
AAS 21-762

SENSITIVITY ANALYSIS OF ADAPTIVE GUIDANCE VIA DEEP
REINFORCEMENT LEARNING FOR UNCOOPERATIVE SPACE

OBJECTS IMAGING

Andrea Brandonisio* and Michèle Lavagna†

In this work a Proximal Policy Optimization (PPO) algorithm is explored to setup
an agent that, via imaging, plans sub-optimal paths to fly-around an uncooperative
and unknown orbiting object with shape reconstruction purposes. The proxim-
ity dynamics between the spacecraft and the target object of the chaser agent is
linearized taking into account the target orbital eccentricity; rotation of the target
object is included only. The target geometry is rendered as a polyhedron shaped
model with a triangular mesh. The PPO algorithms is deeply analysed to improve
the stability and reduce the sensitivity of the algorithm with respect to the par-
ticular conditions in which the problem is solved. Both policy and state-value
functions are approximated using Artificial Neural Networks (ANN) and trained
according to RL principles. To improve the stability and robustness of the agent in
different scenario conditions, a formulation exploiting recurrent layers is proposed
and studied. Random initial environment conditions are adopted to train the agent
to react to largely different operational scenarios. A large database of training
tests has been collected, exploiting the network configurations already designed in
our previous work. The proposed method and its results are critically presented
to contribute to the RL techniques applicability in the field of proximity guidance
synthesis for image based chasers fly-around uncooperative objects, possibly ex-
panding the baseline research for future works on autonomous guidance in space
engineering.

INTRODUCTION

In the last decades, leading space agencies are increasingly investing in the gradual automation of

the space missions and the rapid developments of Artificial Intelligence is everyday more strongly

influencing the aerospace researches. Autonomous flight operations may be crucial for large-scale

sustainable on-orbit servicing missions, leading to several benefits, including flexibility, reactivity

and robustness. Up to now, on-orbit servicing (OOS) activities are mostly performed and studied

by government agencies, e.g. NASA or DARPA. The demand of orbital servicing has increased

in the recent years, pushing more companies towards the study of complete autonomous satellite

services.1

According to NASA and American Institute of Aeronautics and Astronautics (AIAA), the term

on-orbit servicing is referred to all on-orbit activities that a space vehicle intentionally conducts

on another resident space object (RSO). Such definition includes several activities: non-contact

support, relocation and orbit modification, maintenance, refueling, commodities replenishment, up-

grade, repair, assembly, and debris mitigation. The vehicle able to perform one or more of these
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activities is called servicer, while the vehicle that receives the service is called client. The client is

called cooperative client if it transfers useful information for acquisition, tracking, rendezvous or

other servicing activities to the servicer via direct communication link or ground link; otherwise, it

is defined uncooperative or non-cooperative client. In most of the cases, a strong distinction is not

possible.

Within the spectrum of proximity operations, this work focuses on autonomous path-planning of a

chaser satellite devoted to the reconstruction of geometry and inertia properties of an uncooperative

and unknown target object by flying around. The objective is to optimize the acquisition of all the

information necessary for an effective target object mapping.

The autonomous exploration of an unknown environment has been studied especially in the

field of robotics. The most popular formulation is called Simultaneous Localization and Mapping

(SLAM) problem, that has been firstly developed in 1987. In SLAM problems an agent continu-

ously estimates the map of an unknown environment while simultaneously localizing itself in it.2

After the full characterization of the SLAM problem, in the late ’90s, the task of exploration plan-

ning has been added generating the active SLAM problem. In active SLAM mapping, localization

and planning are strictly coupled.3 Active SLAM applications aim to automate data collection that

is needed to create the highest quality map with the least time and cost possible. SLAM may be

formulated as a Partially Observable Markov Decision Process (POMDP) and therefore solved with

Deep Reinforcement Learning (DRL) methods. Pose (position and attitude), motion and inertia ma-

trix estimation is the first step to develop a complete autonomous system for proximity operations

with uncooperative clients. Several works have been developed to understand problems such as

the reconstruction of geometric properties, inertia or dynamics of a space object or a small body,

including asteroids and comets. This work starts from the foundations we have already introduced

exploiting a reinforcement learning agent that maps a shape reconstruction task directly to a thrust

value that controls the spacecraft motion.4

Reinforcement Learning (RL) and Deep Reinforcement Learning techniques have been widely

used to design agent’s policies in planning problems.5 In the robotic field, the first authors to

propose RL to optimize a trajectory for map exploration have been Kollar et al.6 Tools such as

RL and DRL are very useful especially when coupled to the generalizing capabilities of neural

networks: they allow to deal with complex planning problems that present wide and continuous

state spaces.

