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Abstract: We present a new algorithm to design lightweight cellular materials with required prop-
erties in a multi-physics context. In particular, we focus on a thermo-elastic setting by promoting
the design of unit cells characterized both by an isotropic and an anisotropic behavior with respect
to mechanical and thermal requirements. The proposed procedure generalizes the microSIMPATY
algorithm to a thermo-elastic framework by preserving all the good properties of the reference design
methodology. The resulting layouts exhibit non-standard topologies and are characterized by very
sharp contours, thus limiting the post-processing before manufacturing. The new cellular materials
are compared with the state-of-art in engineering practice in terms of thermo-elastic properties,
thus highlighting the good performance of the new layouts which, in some cases, outperform the
consolidated choices.

Keywords: topology optimization; cellular materials; multi-physics; homogenization; anisotropic
mesh adaptation

1. Introduction

Cellular materials represent an effective solution for structural applications where
conventional monolithic materials fail to satisfy the design constraints [1]. The fast advance-
ments in additive manufacturing technologies experienced in the last few years have further
amplified the interest toward metamaterials. In addition, the possibility to employ a large
variety of bulk materials in manufacturing processes (e.g., metals, polymers, ceramics [2–4])
has enabled the design of new metamaterials, featuring innovative combinations of physi-
cal effective properties. The possibility to blend different materials in order to reach diverse
objectives proved to have a great impact in all the contexts where multi-functionality is
required. For example, in [5–8], biocompatible 3D-printed metal bone implants promoting
bone ingrowth are proposed by properly tailoring the material microstructure in order to
reproduce the elastic modulus and the permeability of the human bone. Other applica-
tions range from thermal-cloaking systems fitly combining microstructure geometry and
orientation [9,10] to lattice-based heat exchangers, where good thermal conductivity and
convection properties are exploited to enhance the devices’ performance [11,12].

From a modeling viewpoint, the proposal of innovative multifunctional cellular mate-
rials can benefit from the most recent advancements in topology optimization [13], properly
combined with direct and inverse homogenization processes [14–16]. Several optimiza-
tion approaches can be exploited in the context of metamaterial design. The layout of
the employed microstructures can be selected a priori, starting from consolidated dic-
tionaries of unit cells [16–21], or designed from scratch to match the expected effective
properties [22–28]. In this context, a single- or a multi-objective topology optimization
at the microscale can drive the design of new unit cells matching target properties at the
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macroscale, potentially in a multi-physics framework. For instance, the optimization of
homogenized elastic properties is tackled in [29–31] with the aim of maximizing the bulk (or
shear) modulus. To this aim, the authors control specific components of the homogenized
elastic tensor or resort to the minimization of the compliance of a given structural part.
Other works focus on a multi-physics optimization (for instance, by considering elastic,
thermal, and electrical properties) by providing microstructures optimized with respect to
diverse objectives and physics [32–35].

Nevertheless, it is well-known that standard topology optimization techniques suffer
from typical issues that may compromise the effective performance and manufacturability
of the new layouts. Among the most recurrent, we mention the possible presence of
intermediate densities, the non-smooth contours of the final design and the generation
of unit cells which turn out to be unprintable since presenting too thin struts. All these
drawbacks are strictly related to the selected computational grid: a coarse mesh promotes
jagged boundaries and a diffused void/material interface; vice versa, an extremely fine
mesh leads to a non-affordable computational effort and fosters the generation of too
complex structures. Filtering offers a possible remedy to address all these concerns by
alternating smoothing with sharpening phases to be properly tuned. Such a tuning is not a
trivial task and may often lead to non-optimal design solutions [13,33,36].

The selection of a computational mesh customized to the design problem has been
proved to be instrumental in order to limit the main issues of topology optimization.
For instance, in [37], the combination of a standard density-based method for topology
optimization with an anisotropic mesh adaptation procedure has been used to get rid of
intermediate densities, irregular boundaries, and thin struts in the design of structures at the
macroscale. The proposed algorithm, named SIMPATY (SIMP with mesh AdaptiviTY), is
based on a robust mathematical tool, namely an a posteriori estimator for the discretization
error, and it leads to final designs characterized by reliable mechanical properties as well as
by free-form features. The same procedure has been successfully exploited at the microscale,
with the proposal of the microSIMPATY algorithm [26]. So far, this procedure has been
used for the design of unit cells with optimized mechanical properties in a linear elasticity
setting [27,38].

In this work, we propose a new pipeline for the design of new cellular materials by
extending the microSIMPATY algorithm to a multi-physics context. The objective is to
obtain lightweight metamaterials with prescribed requirements on the elastic and thermal
conductivity properties, which are characterized by a ready-to-print topology. The design
strategy here developed is confined to a 2D setting and has to be meant as a proof-of-
concept, preliminary to a 3D implementation. However, to corroborate the effectiveness of
the proposed methodology, we perform a cross-comparison between the new cells and the
standard ones in thermo-elastic applications.

The paper is organized as follows. Section 2 represents the core of the paper. It
provides the physical problem constraining the optimization process, outlines the main
theoretical tools to perform the optimization, and formalizes the thermo-elastic design
procedure in the MultiP-microSIMPATY algorithm. Three design cases are considered in
Section 3 to apply the MultiP-microSIMPATY algorithm to diverse scenarios. Section 4
further analyzes the results in the previous section by comparing the new designs with the
state-of-the-art. Finally, Section 5 outlines the most remarkable contributions of the work
together with some future perspectives.

2. Methods

In this paper, we refer to a multi-physics framework, in order to provide new layouts
for the design of cellular materials. A standard issue consists in optimizing the microscale to
ensure desired properties at the macroscale. To deal with this two-scale setting, it is crucial
to properly transfer the physical characterization of the micro- to the macroscale. Direct
and inverse homogenization represent widespread solutions in such a direction [14,39–41].
In particular, the direct approach incorporates the microscopic effects into a homogenized
macroscopic model. As a consequence, the microscopic behavior is known, whereas we



Math. Comput. Appl. 2022, 27, 15 3 of 20

have to identify the (homogenized) macroscopic characterization. Vice versa, inverse
homogenization starts from desired macroscopic physical properties and designs the
microscale in order to match such features, thus swapping the role played by known and
unknown scales with respect to direct homogenization.

