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a b s t r a c t

Driven by the demand for intermittent power generation, Energy Storage (ES) will be widely adopted in
future electricity grids to provide flexibility and resilience. Technically, there are two classes of ES for
storing low-carbon energy: Generation-Integrated Energy Storage (GIES) and non-GIES. GIES stores
energy along with the transformation between the primary energy form (e.g., thermal energy) and
electricity. Long-term Electrical Power System Models (LEPSMs) support analysis including decarbon-
ization studies and energy technology assessments. Current LEPSMs are limited in describing the power
system with ES (e.g., considering one type of ES and not considering GIES). Consequently, a novel LEPSM
is needed, and this paper paves the way towards this goal by bringing together the literature on ES and
LEPSMs. This paper provides a state-of-the-art review of LEPSMs and shows that (a) existing models are
inadequate to address grids with a high percentage of renewables and ES; and (b) there is a challenge in
integrating short-term temporal changes in LEPSMs due to model complexity and computational cost.
Finally, this paper proposes a framework for long-term electrical power system modeling considering ES
and low-carbon power generation, which we have named the long-term power flow electrical power
system framework. The key features of this novel framework are its agent-based modeling of consumer
behavior, scenario reduction for renewables, and power flow analysis.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

To achieve a low-carbon economy, the penetration of non-
dispatchable renewables in electrical power systems needs to be
increased over the coming decades (Lai et al., 2017a). Energy Stor-
age (ES) is becoming increasingly important in providing energy
and power balancing for the grid. However, installed ES capacity is
still very limited (but rapidly growing) as compared with power
generation capacity (Energy storage).

Liu and Du (Liu and Du, 1016) claimed that there is a significant
technical impact for preserving the demand and supply balance of
renewable energy and minimizing energy costs by selecting the
right ES technology. ES technologies have dissimilar capital, safety,
and technology risks due to their different technical complexity. Liu
and Du (Liu and Du, 1016) proposed a multi-criteria decision sup-
port framework for ES technology selection based on group
decision-making perspectives. They also noted that there are
greater risks for the ES systemwhen many types of ES technologies
are integrated. Thus, determining the optimal ES technology mix
when accounting for multidimensional risks is an ongoing
challenge.

Technically, there are two main categories of ES for storing low-
carbon energy: Generation-Integrated ES (GIES) and non-GIES
(Garvey et al., 2015a). GIES is ideal for storing a large amount of
energy at some point along the transformation between the pri-
mary energy form (e.g., the kinetic energy in wind) and electricity
(Garvey et al., 2015a). GIES typically consists of novel ES and power
generating technologies, including the integrated wind power
generator with compressor and pumped thermal energy storage
(Garvey et al., 2015b; Smallbone et al., 2017).

Non-GIES directly converts the primary energy into electricity
for storage, such as a permanent magnet synchronous generator for
wind energy with electrochemical ES (Xia et al., 2018). Non-GIES is
a more common form of ES due to the technological maturity of
various batteries (e.g., Lithium-ion and redox flow) (Lai et al.,
2017a).

Long-term Electrical Power System Models (LEPSMs) need to
acknowledge the differences between ES technologies and energy
production methods for credible planning of low-cost, clean, and
secure power systems. Traditionally, LEPSMs have been designed to
model scenarios dominated by a dispatchable plant, while future
scenarios will have large proportions of variable/inflexible gener-
ation and ES. A new LEPSM is needed for system planners and
government agencies to promote technologies and policies.

Driven by the above challenges and the existing gap in knowl-
edge, this paper provides the following contributions:

1. A review of emerging ES technologies.
2. Categorization of ES technologies based on the two typical

configurations (GIES and non-GIES) and how ES can affect the
power grid from the techno-economic perspective.

3. A critical review of existing LEPSMs, highlighting the key chal-
lenges and research opportunities in respect to high penetra-
tions of ES and low-carbon power generation.

4. Description of an LEPSM considering: A) intermittent electricity
production from renewable sources, B) unpredictable electricity
consumption, C) the role of GIES and non-GIES, and D) long-
term electrical power system optimization.

The rest of the paper is organized as follows. Section 2 presents
the methodology for selecting the literature to conduct the review.
Section 3 reviews the emerging ES and GIES systems for low-carbon
power generation. Section 4 reviews the operational and planning
modeling techniques for electrical power systems and long-term
electrical power system studies with ES. Section 5 introduces
3

three areas that are of significance in LEPSMs. These are renewables
scenario reduction, Agent-based Modeling (ABM) of energy con-
sumption, and Levelized Cost of Electricity (LCOE). The novel
framework for long-term electrical power system modeling is
described in Section 6, which provides enhanced planning and
scheduling capabilities for electrical power systems featuring high
penetrations of low-carbon power generation and ES. Finally, dis-
cussion and conclusions are given in Sections 7 and 8, respectively.
2. Methodology

Themethod used in the literature review consisted of two steps:

(i) Identifying the literature to review by a search in databases
and Google.com combined with a set of rules for selecting
the relevant pieces of literature. Some LEPSMs and ES tech-
nologies may not be published in databases if they are
developed by a business or other commercial enterprise.

(ii) Mapping the content of the reviewed literature by extracting
information using a set of questions which identifies the
aspects for LEPSM modeling improvements.

The method is described in the following sections.
2.1. Identifying literature

As this work focuses on electrical power system modeling with
generation-integrated ES, three classes of literaturewere identified.
We searched for literature in the Scopus, Science Direct, and Google
Scholar databases using the following Boolean search string:

For generation-integrated energy storage technologies (Section
3): (Novel AND energy storage) OR “Generation integrated energy
storage” OR “energy storage” AND (wind OR solar OR coal OR nu-
clear fission OR concentrating solar power OR photovoltaic OR
hydro).

For long-term power and energy system modeling (Section 4):
(Long-term AND electricity system) OR “energy system modeling”
OR “power system modeling.”

For energy and power system with energy storage (Sections 3
and 4): (“Energy storage” OR (long-term AND energy system)) OR
(“generation integrated energy storage” AND long-term AND en-
ergy system) OR (“energy storage” AND power system) OR (“gen-
eration integrated energy storage” AND power system).

To select a relevant and manageable set of studies among the
identified pieces of literature, we established the following selec-
tion rules:

Inclusion of studies:

� From journals, conference proceedings, organization reports,
and software manuals available on the internet

� On any categories of energy-related sectors (i.e., transport, heat,
and electricity)

� Any geographical scope (i.e., energy study could be related to
one region or country)

Exclusion of studies:

� “Battery” and “electro-chemical energy storage systems” as the
review focuses on GIES

� Top-down ES models. These models are based on macroeco-
nomics and are not within the scope of this paper where tech-
nology is the focus

� In languages other than English (English is widely used by ac-
ademics and professionals)

http://Google.com
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� In duplicates (e.g., if a work is an extended version of a prior
work, then the extended version is considered)

� Of unrecognizable source or non-peer reviewed works, as
credibility can be challenged
2.2. Mapping content

The following questions drove the literature review process and
identified the information to be extracted:

� Which electrical power system problems does the model aim to
answer (e.g., planning or operation)?

� What is the timeframe considered in themodeling (e.g., hours or
years)?

� What is the geographical scope (e.g., national or regional)?
� What are the output indicators of the model (e.g., economic or
technical)?

� Which ES technologies are considered in the electrical power
system model?

� What are the current emerging ES technologies for GIES?
� Which GIES technologies are mature?
� What are the conclusions from the work and suggested
improvements?

3. ES for low-carbon power generation

This section presents a review of the usage and types of grid ES
technologies, with a focus on GIES.

3.1. Types of ES

There are several types of ES. Luo et al. (2015) provided a
comprehensive review of the economic and technical properties of
ES technologies. Amirante et al. (2017) gave an overview of the
following: mechanical systems (Compressed Air ES [CAES], Pumped
Storage Hydropower [PSH], and Flywheel ES [FES]); electrical sys-
tems (supercapacitors and superconducting magnetic ES [SMES]);
electrochemical systems (lead-acid batteries, Lithium-ion batteries,
and flow batteries); and hydrogen ES. The overview concluded that
PSH and CAES systems provide low costs of ES capacity when
Fig. 1. Energy transformation processes between low-carbon power gener

4

installed on a large-scale and have long discharge times and high-
power ratings. FES systems provide very high power but have
relatively low storage capacities. Hydrogen ES, especially with
clathrate hydrates and carbon nanotubes, is still in the develop-
ment stage. For electrochemical ES, flow batteries have the benefit
of decoupled power and ES capacities, so both capacities can be
adjusted relatively easily. Flow batteries have experienced
numerous technological breakthroughs and are expected to be
commercialized soon (Lai et al., 2017a; Lai and McCulloch, 2017).
Lithium-ion is experiencing plummeting costs (Lai et al., 2017a;
Trainer, 2017), but there is still a major concern with the available
service life due to cell degradation and mining of metals including
lithium and cobalt (Lai et al., 2017; Lai et al., 2019a; Lai et al., 2018).