Previous works highlighted the potential in adopting reinforcement learning techniques for guid-

ance design on astrodynamics: Brandonisio et al. studied the autonomous mapping of uncoopera-

tive space objects,4 Gaudet et al. and Linares et al. explored the autonomous landing and asteroid

close-proximity operations,7, 8 Pesce et al., Piccinin et al. and Chan et al. analysed the autonomous

mapping of asteroids,9–11 Indaco et. al studied autonomous path-planning for asteroid gravimetry.12

Starting from our previous work, a Proximal Policy Optimization (PPO) algorithm is here ex-

plored to setup an agent that, via imaging, plans sub-optimal paths to fly-around an uncooperative

orbiting objects with shape reconstruction purposes. The proximity dynamics between the space-

craft and the target object is linearized taking into account the target object orbital eccentricity; rota-

tion of the target object is included only to the equations of motion. The target geometry is rendered

as a polyhedron shaped model with a triangular mesh. A batch formulation of PPO is proposed

and explored. Both policy and state-value functions are approximated using deep fully-connected

Artificial Neural Networks (ANN) and trained according to RL principles. Random initial envi-
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ronment conditions are adopted to train the agent to react to largely different operational scenarios.

To achieve satisfactory results, the agent has to learn how to survive in the environment without

prematurely escaping or colliding with the target and to limit the cost at the most. In addition, the

agent - vision based - shall monitor the Sun orientation and the target relative orientation, which

are essential to achieve a good quality of the map. The map is computed as the total number of

successful observations for each face of the polyhedron mesh with respect to a fixed value that the

agent should achieve. A large database of training tests has been collected, exploiting the network

configurations already designed.

Moreover, in order to improve the stability and robustness of the agent in different scenario con-

ditions, a formulation of PPO exploiting recurrent neural networks (RNN) is proposed and studied.

The recurrent layers capabilities to store past states information may strongly affect the agent safe

trajectories planning and faster getting to the mission goals. In addition, training an RNN is benefi-

cial to refine the agent’s environmental conditions sensitivity, which works in favour of the agent’s

robustness, regardless the specific operational environment. Therefore, both methodologies - fully-

connected and recurrent - are analysed to improve the stability and reduce the sensitivity of the

algorithms with respect to the particular conditions in which the problem is solved.

The proposed method and its results are critically presented to contribute to the RL techniques

applicability in the field of proximity guidance synthesis for image based chasers fly-around unco-

operative objects, possibly expanding the baseline research for future works on this innovative field

of the space engineering.

PROBLEM SCENARIO

The dynamics models characterizing the relative motion between the spacecraft and a target ob-

ject are described in this section. Subsequently, the visibility relation between the two, here named

visibility model, is defined and described.

Linearized Eccentric Model

The linearized relative dynamic model is based on the assumption that the relative distance be-

tween the spacecraft and the target object is much lower than the distance between the target and the

main attractor. Common use is to express the relative equations of motion in the Local Vertical Lo-

cal Horizontal (LVLH) reference frame centred in the target object center of mass.13 The resulting

system is shown in Eq. (1).
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(
2μ

R3
+
h2

R4

)
x− 2(V · R)h

R4
y +
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R2
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z̈ = − μ

R3
z (1c)

R,V, R and h are the position vector, the velocity vector, the position magnitude distance and the

angular momentum of the target object in its Earth-centered inertial reference frame respectively;

x, y and z are the Cartesian components of the relative position of the spacecraft with respect to the

target object in LVLH frame.
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Rotational Model

To maintain the same reference frame of the translational motion, we express the rotational dy-

namics again in the LVLH frame centered in the target object center of mass, through a transfor-

mation of the Euler’s equations of motion written in body-reference frame.14 Applying the small

angle approximation and the transpose theorem to the Euler’s equations, the differential equations

for the rotational dynamics of the target in LVLH frame can be written as in Eq. (2). Afterwards, the

products between infinitesimal terms can be neglected, leading to the final model derived in Eq. (3).

