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Abstract— We propose a technique for global optimization
considering black-box cost function and constraints, which have
to be learned from data during the optimization process, arising
for example in plant-control co-design of complex systems or
controller tuning based on experiments. Assuming Lipschitz
continuity of the cost function and constraints, we build a
surrogate model and derive tight bounds on such functions
based on a Set Membership framework. An exploitation step
is designed to improve on the current best feasible candi-
date solution, searching in regions where all constraints are
estimated as fulfilled, thus preserving safety. On the other
hand, an exploration routine aims to discover the shape of
the cost and constraint functions by picking points with large
uncertainty, prioritizing regions where more constraints are
predictably satisfied. The proposed algorithm can intuitively
trade-off safety, exploration, and exploitation. The performance
is evaluated on the problem of model predictive control tuning
for a servomechanism with plant uncertainties and task-level
constraints.

I. INTRODUCTION

Black-box optimization techniques address problems
where the objective function is not available analytically,
rather it is evaluated via (possibly time-consuming) exper-
iments, and is generally non-convex. These methods attempt
to simultaneously learn the function and optimize it, balanc-
ing exploitation and exploration to ensure fast convergence
and coverage of the search space, respectively, [1]–[6].

Many black-box optimization problems require also the
satisfaction of one or more constraints. In most approaches,
these are assumed to be analytically available, for example
as known convex sets or nonlinear differentiable constraint
functions. However, in many cases, the constraints are also
not known a priori or too complex to be handled analytical-
lyi.e., they are black box, too. In this paper, we consider
a framework in which sensible objective and constraints’
values are returned also when the test point is outside the
feasible set. This is in contrast to non-relaxable problems,
in which a violated constraint means a crashed simulation
or a failed experiment, and the returned objective and/or
constraint values are undefined or not meaningful. Using the
taxonomy of black-box constraints introduced in [7], we deal
with QRSK problems (Quantifiable, Relaxable, Simulation,
Known).
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There have been relatively scarce previous efforts in treat-
ing black-box constraints in optimization, with most of the
proposed techniques based on Bayesian optimization (BO).
Early attempts to integrate black-box constraints with BO,
like [8], require a feasible initial point, which may be limiting
and require an ad-hoc initial phase to estimate the feasible
region. For example, [9] deals with black-box constraints
using support vector machines, in two phases. The first
one is the “training phase”, which estimates the feasible
regions by evaluating the constraint at different points. In the
second phase, a Bayesian optimizer is used to optimize over
the estimated feasible space. While sensible with cheap-to-
evaluate constraint functions, a separate training phase may
significantly increase the experiment time before the actual
optimization is attempted.

The proposal from [10], on the other hand, uses a sum of
the objective and constraint values in the acquisition func-
tion, which removes the need for existence of a feasible solu-
tion. Another approach [11] employs the alternating direction
method of multipliers (ADMM) in conjunction with BO,
which recasts the constrained problem into an unconstrained
formulation and introduces an ADMM-inherited stopping
criterion. However, an overarching concern with all of the
discussed techniques, as well as other BO-based methods, is
their limitation only to low dimensions (usually up to 5-6
decision variables), mainly due to the computational burden
required by Gaussian modelling for BO.

The present paper proposes a new approach to deal with
black-box constraints in optimization. Furthering our recent
work in [5], [6], we use the Set Membership framework [12]
to build models of both the cost and the constraints. These
approximations are used to predict the fulfillment of the
black-box constraints in unsampled areas. Our design of the
exploration routine allows the user to tune the exploration
behavior, ranging from “cautious” to “risky”. Furthermore,
we do not require an initial feasible point, rather we automat-
ically prioritize regions where more constraints are estimated
as fulfilled, encouraging the search inside the feasible region.
The proposed technique is described, and tested for the
tuning of a model predictive controller for a servomechanism
with plant parameter uncertainties and task-level constraints.

II. PROBLEM STATEMENT

We consider the minimization of a cost function z =
f(x), f(x) : X → R, where the decision variable x is an
element of a compact and convex search set X ⊂ RD. This
minimization is subject to the constraints gs, s = 1, . . . , S.
A constraint gs is satisfied at x when gs(x) ≥ 0.