Energy transformation is a critical subject for ES, Fig. 1 depicts
the relationship between the low-carbon power generation sour-
ces, energy conversion processes, and subsequent possible GIES
technologies. Chemical energy can be transformed into thermal
energy via combustion or other reactions, thermal energy can be
transformed into kinetic energy via a heat engine, and kinetic en-
ergy can be converted to electricity via an electrical generator. Also,
thermal energy can be converted to electricity via a thermoelectric
generator. However, at 8% efficiency, such generators are too costly
to be used in high power applications (Chen et al., 2016).
3.2. Emerging non-electrochemical ES

Various non-electrochemical energy storage technologies are in
the Research and Development (R&D) stage, and the most relevant
are the following.

FES relies on angular kinetic energy for ES. Most FES systems use
an electric motor to accelerate and decelerate the flywheel.
Research is ongoing to develop flywheel systems that reduce losses
associated with electrical-mechanical energy conversion, such as
the continuously variable transmission system (Dhand and Pullen,
2015; Mangialardi and Mantriota, 1992).

Underwater CAES (UWCAES) is derived from conventional CAES
but takes advantage of the hydrostatic pressure in deep seawater. If
deep water (several hundred meters deep) is close enough to land
that the turbomachinery can be located onshore, then UWCAES can
be a cost-effective ES technology (Pimm et al., 2014). Pimm et al.
(2011) presented a methodology to determine the optimal shape
ation and possible generation-integrated energy storage technologies.



Fig. 2. An electrical power system consisting of a) Non-GIES only; b) GIES and non-
GIES.
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and cost of energy bags (cable-reinforced fabric vessels). With the
possibility for large-scale deployment, detailed techno-economic
analysis is required (Pimm et al., 2011).

Gravity ES is a set of ES technologies that involve moving liquids
or other large masses upwards against the force of gravity. There
are various forms of gravity ES in development, including a concept
with a water-filled container, typically in an excavated hole in the
ground, and a heavy piston (Berrada et al., 2017a, 2017b; Benato
and Stoppato, 2018). When electricity is needed, the piston is
allowed to move downwards, forcing water through the turbine.
Gravity storage has low self-discharge, good round-trip energy ef-
ficiency at ~80%, long life span, high power density, and fast
response times. Berrada et al. (2017b) developed an optimal sizing
method for gravity ES to optimize the technical and economic
factors, and they found that gravity ES can be competitive with
other ES technologies.

Sensible Thermal Storage (STS), traditionally paired with
Concentrated Solar Power (CSP), applies to heat-based sustainable
generation such as nuclear power plants (Zhao et al., 2018), and can
be used to enhance the controllability of fossil fuel plants
(Garbrecht et al., 2017). Li (2016) gave a comprehensive review of
STS. STS has low operational cost and good stability, typically using
materials such as water, gravel, or oil, but it also has low energy
density. One of the current challenges is to develop a molten salt
mixture that gives excellent thermal storage and transfer without
degradation (Wu et al., 2018). Further research is also needed on
the cost and charging/discharging performance of energy systems
using STS (Li, 2016; Iranzo et al., 2018). Ghorbani et al. (2020)
performed an exergy and energy analysis of a wind power system
with CAES and multi-stage phase change material. They found that
phase change material has excellent thermo-physical properties,
providing high energy density with a low temperature gradient
between the storing and recovering of energy. Exergy analysis
demonstrated that about 60% of exergy destruction happened in
the phase change material. The round-trip efficiency can reach up
to 80.71% for the proposed ES, significantly higher than conven-
tional packed-bed thermal ES systems at 70%.

Pumped Thermal ES (PTES) was introduced in the late 1970s
(Benato and Stoppato, 2018; Benato, 2017). PTES comprises a
reversible heat pump/heat engine and two thermal energy storage
vessels, one high temperature and one low temperature. Smallbone
et al. (2017) trialed a pilot-scale PTES system. They determined that
the techno-economic analysis for PTES should be conducted.With a
liquid thermocline and packed bed as the cold store, Davenne et al.
(2017) examined the exergy losses of an integrated wind and PTES
system known as “Wind-TP” (Wind-thermal pumping) (Garvey
et al., 2015b). With a computer simulation of the packed bed,
they determined that the exergy loss depends on sphere size and
thermal store aspect ratio. Sorknæs et al. (Sorknæs, 2018) presented
simulation techniques for modeling seasonal PTES systems with
energy system models. The techniques can estimate the actual
operation on an hourly basis and the annual thermal losses. Benato
and Stoppato (2018) provided a technical overview of PTES. They
determined that PTES is able to compete with the other large-scale
energy storage technologies, including CAES and batteries in term
of energy density and specific cost.

Liquid Air ES (LAES) was proposed in the late 1970s (Zhang et al.,
2018). To charge an LAES system, the air is liquefied through
refrigeration, and the cool liquid is stored in insulated vessels. To
discharge, the liquid air is drawn from the tanks and pumped to
high pressure and then allowed to boil. As the liquid air boils, the
pressure increases further and the high-pressure gas is used to
drive a turbo-generator to generate electricity (Krawczyk et al.,
2018). Zhang et al. (2018) conducted energy and exergy analyses
for an LAES system based on liquefied natural gas, and concluded
5

that the electricity storage efficiency of a LAES system could be 70%.
Generally, LAES is a promising technology with good potential for
taking advantage of waste heat from industrial processes (Antonelli
et al., 2017). Xie et al. (2018) studied the economic feasibility of a
200 MW LAES system in the UK and determined that the best
system performance, the payback period can be six years.

3.3. Hybrid ES and generation

Hybrid ES is an emerging paradigm for two or more different ES
technologies that are integrated into one system. The purpose is to
exploit the advantages and overcome the drawbacks of multiple
complementary storage technologies.

An example of a hybrid ES system involves CAES and LAES. An
LAES system can be connected to a CAES system, where only the
CAES is connected to the grid, exploiting CAES’s relatively high
efficiency and LAES’s relatively low cost per unit of storage capacity
(Kantharaj et al., 2015a). References (Pimm et al., 2015) and
(Kantharaj et al., 2015b) discuss the optimal operation and ther-
modynamics of such series-connected CAES/LAES systems.

Pimm and Garvey (2014) presented a system that couples FES
with CAES. An electricity trading algorithmmaximizes the system’s
revenue through electricity price arbitrage, with the FES respond-
ing to the higher-frequency price signals. This configuration could
be more profitable than a non-hybrid energy storage plant, that is,
using FES or CAES alone.

Hybrid solar and wind generators working with CAES systems
were proposed by Ji et al. (2017) to generate stabilized electrical
power and hot water. The stored solar thermal energy reheats the
compressed air to increase generation capacity before the air enters
the air turbine. Round-trip efficiency, exergy efficiency, and elec-
tricity storage efficiency could be up to 61.2%, 65.4%, and 87.7%,
respectively. Using CSP to preheat the air in a CAES system before
compression increases the total exergy for CAES (C�ardenas et al.,
2017).

3.4. GIES

Garvey et al. (2015a) provided a detailed account of GIES. GIES
systems exist for biomass generation, natural hydropower, and CSP.
CSP using power towers or power dish systems coupled with
thermal storage is a well-known type of GIES system. Inexpensive
thermal storage materials and increased solar receiver efficiencies
at higher temperatures are the key research areas to make such
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systems cost-competitive. Molten salts and thermic oils are the
most mature heat transfer fluids. Thermal storage can be classed
into three categories, namely Latent Thermal Storage (LTS), Ther-
mochemical Thermal Storage (TTS), and STS (Dutta, 2017).
Compared to LTS and STS, TTS has a lower charging temperature,
heat loss, and volume requirement (Aydin et al., 2015; Bayon et al.,
2018). TTS is an emerging type of storagewith up to 10 times the ES
density over STS. A techno-economic analysis by (Bayon et al., 2018)
found that the auxiliary equipment energy consumption and
feedstock (e.g., solid reagent) costs are the critical factors for a
system’s capital cost.

Novel GIES systems have been proposed for wind power. Garvey
et al. (2015b) scrutinized wind transmission system designs using
exergy analysis and determined that there are challenges with
integrating ES into wind power transmission systems, in particular
on acceptable performance at different frequencies and compati-
bility with the electrical grid at minimum cost. Krupke et al. (2017)
developed a new type of GIES which consisted of a wind turbine
and CAES.

Fig. 2 illustrates how GIES and non-GIES systems can influence
the electrical power system. GNEL denotes non-electrical conver-
sion of energy, such as the conversion from photon energy to
thermal energy in a CSP plant, and GEL denotes electrical
generation.

For a non-GIES-only electrical power system as depicted in
Fig. 2a, all the primary energy has to go through electricity con-
version at least once for storage (Liu and Du, 1016).

On the generation side, large-scale ES systems (energy capacity
�100 MWh and power capacity �1 MW) have already been
installed and are known as bulk ES. They have large ES capacities
and low capital costs per unit of storage capacity. These are PSH,
CAES, and LAES (Luo et al., 2015).

ES systems from kW to 10 MW are installed in the distribution
and transmission systems to enhance system performance (Zakeri
and Syri, 2015). It is useful to store surplus renewable generation
for later use and to reduce renewable curtailment. For transmission
planning with electrochemical energy storage, Aguado et al. (2017)
examined the long-term transmission expansion for a 6-bus test
system and determined that the ES system allows delaying the
construction of some lines for several scenarios.
Table 1
Current development of non-electrochemical energy storage systems with low-carbon p

Generation technologies

Thermal cycle

Nuke fission Coal Gas CSP

Storage
technologies

Pure
Heat

Latent C (Abe et al.,
1986)

/ / P (Dutta, 20
Bayon et al.