⎧⎪⎨
⎪⎩
Ix(α̈x − α̇yn) + (Iz − Iy)(α̇z + n)(α̇y + αxn) = 0

Iy(α̈y + α̇xn) + (Ix − Iz)(α̇z + n)(α̇x − αyn) = 0

Iyα̈z + (Iy − Ix)(α̇x − αyn)(α̇y + αxn) = 0

(2)

⎧⎪⎨
⎪⎩
Ixα̈x + n(Iz − Iy − Ix)α̇y + n2(Iz − Iy)αx = 0

Iyα̈y + n(Ix + Iy − Iz)α̇x + n2(Iz − Ix)αx = 0

Izα̈z = 0

(3)

Ix, Iy and Iz are the principal moments of inertia of the target object, αx, αy and αz are the

rotational angles in LVLH frame, n is the target mean motion. Similarly to other studies, we assume

to neglect the spacecraft attitude dynamics and control considering the spacecraft camera always

pointed towards the target object center of mass.4, 10, 11 Although this is a strong assumption, it

helps to formulate a simpler problem, that at this level of development is necessary to asses the

feasibility of deep reinforcement learning applications to spacecraft guidance.

Visibility Model

As in our previous work, a visibility model generates the portion of the target object that the

spacecraft can observe at each time step.4 The model of the target object is rendered with a set of

faces; for this reason the visibility model locates the faces that are in direct line of sight (LoS) with

the spacecraft camera and under favorable light conditions. The quality of the image is determined

in function of the the incidence angles between the face normal direction and the Sun and camera

directions. These variables are important for the formulation of the reward model.

Image Processing. To correctly formulate the reward model the image processing method se-

lected is the Stereophotoclinometry (SPC). SPC descents from shape-from-shading approaches and

links photometry to stereoscopy and is a state of the art method that guarantees high resolution

models given a sufficient number of observations.15 The requirements to obtain high-quality SPC

models derive from the studies done by Gaskell et al.16 Such requirements inform the definition of

the reward model for our RL agent:

• A minimum of three images per face (typically > 40).

• Emission angle, defined as the angle between the camera direction and the normal direction

to the face, should be maintained around ∼ 45◦ (acceptable 35◦-48◦, limit 5◦-60◦).

• Incidence angle, defined as the angle between the Sun direction and the normal direction to

the face, should be maintained around ∼ 45◦ (acceptable 30◦-50◦, limit 0◦-70◦).
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• Variation in illumination conditions (acceptable 40◦-90◦, limit 10◦-120◦), that is the variation

of the Sun incidence angle during the observation period.

AUTONOMOUS NAVIGATION AND REINFORCEMENT LEARNING FRAMEWORK

The geometry reconstruction of a target body task, that requires the spacecraft to plan trajecto-

ries in a uncertain environment, can be formulated as an Simultaneous Localization and Mapping

(SLAM) problem. SLAM problem is a mathematical formulation of a map construction problem of

an unknown object or environment while simultaneously tracking the agent location17, 18 in it. The

SLAM problem may also include trajectory planning, in this case it is known as active SLAM.19

One of the possible methodology to solve active SLAM problems is the Partially Observable Markov

Decision Process (POMDP).

Partially Observable Markov Decision Process

POMDP derives from Markov Decision Process (MDP), when part of the information character-

izing the agent state is unknown (that is why partially observable).20 In this case, the decision maker

is only aware of partial information about the environment. A POMDP problem can be described

as a six-tuple, (S,A,R, T ,Ω,O), where: S is the space of all possible states in the environment,A
is the space of all possible actions that can be taken in all the states of the environment, RA(s, s′)
is the reward space, function of all the pairs between two following states, TA(s, s′) is the tran-

sition probability related to all the state-action pairs, Ω is the space of possible observations and

O(o′ | a, s′) is the probability of making a particular observation, taking an action that leads to a

particular new state.

To obtain an exact solution to a POMDP problem, it is necessary to select the optimal action

for each possible observation over the world states. The optimal action maximizes the expected

reward of the agent over a possibly infinite horizon. Exact solutions exist only for a very thin

class of POMDP problems. This complexity leads to an approximation of the general problem to

make it more tractable: indeed, a POMDP problem can be reduced to a MDP problem exploiting

a new formulation called belief-space MDP. This new formulation is characterized by a four-tuple

(B,A,RA, TA).

• B is the belief space, where the belief is defined as b = p(s | h), that is the probability of

being in a state s after the history h of all the previous states.

• A is the original action space.

