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Small Bodies Non-Uniform Gravity Field On-Board Learning
Through Hopfield Neural Networks

Andrea Pasqualea,1,∗, Stefano Silvestrinia,2, Andrea Capannoloa,3, Paolo Lunghia,4,
Michèle Lavagnaa,5

aPolitecnico di Milano, Via La Masa 34, 20156, Milano

Abstract

Small bodies environment is usually difficult to be modelled for a number of reasons.

Among the others, the uncertainty associated to the non-uniform gravitational field re-

quires in-situ observations for its refinement, or its identification. This operation becomes

even more challenging in case the orbiting platform is a CubeSat or, in general, a plat-

form with reduced computational power as well as a high autonomy requirement. In this

paper, a new approach to reconstruct on-board the gravity field of either unknown or

partially known bodies is presented. In particular, the use of a Hopfield Neural Network

(HNN) to reconstruct the coefficients of a Spherical Harmonics Expansion (SHE), that

is assumed to approximate the gravity field of the body, is described. A comparison with

an Extended Kalman Filter (EKF) used for parameter estimation is presented and the

differences of the two methods are critically discussed: due to the structure of the HNN,

the former results to be computationally faster and lighter than a stand-alone EKF used

for parameter estimation.

Keywords: Hopfield Neural Network (HNN), asteroid proximity operations, gravity

field identification, online learning, parameter estimation



1. Introduction1

Asteroid and comets have become of great importance during the last decade, due to2

the enormous scientific return they can provide to understand the origins of our Solar Sys-3

tem. Their exploration, however, poses enormous challenges from an engineering point4

of view. Generally, poor knowledge of physical properties of these objects, such as mass5

and density, and of their shape, translates into a rough estimation of the gravitational6

environment. In missions design, risks coming from this lack of knowledge are generally7

mitigated by a safe trajectory design, limiting the spacecraft proximity to the targeted8

body, at the cost of lower quality in observations and measurements. To reduce distance,9

rapidity in the operations becomes of the utmost importance, and only autonomous sys-10

tems for the guidance, navigation and control of the spacecraft can be adopted. To do11

so, the spacecraft must be able to reconstruct the dynamical environment and counteract12

the gravitational perturbations coming from the uneven shape of the asteroid and other13

sources, such as the solar radiation pressure. At the current time, there have been a14

certain number of missions that use radio-science to estimate the higher-order terms of15

the gravitational potential of those kind of objects [1, 2, 3]. This technique, however,16

works well for large bodies but its accuracy decreases drastically for smaller bodies due17

to the uncertainties arising from the Solar Radiation Pressure (SRP).18

Past studies dealt with the problem of reconstructing the unknown acceleration terms19

of the dynamics, for example exploiting an augmented Kalman filter for the estimation of20
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such unmodelled inputs [4, 5, 6]. While this approach can be advantageous from a pure21

guidance and navigation perspective, it lacks insight for what concerns the direct knowl-22

edge of the target’s shape and gravitational properties, being them blended to the other23

perturbative effects in the overall disturbance acceleration. In such sense, it is desirable24

to exploit a technique dedicated to the reconstruction of the small body’s shape and25

gravity field, to aid the navigation of the spacecraft, while enriching the science output26

of the mission. There have been a number of studies that propose different applications27

of machine learning to this problem: in [7] a single layer forward network, designed and28

trained by means of Extreme Learning Machines, is shown to be capable to learn the rela-29

tionship between the spacecraft position and the gravitational acceleration. In [8], neural30

reinforcement learning is used to control a spacecraft around a celestial body whose grav-31

ity field is unknown. In [9], finally, an efficient gravity field modeling method based on32

Gaussian process regression is presented, that uses a kind of (supervised) Bayesian re-33

gression to reconstruct the relationship between the gravitational acceleration and check34

point. However, those methods have to be trained before use. This is possible if the35

target body shape is already available and so need a detailed a-priori knowledge of the36

target body is available.37

Other examples can be the use of Back Propagation Artificial Neural Networks38

(BPANN) for the Earth gravity field approximation is presented in [10] and the use39

of Artificial Neural Networks (ANN) in [11] for a body gravity field interpretation. It is40

of interest from this point of view, the use of Radial Basis Function (RBF)-based net-41

works that are an alternative to the popular Multi-Layer Perceptron (MLP) (e.g. the42

Single Layer Forward Network (SLFN) and the ANN discussed before) [12]. Moreover,43

in [13] and [12] it has been shown that a RBF-based networks can be used for the online44