In this paper, we focus on a two-dimensional setting and on linear thermo-elastic prop-
erties, so that, at the macroscale, the reference models are the linear elasticity equation [42]
and the linear thermal conduction problem, as identified by the standard stress–strain (σ-ε)
and heat flux-temperature (q-θ) relations, given by

σ(u) =

σ11(u)
σ22(u)
σ12(u)

=
E1111 E1122 E1112

E2211 E2222 E2212
E1211 E1222 E1212


 ε11(u)

ε22(u)
2ε12(u)

 = E ε(u), (1)

and

q(θ) =

[
q1(θ)
q2(θ)

]
=

[
k11 k12
k21 k22

]
∂θ

∂x1

∂θ

∂x2

 = k ∇θ, (2)

respectively, where E and k are the stiffness and the conductivity tensors characterizing the
considered solid material.

We observe that in view of the homogenization procedures, the constitutive laws (1)
and (2) have to be properly modified to include the effects of the microscale, into

σH(u) = EH ε(u), qH(θ) = kH ∇θ,

where EH and kH denote the homogenized stiffness and thermal conductivity tensors, as
detailed in the next section.

2.1. Inverse Homogenization

Inverse homogenization is the procedure that allows us to design microstructures
with prescribed properties at the macroscale. The required features are mathematically
commuted into a goal functional J and into suitable constraints driving a topology opti-
mization process to be solved in the unit cell Y ⊂ R2 whose periodic repetition yields the
cellular material [26,27,29,38,43]. According to a density-based approach, a standard way
to perform such an optimization leads us to define an auxiliary scalar field, ρ, that models
the relative material density at the microscale. A priori, it is assumed that ρ = 1 labels the
material, while ρ = 0 identifies the void. However, since density ρ ∈ L∞(Y, [0, 1]

)
can take

all the values in [0, 1], it is standard to penalize the intermediate values (i.e., intermediate
material densities) that are not physically consistent. To this aim, we resort to the SIMP
method, which modifies the reference state equations by weighting the constitutive laws
with a suitable power of the density [13].

In general, the optimization problem we are interested to solve is

min
ρ∈L∞(Y,[0,1])

J (z(ρ), ρ) :

aρ

(
z(ρ), w

)
= Fρ(w) ∀w ∈W

LB ≤ C(z(ρ), ρ) ≤ UB,
(3)

where z = z(ρ) denotes the state variable depending on the density field, aρ(·, ·) together
with Fρ(·) defines the state equation constraining the topology optimization, W is a suitable
function space [44], and the box inequality includes specific design and physical require-
ments, with C(·, ·) being the vector gathering the quantities to be controlled through the
corresponding lower and upper bounds, LB a UB.

In the analysis below, we pick the objective functional J as
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M(ρ) =
∫

Y
ρ dY (4)

since we are interested in minimizing the total mass,M, of the cellular structure, i.e., to
design lightweight materials.

According to a standard homogenization procedure, as the state equation, we select the
linear elasticity model at the microscale weighed by the density function, which describes
the Y-periodic displacement field fluctuations, u∗,ij, induced by the test displacement fields
u0,ij, with u0,11 = [x, 0]T, u0,22 = [0, y]T and u0,12 = [y, 0]T. This leads us to identify the
forms aρ(·, ·) and Fρ(·) in (3) with

aE,ij
ρ

(
u∗,ij(ρ), v

)
=

1
|Y|

∫
Y

ρp σ(u∗,ij) : ε(v)dY,

FE,ij
ρ (v) =

1
|Y|

∫
Y

ρp σ(u0,ij) : ε(v)dY,

(5)

respectively, with p ∈ R+, ij ∈ I = {11, 22, 12}, and where the superscript E refers to the
elasticity setting. The state equation associated with (5) is completed with fully periodic
conditions on the cell boundary ∂Y, according to the asymptotic homogenization theory.
Thus, W in (3) coincides with the space U 2

# = [H1
�(Y)]

2 of the H1(Y)-vector functions
satisfying periodic boundary conditions along ∂Y.

To include also the thermal component in the topology optimization, we further
constrain the process with the ρ-weighed thermal conductivity model at the microscale,
which are characterized by the forms

ak,m
ρ (θ∗,m(ρ), v) =

1
|Y|

∫
Y

ρs q(θ∗,m) : ∇v dY,

Fk,m
ρ (v) =

1
|Y|

∫
Y

ρs q(θ0,m) : ∇v dY,

(6)

with s ∈ R+, m ∈ J = {1, 2}, and where the superscript k refers to the thermal framework.
Analogously to (5), we complete the thermal state equation identified by (6) with periodic
boundary conditions along ∂Y, so that θ∗,m and v ∈ U 1

# = H1
�(Y), where θ∗,m denotes the

temperature fluctuations associated with the test temperature fields θ0,m (namely, θ0,1 = x
and θ0,2 = y).