• RA(b, b′) is the reward space in the new formulation.

• TA(b, b′) is the belief transition function, that is the probability of reaching a new belief b′

from a belief b taking an action a.

The goal is always the maximization of the long-term reward. Two different optimal policies can

be defined depending on whether the problem episode is finite or infinite. The problem formulation

treated in this work falls in the category of the infinite horizon problems, whose optimal policy is

defined exploiting a discount factor γ ∈ [0, 1], as in Eq. (4).

π� = argmax
π

Eπ

[ ∞∑
k=0

γkRA(bk, bk+1)
]

(4)
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Proximal Policy Optimization

In this work, we implemented a formulation of the proximal policy optimization (PPO) algo-

rithm.21 The PPO algorithm is a policy gradient algorithm representing the state of the art in terms

of performance of many of the typical DRL benchmark problems. It is a derivation of the A2C

method and it is developed from the Thrust Region Policy Optimization (TRPO) method.22 TRPO

formulates the optimization problem in a way that the gradient step is restricted by some constraints.

Starting from that, the PPO method approximates TRPO process by using a clipped objective func-

tion for the policy optimization step. The objective function used in PPO algorithm is expressed

defining the probability ratio pk(θ) as in Eq. (5).

pk(θ) =
πθ,k(uk|xk)
πθ,k−1(uk|xk)

(5)

Exploiting the probability ratio the PPO clipped objective function is defined in Eq. (6). The

introduction of the clipping term help the convergence by ensuring that the policy does not change

drastically when updated.

LCLIP(θ) = Ep(τ)[min[pk(θ), clip(pk(θ), 1− ε, 1 + ε)]Aπw(uk, xk)] (6)

Moreover, common practice in PPO algorithms is the addition of an entropy regularization term

to the clipping objective function to ensure a sufficient exploration level during training.21, 23 In this

way Eq. (6) becomes:

Lp = LCLIP(θ) + c2S[πθ](xk) (7)

The term Aπw(uk, xk) represents the advantage function, defined as the difference between the

discounted reward and the state value function baseline, as defined in Eq. (8). It gives information

about how much better an action is with respect to the average action that can be chosen by the

agent; its value also depends on a discount factor γ ∈ [0, 1).

Aπw(xk, uk) =
[ T∑
j=k

γj−kr(xj , uj)
]
− V π

w (xk) (8)

In Eq. (8), the term V π
w (xk) defines the value function of the algorithm, that is computed by the

critic network at each step of the simulation. The optimization of the value function is learned by

the the cost function defined in Eq. (9).

Lw =
N∑
i=1

(
V π
w (x

i
k)−

[ T∑
j=k

γj−kr(xij , u
i
j)
])2

(9)

Here N represents the number of trajectories used to update the network: in practice, the policy

gradient algorithm back-propagation updates the policy using a batch of state observations collected

by interaction with the scenario environment. Each trajectory is considered as a single episode, with

xk, uk, r(xk, uk) representing a sample of observation, action and reward of the trajectory N at the

k-th time step. In the Appendix A the pseudo-code of the used PPO algorithm is presented.
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PROBLEM ARCHITECTURE

In Figure 1, the on-board planning architecture of our work is displayed. The core of the archi-

tecture is the Autonomous Decision Process; it is preceded by a pre-processing phase, based on the

relative pose, the camera characteristics and the external environment conditions, i.e. the Sun direc-

tion. The pre-processing output feeds the autonomous decision block, characterized by the neural

network trained by PPO to optimize the control policy aimed to maximize the mapping of the target.

Figure 1. On-Board Planning Architecture Scheme

DRL Formulation

In our work, the environment is characterized by three main components: the spacecraft, the

unknown and uncooperative target object and the Sun. The Sun relative dynamics depends only

on the initial epoch; instead, the spacecraft-object relative dynamics is directly influenced by the

actions taken by the agent. The spacecraft and the target object orbit around the Earth in orbits

that may be eccentric. Two main assumptions are introduced: the first one is that the spacecraft

camera constantly points toward the target center of mass and the second neglects Earth influence

on the illumination condition, therefore eclipses and reflections are ignored. All the environment

information are employed to create the state space, action space and reward models needed to define

the autonomous decision process algorithm.

Reward Model. The most significant part of a DRL architecture is the definition of the reward

model. RL agents typically learn a policy with the goal of maximizing the cumulative reward.