3



identification of non-linear system.45

More recently, in [14] the use of a neural network based on a Modified State Observer46

(MSO) is presented. It uses the MSO for estimating the uncertainties that a satellite47

may experience while in orbit, with the primary advantage that the neural network48

is trained online. This method appears to be one among the most promising but it49

reconstructs the gravity field in a indirect way: in fact, the accelerations time history50

along three axis as (ax, ay, az) is reconstructed, without giving any other information. A51

forward least-square optimization method must be then used in order to have a global,52

time independent representation of the gravity field in the form of a spherical harmonics53

expansion.54

In this paper we explore the possibility to use a specifically tailored Hopfield Neural55

Network (HNN) to overcome this problem and to estimate the attractor’s gravity field56

directly online, with no a-priori knowledge of the attractor and recovering a global repre-57

sentation of the field. Through a numerical simulation campaign, HNN is demonstrated58

to be a valid solution to the problem, due to its flexibility, adaptation to new inputs and59

the reduced computational burden. The HNN results then the perfect candidate for fast60

autonomous correction in the implemented dynamics and target reconstruction. In brief,61

the contributions of the paper are:62

• to propose an HNN to be used to reconstruct the global gravitational field of63

unknown or poorly known bodies;64

• to highlight the dependence of the HNN hyper-parameters to the physical properties65

of the target body as well as to the orbit used for the identification;66

• to extend the gravitational field identification problem to multi-body dynamical67
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environments (binary systems in this case);68

• to compare performances and computational cost of a EKF-HNN combination,69

for state & parameter identification respectively, with a EKF used for both tasks70

together.71

The paper is organized as follows. Section 2 is dedicated to he review of the dynamics72

background, as well as the theory behind the neural network. Section 3 describes the73

procedure to reconstruct the gravity field through the adopted network. Section 5 in-74

troduces and tests a Kalman filter with extended state for the estimation of coefficients,75

and compares its results to the proposed network approach, in terms of performance76

and computational time. Finally, conclusions on the proposed method are discussed in77

Section 6.78

2. Background & Tools79

Some assumptions are made both on the dynamical environment as well as the output80

of the reconstruction in order to solve the problem of the reconstruction of the gravi-81

tational field of an unknown, arbitrary shaped body directly on-board of a spacecraft82

orbiting it.83

2.1. Dynamical Environment84

The orbital environments about small bodies are among the highly perturbed environ-85

ments found in the solar system [15]. In this work two simplified environmental models86

are considered: the one associated with a single body, based on the so called Perturbed87

Two-Body Problem (P2BP), and the one associated to a binary system of bodies, based88
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Figure 1: Geometry of the MCR3BP

on the Modified Circular Restricted Three-Body Problem (MCR3BP). This, in order to89

test the scalability of the network to different dynamical environments, both from the90

formulation as well as from the identification performance point of view. These models91

are extensively discussed in [16],[17].92

2.1.1. The P2BP93

The detailed derivation of the dynamical environment model associated to a single94

body relies on the P2BP model. Here the equations of motion for a reduced order model95

are briefly recalled. Under the assumption that the body rotates about its principal96

inertia axis with uniform angular velocity Ω, the equations of motion written in the97
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body-fixed frame are:98



ẍ− 2Ωẏ = Ω2x+ aT,x

ÿ + 2Ωẋ = Ω2y + aT,y

z̈ = aT,z

(1)

wherein the acceleration model adopted can be expressed as:99

aT(r, s,dk−a) = aG(r) + aSRP(r, s) +

N∑
k=1

a3rdk
(r,dk−a) (2)

being aG the gravitational acceleration due to the gravity field of the body, aSRP the100

acceleration contribution due to the SRP and a3rdk
the acceleration contribution due to101

the k-th third-body. In this work, since the aim is to focus the attention on the gravity102

field reconstruction, the other perturbations are neglected and the gravitational model103

used as ground truth is the constant density polyhedron [18]. Then, the model is a104

subclass of the P2BP, called in this work Shape-Based Two-Body Problem (S2BP).105

2.1.2. The MCR3BP106

The geometry and the formulation of the MCR3BP starts from the one of the Circular107

Restricted Three-Body Problem (CR3BP). The only difference is that the two bodies are108

assumed to have a certain shape and not to be point masses. In particular, the MCR3BP109

may be formulated as follows.110

First of all, the angular velocity associated to the two-body motion of the primaries111
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is computed:112