The two problems at the microscale, (5) and (6), are instrumental to define the homog-
enized elastic tensor, EH , and the homogenized thermal conductivity tensor, kH , which will
be involved in the box constraints in (3). The component-wise definition of EH and kH is

EH
ijkl =

1
|Y|

∫
Y

ρp
[
σ(u0,ij)− σ(u∗,ij(ρ))

]
:
[
ε(u0,kl)− ε(u∗,kl(ρ))

]
dY, (7)

kH
mn =

1
|Y|

∫
Y

ρs
[
q(θ0,m)− q(θ∗,m(ρ))

]
:
[
∇θ0,n −∇θ∗,n(ρ)

]
dY, (8)

respectively, with ij, kl ∈ I and m, n ∈ J. In particular, the two-sided inequality in (3) will
be exploited to promote diverse mechanical and thermal behaviors along the different
spatial directions. To this aim, we constrain the two ratios EH

2222/EH
1111 and kH

22/kH
11 so that

they vary in suitable ranges. This choice allows us to penalize the mechanical and the
thermal contributions in a different way along the two directions, as shown in the numerical
assessment. An additional two-sided control is enforced on the first and the last diagonal
terms, EH

1111 and EH
1212, of the homogenized elastic tensor, as well as on the first diagonal

term, kH
11, of the homogenized thermal conductivity tensor.
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To sum up, the optimization setting we are led to deal with coincides with the following
problem:

min
ρ∈L∞(Y,[0,1])

M(ρ) :



aE,ij
ρ

(
u∗,ij(ρ), v

)
= FE,ij

ρ (v) ∀v ∈ U 2
# , ij ∈ I

ak,m
ρ

(
θ∗,m(ρ), v

)
= Fk,m

ρ (v) ∀v ∈ U 1
# , m ∈ J

Elow
1111 ≤ EH

1111 ≤ Eup
1111

Elow
1212 ≤ EH

1212 ≤ Eup
1212(

E2222

E1111

)low
≤

EH
2222

EH
1111
≤
(

E2222

E1111

)up

klow
11 ≤ kH

11 ≤ kup
11(

k22

k11

)low
≤

kH
22

kH
11
≤
(

k22

k11

)up

ρmin ≤ ρ ≤ 1

(9)

where all the bound values, (·)low and (·)up, will be set according to the application at
hand and in order to avoid an unfeasible solution (inappropriate constraints might lead
to an empty solution space). Finally, the last inequality in (9) is meant to ensure the well-
posedness of both the elasticity and the thermal problems (5) and (6), ρmin being a suitable
value in (0, 1) (see Section 3 for more details).

2.2. Discretization on Anisotropic Adapted Meshes

With a view to the solution of problem (9), all the quantities involved in the state
equations, as well as in the constraints, have to be discretized on a suitable tessellation of
the unit cell Y. For this purpose, we resort to a computational mesh Th = {K} customized
to the problem at hand and characterized by stretched elements (i.e., a so-called anisotropic
adapted mesh). Mesh Th is employed to discretize both the test and the trial functions in the
state equations, as well as the density function ρ, by means of a finite element scheme [44].
The anisotropic reference setting is the one proposed in [45]. In particular, the anisotropic
features of each element K coincide with the lengths, λ1,K, λ2,K, and the directions, r1,K,
r2,K, of the semi-axes of the ellipse circumscribed to K through the standard affine map,
TK : K̂ → K, between the reference element K̂ and the triangle K.

Concerning the adaptation procedure, we resort to a metric-based approach driven by
an a posteriori estimator for the discretization error associated with the density function ρ.
Among the error estimators available in the literature [46,47], we refer to an a posteriori
recovery-based error analysis. Following the seminal work by O.C. Zienkewicz and J.Z.
Zhu [48], we control the H1-seminorm of the discretization error on the density, eρ = ρ− ρh.
The selection of such an estimator is motivated by the fact that the density ρ exhibits
strong gradients (i.e., large values for the H1-seminorm) across the material–void interface.
This feature will yield meshes whose elements are crowded along the boundaries of the
structure, thus promoting the design of very smooth layouts. To this aim, we exactly
integrate the so-called recovered error, E∇ = P

(
∇ρh

)
−∇ρh, namely,

|eρ|2H1(Y) = ‖∇eρ‖2
L2(Y) =

∫
Y

∣∣∇ρ−∇ρh
∣∣2 dY

' ‖E∇‖2
L2(Y) =

∫
Y
|P
(
∇ρh

)
−∇ρh|2dY,

(10)

where ρh denotes the finite element discretization of ρ in the space Vr
h of the piecewise

polynomials of degree r ∈ N associated with Th. The operator P : [Vr−1
h ]2 → [Vs

h ]
2

in (10), with s ∈ N , denotes the recovered gradient, which, in general, provides a more
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accurate estimate of the exact gradient∇ρ with respect to the discrete gradient∇ρh. Several
recipes are available in the literature to define P [49–52]. In particular, we select operator
P : [V0

h ]
2 → [V0

h ]
2 as the area-weighted average of ∇ρh over the patch of the elements,

∆K = {T ∈ Th : T ∩ K 6= ∅}, associated with K; i.e., we opt for

P
(
∇ρh

)
(x) =

1
|∆K| ∑

T∈∆K

|T| ∇ρh

∣∣∣
T
∀x ∈ K, (11)

with |ω| the area of the generic domain ω ⊂ R2, where we have set the degree of the finite
element space for ρh to r = 1. Space V1

h is also adopted to discretize the components of
the displacement vectors u∗,ij as well as the temperature fields θ∗,m in (9), with ij ∈ I and
m ∈ J.

According to [53,54], we here adopt the anisotropic generalization of (10). This estima-
tor essentially exploits the anisotropic counterpart of the definition of the H1-seminorm [45],
based on the symmetric semidefinite positive matrix G∆K , with entries

[
G∆K (∇g)

]
i,j = ∑

T∈∆K

∫
T

∂g
∂xi

∂g
∂xj

dT i, j = 1, 2, (12)

with g ∈ H1(Y), and where it is understood x1 = x and x2 = y. Thus, the squared
H1-seminorm |eρ|2H1(Y) is evaluated by the (global) error estimator η2 = ∑K∈Th

η2
K, where

η2
K =

1
λ1,Kλ2,K

2

∑
i=1

λ2
i,K

(
rT

i,K G∆K (E∇) ri,K

)
, (13)

defines the local error estimator. The contribution between brackets coincides with the
projection of the squared L2-norm of the recovered error along the anisotropic directions,
while the scaling factor (λ1,Kλ2,K)

−1 guarantees the consistency with the isotropic case (for
more details, see [53]).

The new adapted mesh is generated after commuting the error estimator ηK into a new
mesh spacing (the metric), M, consisting of the triplet {λadapt

1,K , λ
adapt
2,K , radapt

1,K }, where the

direction radapt
2,K is automatically defined being radapt

1,K · radapt
2,K = 0, for each element K ∈ Th.