Multiple objectives may be present in the reward model. In general terms, our goal is defining an

agent that achieves an high quality map of the target object together with a fast and safe process.

Quality of the map depends on the adopted mapping technique. In the present work, reward is

defined to ease SPC, in terms of Sun and camera exposition. In addition, the agent has to perform

mapping operations in the shortest time possible, avoiding regions of the space that are considered

dangerous and may end the episode.

Our reward defines the total reward as a function of different scores that combined together try to

solve and optimize one or more specific tasks.

• Map level score. The faces that have both good Sun and camera exposition are the ones that

generate an improvement in the level of the map. The maximum level defined for the map

consists in having each faces photographed Naccuracy times. Therefore, at each time step the

map level, Ml%, can be computed considering how many good photos of each face have been
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taken until that moment. The corresponding reward score is defined in Eq. (10) and at each

time step k rewards the agent for increasing the map level over the current value, Ml%,k−1.

Rm =

{
1 if Ml%,k > Ml%,k−1

0 otherwise
(10)

The improvement in the map depends on the Sun and camera incidence angles:

– Sun incidence score. The Sun incidence angle η is the angle between the Sun direction

relative to the target object and the normal to the face considered. The Sun incidence

angle should be between 0◦ - 70◦, to avoid shadows or excessive brightness. Values

outside that interval may correspond to conditions that degrade the quality of the image.

If the angle exceeds this range, the photo can not be considered enough good to make a

real improvement of the map.

– Camera incidence score. The camera incidence angle ε is intended as the angle be-

tween the normal to the face and the camera direction. This angle should be maintained

between 5◦ - 60◦. Also in this case, if the angle exceeds this range, the photo can not be

considered enough good to make a real improvement of the map.

• Position score. Negative scores are given when the spacecraft escapes from the region defined

by a minimum and maximum distance, Dmin and Dmax.

Rd =

{
−100 if d ≤ Dmin or d ≥ Dmax

0 otherwise
(11)

• Time of flight score. This score punishes the agent for exceeding a defined time window,

identified by bounding the time at Tbound.

Rt =

{
0 if Δt < Tbound

−1 otherwise
(12)

• Thrust score. This score considers the number of times that thrusters are fired, nf . Two

thresholds are assigned: the first is a medium level threshold, lmid, beyond which is still

possible to fire the thrusters; the second threshold, lmax, defines the maximum number of

firings, beyond which the thrusters can not be used again. The score is defined in Eq. (13).

Rf =

⎧⎪⎨
⎪⎩
−0.1 if lmid ≤ nf < lmax

−10 if nf ≥ lmax

0 otherwise

(13)

Action Model. The action space is the space among which the agent must choice the action to

take when required. The control interval, Δt, is the time interval between two state transitions. The

agent interacts with the environment directly controlling the spacecraft thrusters. The action space

here modelled assumes that the spacecraft can thrust in each of the six reference cartesian frame

directions, namely x,−x, y,−y, z,−z. The option of null action is also available to the agent.

This formulation renders a direct and continuous control on the trajectory, consistent with an active

SLAM problem. The action space is defined in Eq. (14).
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A =
[
Tx+ , Tx− , Ty+ , Ty− , Tz+ , Tz− , 0

]
(14)

The control action values are fixed in terms of acceleration, ā = 0.001m/s2; therefore, the actions

directly affect the translational equations of motion of the spacecraft defined in Eq. (1). For example,

if the agent selects the following action, ak = [0, 0, 1, 0, 0, 0, 0], the relative translational equations

of motion will add a positive acceleration to the second equation of the system.

State Model. The state space is designed to synthesize essential information needed by the agent

to decide what is the best action to take. The state space is shown in Eq. (15) and comprises x and

ẋ which are the relative position and velocity between the spacecraft and the target object, and α
and α̇ that are the relative angular position and velocity.

S =

⎡
⎢⎢⎣
x
ẋ
α
α̇

⎤
⎥⎥⎦ (15)

PPO Implementation. As usual for all the reinforcement learning algorithms, a set of hyperpa-

rameters must be defined to correctly assure the convergence of the method. In our PPO implemen-

tation, both the policy and the value function (actor and critic network) are learned concurrently.