ΩS =

√
G(m1 +m2)

d2
12

(3)

with m1 and m2 are the mass of the primary and the secondary, d12 the distance113

between them and G the gravitational constant. Then, with reference to Fig. 1, the114

following reference frames are defined:115

• TS = (C; X̂s, Ŷs, Ẑs), a quasi-inertial frame, fixed at the center of mass of the two116

primaries;117

• Ts = (C; x̂s, ŷs, ẑs), a synodic frame, fixed at the center of mass of the two primaries118

and rotating with ΩS which respect to TS ;119

• T kn = (Gk; îk, ĵk, k̂k), a quasi-inertial frame, centred in the k-th body and parallel120

to TS ;121

• T kb = (Gk; b̂k1 , b̂
k
2 , b̂

k
3), a body frame, centred in the k-th body and rotating with Ωk122

with respect to T kn ;123

Then the spacecraft position vector r, in the Ts frame can be expressed in the k-th124

body fixed frame, T kb according to:125

r(k) = Tkn · TTΩS
(r− lk) (4)

where here lk is the distance of the primary to the centre of mass of the system in126

the Ts reference. Note that the product Tkn ·TTΩS
can be re-arranged, having defined the127
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differential rotation as ∆Ωk = ΩS − Ωk, since:128

TΩS
· Tkn

T
=


cos(∆Ωkt) sin(∆Ωkt) 0

− sin(∆Ωkt) cos(∆Ωkt) 0

0 0 1

 = Tk∆(t) (5)

The equation of motion in the Ts frame results, according to [16]:129

r̈ + ΩS × (ΩS × r) + 2ΩS × r = T1
∆(t)∇U1

(
r(1)
)

+ T2
∆(t)∇U2

(
r(2)
)

(6)

Here U1 is the gravitational potential of the primary and U2 the one of the secondary.130

This work implement a simpler version of Eq. 6. In particular, the bodies are assumed131

to be locked with the respect to the synodic frame resulting in a Shape-Based CR3BP132

(SCR3BP):133

r̈ + ΩS × (ΩS × r) + 2ΩS × r = ∇U1 (r1) +∇U2 (r2) (7)

where here Ui(·) is the gravitational potential associated to the i-th body.134

2.2. The Parametric Identification Problem135

As a global approximation technique of the true gravitational field, the Spherical136

Harmonics Expansion (SHE) has been largely studied and applied for mission analysis137

purposes in the past years [19],[20],[21]. Being an analytical model, it results to be138

computationally efficient and light to be evaluated, if compared with constant density139

polyhedron or mascons models, which makes it suitable for various applications. In a140

SHE, the gravity field of the body is assumed to be represented through a potential of141
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the form:142

U =
µ

r
− µ
r

N∑
n=2

(
R0

r

)n [
JnP0

n(cos θ)−
n∑

m=1

(Cnm cos(mλ)+Snm sin(mλ))Pmn (cos θ)

]
(8)

Here θ is the colatitude, λ the longitude, r the radial distance to the center of mass143

of the body, R0 a reference radius, Pmn (x) Associated Legendre Polynomials (ALP) of144

degree n and order m and µ the body gravitational parameter. For the peculiar properties145

of the model, the SHE is assumed to be reconstructed in this work. Hence, the objective146

becomes to estimate the coefficients Jn,Cnm and Snm of the expansion, while µ is assumed147

to be known. In particular, the model to be reconstructed, in the case of the S2BP, is148

the following:149

r̈ + Ω× (Ω× r) + 2Ω× r = ∇U (r) (9)

Writing the SHE in a matrix form, then the model can be written as:150

r̈ + Ω× (Ω× r) + 2Ω× r = − µ
r3

r + A(r) ·C (10)

Where here, the vector C contains all the coefficients of the expansion to be estimated.151

Now, defining:152

y = r̈ + 2Ω× ṙ + Ω× (Ω× r) +
GM

r3
r (11)

The model can be written in the so called Linear-in-parameters (LIP) form:153

y = A(r) ·C (12)
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Figure 2: The Hopfield Neural Network structure.