Sensible C (Zhao
et al., 2018)

C (Garbrecht
et al., 2017)

/ P (Dutta, 20
Bayon et al.

Fly wheels / / C (Hebner
et al., 2002)

/

CAES / / / C (Ji et al., 2
2017)

PHS / / / /

Pumped
storage heat

/ / / /

Gravity / / / /
Liquid air C (Liet al.,

2014)
/ / /

/ ¼ Not available.
C (Concept) ¼ Described in the literature.
W (Working) ¼ At least a plant is physically built.
P (Practice) ¼ A common industrial practice.
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Also, at the distribution level, optimizing energy services
including thermal insulation and district heating are challenging
due to environmental and cost constraints (Coss et al., 2017).
Biomass is a renewable energy source and an excellent heat source
if used in a carbon neutral way, that is, if all direct and indirect
carbon emissions are later sequestered by new plants or trees (It
should be noted that the rate at which carbon can be recaptured,
and hence biomass’s ability to meaningfully contribute towards the
Paris agreement targets of limiting the increase in global average
temperature, is still a matter of debate (MacDonald and Moore,
2020)). Coss et al. (2017) developed a multi-layer energy service
system model and examined the substitution of a decentralized
gas-boiler system with a central biomass-fired system. Coss et al.
(2017) proposed the “Method relation analysis” to study various
evaluation methods for the energy system design and is useful for
carbon footprint and emergy analyses. The purpose is to examine
the dependency of various valuation principles and provide
awareness on how policy goals affect sustainable system configu-
ration. Emergy analysis is critical to acknowledge the environ-
mental burden of processes and is associated with energy carriers,
including all indirect flows of resources and information flows.

Fig. 2b shows the electrical power systemwith a combination of
GIES and non-GIES. Here, the key difference between the GIES and
non-GIES-only systems (Fig. 2a) is that, with the GIES, the energy
conversion process is minimized by avoiding the conversion to
electricity. This “integrates” ES into the generation source. Storage
of wind and solar thermal energy can bemore efficient with GIES at
the generation and distribution levels. Nevertheless, non-GIES is
required to provide grid services such as frequency and voltage
regulation. The response time for electrochemical storage can be on
themillisecond timescale, which is significantly faster than thermal
storage. Table 1 summarizes the R&D for non-electrochemical ES
systems with low-carbon power generation technologies, which
are important technologies for GIES.

GIES can play an important part in maximizing the efficiency of
the ES and minimizing system cost. However, R&D in GIES spans
from the component level (e.g., CSP and pumped storage heat) to
the system level (e.g., on how GIES could benefit the energy
system).

In summary, this section has presented a review on emerging ES
ower generation technologies.

Solar
photovoltaic
(PV)

Hydro Wind

17; Aydin et al., 2015;
, 2018)

/ / /

17; Aydin et al., 2015;
, 2018)

/ / C (Okazaki et al., 2015; Liu
et al., 2017)

C (Ye and Sun,
2009)

/ P (Sebasti�an and Alzola,
2012)

017; C�ardenas et al., / C (Wang
et al., 2013)

C (Ji et al., 2017; Cavallo,
2007)

C (Ma et al.,
2014, 2015)

W C (Kapsali et al., 2012; Bueno
and Carta, 2006)

/ / C (Garvey et al., 2015b;
Sorknæs, 2018)

C (StratoSolar) / /
/ / /



Fig. 3. Time horizon and electrical power system analysis.
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systems and energy forms, with emphasis on GIES. The next section
reviews the modeling techniques and models for electrical power
system planning and operation with emphasis on ES.
4. Electrical power system planning and operation

The goal of LEPSMs is to aid optimal system planning and
operation. In the literature, there is no formal definition for short-
term, medium-term, or long-term power system analysis (Khuntia
et al., 2016). The usual consensus timescale is for short-term to be 5
years or less, medium-term to be from 5 to 15 years, and long-term
to be 15 years or more (Hall and Buckley, 2016). Fig. 3 categorizes
the study horizons and system study methods.

The two types of system studies are given as follows:
Planning: The goal of capacity expansion planning is to ensure

that the system will continue to meet energy demands by
upgrading the system (Park and Baldick, 2016). The temporal res-
olution can be monthly or annually. Direct Current (DC) load flow
analysis can be included with linear resistive transmission line
constraints. Capacity Expansion Models (CEMs) are often used for
electrical power system planning (Diakov et al., 2015; Shirley and
Kammen, 2015; Blair et al., 2015). The goal is to identify the most
cost-effective long-term investment in and retirement of trans-
mission and generators to meet the power system reliability re-
quirements. Due to computational power limitations, CEMs do not
consider the short-term operation of the system, where the
dispatch details are neglected. Diakov et al. (2015) proposed a
“Linking Tool” to bridge Production Cost Models (PCMs) with CEMs.

Operation: The goal of system operation planning is to ensure
the system is operated to achieve a power balance between gen-
eration and load, and to determine the optimal dispatch. This
concerns unit commitment, Alternating Current (AC) load flow
analysis, and economic dispatch. The temporal resolution can be
from minutes to hours, where short-term power system phenom-
ena, such as voltage, real power, and reactive power, are considered.

Table 2 presents descriptions of the three main types of models
in power sector analysis. On the consumption side, short-term load
forecasting has been used for short-term system operation. In long-
term electrical power system planning, the change of technologies
and energy policies have an impact on consumption behavior (Guo
et al., 2018). McPherson and Tahseen (2018) acknowledged that the
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PCM “filters” the result and affects the electrical power system
design, market regulation, and modeling. For ES, profitability is
affected by the dispatch horizon and bidding mechanism. Further
research is required to investigate the benefits that ES brings to
system operators, utilities, and energy consumers (Zidar et al.,
2016). Table 3 presents the scope of reliability assessment in the
three types of modeling. It is evident that long-term system plan-
ning (i.e., capacity expansion) typically excludes most aspects of
reliability and poses a serious issue.
4.1. Long-term electrical power system models

Future energy scenarios are built to evaluate the impacts of
policy decisions, climate change, and energy security policies
(DeCaroliset al., 2017). There are several LEPSMs (Gargiulo and
Gallach�oir, 2013; Mahmud and Town, 2016).

Top-down models are based on macroeconomics (Klinge
Jacobsen, 1998) and are not the scope of this paper, where tech-
nology is the focus. Bottom-up models are based on a detailed
description of the technical components of the energy system
(Pfenninger et al., 2014;Mischke and Karlsson, 2014; Yi et al., 2016).
These are systems engineering optimization models used for
medium-to long-term energy system planning, analyzing climate
change policies, and developing scenarios.

Moser (Moser et al., 2020) studied how the future European
electricity system would be affected by techno-economic parame-
ters of electrical ES systems with the cost-optimizing energy sys-
tem model Renewable Energy Mix (REMix). The first study was a
cost sensitivity analysis with common ES technologies. The
deployment of photovoltaic (PV) and wind systems can impact on
the ES installation capacity and cost effectiveness. The second study
was concerned with the competition between mature and novel ES
technologies. For different regions including Southern Europe,
pumped hydro ES is the cost optimal solution. However, Central
Europe relies on a combination of pumped hydro ES, hydrogen ES,
batteries, and power-to-heat ES to be cost optimal. The dominant
bottom-up models are MARKAL, TIMES, and MESSAGE (Model for
Energy Supply Strategy Alternatives and their General Environ-
mental Impact). TIMES is the successor to MARKAL, and it adds the
options to include unequal length periods and to define commodity
flows as new variables with EFOM. MARKAL/TIMES is possibly the



Table 2
Electrical power system modeling methods.

Model Purpose of use Software packages Questions to be explored Typical model
output

Capacity
expansion

� Studying the effects of power sector
policies and technology changes on
the energy mix in the long-term

National-scale
� National EnergyModeling System

(NEMS) - U.S. Energy Information
Agency

� Long-range Energy Alternatives
Planning System (LEAP) -
Stockholm Environment Institute

� The Integrated MARKAL-EFOM
System (TIMES) - International
Energy Agency (IEA)

� OSeMOSYS
� Renewable Energy Mix (REMix)
� Regional Energy Deployment

System (ReEDS) - National
Renewable Energy Laboratory
(NREL)

� Haiku - Resources for the Future
� MARKetAllocation (MARKAL) -

International Energy Agency
(IEA)

Utility-scale
� Resource Planning Model (RPM) -

NREL
� Aurora - Electrification Products

Industrial Solutions (EPIS)
� System Optimizer - ABB
� PLEXOS - Energy Exemplar

� What is the optimal energy mix to meet the long-
term energy demand?

� What are the cost implications of environmental
policies on various energy mixes and capacity?

� What is the cost of different energy mixes to achieve
a minimum greenhouse gas emissions goal?

� How will the uncertainty in future natural gas prices
affect capacity investment?

� What will the change be in energy consumption and
expenditure?

� What are the energy distribution and efficiency
effects of different energy policies?