In order to select the action at each time step, the policy network exploits the softmax activation

function to generate the elements of the actor vector. The output of the softmax activation function

is a multi-categorical distribution, among which the policy samples the action to take during the

optimization process. Concerning the parameters related to the loss functions, the reward discount

factor γ and the terminal reward discount factor λ are set to 0.99 and 0.94 respectively; the selected

clipping parameter ε is 0.2. The policy and value networks are implemented in two different cases:

a fully-connected ANN architecture and a RNN architecture. The first case uses three linear layers

with tanh and Leaky-ReLU as activation functions for the policy and value functions. The archi-

tecture is described in Table 1, where dim obs is the observation state dimension and act dim is

the action space dimension. In order to improve the convergence and avoid saturation problem the

tanh-layers are initialized as semi-orthogonal matrices.24

Table 1. Policy and Value Networks Architecture: Linear Case

Policy Network Value Network

Layer Elements Activation Elements Activation

1st Hidden Layer 10*dim obs tanh 10*dim obs tanh

2nd Hidden Layer
√
nh1 ∗ nn3 tanh

√
nh1 ∗ nn3 tanh

3rd Hidden Layer 10*dim act Leaky-ReLU 10*dim act Leaky-ReLU

output dim act softmax dim act linear

The RNN architecture case, instead, exploits a sequence of one Long Short-Term Memory (LSTM)

recurrent layer and two drop-out linear layers.25 This architecture is shown in Table 2. It is worth

to underline that the activation functions of the policy and value output layers are the same for both

the cases.
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Table 2. Policy and Value Networks Architecture: Recurrent Case

Policy Network Value Network

Layer Elements Activation Elements Activation

LSTM Layer 24 - 24 -

1st Hidden Layer 64 ReLU 64 ReLU

2nd Hidden Layer 32 ReLU 32 ReLU

output dim act softmax dim act linear

The policy and value functions are periodically updated during optimization after accumulating

trajectories for 10 episodes. Afterwords, the two networks are optimized using the simulated results

divided in batch of dimension 32. An episode terminates when the target object map is completely

acquired or if the spacecraft escapes the region defined by the minimum and maximum distance

from the target. Another possible termination is related to overcoming the mission time, even if it is

very unlikely to occur.

RESULTS

As shown in Fig. 1 in this work we developed a problem that depends on the chaser-target relative

pose, the external environment, the unknown object geometry and the camera model. In order to

bound the problem some characteristics have been maintained constant during the overall training

procedure. In particular the camera field of view (FOV) is fixed as 10◦, that can be considered as a

common FOV for space optical cameras; the integration time is fixed at 30s and the accuracy level

for the map is fixed at 25 correct photos per face. Instead, considering the chaser and target initial

conditions, two levels of randomness have been considered:

• The first case considers a random Sun initial phase, a random target initial conditions, in

terms of orbital true anomaly and rotational dynamics (angle position and velocity). Here,

the chaser-target initial relative position is considered fixed. For simplicity we will name this

case: random case A.

• The second case has a random Sun initial phase, a random target initial conditions, in terms

of orbital true anomaly and rotational dynamics (angle position and velocity) and the chaser-

target initial relative position. Their relative position is however constrained to have both

the x, y and z coordinates positive. This assumption comes from two reasons in particular:

firstly the will of containing the complexity of the problem in order not to saturate the neural

network learning capabilities and also simulate a possible real scenario, in which the initial

condition is constrained in a specific space without knowing a priori the correct engagement

position. As before we will name this case as random case B.

To better understand the DRL agent behaviour, the neural network was trained with two different

reward models. In the first one, there was no care about the thrust level of each simulated episode,

hence the total reward is given by:

Rk,1 = Rm +Rd +Rt (16)
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Where Rm, Rd and Rt are the scores defined before. Then, we decided to make the mission goal

more complex and we introduced the thrust level related objective. In this case the total reward is

given by:

Rk,2 = Rm +Rd +Rt +Rf (17)

Random Case A. In Figure 2, the results obtained with random target initial condition, random

Sun phase and fixed relative position are shown. Here the Rk,1 reward model is exploited to make

the agent learn to reach the best mapping quality possible. In the plot the average map level trends

of the Linear and Recurrent policy architecture are compared in a simulation of 15000 episodes

length.

Figure 2. Random Case A. Map Level trend for reward modelRk,1 with position, map
and time scores. Comparison between the two Policy Architectures: linear/MLP-3
and recurrent/LSTM.

Analysing the results some remarks can be derived:

• The linear policy, MLP-3, seems to learn and converge faster then the recurrent policy, LSTM.