According to [22, 23], being the model linear in the parameters, the identification154

problem can be reformulated as an optimization problem. In particular, defining the155

prediction error e = y−A ·C∗, where C∗ is the estimation of C, the resulting combina-156

torial optimization problem is [17]:157

min
C

{
sup
t

(
1

2
eT · e

)}
(13)

With a similar procedure, the formulation can be extended to the MCR3BP.158

2.3. Hopfield Neural Networks159

HNNs are a kind of ANNs formulated by Hopfield in its paper [24]. The model as well160

as its stability has been extensively studied in the last decades. In the original Hopfield’s161

formulation of the network, the dynamics of the neuron i is governed by the ODE, [22]:162

dpi
dt

= −pi(t) +

N∑
j=1

wijφj(pj(t))− bi(t)) (14)
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where pi(t) is the total input to the neuron i, φj is a continuous non-linear, bounded163

and strictly increasing function called activation function, and wij and bi are parameters164

corresponding respectively to the synaptic efficiency associated with the connection from165

neuron j to neuron i, and the bias of the neuron i. The neuron state is then obtained166

through the activation function, φ(z) = tanh z:167

si(t) = tanh

(
pi(t)

β

)
= φ(pi, β) (15)

where β > 0 is a coefficient to eventually regulate the slope of the activation function.168

According to [22, 24], in order to prove that the neural system defined in Eq. 14 is stable,169

Lyapunov stability theory is exploited. In this paper, Abe [25] modified formulation of170

the network is used, being the most suited for combinatorial optimization problems. In171

this case, the Lyapunov function is defined as:172

V (s) = −1

2

n∑
i=1

n∑
j=1

wijsisj +

n∑
i=1

bisi (16)

The key concept associated to the theory of HNN is the fact that:173

∂V

∂si
= −dpi

dt
(17)

so that the network defines a gradient system and thus the network states evolve in the174

direction that minimized the Lyapunov function. So the application of Hopfield networks175

to the solution of optimization problems is a direct consequence of the dynamical prop-176

erties of the network and, in particular, of the existence of the Lyapunov function. Then,177

the HNN is formulated as an ODE, that can be represented as a recurrent dynamics, as178
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in Fig.2:179

dpi
dt

=

N∑
j=1

wijφj(pj)− bi = neti(t) (18)

Applying the chain rule, the recurrent neuron dynamics can be reduced to:180

ds

dt
=

1

β
D

(
Ws + b

)
(19)

where s(t) is neuron states vector, β an hyper-parameter of the network, D = diag(1−181

s2
i ), W = −ATA is called weight matrix and b = Ws0 + ATy is called bias vector. Note182

that both the weight matrix and the bias vector are associated to the SHE model and183

can be recovered matching the Lyapunov function of the network with the cost function184

of the optimization problem [26, 23]. Here s0 = s(0). The proof of the stability of the185

method is presented in [23, 16], thus is not reported here.186

2.4. Discrete-time Hopfield Neural Network187

Usual discrete versions of HNN include Backward Euler methods. However, according188

to [27] a better discrete version of the network is:189

(si)k+1 =
(si)k + tanh

(
h
β (neti)k

)
1 + (si)k tanh

(
h
β (neti)k

) (20)

where h is the time-step, (si)k is the state of the i-th neuron at the k-th step and190

(neti)k =
∑
j

(wij)k(sj)k − (bi)k (21)

Note that this version is bounded but is not continuous whenever the denominator is zero.191

In principle, this condition cannot be achieved since |si| < 1, but, due to numerical round-192

off errors, it has to be taken into account in a computer implementation of the discrete193
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method. In this study, the choice is to set (si)k+1 = (si)k whenever the singularity is194

encountered. This discrete version of the network, however, still suffers from the time195

step choice [16].196

3. Gravity Field Identification of Small Solar System Objects with HNN197

The gravitational field reconstruction of a group of test objects through the use of198

a HNN is analysed in this section with the aim to highlight dependencies with respect199

to initial orbital conditions as well as the network tuning parameters. Since the aim200

is to test the HNN capability of computing correctly the SHE’s Stokes coefficients, the201

following assumptions are considered:202

• The minor body is considered to be non rotating;203

• A perfect determination is assumed for the state of the orbiting object: the state204

vector is, in fact, assumed to be known and expressed with respect to the exact205

centre of mass of the body; this assumed only for this section, where the method206

is developed and validated from the conceptual point of view.207

• Sun third body gravitational perturbation and SRP are neglected.208

• The mass of the body is considered to be known. This is a major assumption,209

since it is a parameter to be estimated too, because the Stokes coefficients and M210

are strongly correlated. Indeed, a simultaneous estimation of the mass and the211