� Annual and
system lifetime
energy generation

� Generation and
transmission
capacity changes

� System lifetime
and annual
greenhouse gas
emissions

� Annual fuel
consumption

� Net present value
and electricity
prices

Production
cost

� Short-term studies compared to CEM,
but at higher temporal resolution
(hours to 5-min)

� Analyzing the impact of changes in
the system generation on system
operation

� Considering regional prices and
conducting transmission congestion
studies

� Determining emissions at a high
resolution

� PROMOD - ABB
� GE-MAPS - General Electric
� PLEXOS - Energy Exemplar
� GridView - ABB
� PowerFactory - DiGSILENT
� MATPOWER - Cornell University

� What is the least cost dispatch of a complex system of
interconnected generators to reliably meet load in
every hour of the day at every location?

� What are the impacts on operations, emissions, and
resource adequacy, of the retirement of coal or
nuclear units in a given region?

� What is the maximum potential for switching from
coal steam units to natural gas combined cycles?

� Minutes and
hourly power flow

� Regional prices
� Short-term

emissions
� Fuel consumption
� Loss of load
� Ancillary service

prices
� Renewable

curtailments

Table 3
Electrical power system models and reliability assessments considered.

Aspects of reliability assessments considered

Generator (Resource)
adequacy

Flexibility requirement Transmission
adequacy

Generator
contingencies

Transmission
contingencies

Frequency stability Voltage
stability
and
control

Capacity
expansion
models

Limited: Possible peak
capacity constraint for
resource adequacy

Limited: Most models are not
simulated at the high temporal
resolution, e.g., hourly

No No No No No

Production
cost
models

Yes Yes Limited: DC optimal
power flow for
transmission
adequacy

Limited: Generation
reserves in each time period
are obtained. These reserves
can be adequate to meet
contingency events, but not
the actual consequences of
contingencies

Limited: Operation of reserves
cannot be simulated to check
frequency stability

No
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most widely used general-purpose energy systems model
(Pfenninger et al., 2014; Kannan and Turton, 2013;
Pietrapertosaet al., 2010; García-Gusano et al., 2016). By examining
these models, we believe that examining the temporal and spatial
scales are becoming increasingly important, to accurately answer
questions about the technological and economic feasibility of
evolving energy systems (Laes and Couder, 2014). Spatial detail may
be critically important for renewables: their economic potential
and generation costs depend greatly on their location (Pfenninger
8

et al., 2014), such as for PV systems (Sommerfeldt and Madani,
2017).

Pfenninger et al. (Pfenningeret al., 2018) showed that open-
source energy system models and data introduced several bene-
fits. These included enhancing research quality, minimizing work
duplication, enhancing modeling legitimacy and credibility,
providing policy debate transparency, and importantly, giving
government agencies and researchers access to high-quality plan-
ning tools and data without financial obligations.



C.S. Lai, G. Locatelli, A. Pimm et al. Journal of Cleaner Production 280 (2021) 124298
4.2. Capacity expansion and production cost integrated LEPSMs

Researchers have realized the importance of integrating capac-
ity expansion models and production cost models to improve long-
term energy studies from the power grid’s perspective. The power
grids for each country have distinctive features (Boston and
Thomas, 2015). However, traditional energy system modeling,
such as that performed using TIMES, is decoupled from power
system analysis. Consequently, many phenomena, such as real
power balance, reactive power balance, voltage magnitude, and
voltage angle, are not considered (Rose et al., 2016).

Pfenninger et al. (2014) described energy system modeling
considering uncertainty and a range of spatial and temporal reso-
lution scales. They noted that at the local scale, individual house-
holds and businesses consume energy to meet the demand for
services and products. At the national scale, organizations and
communities influence and guide the adoption of technologies and
policies.

Current energy studies have employed assumptions for
renewable generation, such as Capacity Factor (CF) or annual
average energy production (Pietrapertosaet al., 2010; Pratamaet al.,
2017; Aslani and Wong, 2014; Parrado et al., 2016; Chadee and
Clarke, 2017; Korsavi et al., 2018). By observing the aggregate
yearly energy production, Korsavi et al. (2018) determined the
economic and energy performance of 14 rooftop PV systems rated
at 5 kW in Iran, and showed that there is a considerable variation in
economic performance when subsidies are included for the system,
where the payback period can be reduced by up to four times (i.e.,
from 48 years to 12 years) when there are subsidies. The net pre-
sent value will be negative for all cases without any subsidy.

CF and annual average values are debatable, and the uncertainty
for renewable generation is generally not taken into account
(Shirley and Kammen, 2015; Min et al., 2018). These models used
for policy-making tend to have high technology details but a lack of
spatial details (Simoes et al., 2017). Recent works have considered
including CEMs with production cost models (Rose et al., 2016; Min
et al., 2018; Zhang et al., 2016; Seljom and Tomasgard, 2015; Scholz
et al., 2017; Zhang et al., 2013; Poncelet et al., 2016; Lunzet al.,
2016).

High-resolution data, particularly for uncertain renewable
sources, are of significant importance (Scholz et al., 2017). Due to
the inter-year and seasonal changes in renewable generation, long
time series are necessary for energy system modeling with the
presence of wind and solar power.

Due to the rapid evolution of the ES system, the present
modeling technique in TIMES is inadequate. Capturing the char-
acteristics of each energy storage medium is essential. So far, no
storage solution has been properly addressed in the current long-
term energy system models. ES can increase the utilization of
renewable energy by storing surplus energy for use at a later time
when a more expensive or more polluting generation would
otherwise be used (Lai et al., 2017). The surrounding incentives and
business models that will allow batteries to capture this value still
need to be clarified (Braff et al., 2016).

The two key challenges in integrating the capacity expansion
and production cost models are the following:

Accommodating emerging technologies (including renewables,
Electric Vehicles (EVs), and ES systems): Integrated models present
challenges in including various key energy technologies. Heylen
et al. (2016) presented a framework to study and compare the
socio-economics and reliability of power systems, with a focus on
the short-term decision-making processes of transmission system
operators. Key technologies, including renewables and ES, were
found to be missing. Similarly, Deane et al. (2012) developed a
methodology to provide feedback to an energy system model from
9

the electrical power system unit commitment and dispatch. The
power and energy system modeling was conducted with PLEXOS
and TIMES. The only ES technology considered was pumped hydro.
They determined that energy systems model could undervalue
flexible resources, undervalue wind curtailment and overvalue the
use of baseload plant.

Results quality and model complexity: Electricity network and
generator characteristics are not included in current long-term
energy system modeling. One reason for this is that power flow
studies can be a computational burden in long-term energy system
modeling (Poncelet et al., 2016). Li et al. (2016a) presented a
method to simplify the modeling of power flows in the inter-
regional transmission grid using market-based power flows. In it,
the power flows are subject to the net transfer capacity between
regions rather than the physical capacity constraints of specific
transmission lines. Barrows et al. (2015) presented the Resource
Planning Model which co-optimizes dispatch and capacity expan-
sion. The dispatch period was based on a simplified chronological
and high-resolution infrastructure, load, and resource data. The
model simplification affected the computational complexity of the
CEMs. The trade-off between result quality andmodel complexity is
a subject of ongoing research. Zhang et al. (2016) proposed a bi-
level integrated generation-transmission expansion planning
model. The work highlighted that complexity increases at a sig-
nificant rate when including more elements in the system, and
high-performance computers were required to model large-scale
power systems. Chronological electricity demand profiles enable
the model to capture changes in services such as the electrification
of heating and transport (Zhang et al., 2013). Zhang et al. (2013)
developed an integrated planning model that uses electricity load
curves from representative days. Similarly, Poncelet et al. (2016)
adopted time slices (or time series) for renewable energy sources
temporal representation.

Table 4 presents a comparison of the different characteristics of
existing LEPSMs by covering geographic scale, time resolution,
economic analysis techniques, and ES systems. There is a need for a
novel LEPSM that studies multiple timeframes to facilitate a
geographic scale-up to the national level. ES models are limited
within the present LEPSMs, and more types and technical details of
storage are necessary. This is a particular concern for the assess-
ment of GIES and non-GIES alternatives to meet the low-carbon
economy. Models with high temporal resolution (e.g., seconds)
will potentially give better Results and highlight the capability of
certain technologies (such as electrochemical energy storage);
however, computational complexity becomes a major challenge.

The key findings from this section are these:

� Recent literature has focused on the temporal resolution of data
on generation from renewables and energy consumption.

� National energy studies can be enhanced based on multi-region
systems as opposed to a national system.

� Due to ES (including GIES and non-GIES), such as mechanical,
thermal, and electrochemical, having different technical prop-
erties and costs, similar to the concept of the optimal generation
mix (e.g., wind and solar), the optimal energy storage mix for a
region (e.g., PSH and FES) is a relevant research area.

� Exergy analysis for ES and electricity generation will have a
profound effect in determining the optimal energy scenarios
based on optimal energy conversion and energy loss minimi-
zation “from the source.”

Progress has been made to improve long-term electrical power
system studies, and hybrid models consisting of CEM and PCM have
been introduced. However, due to generation and demand uncer-
tainty, data processing and treatment are important factors for



Table 4
Geographic scale, timeframe, cost analysis, and ES for LEPSMs.