This operation is performed by taking into account three different criteria, namely, (i) the
minimization of the mesh cardinality #Th; (ii) an accuracy requirement on the discretization
error |eρ|H1(Y) (i.e, on the error estimator η), controlled up to a user-defined tolerance TOL;
(iii) the equidistribution of the error throughout the mesh elements (i.e., η2

K = TOL2/#Th).
These three criteria lead us to solve a constrained minimization problem on each triangle
K ∈ Th. The solution to this local optimization problem can be analytically derived, as
proved in [55], being

λ
adapt
1,K = g−1/2

2

(
TOL2

2 #Th |∆̂K|

)1/2

, radapt
1,K = g2,

λ
adapt
2,K = g−1/2

1

(
TOL2

2 #Th |∆̂K|

)1/2

, radapt
2,K = g1

(14)

where g1, g2 and g1, g2 are the eigenvalues and the eigenvectors of the scaled matrix
Ĝ∆K (E∇) = G∆K (E∇)/|∆K|, with g1 ≥ g2 > 0.

Finally, the metricM = {λadapt
1,K , λ

adapt
2,K , radapt

1,K }K∈Th has to be changed into a quantity
associated with the vertices of Th received as an input by the selected mesh generator. A
standard choice consists in an arithmetic mean formula applied to the patch of elements
associated with each vertex in Th [54].

The anisotropic mesh adaptation based on the metric (14) is customized to a topology
optimization problem in the algorithm SIMPATY, proposed in [37]. This procedure has been
successfully employed for the design of structures at the macroscale [37,56,57] as well as for
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the design of new metamaterials with the proposal of the algorithm microSIMPATY [26,27].
Moreover, a combination of topology optimization at the macroscale and at the microscale
is carried out in [38]. In particular, a multiscale topology optimization process is used
for the design of orthotic devices for 3D printing manufacturing with the proposal of
patient-specific innovative solutions.

It has been verified that the adoption of an adapted anisotropic mesh leads to free-form
layouts characterized by very smooth boundaries both at the macroscale and at the mi-
croscale, mitigating some of the well-known drawbacks of standard topology optimization,
such as the massive employment of filtering, the staircase effect, and the generation of too
complex structures [13,33,36]. However, in [57], it has been observed that the presence
of deformed elements inside the structures makes the finite element analysis less reliable.
To overcome this issue, the authors suggest a hybrid approach. Thus, the mesh is kept
isotropic, with a uniform diameter hiso in the full-material regions, {x ∈ Y : ρh(x) > ρth}
with ρth as a user-defined threshold, whereas the stretched triangles are preserved along the
material–void interface. Actually, these hybrid meshes ensure an effective balance between
the smoothness of the structure and robust engineering performances (the interested reader
can find a quantitative investigation of the benefits of the hybrid approach in terms of
accuracy in (Section 5, [57])). For this reason, we resort to hybrid meshes in the sequel.

2.3. Multi-Physics Optimization Algorithm

In this section we propose the multi-physics adaptive inverse homogenization pro-
cedure, which generalizes the algorithm proposed in [26]. The discretization of the state
equations associated with (5) and (6) is performed with the open-source finite element
solver FreeFEM [58], which provides the ideal environment to implement an anisotropic
mesh adaptation procedure in Section 2.2 through the built-in mesh generator BAMG
(Bidimensional Anisotropic Mesh Generator).

The developed multi-physics optimization procedure is listed in the pseudocode in
Algorithm 1. The main loop (lines 3–12) includes an optimization step, a filtering phase, and
the mesh adaptation. At each global iteration k, the optimization problem is solved (line
4, function optimize) by taking into account all the constraints on the components of the
elastic and of the thermal conductivity tensors in (9). To this aim, we use the interior point
algorithm IPOPT [59], although any other optimization tool can be selected [60]. IPOPT
requires as input the functional J to be minimized; the vector C gathering the constrained
quantities in the optimization procedure; the two vectors cl and cu of the lower and upper
bounds for the components in C; the array G collecting the derivative of the functional J
and of the constraints C with respect to ρ, computed by the adjoint Lagrangian approach
(for more details, we refer to [27]); the initial guess ρkh to start the optimization process;
the accuracy TOPT for the minimization problem; the maximum number of iterations IT
to stop the optimization. In particular, in the numerical assessment of Section 3, we set
TOPT = 10−5, and IT = 100 for k = 0 and IT = 10 for all the successive iterations. The
higher value for IT for k = 0 takes into account that the initial guess ρ0h can be completely
arbitrary with respect to the minimum to be reached. On the contrary, a smaller value for
IT is sufficient for k > 0, since the initial guess, ρkh , coincides with the output of a previous
optimization step.
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Algorithm 1 MultiP-microSIMPATY

1: Input: CTOL, kmax, cl , cu, ρ0
h, TOPT, IT, kfmax, τ, β, T 0

h , TOL, HYB
2: Set: k = 0, errC = 1+CTOL;
3: while errC > CTOL & k < kmax do
4: ρk+1h = optimize(J , C, cl , cu, G, ρkh , TOPT, IT);
5: if k < kfmax then
6: ρk+1h = helmholtz(ρk+1h , τ);
7: ρk+1h = heaviside(ρk+1h , β);
8: end if
9: T k+1

h = adapt(T k
h , ρk+1h ,TOL, HYB);

10: errC =
∣∣∣#T k+1

h − #T k
h

∣∣∣ /#T k
h ;

11: k = k+1;
12: end while
13: Th = T k

h ;
14: ρh = ρkh ;

15:
[
EH , kH

]
= homogenize(ρh);

16: return Th, ρh, EH , kH

Function optimize returns the density ρk+1h , which is successively processed by means
of Helmholtz and Heaviside filters (lines 6–7, functions helmholtz and heaviside) [61,62].
The two filtering operations work in a complementary way. The Helmholtz partial differen-
tial equation is instrumental to remove too thin features, although promoting intermediate
densities along the layout contour. In more detail, it consists of a low-pass filter based on a
diffusion kernel with radius τ ∈ R+. On the contrary, the Heaviside filter, coinciding with
a β-dependent regularization of the Heaviside function with β ∈ R+, penalizes the inter-
mediate material densities, also due to the Helmholtz filter, thus increasing the sharpness
of the material/void interface. The combined filtering takes place for the first kfmax global
iterations only. This choice leads to start the mesh adaptation procedure with a density
field, which is free from too complex features, while exhibiting a clear alternation between
void and material. The filtering phase becomes redundant when the optimization loop
approaches the minimum, so that mesh adaptation alone suffices to ensure well-defined
structures. In the next section, filtering parameters τ and β are set equal to 0.02 and 5
respectively, while kfmax = 25.