coefficients is not possible here, since in that case the LIP form in Eq. 12 cannot212

be recovered. However, as shown in [16], it is possible to estimate the mass of213

the body prior to the one of the coefficients. Furthermore, the correlation of the214
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coefficients on the gravitational parameter µ = GM can be removed from the215

estimation introducing a normalization to the equation of motion. In particular,216

defining a reference two-body acceleration:217

aref =
µ

R2
ref

(22)

and considering q̃ the normalized version of a quantity q, Eq. 1 becomes:218



x̃′′ − 2ỹ′ = x̃−
(
Rref

r

)2
x̃
r̃ +

R2
ref

µ
∂Up
∂x

ỹ′′ + 2x̃′ = ỹ −
(
Rref

r

)2
ỹ
r̃ +

R2
ref

µ
∂Up
∂y

z̃′′ = −
(
Rref

r

)2
z̃
r̃ +

R2
ref

µ
∂Up
∂x

(23)

This version of Eq. 1 is particularly useful to be used in the neural network since the219

weight and bias matrix results to be normalized. This process is here presented for220

the S2BP but can be extended to the SCR3BP. The choice of Rref is also important:221

to decouple the problem at the most with respect to both the body and the orbit,222

Rref is taken to be equal to r(tk), in such a way:223

∣∣∣∣r2(t)

µ
∇Un,m(r)

∣∣∣∣ ≤ 1

where here Un,m is the n-th degree, m-th order SHE term of the expansion.224

As highlighted in the previous section, the HNN and its convergence are fully de-225

termined once β,W,b and s0 are given. Thus, once the initial conditions on the orbit226

i.e. r(t0) and v(t0) are given and the newtork is initialized with a given s(t0), then the227
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performances would depends on the value of the hyper-parameter, β. Then, in general,228

the i-th coefficient converge is a function of:229

Ci(tk) = si(body,x(tk), β, s(tk)) (24)

i.e. the i-th coefficient is coincident with the neuron state, si(tk), which is determined230

as si(tk) = φ(s(tk−1), β) where here φ(·) is the activation function. In particular, the231

neurons state dynamics is fully determined by:232

• the body, in terms of its shape (S) and mass (M);233

• the orbital state, x(tk): note that the dependence on the state can be written in234

terms of the current osculating elements associated to the trajectory (a, e, i,Ω, ω, ν).235

Moreover, since x(tk) depends on x(t0) and tk, the latter can be considered as236

independent variables.237

• the network hyper-parameter, β: with reference to Fig. 15 small values of β are238

associated with a steeper activation function and so to an activation that is more239

sensitive to the inputs. On the other hand, values of β ≥ 1 make the activation240

less sensitive.241

• the network neuron states, sj(tk): since the i-th neuron dynamics is also asso-242

ciated to all the other j-th neurons, as seen in Eq. 18. This means that the neuron243

state behaviour is associated to the number of coefficients (NC) that are estimated.244

Then, the neuron state can be expressed as:245

Ci(tk) = si(S,M, a0, e0, i0,Ω0, ω0, β,NC , tk, s0) (25)
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Finally, an integral measure of the error of the i-th reconstructed coefficient, Ci(t),246

with respect to its the real value, C̄i, is then introduced:247

iMSEi =
1

2N

N∑
k

√
(Ci(tk)− C̄i)2

C̄i
(26)

This parameter of merit is an integral measure that weights both the accuracy and248

the velocity of the network. In the following analysis the neuron convergence dependency249

on the different parameters is analysed by means of the iMSE. The flowchart that brings250

from the initial condition to the Stokes coefficients identification is then the following:251

1. The initial orbit is propagated for a certain period, T , with a time-step h using the252

P2BP model;253

2. The network is initialized with s0 = 0;254

3. Positions and velocities at each instant tk are retrieved;255

4. yk in Eq. 11 is computed, approximating by finite differences the acceleration and256

assuming the body to uniformly rotating about its principal inertia axis;257

5. The weight matrix W(tk) and the bias vector b(tk) are computed;258

6. The neuron state (discrete) dynamics is retrieved by means of Eq. 20, providing259

the estimates for Cis at each instant.260

3.1. Dependency on body mass261

The normalization introduced cancel the direct dependency on the body mass. Then:262

Ci(tk) = si(S, , a0, e0, i0,Ω0, ω0, β,NC , tk, s0) (27)
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However the body mass re-enter the problem in the optimal choice of β:263

β∗ = β∗(M, . . . ) (28)