Neither f nor any gs are assumed to be known. The only
a priori assumptions about f and all gs are given as follows:



Assumption 1: f and gs, s = 1, . . . , S are Lipschitz con-
tinuous functions over X with unknown Lipschitz constants
γ, ρ1, . . . , ρS : f ∈ F(γ), g1 ∈ F(ρ1) . . . gS ∈ F(ρS)
where
F(η) .= {h : |h(x1)− h(x2)| ≤ η‖x1 − x2‖,∀x1,x2 ∈ X} .

Assumption 2: The values of the objective and of all
constraints can be obtained without noise for any x ∈ X .

Both assumptions are realistic in many cases of practical
interest, such as simulation-based optimization or experi-
ments where sensors return accurate and valid measurements
also when the black-box constraints are violated.
Finally, denoting the feasible set pertaining to the s-th
constraint as Gs = {x ∈ X : gs(x) ≥ 0}, we assume a
non-empty finite feasible region:

Assumption 3:
S⋂
s=1

Gs 6= ∅.

Now we state the problem addressed in this paper.
Problem 1: Design an algorithm that generates a sequence

of points
{
x(1),x(2), . . .

}
,x(i) ∈ X , to search for a mini-

mizer point x∗ of f , such that

x∗ = arg min
x∈X

f(x) subject to x ∈
S⋂
s=1

Gs

III. PROPOSED OPTIMIZATION APPROACH WITH
BLACK-BOX CONSTRAINTS

The search for the minimizer x∗ is approached by a
sequential sampling procedure, wherein the next point for
sampling is decided by the existing data. The inclusion
of black-box constraints means that there are additional
considerations in the algorithm design, as discussed in the
following subsections.

A. Evaluation of objective and constraints, data update

At each iteration n, the evaluation of the objective and the
constraints is performed at the test point x(n). We denote the
obtained cost and constraints values as:

z(n) = f(x(n))

c
(n)
s = gs(x

(n)), s = 1, . . . , S

According to Assumption 2, these values can be evalu-
ated for any x(n) ∈ X , and the corresponding data tuple
(x(n), z(n), c

(n)
1 , . . . , c

(n)
S ) is iteratively added to build the

data-set X〈n〉, i.e.

X〈n〉 =X〈n−1〉 ∪ (x(n), z(n), c
(n)
1 , . . . , c

(n)
S ).

From the existing data-set X〈n〉, we update iteratively the
Lipschitz constants estimates γ〈n〉 and ρ〈n〉s (see Assumption
1) as in [5]:

γ〈n〉 = max

(
γ〈n−1〉, max

k∈[1 ... n−1]

|z(n) − z(k)|
‖x(n) − x(k)‖

)
, (1)

ρ〈n〉s = max

(
ρ〈n−1〉
s , max

k∈[1 ... n−1]

|c(n)s − c(k)s |
‖x(n) − x(k)‖

)
. (2)

where γ〈n−1〉, ρ〈n−1〉s are the estimates computed at iteration
n−1. The estimated Lipschitz constants are, by construction,
unfalsified by the available data. At n = 1, one can set

these estimates to zero, and choose the test point x(1) with a
strategy of choice (for example a random starting point, or, as
discussed in our example, a sensible point for the application
at hand). We can now build the following upper- and lower-
bound functions, f

〈n〉
(x) and f 〈n〉(x), resorting to a Set

Membership (SM) approach [12]:

f
〈n〉

(x) , min
k=1,...,n

(
z(k) + µγ〈n〉‖x− x(k)‖

)
, (3)

f 〈n〉(x) , max
k=1,...,n

(
z(k) − µγ〈n〉‖x− x(k)‖

)
. (4)

where µ > 1 is introduced due to γ〈n〉 and ρ〈n〉s being under-
estimates of true Lipschitz constants γ and ρs. Furthermore,
we build the central approximation of the objective function,

f̃ 〈n〉(x) =
1

2

(
f
〈n〉

(x) + f 〈n〉(x)
)

and the uncertainty measure

λ〈n〉(x) = f
〈n〉

(x)− f 〈n〉(x).

The same is performed for each constraint function gs,
to calculate the corresponding upper and lower bounds,
g
〈n〉
s (x), g〈n〉

s
(x), nominal estimate, g̃〈n〉s (x), and uncertainty

interval, π〈n〉s (x).
The tuple describing the best sample x∗〈n〉 is

x∗〈n〉 = arg min
x(i)∈X〈n〉

z(i)s.t. c(i)s ≥ 0, s = 1, . . . , S, (5)

which is the feasible sample with lowest objective value. A
lexicographic criterion is used to sort out possible multiple
feasible points with the same cost. Note that x∗〈n〉 might not
exist particularly in the iterations where no feasible points
were sampled yet.