Nevertheless, the MLP-3 curve presents more oscillations and an overall lower stability with

respect to the LSTM curve policy behaviour.

• Concerning the final result of the simulation, the recurrent policy converges to a slightly

higher map level in the same training length of the linear policy. In average the map level

reached by the two policies is around 70%-80%.

• The fact that the learning curve of the LSTM policy grows gradually shows that having part

of the network composed by recurrent layers makes the learning process slower, as expected,
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but safer and more stable. Indeed, the potential robustness of a recurrent network was one of

the main reason that drove this kind of analysis.

In Figure 3, the same comparative analysis shown before was performed. In this case the reward

model, Rk,2, includes also the thrust level minimization objective. As before, the same general

characteristics are present also in this kind of simulation. MLP-3 is faster in learning but unstable in

keeping on growing with respect to LSTM. The overall results is around 60%-70%. Not surprisingly,

the percentage is slightly less than the one obtained with the Rk,1 reward model; indeed, the fact

that the reward adds a new task to the agent determines a shift in the learning process priorities and

therefore an automatic reduction of the map level if considering the same amount of episodes.

Figure 3. Random Case A. Map Level trend for reward model Rk,2 with position,
map, time and thrust scores. Comparison between the two Policy Architectures:
linear/MLP-3 and recurrent/LSTM.

It is worth to notice how the current method outperforms the one adopted in our previous work,4

where A2C algorithm was exploited. Indeed here with both the linear or the recurrent policy ar-

chitecture the agent is capable to achieve an average map level of 70%-80%; with A2C algorithm,

with equal characteristics in terms of random initial conditions, the results were quite lower, around

40%. In Figure 4, a resulting trajectory is shown. The agent, characterized by a recurrent policy and

trained with Rk,1 reward model, starting from the fixed initial relative position of r0 = [10m, 100m,

10m] reaches a 100% map level in about 3.67h around the target object before escaping.

In Figure 5, a sensitivity analysis about the thrust level has been performed. The analysis ex-

ploited the already trained linear, MLP-3, networks for the two different reward models. The aim

of the analysis is to understand if the additional score, related to the thrust level, actually helps the

agent to reduce the number of firings. In particular, it can be noticed that, for the same type of policy

architecture the average thrust level is lower for the Rk,2 reward model. This result is expected be-
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(a) 3D Trajectory

(b) Trajectory XY-projection (c) Trajectory XZ-projection

Figure 4. Random Case A. Trajectory obtained with recurrent policy.

cause the reward model considers also the score relative to the containment of the number of firings.

The value shown in the plot, that is the percentage of the firing is computed as the percentage of the

firings selected by the agent with respect to all the possible firings that the agent could have chosen.

As observable, in the Rk,1 model the average number of firings is around 90%, while in Rk,2 model

the average number is around 80%. Despite the results do not show a strong reduction in firing

percentage, they demonstrates how the use of a specific thrust score is effective to accomplish the

task requested. The same result is obtained also considering the recurrent policy.

In Figure 6, as example, a trajectory obtained with the Rk,2 reward model by the linear policy is

shown. In this plot it is possible to observe the control action profile during the episode. In particular
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(a) Reward model Rk,1 (b) Reward model Rk,2

Figure 5. Random Case A. Thrust level comparison between the two reward models
Rk,1 and Rk,2, with policy architectures: linear/MLP-3.

(a) 3D Trajectory

Figure 6. Random Case A. Trajectory obtained with linear policy.

the agent obtained this result reaching a map level of 94%, in 2.1h with a 75.4% of firings.

Random Case B. In Figure 7, the results obtained with random target initial condition, random

Sun phase and random initial relative position are shown. Here the Rk,1 reward model is exploited

to make the agent learn to reach the best mapping quality possible. In the plot the average trends

of the Linear and Recurrent policy architecture are compared for 15000 episodes simulation. The

14



level reached by the two policies is comparable, around 55%. Also here, as in the first two analyses

shown, the characteristics of the different architectures hold. As expected, the average map level

is lower than the one achieved in the Random Case A; this outcome was expected considering the

fact that the state space is quite bigger now, due to the randomness in the initial relative position.

As before, it is worth to underline that the results obtained with a PPO learning process greatly

overcome the ones obtained by A2C in our previous work.4

Figure 7. Random Case B. Map Level trend for reward modelRk,1 with position, map
and time scores. Comparison between the two Policy Architectures: linear/MLP-3
and recurrent/LSTM.