The next step coincides with the mesh adaptation procedure detailed in Section 2.2
and here represented by function adapt (line 9). The input parameter TOL establishes the
accuracy of the error estimator η through the predicted metric in (14). Parameter HYB is a
boolean flag that, in correspondence with the full material, switches the employment of an
isotropic mesh on or off.

The main loop is controlled by a check on the stagnation of the relative difference
between the cardinality of two consecutive meshes (line 10), up to a maximum number
of global iterations kmax (line 3). The choices TOL = 10−5 and kmax= 100 are preserved
throughout all the numerical assessment below.

Algorithm MultiP-microSIMPATY returns the final adapted mesh Th, the optimized
density ρh, and the homogenized elastic and conductivity tensors, EH and kH , which are
computed by function homogenize (line 15), based on (7) and (8).

We remark that the procedure itemized in Algorithm 1 is fully general and it can
be applied in a straightforward way to different multi-physics contexts after properly
modifying the formulation in (9).

3. Results

We analyze three different cases of microstructure design according to (9). In order to
highlight the interplay between the different (thermal and mechanical) physics involved,
we consider configurations where the thermal conductivity and the elastic stiffness require-
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ments act along different directions. For instance, a high shear stiffness combined with
a high thermal conductivity along the x-direction orient the material along two opposite
directions, with the prescription of a conflict configuration.

The whole verification below shares common choices for some physical quantities
and discretization parameters. In particular, the unit cell Y ⊂ R2 is identified with the
unitary square, Y = (0, 1)2. Moreover, we set the Young modulus, EY, and the Poisson
ratio, ν, to 1 and 0.3, respectively, and we consider an isotropic solid material with unitary
thermal conductivity by setting k11 = k22 = 1 and k12 = k21 = 0. These choices allow
us to obtain normalized homogenized mechanical and thermal properties for the cellular
structures. Following [26], both the SIMP-powers, p and s, in (7) and (8) are chosen equal
to 4 to penalize intermediate densities.

Concerning the discretization frame, we choose a random density field, ρ0
h, as the

initial guess for the optimization process, in order to avoid any bias. In particular, ρ0
h is

defined on an initial structured mesh characterized by 30 subdivisions per side, and with
values ranging from ρmin = 10−4 to 1 (see Figure 1 for an example).

Figure 1. Initial guess ρ0
h (left) and corresponding mesh T 0

h (right).

Finally, to ensure a reliable finite element analysis, we resort to the hybrid mesh adap-
tation procedure (HYB = 1 in function adapt). In particular, we choose the threshold value
ρth = 0.9 to manage the alternation between isotropic and anisotropic elements, and the
isotropic tessellation is characterized by the uniform diameter hiso = 0.03 (approximately
1/30 of the design domain dimension).

After the optimization, we perform a verification step to check the actual mechanical
and thermal properties of the material yielded by a periodic repetition of the optimized
unit cell. To this aim, we use the Abaqus software (Abaqus, Dassault Systèmes Simulia
Corp, Johnston, RI, USA). The layouts provided by Algorithm 1 are imported in Abaqus
after a thresholding, which neglects the density smaller than 0.75. The obtained geometry is
remeshed on a uniform isotropic triangular mesh with an average size equal to 0.01, while
the displacement and temperature fields are discretized with quadratic finite elements,
completed with periodic boundary conditions. The verification here performed can be
considered as a preliminary step toward the integration of the MultiP-microSIMPATY
algorithm into a common workflow for structural analysis.

3.1. Design Case 1

The main goal of this first optimization process is to design a lightweight unit cell
characterized by isotropic mechanical homogenized properties and, vice versa, anisotropic
thermal homogenized features. This problem can be cast in setting (9), after making the
following choices for the constraints:
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0.05 ≤ EH
1111 ≤ 0.08

0.055 ≤ EH
1212 ≤ 0.080

1 ≤
EH

2222
EH

1111
≤ 2

0.01 ≤ kH
11 ≤ 1.00

0.00 ≤
kH

22
kH

11
≤ 0.58.

(15)

The isotropic mechanical behavior and the anisotropic thermal properties are enforced
by the constraints in (15)3 and (15)5. In particular, we expect ratios EH

2222/EH
1111 and kH

22/kH
11

to coincide with the corresponding lower and upper bounds, respectively. Moreover, since a
control on the ratios does not ensure EH

1111, EH
2222, kH

11, and kH
22 to be in a physically admissible

range of values, we further constrain the optimization through the box inequalities (15)1
and (15)4. Finally, a control on the component EH

1212 of the homogenized stiffness tensor
closes the minimization problem, thus further restricting the solution space.

For the values set for the input parameters, the MultiP-microSIMPATY algorithm
converges in 51 global iterations. Figure 2 shows the layout and the associated anisotropic
adapted mesh at three different iterations.

Figure 2. Design Case 1: density field (top) and associated anisotropic adapted mesh (bottom) for
three different global iterations.