Being the dependency on mass and body shape strictly connected, the optimal β is264

not trivial. However, as shown in the following paragraph, the actual dependence on the265

body shape is negligible. Therefore, as shown in [16]:266

• In general, the optimal β choice is case dependant.267

• A choice of a small β, say 1e-6, can eliminate the dependence on the mass but can268

lead to instability of the network.269

• As a rule of thumb, a log-linear dependence of the optimal β on the body radius270

could be considered. This radius is here considered to be R0. Being the mass271

proportional to the cubic power of the body radius, then an (indirect) dependence272

on the mass is recovered.273

In general, since it is possible to preliminary have information about the mass of the274

body that has to be visited (e.g. from inverse light curves or other methods), a tuning275

process of β is performed to recover the optimal β. Note that also in case this is not an276

option, the HNN could be robustly used to identify the mass of the body. This can be,277

then, used within the tuning process.278

3.2. Dependency on body shape279

In order to show the effect of the shape on β∗, the following analysis is performed:280

• A tri-axial ellipsoid is defined by (α, 1, γ);281
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Figure 3: β∗ dependency on (α, γ).

• a body with R0 = 1km and an homogeneous density ρ = 2200 kg/m3 is assumed;6282

• (3R0, 0, 45◦, 0, 0) is selected as orbital initial condition and the orbit is discretized283

in time with ∆t of 30 seconds;284

• the body’s J2 is estimated and the iMSE is computed.285

β∗, is extracted minimizing the iMSE. The results are presented in Fig. 3 where a slight286

dependence of β∗ on the degree of body’s irregularity is shown (here as irregularity is287

intended the non-roundness of the body). In particular, it can be seen that the more the288

body is regular the more the β∗s converge to a single value, while the more the irregular289

the body is, the more the β∗ values are spread. This suggests that a fine tuning of the290

method could be beneficial in case of highly irregular bodies [16], however since the order291

of magnitude of β∗ remains the same, the shape is considered an higher order parameter292

6here R0 is the Brillouin sphere.
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of the problem, thus:293

Ci(tk) ≈ si( , , a0, e0, i0,Ω0, ω0, β,NC , tk, s0) (29)

3.3. Dependency on the orbit294

To highlight the dependency on the spacecraft orbit, the following analysis is per-295

formed:296

• An oblate spheroid with flattening f=0.5 is defined, resulting in a tri-axial ellipsoid297

defined by (1, 1, 0.5);298

• a body with R0 = 1km and ρ = 2200 kg/m3 is assumed;299

• the orbit is initialized as a function of a0 and i0: circular orbits are considered and300

the RAAN influence is not relevant since an oblate spheroid is considered.301

• the orbital path discretized with ∆t = 30 seconds and 10 revolutions about the302

body are considered.303

• the body’s J2 is estimated and the iMSE is computed.304

The results for the iMSE are presented in Fig. 4.305

1. From Fig. 4a it seems that the dependence on the inclination of the orbit is not a306

dominant parameter. However, this is something not expected since zonal contri-307

butions to the potential is:308

Un,0 = −GM
r

(
R0

r

)n
JnPn(cos θ) (30)
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(a) Slice of the surface along a0 = 3Rmax. (b) Slice of the surface along β = 15.

(c) Slice of the surface along i = 45 ◦. (d) Slice on i = 45 ◦, r/R0 = 3.

Figure 4: Results for the orbit dependency test case. Different slices of the hyper-surface defined by

Eq. 29 are presented.

i.e. it is experienced in case the colatitude θ 6= 0. However, in this simplified case309

in which the only J2 coefficient is estimated, the HNN is still capable to correctly310
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Figure 5: Network neural dynamics for a0 = 3R0, as a function of the orbit inclination (color scale -

from black, 0◦ to red, 90◦)

estimate it. This is not the case for higher order harmonics, as can be seen from311

Fig. 5. Then, dependence on the orbit inclination is to be taken into account.312

2. Fig. 4b shows instead that there is a stronger dependence on the distance to the313

body r(t).314

3. A cross-dependence between β and r(t) is instead highlighted in Fig. 4c where it is315

evident that β∗ has a decreasing monotonic behaviour with respect to r(t). Note316

that on the top right of the surface the iMSE gets larger. This means that the317

network convergence velocity gets smaller (in all cases presented in this analysis318

the network do converge in the given time window).319

4. Fig. 4d highlight a slight dependence on the time discretization ∆t, coupled to the320

choice of β.321

Thus, assuming to initialize the network with s0 = 0 (i.e. worst case, in which no322

prior information about the harmonics are available):323

Ci(tk) ≈ si(r(tk)/R0, i0, β,NC , tk, s0) = si(d(tk), i0, β,NC) (31)