After updating the Lipschitz constant estimates, the upper
and lower bounds, central estimates, uncertainty estimates,
and current best point, the proposed optimization algorithm
attempts first an exploitation strategy, possibly followed (if
not satisfactory enough) by an exploration one.

B. Exploitation with constraints

In this subroutine, we try to improve on the current
best value by searching X for a better candidate point ac-
cording to a multi-objective optimization problem involving
the central approximation and estimated uncertainty, while
satisfying the estimated constraints:

x
〈n〉
θ = arg min

x∈E〈n〉

(
f̃ 〈n〉(x)− βλ〈n〉(x)

)
(6)

s.t. g̃〈n〉s (x) ≥ 0, s = 1, . . . , S

where β is a user-defined weighting parameter (set here
as 0.1), and E〈n〉 ∈ X is a finite set of candidate points,
selected according to a gridding strategy described in Sec-
tion III-D. If (6) is feasible and a x〈n〉θ is selected, we test its
expected improvement with respect to the current best value.
As in [6], we test if the lower bound z〈n〉(x

〈n〉
θ ) improves

w.r.t. z∗〈n〉 by a certain threshold, i.e.
z〈n〉(x

〈n〉
θ ) ≤ z∗〈n〉 − η, (7)



where η = αγ〈n〉 is the expected improvement threshold.
If this test is passed, we sample the selected point, i.e.
x(n+1) = x

〈n〉
θ . On the other hand, if (6) is infeasible or

condition (7) is not met, we proceed to exploration.

C. Exploration by uncertainty and constraint violations

The exploration routine tries to probe the areas of the
search space where cost function uncertainty is largest, while
at the same time penalizing possible constraint violations. In
the presence of black-box constraints, we prioritize choos-
ing feasible candidate points, i.e. where all constraints are
expected to be fulfilled using the central approximation. The
exploration point x〈n〉ψ is chosen as

x
〈n〉
ψ = arg max

x∈E〈n〉
((1− δ)wλ(x) + δwπ(x)wg(x)) (8)

where

wλ(x) =

{
λ〈n〉(x) if g̃

〈n〉
s (x) ≥ 0, s = 1, . . . , S

0 otherwise,
(9)

wπ(x) =

S∑
s=1

π
〈n〉
s (x)

ρ
〈n〉
s

, (10)

wg(x) =

S∏
s=1

(1s(x) + 1) , (11)

1s(x) =

{
1 g̃

〈n〉
s (x) ≥ 0

0 otherwise.
(12)

The objective wλ in (8) aims to find the test point where
uncertainty λ is maximum, but this term is factored in
only if the candidate point fulfills all estimated constraints
(see (9)). On the other hand, the right-hand expression
inside the argmax in (8) finds the candidate point with
the maximum total (normalized) uncertainty w.r.t. all gs (see
(10)). However, we design it to double for every additional
constraint fulfilled, in force of (11)-(12). This way, the se-
lection prioritizes points that are predicted to satisfy a larger
number of constraints, according to the information collected
up to iteration n. The user parameter δ ∈ (0, 1] describes the
level of conservativeness or caution in exploring outside the
estimated feasible region, with δ → 0 resulting to higher
conservativeness.

The selected point x〈n〉ψ is then directly assigned as the
next sample point x(n+1).

D. Generation of candidate points

In Sections III-B-III-C we consider a set of candidate
points E〈n〉, which is systematically generated based on
the existing data. Such generation eliminates the need for
an external optimization algorithm to solve (6) and (8) and
makes the algorithm repeatable.