We remark that the final topology of the layout is already detected at the first iteration,
although the quality of the solution is improved throughout the optimization process. In
particular, at the first iteration (k = 1), we observe a significant staircase effect together with
the presence of intermediate densities along the microstructure interface. At the end of the
filtering phase (k = 24), the jagged boundaries are fully smoothed, despite the intermediate
densities still blurring the design. The spreading effect along the material/void interface is
gradually reduced when switching off the filtering, i.e., for k > 24, as shown by the last
column in Figure 2. Thus, the final optimized solution (k = 51) shows an extremely sharp
transition from material to void and smooth boundaries, which make the structure ready
for printing or manufacturing, with a limited need for post-processing.
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Concerning the adapted mesh, we recognize the effect of the hybrid approach, which
combines stretched elements to discretize the strong gradients of the density field, coarse
anisotropic triangles outside the structure, and isotropic elements in correspondence with
the material.

Additional quantitative information on the MultiP-microSIMPATY algorithm is pro-
vided by Table 1 and by the diagrams in Figure 3, which show the evolution of the objective
function and of the constrained quantities (top), together with the trend of the mesh cardi-
nality (bottom), over the global iterations. Notice that the values of the constraints have
been normalized between 0 and 1 (see the highlighted area in the top panel of Figure 3).
It is evident that the mass exhibits a completely different trend when compared with the
constrained quantities. The value of the objective function oscillates with values between
0.325 and 0.475 over the first 35 iterations, and it eventually converges toward a stable
phase. On the contrary, all the constrained quantities are characterized by mild oscillations.
In particular, kH

11 remains essentially constant over the whole optimization process. The
plot of the ratios EH

2222/EH
1111 and kH

22/kH
11 confirms that the two inequalities are in conflict

so that the active constraints are the lower and upper bound, respectively. Moreover, from
the values in Table 1, it can be observed that the stiffness component along the x-direction,
EH

1111, reaches a value that is about 25% lower than the corresponding cl . This can be
ascribed to the presence of very thin struts generated by the severe thresholding (ρh < 0.75)
applied before performing the analyses in Abaqus.

Table 1. Design cases 1, 2, and 3: values of the constraints and of the objective functional computed
with Abaqus software, together with the lower and the upper bounds, cl and cu, involved in the
optimization.

EH
1111 EH

1212
EH

2222
EH

1111
kH

11
kH

22
kH

11
M

Design Case 1
cu 0.080 0.080 2.000 1.000 0.580
c 0.038 0.056 1.299 0.199 0.566
cl 0.050 0.055 1.000 0.010 0.000

0.292

Design Case 2
cu 0.350 0.150 2.000 1.000 2.000
c 0.250 0.086 0.299 0.317 0.597
cl 0.230 0.080 0.300 0.300 0.000

0.412

Design Case 3
cu 0.150 0.100 1.100 0.400 1.100
c 0.151 0.083 1.074 0.260 1.002
cl 0.100 0.080 1.000 0.250 1.000

0.415

The evolution of the topology in Figure 2 is consistent with the trend in Figure 3 (top
panel). The topology does not essentially vary during the optimization process, according
to the almost constant trend of the constraints. On the other hand, the highly oscillatory
trend ofM in the first optimization stage is related to the effect of the smoothing and of
the sharpening operations, which are confined to the first 24 iterations. From k = 25, only
the minimization process and the mesh adaptation contribute to a mass variation, with less
striking changes.

Finally, in Figure 4 (left), we show the 3× 3-cell material generated by a periodic
repetition of the optimized unit cell.
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Figure 3. Design Case 1: evolution of the objective functionalM and of the constraints ci (top); trend
of the mesh cardinality #Th (bottom) throughout the global iterations k.

Figure 4. Design Cases 1, 2, and 3 (left–right): 3× 3-cell meta-material.

3.2. Design Case 2

The second MultiP-microSIMPATY run aims at designing a microstructure that pro-
vides high stiffness and thermal conductivity along the x-direction and a high shear stiffness.
As for the Design Case 1, these requirements might originate a set of conflicting constraints.
In fact, the two former demands are expected to orient the material along the x-direction,
while the latter requirement prescribes also the presence of material along the diagonal of
the cell Y, which could react by tension to shear loading. This design setting is formalized
by problem (9) when completed by the following set of constraints:

0.23 ≤ EH
1111 ≤ 0.35

0.08 ≤ EH
1212 ≤ 0.15

0.3 ≤
EH

2222
EH

1111
≤ 2.0

0.3 ≤ kH
11 ≤ 1.0

0 ≤
kH

22
kH

11
≤ 2.

(16)
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We highlight that the bounds for the stiffness tensor components to be promoted, EH
1111

and EH
1212, are set by taking into account the mass minimization goal, i.e., by keeping them

considerably lower than 1.
Algorithm 1 stops in 56 iterations due to mesh stagnation. Figure 5 gathers the density

field distribution together with the associated anisotropically adapted computational mesh
at iterations k = 5, 20, and 56. At the fifth iteration, the cell presents very thin struts that are
progressively erased by the combined action of the Helmholtz and the Heaviside filters. For
k = 20, the topology essentially coincides with the final optimized one, although the layout
still exhibits intermediate density values along the boundaries. The structure contours
become sharper and sharper throughout the next iterations when filtering is switched off
and thanks to the mesh adaptation procedure.

Concerning the final topology, we observe that most of the material is aligned along
the two main diagonals of Y. This guarantees high shear stiffness, while ensuring a low
stiffness along the y-direction, so that the lower bound for EH

2222/EH
1111 is reached. On the

other side, the requirements on EH
1111 and kH

11 are taken into account by the two thinner
struts along the x-direction, which improves the corresponding stiffness and the thermal
conductivity. Figure 4 (center) provides a sketch of the metamaterial associated with the
optimized cell in a 3× 3 cellular pattern.

For a more quantitative characterization of the optimized structure in terms of mass
and reached constraints, we refer to Table 1. We notice that to address the conflict among
the several requirements, the optimization process pushes all the constrained quantities
toward the lower bound of the corresponding range, while increasing the mass of the
structure if compared, for instance, with the previous design case.

Figure 5. Design Case 2: density field (top) and associated anisotropic adapted mesh (bottom) for
three different global iterations.