LEPSM Scale Timeframe Cost analysis ES type Ref.

National Regional Seconds Minutes Hour Year Net
present
value

LCOE

National Energy Modeling
System (NEMS)

✓ ✓ ✓ ✓ PSH The National Energy
Mode (2009)

Long-range Energy
Alternatives Planning
System (LEAP)

✓ ✓ ✓ ✓ ✓ None Long-range Energy
Altern (2010)

The Integrated MARKAL-
EFOM System (TIMES)

✓ ✓ ✓ ✓ ✓ Known as ‘storage process’ for all
commodities such as energy and natural
resources

Loulou et al. (2016)

MARKetAllocation (MARKAL) ✓ ✓ ✓ ✓ A comparison of the
OSeMOSYS ✓ ✓ ✓ ✓ Generic “Open Source Energy

Model)
Renewable Energy Mix

(REMix)
✓ ✓ ✓ ✓ ✓ Thermal Fichter (2016)

Regional Energy Deployment
System (ReEDS)

✓ ✓ ✓ ✓ PSH, electrochemical batteries, CAES, and
thermal

Shortet al. (2011)

Haiku ✓ ✓ ✓ ✓ ✓ PSH Paul and Burtraw (2002)
Resource Planning Model

(RPM)
✓ ✓ ✓ ✓ ✓ PSH Mai et al. (2013)

Aurora ✓ ✓ ✓ ✓ Battery v13.1,” [Online]
System Optimizer ✓ ✓ ✓ ✓ PSH System Optimizer (2015)
GE Multi Area Production

Simulation (MAPS)
✓ ✓ PSH PJM Renewable

Integration (2014)
PROMOD ✓ ✓ CAES technical over (2015)
GridView ✓ ✓ PSH GridView: Simulate

secur (2016)
PowerFactory DiGSILENT ✓ ✓ ✓ ✓ Battery PowerFactory

application
MATPOWER ✓ ✓ ✓ Mathematical constraints such as state-of-

charge
ZimmermanCarlos and
Murillo-Sanchez (2016)

PLEXOS ✓ ✓ ✓ ✓ ✓ ✓ Thermal, electrochemical, and mechanical by Energy Exempla
(2017)

Proposed framework (LEPSF) ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ Thermal, electrochemical, mechanical, GIES
and, non-GIES
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energy system modeling. At present, there is no long-term elec-
trical power system model that performs the future electrical po-
wer system planning which adequately considers ES (in particular,
GIES and non-GIES). The next section describes the key aspects that
LEPSMs need to incorporate to perform electrical power system
long-term planning including ES.

5. Three modeling aspects for LEPSM improvement

The stochastic fluctuations created from power generation and
consumption need to be captured in the modeling process. Section
4 shows that present models cannot deal with the fluctuations of
power generation and consumption. As discussed in Section 3, ES
addresses electrical power system negative phenomena (e.g., po-
wer imbalance and frequency deviation) that typically occur in a
short period (e.g., minutes and hours). To address system un-
certainties, this section introduces three aspects that can poten-
tially improve energy system modeling: renewable scenario
reduction, ABM of energy consumption, and levelized cost of
electricity for intermittent renewables and ES.

5.1. Renewable generation scenarios

On the generation side, machine learning and data analytics
have been applied extensively in the areas of renewable energy
forecasting. Both artificial intelligence and physical approaches
have been employed for short-term (i.e., 15min) interval renewable
resource predictions (Lai et al., 2017a). For long-term electrical
power system planning, an effective approach is to capture and
classify the underlying changes in renewable resources. Capturing
10
the fluctuations in a reduced dataset can increase computational
efficiency and reduce data processing requirements. This section
presents existing scenario reduction methods for the prominent
intermittent renewables, that is, solar and wind.

Wind: Ma et al. (2013) proposed a scenario generation and
reduction method for forecast error distribution and fluctuation
distribution inwind power. Amultivariate normal distributionwith
inverse transform sampling was used to generate a large number of
scenarios. Lee and Baldick (2017) depicted a correlated scenarios
approach for load and wind power with a generalized dynamic
factor model which had many advantages, such as the ability to
generate a desired number of scenarios, and which was confirmed
to have similar statistical characteristics to the actual measure-
ments. To optimize the distances between the original and syn-
thetic scenarios at the same time, Li et al. (2016b) proposed the use
of a heuristic search method for wind power time series.

Regarding speed and quality, the heuristic search method can
outperform the well-adopted backward/forward reduction method
(Growe-Kuska et al., 2003) based on a scenario tree construction
algorithm. It continuously reduces the number of scenarios by
changing the tree structure and grouping similar scenarios. Xu et al.
(2018) examined the placement of stochastic optimal thyristor-
controlled series capacitors in power systems featuring high wind
power penetration, and the backward scenario reduction method
was used. Fig. 4 presents the wind scenario reduction for three
years (2013e2015) of normalized North Carolina, USA
(longitude �81.65�, latitude 36.35�, and 1316 m above sea level)
wind data with a sampling interval of 1 h (NRELWind Prospector).
Fig. 4a shows the original wind data, where each color represents a
day. Only 30 days were randomly selected for the display due to the



Fig. 4. a) The normalized wind speed for 30 days in North Carolina, USA; b) the five
reduced scenarios, data from (NREL Wind Prospector).
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restricted space. As shown, the wind speed was highly random for
each day, and the scenarios obtained showed different trends of the
daily wind speed variation. Fig. 4b shows the five typical wind
scenarios obtained with backward scenario reduction. The corre-
sponding probability for each scenario is provided in the legend.
The purple line shows that the wind speed was generally high in
the morning and was significantly reduced after 15:00. The green
line gives the scenario for a poor wind day, accounting for nearly
24% of the days in the four years.

Solar: Lin et al. (2017) examined the use of scenario generation
and reduction methods based on k-means clustering for power
flow analysis in transmission expansion planning. The distance
metric is an important aspect of the clustering algorithm. Hence, Lai
Fig. 5. Scenario reduction for solar clearness index in Kenya during wi
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et al. (2017b) proposed the use of Fuzzy C-means and Dynamic
TimeWarping distance for a solar clearness index time series. Fig. 5
depicts six scenarios determined for four years (2011e2014) of
clearness index data for Kenya in winter with Fuzzy C-means and
Dynamic Time Warping. The location for the solar irradiance was
Gitaru Dam, Kenya with longitude 37.73�, latitude �0.79�, and
elevation at 969 m above sea level. The solar irradiance data were
obtained from Solargis (Solargis). The sampling interval was one
sample per 15 min. The centroid of each cluster is depicted using a
black line, with the red and blue lines showing minus one and plus
one standard deviation, respectively. The actual clearness index
data are represented using crosses, with the same color used for the
same day. Cluster 5 represents a “clear day,” where there is little
fluctuation of the solar resource. The highest amount of solar
resource curtailment was in cluster 6. Cluster 4 shows that the
clearness index was low before 10 a.m., and then increased later in
the day; cluster 1 shows the inverse, a clear morning followed by a
less clear afternoon. These clusters showed similarity in the clus-
tered clearness index. In addition to determining the similar days,
the percentage of appearances was easily determined by calcu-
lating the ratio between the number of days in the cluster to the
total number of days of the dataset. This is useful in informing the
planner as to how often a certain scenario occurs. This work de-
termines a dynamic distance metric gives better performance than
a static distance metric for solar resources and that the computa-
tional complexity surrounding dynamic time warping is extremely
high. As a clustering prerequisite, future work will need to look into
methods for solar irradiance time series data granulation that
generates high-quality representative irradiance.
5.2. ABM of energy consumer behavior

On the demand side, human behavior influences energy con-
sumption and is assumed to be homogenous and hyper-rational
(Gerstet al., 2013). Models such as TIMES employ a small number
nter with Fuzzy C-means and Dynamic Time Warping (Lai, 2017).
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of typical energy consumption curves for energy studies (de Boer
and van Vuuren, 2017). Future energy demand will depend on
technological development, for example, EVs, data centers, and
smart buildings and appliances (Zippereret al., 2013; "Future
energy scenarios:, 2016). ABM can address the above issues, and
it consists of complex systems, game theory, computational soci-
ology, and the simulation of multiple actors. The current literature
for energy studies with ABM is as follows:

Transmission and distribution level: Ma and Nakamori (2009)
compared optimization models with ABM for energy system
studies. ABM is a better option than an optimization model in
determining possible future scenarios and mitigating unexpected
problems. Gonzalez de Durana et al. (de Durana et al., 2014) pre-
sented a generic approach to modeling multi-carrier energy sys-
tems (e.g., heat and gas) with ABM. However, future work needs to
study energy efficiency, energy conversion, and ES. Andoni et al.
(2017) conducted a comparative study on how game theory can
assist network operators in determining optimal generation
curtailment rules and transmission charges for electricity net-
works. A model was developed which captured the stochastic na-
ture of renewables and demand variations and identified the game
equilibrium that gives optimum installed generation capacities.