The candidate points generation method proposed in our
previous works [5], [6] results in a exponential complexity
w.r.t. D in the common case of hyperrectangular X . Hence
we propose another candidate points generation system with
improved complexity.

search space X

existing samples x

(i)

new sample

existing candidate points
new candidate points

x

(n)

Fig. 1: Proposed method for introduction of new
candidate points (D = 2 and B = 5)

Given an incoming sample x(n), we iteratively add can-
didate points

1) along the coordinate directions stemming from x(n),
2) in the directions pointing from each sampled point to

all the other ones.
To generate 1), using the basic directions ±âd, d =

1, . . . , D, we define

b
(n)
+d = max

b∈[0,∞)
b s.t. x(n) + bâd ∈ X , (13)

b
(n)
−d = max

b∈[0,∞)
b s.t. x(n) − bâd ∈ X . (14)

These are the lengths of the longest segments inside the
search set X departing from x(n). Given the previous seg-
ment lengths, the set of candidate points generated by x(n)

along the coordinate directions are

Y
(n)
+d =

{
x(n) +

k

B
b
(n)
+d âd, k ∈ {1, . . . , B − 1}

}
(15)

Y
(n)
−d =

{
x(n) − k

B
b
(n)
−d âd, k ∈ {1, . . . , B − 1}

}
(16)

where B is the grid granularity.
To generate 2), we denote â(nj) as the unit vector from

x(n) to each other existing sample x(j), j = 1, . . . , n − 1.
Then, in a similar fashion as (13)-(14), we define

b
(nj)
+ = max

b∈[0,∞)
b s.t. x(n) + bâ(nj) ∈ X , (17)

b
(nj)
− = max

b∈[0,∞)
b s.t. x(n) − bâ(nj) ∈ X , (18)

and the set of candidate points generated by x(n) along the
segments pointing to each other sample are

Y
(nj)
+ =

{
x(n) +

k

B
b
(nj)
+ âd, k ∈ {1, . . . , B − 1}

}
, (19)

Y
(nj)
− =

{
x(n) − k

B
b
(nj)
− âd, k ∈ {1, . . . , B − 1}

}
. (20)

Finally, the set of candidate points generated by x(n) is

Y
(n)

=

(
D⋃
d=1

{
Y

(n)
+d ,Y

(n)
−d

})⋃n−1⋃
j=1

{
Y

(nj)
+ ,Y

(nj)
−

} . (21)

Lastly, the aggregate collection of candidate points at itera-
tion n is now

E〈n〉 = E〈n−1〉 ∪ Y (n).

This results in a total of 2n(B − 1)(D + (n−1)
2 ) candidate

points for any iteration n, which is O(Dn2). The number of
candidate points is polynomial w.r.t. n, however only linear
in D, thus providing a good tradeoff between complexity and
accuracy. Furthermore, unlike our proposal in [6], we do not
require anymore a polytopic search set X , but only a convex
and compact one.
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Fig. 3: Effect of increasing δ: (top) frequency of violations,
(bottom) optimality gap

E. On the influence of caution parameter δ

We illustrate the effect of changing the “caution parame-
ter” δ by testing SMGO-δ for the constrained optimization
of the 2-dimensional Styblinski-Tang function:

min
x∈X

1

2

2∑
i=1

(
x4i − 16x2i + 5xi

)
(22)

s.t. max

(
4−

2∑
i=1

(xi + 2)2,

2∑
i=1

xi

)
≥ 0, (23)

x1 − x2 ≥ 0, (24)

with search space X = [−5 5]2. The global minimum
is located in a disjoint half-circle on the lower left side,
see Fig. 2. In this simple test we vary δ from 10−6 to
1, in increments of 0.1. For each tested δ, 50 independent
optimization runs/trials (250 iterations) with random starting
points are performed. In Fig. 3 we show the frequency
of constraint violation w.r.t. n and δ. For this purpose,
we count the average number of violation occurrences (i.e.
x(n) /∈

⋂2
s=1 Gs) in the previous 20 iterations, starting from

n = 20. Furthermore, we present the optimality gap w.r.t.
z∗ = −78.332 in Fig. 3 as well.

Caution parameter value δ = 1E-6 (marked in the axis
as 0) resulted in least frequency of constraint violations.
Violations increase w.r.t. larger δ, represented by brighter
colors towards the upper right on the top graph of Fig. 3.

On the other hand, higher δ led to better optimality gaps,
which means that they are more likely to find the x∗ in the
disjoint semi-circle. Hence, the user can consider a trade-off
between discovery of other feasible regions (and a chance
at better minima, “high risk, high reward”), and the need to
stay in a feasible region.

IV. APPLICATION TO MPC TUNING

Consider a servomotor mechanism, where θi and θo are
the input and output shaft angular positions, V is the input
voltage, T is the torsional moment between the input and
output shafts, d is the load (disturbance) on the output
shaft. Rm is the motor electrical resistance, Kt is the motor
constant, Ji and Jo the moments of inertia of the input and
output shafts, βi and βo the shaft viscous friction coefficients,
τg is the gear ratio, and Kθ is the torsional stiffness of the
output shaft. Their nominal values are reported in Table I.