In Figure 8, the same comparative analysis is performed. In this case the reward model, Rk,2,

includes also the thrust level minimization objective. In this analysis, differently from the previous

ones, the linear policy performs better than the recurrent policy with an equal learning process

length. Some features are equal, like the different grown rate, especially for the recurrent policy.

The reason behind the fact that the linear policy reaches ah higher level after 15000 episodes is

related to the combination of the reward model, Rk,2 and the randomness level. Indeed, here, the

state space is bigger and also the objective are more complex and wider, that determines the grown

of the recurrent policy to be slower than in the other analysis. However, for both the architectures the

level reached is around the 50%; in terms of map level, this result is not good as the ones obtained

in Rk,1. However, considering the fact that for the current reward model the state space is greatly

wider, the result is high enough to be considered good.

In Figure 9, the sensitivity analysis about the thrust level is shown. In this case, the analysis

exploited the already trained recurrent, LSTM, network for the two different reward models. Also

here, it can be noticed that, for the same type of policy architecture the average thrust level is lower

for the Rk,2 reward model. As observable, for Rk,1 model the average number of firings is around

95%-100%, while for the Rk,2 model the average number is around 90%. The values are higher

than the ones in Random Case A always because the state space is wider and therefore the agent
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Figure 8. Random Case B. Map Level trend for reward model Rk,2 with position,
map, time and thrust scores. Comparison between the two Policy Architectures:
linear/MLP-3 and recurrent/LSTM.

needs stronger control to follow the objectives from different initial relative positions.

(a) Reward model Rk,1 (b) Reward model Rk,2

Figure 9. Random Case B. Thrust level comparison between the two reward models
Rk,1 and Rk,2, with policy architectures: recurrent/LSTM.

In Figure 10 some trajectories obtained with the recurrent policy are shown. As observable, the

initial relative position is different for each of them.
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(a) 3D Trajectory - Map: 76.1% - Time: 2.21h (b) 3D Trajectory - Map: 84.3% - Time: 1.27h

(c) 3D Trajectory - Map: 50.7% - Time: 1.06h (d) 3D Trajectory - Map: 39.0% - Time: 1.08h

Figure 10. Random Case B. Trajectories obtained with recurrent policy.

FINAL REMARKS

The present work proposes a refined autonomous path-planning architecture for uncooperative

and unknown target object exploration, aimed to reconstruct the target shape through image pro-

cessing. The proposed methodology improves the results previously obtained with A2C, exploiting

PPO algorithms to design an autonomous policy to control the spacecraft trajectory to obtain the

highest map quality of the target. Sun illumination and viewing conditions of the body emerge as

the key aspects for the realization of the algorithm to optimally retrieve image information. The

sensitivity analysis has underlined the robustness of the trained agents to different Sun illumina-

tion and target object initial conditions. The sensitivity to the initial relative position is less robust

and probably need for more extensive training to facilitate policy generalization to this large set of

environment configurations. DRL confirms, again, to be a valid approach for solving the decision

process problem, merging the advantages of reinforcement learning and neural networks.
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APPENDIX A: PPO ALGORITHM

In Alg. 1 the pseudo-code for the Proximal Policy Optimization algorithm is presented.

Algorithm 1 Proximal Policy Optimization - PPO-Clip

1: Input: initialization policy parameters θ0, initialization value parameters ψ0

2: Initialize batch

3: for k = 0, 1, 2, ... do
4: while batch-step bi ≤ batch-size do
5: Collect set of trajectories Tk = {τi} by running policy πk = π(θk) in the environment

6: Compute Rewards R̂k

7: Compute Advantages Âk based on the current value function V̂ψk

Aπ(xi, ui) =
[ T∑
j=i

γj−ir(xj , uj)
]
− Vψ(xi)

8: end while
9: Compute the probability ratio pk(θk)

10: Update the policy by maximizing the clipping objective function via stochastic gradient

descend (ADAM optimizer):

LCLIP(θ) = Ep(τ)[min[pk(θ), clip(pk(θ), 1− ε, 1 + ε)]Aπ(uk, xk)]

11: Update value function by regression on mean-squared error:

LV =
N∑
i=1

(
Vψ(x

i
k)−

[ T∑
j=k

γj−kr(xij , u
i
j)
])2

12: end for
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