Residential level: Rai and Henry (2016) provided a summary of
ABM of consumer energy choices and identified the applied and
scientific aspects of energy demand to improve policy design. They
determined that an energy demand model may be designed and
calibrated with data on electricity demand, temperature, and
weather. Guo et al. (2018) have promoted household energy con-
servation for global sustainable development. A review was pro-
vided on residential electricity consumption behavior. This
consisted of social psychology (gender (Yang et al., 2015) and
employment (Chen, 2017)) and interventions (energy consumption
goals and reward) to encourage households to minimize electricity
usage.

EV adoption: The growing use of EVs in power systems is
creating challenges, such as congestion in distribution networks,
related to power transformer limits and bus voltage violations (Hu
et al., 2016). ABM is effective for incorporating uncertainties sur-
rounding the behavior of real EV drivers, such as the energy
consumed on journeys and during charging events (Olivella-Rosell
et al., 2015). As EVs use ES, long-term energy systemmodels require
the inclusion of EV usage. Adepetu et al. (2016) presented an
ecological modeling approach to study how various governmental
policies and ES technologies affect EV adoption and charging ac-
tivities. Yang et al. (2018) presented an integrated dynamic method
with ABM to examine the adoption of EVs and the evolution of EV
charging demand over 20 years. This was based on the relationship
between the number of EVs and their charging demand.

For ABM, Big Data Analytics (BDA) and cloud computing tech-
nology for behavior pattern mining will assist in developing
intervention strategies and effective energy consumption reduc-
tion. BDA is concerned with exploring value in data to support
decision-making under high volume, high variety, and high-
velocity data environments (Akhavan-Hejazi and Mohsenian-Rad,
2018; Alahakoon and Yu, 2016).

BDA can provide an in-depth understanding of the complicated
effects of intermittency and uncertainties on the power system
(Kang et al., 2018). In contrast to the traditional model-based
approach for power system operation and planning, BDA in-
troduces data-driven optimization models (Akhavan-Hejazi and
Mohsenian-Rad, 2018; Kang et al., 2018). BDA consists of “data
mining and machine learning” (regression, classification, and
clustering), “predictive analytics” (off-domain and domain data
forecasting), “statistical analysis,” “artificial intelligence” (pattern
recognition, cognitive simulation, perception, and expert systems),
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“data visualization” and “natural language processing” (Akhavan-
Hejazi and Mohsenian-Rad, 2018; Kang et al., 2018; Chen et al.,
2018). References (Sedkaoui, 2018; Ye et al., 2018) provide a
comprehensive literature review of BDA.

In power systems, data visualization promotes information
exploration and, subsequently, knowledge discovery (Zhu et al.,
2011). Traditionally, power system operators have relied on en-
ergy management systems to generate visualizations for moni-
toring, controlling, and optimizing system performance. The nature
of data visualization in power systems is complex. This is due to the
enormous size of transmission grids and the huge number of
components. Traditionally, visualization techniques are often
computationally intensive, requiring the system operator to select
the most relevant features. This largely restricts the operators in
exploring options and making effective decisions. Zhu et al. (2011)
proposed a data-driven approach for interactive visualization of
power systems, built upon the Common Information Model.

In addition to the renewables scenario reduction techniques
introduced in Section 5.1, as discussed by Akhavan-Hejazi and
Mohsenian-Rad (2018), the features of BDA that benefit the
LEPSM are the following:

� Integrating databases with statistical packages: Many databases
have restricted statistical functionality. Standard practice is to
extract a portion of data from the database to conduct statistical
analysis. However, this causes a loss of detail due to down-
sampling from the database. An enhanced approach is to inte-
grate statistical computation with parallel databases.

� Parallel computing: To speed up the computational process,
methodologies are created to distribute the intelligence and
decision-making process across many central processing units.
This approach can assist in estimating unmonitored load and PV
generation profiles (Sossan et al., 2018).

� High scalability: The curse of dimensionality will challenge
various traditional analytic techniques. As such, these mature
techniques need to be revised and adopt other algorithms that
can scale-up with huge dimensions. For nonlinear alternating
current optimal power flow problems, high scalability can be
achieved by decomposing power flow data into low variation
components and low rank, and by exploiting the sparsity of the
system matrices.

In summary, BDA for ABM is a promising research area. How-
ever, there is a need to consider EV modeling alongside the inter-
mittency of generation, particularly in a long-term transition to an
energy system featuring a high penetration of renewable energy.

5.3. LCOE for intermittent renewables and ES

Considering modeling output and economic metrics, this sec-
tion argues that metrics need to be reconsidered for non-
dispatchable energy sources.

The LCOE for energy studies contains many relevant factors and
assumptions such as CF, capital costs, and operational costs (Lai and
McCulloch, 2017; Darling et al., 2011; Obi et al., 2017). Typical LCOE
assessments overvalue solar PV generators because, as discussed by
Lai et al. (Lai et al., 2017), one of the critical assumptions made for
solar PV is the CF. The CF for renewables is highly affected by the
intermittent energy source. Obi et al. (2017) presented a novel LCOE
calculation method for different types of utility-scale energy stor-
age. The LCOE and marginal LCOE for a redox flow battery and a
Lithium-ion battery alongside a PV systemwere studied by Lai and
McCulloch (2017). Since ES is not an electrical generator, levelized
cost of delivery was also proposed to consider the cost of a storage
system’s “electricity generation.”
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Many LCOE studies have excluded relevant factors (e.g., inter-
mittence of renewable energy, wholesale market price, and in-
centives for electricity), thus hindering the credibility of LCOE (Rose
et al., 2016; Simoes et al., 2017; Joskow, 2011). Hence, the system
operation needs to be considered when computing the LCOE. LCOE
may be useful when used along with electrical power system
modeling.

Fig. 6 depicts comparisons between electricity demand and the
electricity produced to meet this demand using dispatchable gen-
erators and intermittent solar PV. The wavy black area denotes the
energy generated that is fully consumed by the demand. In Fig. 6b,
the surplus electricity (area denoted with black circles) is produced
but not used to meet the demand.

We considered the concept of LCOE with Fig. 6 and provided a
modification to be more suitable for renewables and ES. The widely
used LCOE equation is given in Equation (1) (Lai and McCulloch,
2017; Darling et al., 2011) as follows:

LCOE¼
PN

n¼0
Capital costnþOperation costn

ð1þdÞnPN
n¼0

CFn*8760*Rated power
ð1þdÞn

; (1)

where d is the discount rate (%), and n is the year, n ¼ f1;2;…;Ng.
Since energy is the integral of power with respect to time, Equation
(1) can be revised as Equation (2) below:

LCOE¼
PN

n¼0
Capital costnþOperation costn

ð1þdÞn

PN
n¼0

P8760

t¼1
PEffectivet;n

ð1þdÞn
; (2)

where t is the hour throughout the year. The equation shows how
power can be used to compute the LCOE. When CF is used, it is
assumed that the electricity produced is reflected in the LCOE; for
example, LCOE will decrease as more electricity is produced, as
shown in Equation (1). A question arises however over whether it is
valid to include this surplus electricity into the calculation of LCOE.
It is important here to revisit the concept of LCOE: it is defined as
the lifetime average cost of electricity in $/kWh required for the
Fig. 6. a) Load met with dispatchable generators in a traditional electr
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system to break even (Lai and McCulloch, 2017). The surplus en-
ergy, unless it is stored with ES or exported to external electrical
power systems for consumption, will not be consumed or generate
any profit, and will affect the lifetime break-even cost. Specifically,
the issue with the LCOE metric is that it does not consider the
energy that is not utilized (i.e., surplus). A more suitable LCOE
measure for renewables is defined in Equation (3), and this metric
will be examined with a solar case study in Section 6.3:

LCOEproposed ¼
Lifetime cost

Lifetime effective electricity production
; (3)

In summary, this section presents a review of theories in three
areas that may enhance the energy system modeling, namely
generation, demand, and economics.
6. A novel framework for long-term electrical power system
modeling

This section presents the proposed framework in detail, with a
focus on the three areas discussed in Section 5. The long-term
power flow electrical power system framework (LEPSF) aims to
enhance the consideration of generation and consumption uncer-
tainty, and give a more accurate assessment of LCOE. It includes
power losses and reliability evaluation. A co-simulation model for
generation and demand predicts energy consumption based on the
cost of electricity, and power flows are optimized based on the co-
simulation model. Fig. 7 presents the novel LEPSM integrating po-
wer flow analysis for electrical power system operation. This model
consists of two stages. Stage 1 develops a co-simulation model for
the power generation and consumption with power flow analysis.
Stage 2 optimizes the electrical power system using optimal power
flow and performs scenario analysis. Stages 1 and 2 are short-term
and long-term studies, respectively, as discussed in Section 4.

Scenario reduction for intermittent renewables is an input. The
scenarios are used in a power flow analysis. Optimal power flow is
adopted for the power system optimization. Scenario studies are
conducted with real power and reactive power for the long-term
electrical power system modeling. Power balance at each time
ical power system; b) Load met with PV plant in a future system.
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interval (e.g., hour) is achieved to maintain the annual energy
balance. However, multi-objectives present a new optimization
problem: maximizing reliability and minimizing LCOE and lifetime
carbon emissions for the system. In the framework, the black text
denotes the factors adopted in a traditional long-term electrical
power system model with the red text denoting the factors to be
included in LEPSF. Traditional factors such as CFs and average en-
ergy output are removed in the LEPSF and replaced by generator
models and renewable generation scenarios.