Here d(tk) = r(tk)/R0. Note that, as far as the orbit is non-equatorial, the depen-324
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Figure 6: Neuron states dynamics as a function of the time, the number of the estimated coefficients

and β (color scale, from black β = 1 to red β = 10−6).

dency on the inclination can be considered to be an higher order one [16], thus:325

Ci(tk) ≈ si(d(tk), β,NC) (32)

3.4. Dependency on NC326

To highlight the dependency of the network state dynamics on the number of coeffi-327

cients that are estimated a dedicated analysis is performed. In particular:328

• An oblate spheroid with flattening f=0.5 is considered;329

• a body with R0 = 1km and ρ = 2200 kg/m3 is assumed;330

• the orbit is initialized with a0 = 2R0 and i0=90◦;331

In Fig. 6 are presented the results: it can be noticed that there is a dependence on NC ,332

due to the cross correlated weights of the network, wij . However, this does not influence333
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the ability of the network to correctly reconstruct the value of the coefficients, as far as334

a good choice of β is performed. Therefore, the neural state dynamics dependencies are335

reduced to:336

Ci(tk) = si(d(tk), β∗) +O(S,NC) (33)

3.5. Dependency on β337

As a result of the previous discussion, the optimal tuning of the network hyperpa-338

rameter β is function of:339

• The body mass, M ;340

• The body degree of irregularity, S;341

• The distance with respect to the body, r(t)/R0;342

i.e. Eq. 28 becomes:343

β∗ = β∗(M,S, d(tk)) (34)

Thus, there is no general rule for the optimal choice of β, however, according to [16]344

and [17] a reasonable initial guess to be used in a grid search can be extracted as a345

function of the body mass M as well as the orbit altitude d(tk). Then the initial guess346

can be refined for different body shapes with a grid search or multiple parallel executions347

of the network could be used in the estimation. Note that, according to [16], a choice348

of β∗ ≈ 10−12 could in principle eliminate the dependence on the mass but such a small349

value would lead to network instability of higher order harmonics in real applications,350

especially for highly irregular bodies.351
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4. Applications to realistic gravitational environments352

In this section a set of trajectories are generated considering the dynamical environ-353

ments represented through the P2BP and the MCR3BP, in order to address the perfor-354

mances of the neural network in reconstructing the gravitational field of realistic objects355

in their gravitational environment. In order to simplify the approach to the problem,356

some assumptions are made:357

1. The environment does not include SRP nor Sun third-body perturbation.358

2. The orbital states are assumed to be reconstructed through a navigation filter. The359

state estimates are assumed to be the real ones perturbed with a zero-mean white360

Gaussian noise. In particular, position and velocity are perturbed by σr = 102 m361

and σv = 10−2m
s , which are typical state’s navigation uncertainties [28, 29].362

3. Orbits with a retrograde acceleration component (90◦ < i < 270◦) are preferred,363

for their inherent stability properties .364

4. Orbit discretised with a time step of 30 seconds.365

Moreover, since the parametric analysis shown an intrinsic dependency of the network366

convergence depending on the choice of the hyperparameter β, multiple networks are run367

together on the estimation of J2, with different values of β for a given period of time and368

the optimal β∗ is extracted. Then, the estimation is run again for all the coefficients to369

be identified, with the obtained β∗ value.370

To show the flexibility of the method, applications in different dynamical environ-371

ments are presented. First of all, the HNN-based identification method is applied to372

some representative minor bodies, namely Castalia, Kleopatra and Phobos. Then, a373

binary system case is shown.374
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(a) Inertial body-centred frame orbit. (b) HNN results.

Figure 7: Asteroid Castalia results: a0 = 2Rmax, i0 = 135◦ circular orbit. Dashed lines represent the

true values of the coefficients.

