the grey

trajectory corresponds to cu. The shape of the grey orbit

reveals that in this configuration the steady-state behaviour of

the circuit is far from the “ideal” one in Fig. 2(b). Analogous

considerations can be done for Fig. 5(d) and the ds, and du
points in Fig. 4 (the grey orbit exhibits chaotic dynamics).

Analogous considerations concerning the bouncing condi-

tion and the period doubling bifurcation of the CCM periodic

steady-state solution can be done if Co is chosen as a varia-

ble parameter. The results reported in Fig. 6 were obtained

by choosing Hy = 1mV and Lo = 0.33µH as in Fig. 4,

and Re = 1.5mΩ. The discussed operational boundaries are

shown in the (Co, vin) parameter plane. It can be noticed that,

also in this case, for Co values lower than that corresponding to

the intersection between vBN
in and v†in, the former abruptly falls

at the constant value given by (11). We verified the correctness

of the stability boundary by performing transient simulations

on the on the Mindi™ model of the MIC23303 adaptive COT

Fig. 5. Steady state behaviour of the COT buck converter for several values of
the circuit parameters. (a): Lo = 0.9µH, Hy = 1.5mV, vin = 4V (grey
curve) and vin = 4.2V (black curve). (b): Lo = 0.5µH, Hy = 1mV,
vin = 2.4V (grey curve) and vin = 2.6V (black curve). (c): vin = 5V,
Re = 1.2mΩ (grey curve) and Re = 1.4mΩ (black curve). (d): Re =
2.5mΩ, vin = 2.6V (grey curve) and vin = 2.8V (black curve).
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Fig. 6. At eu and es, vin = 4.5V whereas Co = 38.5µF and Co =
39.5µF, respectively. Hy = 1mV, Lo = 0.33µH, and Re = 1.5mΩ.
x-axis: Co [µF]. y-axis: vin [V].

buck regulator by Microchip Technology [16]. The schematic

of the circuit is reported in the upper panel of Fig. 7. The

central panel and the lower panel refer to the es and eu points

in Fig. 6, and show vo(t) (see Fig. 1). At es the steady-state

behaviour is periodic and it corresponds to the black limit

cycle in Fig. 5. At eu chaotic dynamics can be observed as it

happens in Fig. 5(d).

VI. CONCLUSION

Simple algebraic expressions involving circuit parameters

of a COT buck converter implementation are derived to check

stability. They can be used during a preliminary dimensioning

phase to adequately choose COT elements, such as inductor

and output capacitor, to determine the extension of the input

voltage in wide range applications and how external operating

frequency adjustment impacts on stability. The effect of a

possible hysteresis of the comparator (internal to the chip)

is also considered, and its effects on both stability and the

external inductor selection are shown. As such, addition of

hysteresis to the regulation comparator should be carefully

evaluated during the design of the COT controller.

Fig. 7. Upper panel: Mindi™ simulation schematic of the MIC23303 adaptive
COT buck regulator by Microchip Technology. Central panel: vo(t) at the eu
point in Fig. 6. Lower panel: vo(t) at the es
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