Based on the optimal solutions, fuzzy decision-making and
Pareto optimality are considered in determining the optimal trade-
off for the optimization problem. Since the optimization is highly
nonlinear with the objectives, multi-objective optimization tech-
niques, such as particle swarm optimization and genetic algo-
rithms, are used to solve the power flow optimization problem (Lai,
1998).
6.1. Agent-based and power flow model integration

Power flow analysis has been used in reliability and economic
analysis of power systems. Traditionally, a few extreme cases, such
as light load and heavy load, are used to determine the system
safety and feasibility (Lai and Ma, 1997; Ma and Lai, 1996).

In this framework, generators, loads, and ES act as agents in the
power flow model. Based on the specific behavioral rules (Section
5.2), the demand on the load bus in the power flow study is
determined based on power generation from the dispatchable
source, non-dispatchable source, and ES. Since the cost of electricity
generation will influence the electricity selling price, the energy
consumption will vary accordingly. The co-simulation model con-
sists of the energy consumers responding to the cost of electricity.
Generators and ESwill dispatch according to the energy consumers’
power requirements.

As an example, a specific behavioral rule for energy consump-
tion in Equation (4), adapted from Rai and Henry (2016), calculates
the peak demand at different years ðPRatedÞ for agent i at time t in
Equation (5) below:

Probi;t ¼ aEi þ ð1� aÞZi;t (4)

PActuali:t ¼Probi;t* PRatedt
; (5)

where PActual is the actual energy consumption, the variable Ei2
ð0;1Þ represents the energy consumption economic factor (e.g., cost
of electricity), and Zi;t2ð0;1Þ represents the social influence im-
pacts on energy consumption behavior, such as thermal comfort.
The model parameter a controls the relative importance of eco-
nomic and social factors, with both factors being balanced if a ¼
0:5. The energy consumption model is fitted against historical and
expected future energy consumption data. ABM calibration and
validation are critical research questions in confirming the quality
of the proposed model (Guerini and Moneta, 2017). Calibrated
models have been validated by applying the ABM to a set of “test
data.”
Fig. 8. A 3-bus system with two generators and a load.
6.2. A two-stage scenario and multi-objective optimization
framework

This section provides the mathematical description of LEPSF.
The three optimization objectives are defined in detail, namely, the
system’s LCOE, system energy index of reliability, and total carbon
dioxide emissions.

There are several objectives in PCMs and CEMs. For both types of
model, a common objective is to minimize carbon dioxide
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emissions. In PCMs, this includes economic dispatch and minimi-
zation of transmission losses, that is, active power losses. In CEMs, a
common objective is to minimize the LCOE. Under a fixed scenario
(e.g., a given discount rate and energy mix), the proposed objective
function for the LEPSM is used as described in Equation (6):

minðw1:f1 þw2:f2 �w3:f3Þ; (6)

where f1 is the system’s LCOE ($/kWh), f2 is the total carbon dioxide
emissions, f3 is the system energy index of reliability, and w1, w2,
andw3 are different weighting factors (summing to one). Therefore
data normalization may be required for the variables to be
comparable.

Fig. 8 shows the one-line diagram for a 3-bus electrical power
systemwith a dispatchable power generator, an ES, an intermittent
power generator, and a load. The slack bus compensates for system
power losses, and voltage magnitude V and voltage angle q are
known. The real power P (kW) and reactive power Q (kVAr) are
specified for the load in a PQ bus and could be applied to non-
dispatchable generators and loads (Li et al., 2016c). For the busbar
with ES, the modeling needs to consider delivering power via GIES
and non-GIES approaches. For example, for wind power, the
generator and ES could be based on the widely known approach
which employs a permanent magnet synchronous machine wind
power generator and a battery (non-GIES) (Xia et al., 2018). The
GIES alternative would be a wind compressor and pumped ES
(Garvey et al., 2015b). There is a significant difference in both
technologies, but the purpose of the generator-storage system is
the same: to provide electricity generation and storage to the grid.
Power generation and ES technologies need to have sufficient detail
in the modeling process. For example, ES degradation is an
important consideration for battery but not for thermal ES (Sec-
tions 3.2 and 3.3); this could greatly affect the modeling outcome.

A set of nonlinear simultaneous power balance equations in the
form of Equation (7) needs to be solved to ensure feasible system
operation.

Let t be the hour of the day t ¼ f1;2;…; Tg and T ¼ 24, u be the
renewable scenario u ¼ f1;2;…;Ug from renewable scenario
reduction, and j be the system busbar number j ¼ f1;2;…; Jg: Each
scenario consists of one day’s worth of data per year. The power
flow on the PQ bus is given in Equation (7):



Fig. 9. The monthly average solar insolation and annual CF at a solar PV farm in Gitaru,
Kenya.
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Pn;u;t;j ¼
XJ
k¼1
ksj

��Vj
��jVkj

�
Gj;k cos qj;k þ Bj;k sin qj;k

�
n;u;t

ct2 T cj2J cn2N cu2U; (7)

where qj;k is the difference in voltage angle (degrees) between
busbars j and k, Gj;k and Bj;k are the conductance (Siemens) and
susceptance (Siemens), respectively, for the transmission line be-
tween busbars j and k (Lai and Ma, 1997; Ma and Lai, 1996), and n is
the year n ¼ f1;2;…;Ng. The system LCOE can be calculated with
Equation (8):

f1 ¼
Capital costþPN

n¼0

PU

u¼1
Su

�PT

t¼1

PJ

j¼1
On;u;t;jPn;u;t;j

�
ð1þdÞn

PN
n¼0

PU

u¼1
Su

�PT

t¼1

PJ

j¼1
Pn;u;t;j

�
ð1þdÞn

; (8)

where d is the discount rate (%).
PU
u¼1

Su ¼ 365 where Su is the car-

dinality, that is, the number of days in cluster u, where each cluster
represents a different scenario. The levelized cost of storage can be
calculated using a similar approach to that given in Equation (2),
where only storage output power and cost are considered in Pn;u;t;j
and On;u;t;j, respectively. The system’s total carbon dioxide emis-
sions can be calculated with a mathematical relationship linking
power production and generator emissions (Wang and Singh,
2009) as given below:

f2 ¼
XN
n

XU
u

Su
XT
t

XJ
j

EMTotaln;u;t;j : (9)

By assuming that one type of carbon-emitting generator is
connected to the busbar, EMTotaln;u;t;j (emissions contribution) is
given as:

EMTotaln;u;t;j ¼ dþ gPn;u;t;j þ aPn;u;t;j
2; (10)

where d, g, and a are constants obtained from the generator
emissions curve. An energy index of reliability can be calculated
from expected energy not served (Wang and Singh, 2009), as:

f3 ¼
XN
n

XU
u

Su
XT
t

�
PEESMin

� PESn;u;t � PTotaln;u;t þ PLoadn;u;t
�
:Xn;u;t

(11)

Xn;u;t ¼
�
1; PSupply � PLoad ð12Þ
0; otherwise; ð13Þ

where PEESMin
ðkWÞ is the permissible minimum ES power, PESðkWÞ

is the ES power, PLoadðkWÞ is the load, PTotalðkWÞ is the total power
delivered by all generators, and PSupplyðkWÞ is the power supply for
the system, namely, ES, import power, and generators. Since system
reliability is affected by the balance between power supply and
demand, the binary variable Xn;u;t is used to represent whether the
demand is completely met by supply.
6.3. Renewable uncertainties and cost implications for ES systems

ES economics are closely related to the energy input and output
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(Lai and McCulloch, 2017). To elaborate on the LCOE metric pro-
posed in Section 5.3, we present a case study on the LCOE of a PV
system. We provide a discussion of the LCOE for ES, GIES, and non-
GIES, and its dependence on the cost of renewable generation.

The case study was based on 22 years of solar irradiance data
from Gitaru, Kenya. The data were obtained from Solargis. The
sampling rate was one sample every 15 min. The economic study
was based on a 5% discount rate, with the capital and operating
costs of PV panels taken from Lai and McCulloch (2017). Fig. 9
presents the monthly average solar insolation and annual CF for a
5 MW PV farm. Due to atmospheric and climatic conditions, there
was a clear trend to monthly insolation, with the maximum and
minimum in February and July, respectively. Monthly insolation
differed from year to year and, over the 22 years, the annual CF
varied by no more than 1.9%.

Fig. 10 presents the LCOE adopted from Equations (2) and (3) for
the solar PV farm. Based on the mean value, the twomethods give a
difference in LCOE of 0.024 $/kWh. As discussed in Section 5.3, the
discrepancy in calculated values of LCOE arises due to differences in
the accounting of the solar energy surplus and the energy that is
used directly.