Assuming linearity of all the components, the system
dynamics are described by the following equations (the
continuous time variable is omitted for brevity):

ξ̇ =


0 0 1 0
0 0 0 1

−Kθ
Jiτ2g

−Kθ
Jiτg

−
βi+

K2
t

Rm
Ji

0
Kθ
Joτg

−Kθ
Jo

0 −βo
Jo

 ξ+


0
0
Kt

JiRm
0

u+

 0
0
0
1
Jo

 d,
(25)

y =


Kθ
τg

−Kθ 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 ξ (26)

where ξ = [θi θo θ̇i θ̇o]
T is the state, and y = [T θo θ̇i θ̇o]

T

the output.

A. Controller structure

We aim to design a model-predictive controller (MPC,
[13]) capable of tracking a reference θ̂o for the output
shaft angle. An MPC strategy is chosen due to the explicit
consideration of input and state constraints.

After setting a sampling time Ts = 0.1 s, at each time
step t the following finite horizon optimal control problem
is solved:

min
U∈RN

N∑
i=0

(yref − y(i|t))TQ(yref − y(i|t)) +

N−1∑
i=0

Ru(i|t)2 (27)

s.t. ξ(i+ 1|t) = Aξ(i|t) +Bu(i|t) +Bdd(i|t) (28)
y(i|t) = Cx(i|t) (29)
ξ(0|t) = ξ(t) (30)∣∣u(i|t)

∣∣ ≤ V (31)∣∣∣T (i|t)
∣∣∣ ≤ T̃, (32)

where for each signal, the time instant (i|t) indicates the
value of the signal at time t+ i predicted at time t, (28) is
the discrete-time equivalent of (25) considering a sampling
time of 0.1 s, (29) is the output equation given in (26), (29) is
the known system state at time step t, (31) declares the input
constraint with V = 220 V , and (32) limits the torsional



Variable Description Nominal
value

Rm Motor electrical resistance 20 Ω
Kt Motor constant 10 Nm

A

Kθ Output shaft torsional stiffness 1280 Nm
rad

Ji Input shaft moment of inertia 0.5 kg m2

Jo Output shaft moment of inertia 25 kg m2

βi Input shaft friction coefficient 0.1 Nm s
rad

βo Output shaft friction coefficient 25 Nm s
rad

τg Gear ratio (input/output) 20

TABLE I: Servo motor specifications
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Fig. 4: Reference trajectory and expected load
for the servomotor problem

moment between the gears. N is the prediction and control
horizon, selected as N = 50. Matrix Q is a diagonal matrix
of tunable parameters q1, q2, q3, q4, while R is fixed as 1.

B. Black-box optimization for controller tuning

In the context of factory automation, we encounter ma-
chines performing repetitive tasks that usually involve a fixed
reference trajectory θ̂o and load profile d. Fig. 4 shows the
task profile we consider, having a duration of 50 s.

Once the controller architecture is defined, we aim to
tune the MPC parameters to guarantee good tracking perfor-
mance during the complete task, considering the following
practically-motivated issues:

1) MPC cost function matrix Q needs to be tuned to
maximize tracking performance on θ̂o.

2) The nameplate (nominal) motor parameters are known
(as in Table I); however, the real parameters differ due
to manufacturing tolerances and/or previous usage. In
this paper, Rm,Kt, βi, βo may differ up to ±12.5%
w.r.t. nameplate values. The remaining parameters are
assumed exact.

3) To protect the motor windings and prolong its service
lifetime, the average power consumption of the system
throughout the task cycle, must not exceed a maximum
P , set as 25W . At the same time, constraints (31) and
(32) must be satisfied for the complete task duration.