3.3. Design Case 3

As a third design, we carry out the optimization of a microcell characterized by similar
stiffness and thermal conductivity along the x- and y-directions and by a high shear stiffness.
This leads to solve problem (9) when the following constraints are enforced:
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0.10 ≤ EH
1111 ≤ 0.15

0.08 ≤ EH
1212 ≤ 0.10

1.0 ≤
EH

2222
EH

1111
≤ 1.1

0.25 ≤ kH
11 ≤ 0.40

1.0 ≤
kH

22
kH

11
≤ 1.1.

(17)

The limited range for the two ratios EH
2222/EH

1111 and kH
22/kH

11 is consistent with the
request for comparable stiffness and thermal conductivities along the two directions,
whereas the mass minimization goal justifies the tight variation for the other tensors
components.

The MultiP-microSIMPATY algorithm resorts to 35 loops before satisfying the stopping
criterion. Figure 6 shows the density field and the mesh for three different global iterations
of the algorithm. As for the previous design cases, thin features are removed by filtering
during the first 24 iterations, while intermediate densities are erased in the second part of
the process by the mesh adaptation procedure. As a consequence, the final microstructure
exhibits very sharp density gradients, so that little post-processing has to be applied. In the
final layout, most of the material is allocated along the two main diagonals of the domain,
which ensures the required high shear stiffness as well as the balance between stiffness and
thermal conductivity with respect to the horizontal and vertical directions.

Table 1 offers some additional quantitative information regarding the optimized
structure. All the box constraints are satisfied (with a slight violation for the component
EH

1111) in the presence of a structure mass comparable with the one obtained for Design
Case 2 (about 40% with respect to the full material configuration). We refer to Figure 4
(right) for an example of the microcellular material associated with the optimized cell.

Figure 6. Design Case 3: density field (top) and associated anisotropic adapted mesh (bottom) for
three different global iterations.

4. Discussion of Results

This section is meant to highlight the benefits of the MultiP-microSIMPATY algorithm.
To this aim, we compare the layouts provided by the proposed methodology with unit
cells available in engineering practice and with cellular materials designed by a standard
inverse homogenization procedure, which does not exploit mesh adaptation.
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4.1. Comparison with Off-The-Shelf Designs

This first investigation is carried out by comparing each of the three designs in the
previous section with state-of-the-art unit cells in terms of mechanical and thermal per-
formance, after setting a reference value for the overall mass. The quantities involved in
such a comparison are the homogenized elastic modulus, EH

x and EH
y , associated with the

direction x and y, which coincide with the inverse of the diagonal entries, CH
11 and CH

22, of
the compliance matrix CH = (EH)−1; the homogenized shear modulus, GH , equal to the
inverse of the third diagonal entry of matrix CH ; the homogenized thermal conductivities,
kH

11 and kH
22, along the x- and y-direction. The results of this analysis are summarized in

Table 2.

Table 2. Comparison between the MultiP-microSIMPATY optimized structures and off-the-shelf de-
signs in terms of homogenized elastic and thermal properties, for comparable volume fraction values.

EH
x EH

y GH kH
11 kH

22
Design Case 1

D1 0.012 0.015 0.056 0.200 0.113

A 0.009 0.009 0.075 0.163 0.163

B 0.095 0.042 0.059 0.198 0.131

Design Case 2

D2 0.126 0.039 0.082 0.317 0.126

C 0.341 0.116 0.002 0.432 0.125

Design Case 3

D3 0.070 0.070 0.082 0.260 0.261

L 0.188 0.188 0.072 0.255 0.255

Concerning Design Case 1, we perform two comparisons. Since the geometry provided
by MultiP-microSIMPATY is similar to a square cell rotated by 45◦, we choose simple
squares (A and B) characterized by the same rotation as state-of-the-art unit cells. The
basic squares in layout A fully couple mechanical and thermal features, thus excluding this
cell for the purpose addressed in the first design case. This justifies the selection of cell B
where the reinforcing horizontal strut mimics the very thin diagonal member connecting
the adjacent sides in the proposed layout (D1). From a structural perspective, the horizontal
strut in B increases the nodal connectivity and reacts with tension/compression to a load
applied along the x-axis. This fact is confirmed by the non-isotropic elastic behavior of
the material (compare the values EH

x and EH
y ). Regarding thermal conduction, the strut

promotes heat transfer along the horizontal direction, as highlighted by the discrepancy
between kH

11 and kH
22. In the optimized layout D1, the thin member is instead slightly

inclined and does not connect two opposite nodes. Thus, the elastic modulus along the
two directions is similar, since the strut reacts by bending to a load applied along the
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x-axis. Moreover, the thin member promotes the heat transfer along the x-direction, thus
decoupling the ratios EH

y /EH
x and kH

22/kH
11.

The unit cell D2 has been designed to ensure high stiffness and conductivity along
the x-direction as well as a high shear modulus. As reference layout, we consider a
square cell characterized by a rectangular cavity. This choice offers us a trivial solution
to optimize stiffness and conductivity along direction x. The optimization performed by
MultiP-microSIMPATY is corroborated by the values of GH . In fact, cell D2 is characterized
by a shear modulus, which is approximately 40 times higher when compared with the
reference layout, although the values of EH

x and kH
11 for cell D2 are, on average, 30% lower

with respect to cell C.
Finally, the Design Case 3 aims at ensuring equal elastic modulus and conductivity

along the x- and y-directions, as well as a high shear modulus. The paradigm for an
isotropic stretch-based lattice, namely the standard triangular cell (L), is assumed as the
off-the-shelf layout. A comparison between the corresponding values in Table 2 shows a
15% increment in the shear modulus of cell D3. In addition, both cells D3 and L exhibit the
requested isotropic behavior in terms of the selected mechanical and thermal properties.

4.2. Comparison with Standard Inverse Homogenization

This section is meant to verify the benefits led by mesh adaptation in the context
of thermo-elastic inverse homogenization, which is in accordance with the preliminary
remarks in Section 3.