According to the definition of levelized cost of delivery (Lai and
McCulloch, 2017), the LCOE for ES (and non-GIES systems, for
example, PV and battery) should consider the cost of electricity
generation, that is, the surplus electricity; this will increase the
LCOE for ES. The LCOE for GIES systems needs to be examined and
represents a gap in knowledge. Following the above case study, we
examined the relationship between renewable uncertainties and ES
(also applicable for GIES and non-GIES).
7. Discussion

The current electrical power system models with a long-term
focus mostly neglect transmission restrictions as well as the
physical characteristics of power transmission, Thus, accurate load
flowmodeling will be a key factor in future energy models. As such,
this is a particular issue for conducting long-term planning with
large-scale ES. ES improves the power system operation by miti-
gating short-term negative phenomena (e.g., due to intermittent
power generation). LEPSMs need to be able to represent all relevant
techno-economical characteristics of the power supply system in a
sufficiently detailed way. For technologies, the long-term ES costs
and grid benefits (e.g., voltage enhancement) can be realized with a
power flow model and discounted cash flow models (Lai et al.,



Fig. 10. LCOEs for PV with traditional and proposed methods.
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2019b). The investment value of ES can be enhanced by analyzing
the risks and options, for example, the option to defer, abandon, or
expand an ES investment. Real options analysis can provide design
flexibility as the investment timing can be chosen (Loureiro et al.,
2015), and this approach is useful for evaluating storage in elec-
trical power system modeling. Locatelli et al. (2016) proposed and
examined a real options analysis method to study the investment
value of ES. They emphasized that the risks and profitability were
due to the following five factors: electricity price uncertainty,
natural gas price increases, incentives, construction delays, and
costs overruns. Real options analyses in electrical power system
modeling, in particular for ES investment studies, are useful. Cost
and revenue studies for ES can be different due to the system
context, for example, for on-grid or off-grid applications
(Kyriakopoulos and Arabatzis, 2016; Liu et al., 2018).

Driven by the challenges described in this paper, we have pro-
posed a framework for LEPSM, named the Long-term power flow
Electrical Power System Framework (LEPSF), to investigate the
technological, environmental, and economic feasibility of electrical
power systems with low-carbon power generation as well as
generation-integrated and non-generation-integrated ES. This
framework considers policy constraints, energy mixes, allowances
for carbon dioxide emissions, and minimum required levels of
energy security.

LEPSF integrates phenomena occurring at shorter time scales,
that is, system operation such as power balancing, into the longer
timescales as those in system planning. Stochastic properties
hinder the analysis accuracy and lead to the question of how to
explicitly model the uncertainty at both scales while computational
tractability is maintained (Seljom and Tomasgard, 2015). The “no
free lunch” theorem exists for the model accuracy and computation
time, where a compromise is necessary.

The framework aims to:

1. Give a comparison of ES (including GIES and non-GIES) alter-
natives to meet the energy agenda,

2. Find the optimal trade-off between system reliability and eco-
nomic and environmental benefits with ES, and

3. Determine the optimal mix of ES systems, considering both GIES
and non-GIES systems, to meet the energy agenda.

The practical and social implementations of the proposed
framework are as follows:

Practical implementations: The development of technical
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standards and best practices to perform techno-economic studies
for ES systems. International standards are created by international
organizations and global experts to enforce the best practices to
benchmark functional and technical performance. Standards make
sure that technologies used by the public are efficient, safe, and
integrated. Standards developed by the International Organization
for Standardization are used in many domains, including environ-
mental management, energy management, and information tech-
nology security (Standards). The Institute of Electrical and
Electronics Engineers also publishes international standards. One
particularly relevant example is “P2814 Techno-economic Metrics
Standard for Hybrid Energy and Storage Systems”, which aims to
formulate metrics to evaluate the technical and economic value of
ES systems and low-carbon energy systems ("P2814 - Techno-
economics, 2814). The proposed framework can help to shape
this novel standard by developing a methodology for techno-
economic appraisal of novel GIES technologies.

Social implementation: Access to affordable and reliable elec-
tricity for all is a key element of UN Sustainable Development Goal
7. Electricity is a basic element of social progress that powers the
information and communication technologies behind much of
modern education and work. To be socially sustainable, electricity
needs to be affordable (particularly for the most disadvantaged
sections of the population) and reliable. The need to decarbonize
the power sector must reflect these social implications. Solutions
only at “plant level” or “user level” are unlikely to deliver the
impact underpinning Sustainable Development Goal 7. A holistic
approach based on the rethinking of the electrical power system
modeling is needed. A key element of this new system will be the
possibility to efficiently and effectively store a large amount of
electricity. This will allow the integration of much needed renew-
able energy sources while ensuring that electricity is affordable and
reliable for the entire population.

Some limitations of the current framework to be addressed in
the future include:

� Justification of the BDA technique: Various data sources,
including renewable energy resource, load demand, and market
data, are required to conduct long-term electrical power system
modeling. The review has provided several BDA techniques,
including Fuzzy C-means and backward scenario reduction, to
extract useful information from big data. Considering the ac-
curacy and computational complexity, the optimal technique
needs to be justified for the modeling.

� Cost categorization of ES and low-carbon generation tech-
nologies: Straightforward measures of purely technical merit
combined with estimates of capital expenditure and operating
expenditure are not sufficient when comparing different energy
system options. The framework can be expanded with detailed
cost inputs for various technologies. For example, the degrada-
tion cost for energy storage can differ greatly as with Lithium-
ion batteries which are susceptible to degradation as
compared with thermal storage.

In recent years, the types of grid services procured by the system
and network operators have become increasingly diverse, and ES is
one of the contributors. Grid services are a relevant area of study,
particularly on the techno-economics of using ES for these services.
Co-location of storage with demand is also a promising future
research direction which can increase local energy consumption
(Pimm et al., 2017). The identified future scope includes the
following:

� ES for transportation energy systems: Global demand for EVs
is increasing sharply to decarbonize the energy system. Zheng
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et al. (2020) examined the yearly sales and market trends of EVs
at the national and regional levels in China from 2011 to 2017,
during which time EVs consumed 3 TWh of electricity and
potentially saved over 600,000 tons of carbon emissions. It is
evident that EVs can greatly affect the national and regional
power system performancewhen a large amount of electricity is
consumed or injected into the power system. Future work
should examine how ES can provide technical and economic
benefits to the heavily coupled transport-electricity system,
including the deployment of rapid EV charging stations.

� ES for multi-vector energy systems and demand response:
Heat energy constitutes a large proportion of energy con-
sumption for several countries, such as Finland and the UK
(Leurent et al., 2017). Whole energy systems incorporate mul-
tiple energy types, which include gas, heat, and electricity, to
optimally meet different energy demands. ES selection is
affected by the type of energy demand to be fulfilled and the
economic and technical merits of the different storage tech-
nologies (Zhang et al., 1109). Demand response is a variation in
the consumer’s power consumption to improve the balance
between demand and supply. Wang et al. (Wanget al., 2019)
stated that large-scale controllable air conditioning can
contribute to distribution network operation through demand
response methods. They proposed a two-stage optimal sched-
uling technique for a distribution system with PV systems, air
conditioning loads, and batteries. The day-ahead stage aims to
minimize operating costs, and the real-time stageminimizes the
imbalance cost between the real-time energy market and day-
ahead energy market. The scheduling technique considers
random intra-day variation in PV generation, consumer load,
and price of electricity. Optimal scheduling can reduce peak
demand and operating cost as well as increase the PV penetra-
tion level in the distribution network.

� Quantifying resilient energy systems from the techno-
economic perspective: Energy system resilience is generally
defined as the ability of an electrical power system to return to
normal operating conditions after a disturbance or to adapt to
unexpected events (Wang et al., 2018). Present resilience studies
focus primarily on technical aspects, including minimizing the
loss of load probability. Future work should consider how to
quantify energy system resilience from the techno-economic
perspective with the use of various ES technologies (El Rahi
et al., 2016; Farraj et al., 2018; Rüde et al., 2018).
8. Conclusions

The amount of ES capacity in power systems will continue to
increase with the increase of low-carbon power generation. Thus,
ES will be extremely important in future electrical power systems
for energy arbitrage and grid services, for example, in mitigating
system failure due to variability in demand and generation. In the
context of GIES for provision of firm low-carbon power, emerging
alternatives to electrochemical ES, such as mechanical and thermal
ES, have been presented.

There is a need to reassess the impacts on the system with the
advent of several intermittent power generation technologies and
ES decision-making from a long-term perspective. This paper pro-
poses the LEPSF that could be of great relevance for future technical,
economic, policy, and environmental studies for GIES and non-
GIES. LEPSF adopts power flow analysis with scenario reduction
for generation data and the ABM of energy consumption. Data
analytics (e.g., cluster analysis) and energy consumer behavior are
the main components of LEPSF.

Our comprehensive review of the current electrical power
18
system models determined that integrating a long-term and short-
term study timeframe is a key issue. Electrical power systems are
subject to increasing operational and planning uncertainties. From
the system cost perspective, we discussed the levelized cost of
electricity for renewables and provided an example for solar en-
ergy, showing that simple averaging metrics can hinder a credible
energy study. The economics of ES, in particular, GIES and non-GIES,
are dependent on the generation source. Also, BDA offers potential
solutions in addressing the modeling challenges by capturing the
uncertainty in power generation and demand.

The optimal energy storage mix to maximize exergy efficiency
and environmental benefits for regional and national energy sys-
tems is an ongoing research goal. This paper paves the way for
several important future investigations in the context of electrical
power system modeling for ES and GIES.
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