Based on the previous considerations, the following black-
box optimization problem is formulated:

min
x∈X

tmax∑
t=0

(θo(t;x)− θ̂o(t))2 (33)

s.t. max
0≤t≤tmax

∣∣T (t)
∣∣ ≤ T , (34)

1

tmax + 1

tmax−1∑
t=0

u(t)
(
u(t)−Ktθ̇i(t)

)
Rm

≤ P (35)

where the vector of decision variables is x =
[log(q1) log(q2) log(q3) log(q4) R̃m K̃t β̃i β̃o T̃ ].
The tilde on 4th to 8th variables of x denote parameter
estimates, while T̃ is the imposed torsional moment limit
in (32). θo(t;x) is the resulting output shaft angular
position during the complete task, when the MPC controller
is applied to the servo system using the parameters x.
Constraint (34) sets the maximum torsional moment for
the experiment, while (35) imposes the maximum average
motor power for the entire duration.

The search intervals for the first four parameters is
[−7, 7], while intervals ±25% w.r.t. nominal values are
imposed for the next four (see Table I for the nominal
values), and [50 100] is fixed for T̃ . 50 trials of the SMGO-δ
algorithm are executed with N = 250 iterations each. The
starting test point x(1) for each optimization is composed of
log(qi) = 0, the nominal values for each motor parameter,
and T for T̃ .

For comparison, we also consider a Finite Horizon Op-
timal Control Problem (FHOCP) that optimizes the input
sequence over the whole task duration, having complete
knowledge of the actual plant parameters. In the same
manner as (33), the FHOCP solves

min
u(0),...,u(tmax)

tmax∑
t=0

(θo(t)− θ̂o(t))2

considering the constraints (34)-(35). The cost value com-
puted by the FHOCP is denoted as z∗FHOCP .

C. Results and discussion
It was observed that after at most 10 iterations, all 50

trials have found feasible points, implying the existence of
a best sample x〈n〉θ . Fig. 5 shows the spread of the cost
function for the best (feasible) solutions found across the 50
trials, compared to the FHOCP resulting cost. Furthermore,
it shows the corresponding values of the constraints at those
best solutions. Note that the cost value improves approaching
the optimal solution of the FHOCP and also the constraints
exhibit a generally decreasing trend. Indeed, SMGO-δ finds
better points which tend to approach the boundary of the
feasible set, i.e. resulting in most aggressive control actions
but still within the requirements imposed in (34) and (35).

An inspection of the distribution of the estimated plant
parameters (across all trials) for the best sample x〈n〉θ , not
shown for brevity, leads to interesting considerations. In fact,
the distribution of the estimated parameters does not match at
all the real parameters, which shows that the tuning process
did not consider the motor parameter estimation accuracy,
but only the actual performance based on the experiments.
Furthermore, it is interesting to note that while Rm and Kt

estimates had discernible changes w.r.t. iterations, βi and
βo did not change appreciably, with βo estimates barely
changing. This means that the performance is highly sensitive
to Rm and Kt estimates, while the βi and βo did not have
a significant impact.
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Fig. 5: Distribution of (top) best objective history across
50 runs with randomly-generated motor specifications,

(center, bottom) corresponding constraint values for
the best point found. Constraints are satisfied if positive.

For graphical comparison, we consider an example
SMGO-δ run and take its best resulting MPC. We now
compare its performance to the ideal FHOCP with complete
system model information and optimized over the entire task
time, which provides a global minimum. Fig. 6 shows that
the resulting input trajectory of our optimized MPC did
not have significant difference with the FHOCP. However,
the torsional moments for the FHOCP showed much larger
swings than for our resulting MPC, due to a more aggressive
performance. This is in turn caused by the FHOCP push-
ing into the bounds of feasibility w.r.t. torsional moment
constraints. Similar results are observed for the SMGO-δ-
optimized MPC of all the other runs and the corresponding
FHOCP results, not shown here for brevity.

V. CONCLUSIONS AND FURTHER WORK

We introduce in this paper a black-box optimization al-
gorithm which also considers black-box constraints, named
SMGO-δ. Rooted in Set Membership approximation theory,
it features exploitation and exploration routines that do not
require an initial feasible point, but only that a feasible region
exists in the search space. We discussed implementation
issues, and presented the performance obtained in an MPC
tuning problem for an industrial servomotor system, with
plant parameter uncertainties and task-specific constraints
that cannot be addressed in the design phase. Our results
show that the MPC tuned by SMGO-δ results in perfor-
mance that is highly comparable to an FHOCP with perfect
knowledge of the plant parameters and optimized over the
whole process time. Investigation of theoretical properties, as
well as experimental applications are the subject of current
research.
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Fig. 6: Comparison of SMGO-δ tuned MPC versus FHOCP
for a sample optimization run

REFERENCES
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