To this aim, we carry out a comparison between the MultiP-microSIMPATY algorithm
and a standard inverse homogenization procedure. This comparison is performed in terms
of mass. We expect that the employment of mesh adaptation leads to efficiently allocate
the available material, thus promoting the mass minimization. As a reference standard
approach, we implement a non-adaptive version of Algorithm 1, where the adaptation loop
(lines 3–12) is replaced by the single call

ρh = optimize(J̃ , C̃, cl , cu, G̃, ρ0h , TOPT, IT).

We refer to this variant of Algorithm 1 as MultiP-microSIMP. In this case, the optimiza-
tion is performed on the filtered density, so that the goal functional, the constraints, and
the associated derivatives are modified accordingly (this justifies the new notation Q → Q̃,
with Q = J , C,G, where Q̃ refers to quantities dependent on the filtered density). This
choice is recurrent in topology optimization [61,62]. As far as all the parameters required
by the optimization are concerned, we preserve the same values as in Section 2.3, while the
computational mesh coincides with a 50× 50 structured mesh.

Figure 7 compares the optimized layouts delivered by MultiP-microSIMP (top) and
MultiP-microSIMPATY (bottom) for the three design cases in Section 3. The topologies
characterizing the three cells vary when resorting to mesh adaptation. In general, MultiP-
microSIMPATY provides more complex layouts, which however are still manufacturable.
The presence of intermediate densities in the cells yielded by MultiP-microSIMP is high-
ligthed by the blurred structure contours, promoted by the massive employment of filtering.
Table 3 quantitatively assesses the optimization performance of the two algorithms by
collecting the mass of the corresponding unit cells, together with the percentage mass
reduction ensured by MultiP-microSIMPATY. On average, a mass saving of approximately
10% is guaranteed by the sharp detection of the material/void interface, i.e., by the removal
of intermediate densities.

The use of filtering deserves further discussion. In particular, we prove the redundancy
of the filtering phase after a sufficiently large number of global optimization iterations.
To this aim, we run Algorithm 1 for kfmax = 25 and kfmax = kmax (i.e., smoothing and
sharpening filters in lines 6–7 are applied at each global iteration). Figure 8 compares
the output associated with these two choices. The final topology provided by both the
procedures is the same. This confirms that filtering is instrumental only in the identification
of the final layout, and this takes place during the first iterations. From the top-left panel, the
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slightly diffusive action of the selected filtering is also evident, giving rise to intermediate
densities along the layout boundaries. On the other hand, the removal of filtering allows
mesh adaptation to sharply detect gradients from material to void, thus increasing the
quality of the final output (compare the two panels on the left panel). The improvement in
terms of boundary detection is confirmed also by the final adapted mesh, which captures
the steep gradients of the density with thinner refined areas (compare the two panels on
the right).

Figure 7. Comparison between the optimized cells delivered by MultiP.microSIMP (top) and by
MultiP-microSIMPATY (bottom) for the Design Cases 1, 2, and 3 (from left to right).

Table 3. Comparison between the optimized cells delivered by MultiP-microSIMPATY and a standard
inverse homogenization algorithm in terms of mass.

D1 D2 D3
MultiP-microSIMP 0.330 0.443 0.486

MultiP-
microSIMPATY 0.292 0.412 0.415

Mass reduction [%] 11.5% 7.0% 14.6%

Figure 8. Effect of filtering for the MultiP-microSIMPATY algorithm: density field (left) and associated
anisotropic adapted mesh (right) when filtering is applied during the whole optimization process
(top) and in the first 25 iterations only (bottom).

Finally, we highlight that the presence of blurred interfaces may raise issues in the
extraction of the final geometry after the optimization procedure. In fact, the extracted
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geometry strongly depends on the cut-off threshold, with a possible significant alteration
of the overall mass and the expected thermo-elastic properties.

5. Conclusions and Perspectives

In this paper, we provide a new methodology for the design of cellular materials
optimized by means of multi-physics inverse homogenization, which was discretized on
customized computational meshes. The inverse homogenization problem is modeled by a
standard density-based topology optimization at the microscale; the grid is generated by
exploiting an anisotropic a posteriori error estimator that drives a mesh adaptation proce-
dure. These two phases are iteratively coupled in the MultiP-microSIMPATY algorithm
in order to deliver layouts characterized by clear-cut contours. In particular, the goal of
the analyzed test cases is the design of lightweight structures with prescribed elastic and
thermal properties, according to a multi-physics framework.

The main results of this work can be outlined as follows:

(i) The MultiP-microSIMPATY algorithm provides original design solutions, complying
also with conflicting requirements;

(ii) The good performance of microSIMPATY has been confirmed also in a thermo-elastic
context. Standard issues typical of topology optimization, such as the presence of
intermediate densities, of jagged boundaries, and of too complex structures, is miti-
gated by the employment of a mesh customized to the design process (see Figure 7
and Table 3);

(iii) The new cellular materials have been successfully compared with consolidated solu-
tions in terms of mechanical and thermal properties (see Table 2);

(iv) Filtering can be considerably limited thanks to the use of mesh adaptation. This turns
into an improvement in terms of accuracy of the optimization process (see Figure 8);

(v) The employment of an anisotropic mesh adaptation provides advantages with a view
to a manufacturing phase. Indeed, the unit cells designed by MultiP-microSIMPATY
exhibit very smooth geometries which demand for a very limited post-processing;

(vi) The procedure here settled turns out to be fully general with respect to the selected
multi-physics context.

Possible future developments include the extension of the MultiP-microSIMPATY
design procedure to a 3D setting. The proposed methodology could also be exploited
in a multiscale topology optimization framework [38], inspired by the many possible
applications in engineering practice (including medicine, aerospace, automotive, and
architecture). In such a context, with a view to the manufacturing step, another issue that
deserves further investigation is represented by the handling of the transition area between
different cellular materials. Finally, innovative techniques, such as model reduction or
machine learning, still represent topics of high relevance in topology optimization for a
future examination [63–65].
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