4.1. Minor bodies representative cases: Castalia, Kleopatra and Phobos375

In Figs. 7, 8, 9 are presented the results cases of Castalia, Kleopatra and Phobos,376

which are the minor bodies selected for this analysis. Here, the state vector is normalized377

using the maximum body radius Rmax and the orbital time using the initial ”Keplerian”378

orbital period P0, in such a way the figures represent non-dimensional quantities. In379

Table 1 are presented the cumulative results for the identification of the Stokes coefficient380

of these bodies, which convergence is hereafter commented.381

• Castalia: in this case, the optimal choice for β results to be 10−3 and the neuron382

dynamics is shown in Fig. 7b. Note that in this case the HNN is capable to383

reconstruct all the coefficients with a relatively small number of revolutions around384

the body.385
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(a) Inertial body-centred frame orbit. (b) HNN results.

Figure 8: Asteroid Kleopatra results: a0 = 2Rmax, i0 = 135◦ circular orbit. Dashed lines represent the

true values of the coefficients.

• Kleopatra: also in this case, the optimal choice for β∗ results to be 10−3. However,386

to avoid network instabilities (see [16] for details of this phenomenon), a value of387

1.5β∗ is selected. As for the Castalia case, good convergence of all the coefficients388

is achieved.389

• Phobos: in this case, due to the highly irregularity and the fast rotation of the390

body, a circular orbit is placed at higher altitude from the body surface, to avoid the391

possibility to crash on or escape from the body. Differently for the other cases, in392

this case the convergence exhibit large oscillations and an estimation offset. This393

can be due to the extremely chaotic environment generated by the fast-rotating394

body.395

Note those results could be easily extended if other higher order gravitational pertur-396
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(a) Inertial body-centred frame orbit. (b) HNN results.

Figure 9: Phobos case results: a0 = 3Rmax, i0 = 135◦ circular orbit. Dashed lines represent the true

values of the coefficient.

Figure 10: Didymos system, Southern Halo.

bations or non gravitational ones are taken into account. This can be seen in the example397

shown in Fig. 11, where the effect of the introduction of third-body perturbation (Sun)398
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or SRP on the network neuron dynamics is presented. In particular, the third body

Figure 11: SRP and 3rd body perturbation effects on Castalia C20 convergence.

399

perturbation is shown to be negligible, while the SRP introduce a constant perturbation400

to the network (i.e. a linearly increasing term in time), which could be easily removed401

adding a simplified SRP model into the dynamical model used in the HNN.402

4.2. Binary asteroids case: Didymos403

The case of Didymos binary system is analysed in order to assess the scalability of404

the network to a different dynamical environment. According to [30], the dynamical405

environment can be represented through a polyhedron model for the primary body and406

a ellipsoid model for the secondary [31]. The network is implemented here in the un-407

normalized form associated to the SCR3BP. In this case, ΩS as well as the mass of the408

two bodies is assumed to be known so that from Eq. 7:409
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y = r̈ + ΩS × (ΩS × r) + 2ΩS × r +
µ1

r3
1

r1 +
µ2

r3
2

r2 (35)

A = [Amain(r1),Amoon(r2)] (36)

Where the LIP form of Eq. 12 is y = A · Cag where Cag = [Cmain; Cmoon]. Some410

orbital families were analysed in order to assess the capability of the network to work in411

such a perturbed environment.412

In this paper, the results for the case of a L1 Halo orbit are presented in Fig. 10.413

This trajectory is chosen for the presence of out-of-plane components, fundamentals in414

the identification of zonal harmonics, as well as, being in L1, give the possibility to test415

the network sensitivity to both the primary and the secondary gravity harmonics. In this416

case an optimal β value is selected to be 10−7, to boost the sensitivity of the network.417

However, it can be seen that, while the Dimorphos harmonics are well reconstructed418

(in mean), the method is not capable to properly capture Didymos harmonics. This419

is apparently in contrast with radio science simulations [32], but is due to the network420

tuning, which in this case was optimised for Dimorphos’ harmonics reconstruction.421

5. Comparison with EKF-based Parameter Identification422

The parameter identification problem has been studied in different technical disci-423

plines. One common technique to estimate internal parameters of nonlinear systems is424

to use an augmentation of the traditional Extended Kalman Filter, under certain ob-425

servability conditions [33]. The comparison presented hereby focuses on evaluating two426

approaches both relying on Extended Kaman Filter techniques, in particular:427
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Figure 12: Computational time comparison. Note that the HNN step-time is negligible with respect to

the EKF for state estimation.

1. Coupled EKF-HNN: the EKF is coupled with the presented HNN. The filter is428

dedicated to reconstruct the state vector of the system, whereas the HNN approx-429

imates the unknown spherical harmonics coefficients. The coupling between the430

EKF and HNN could be performed by using the reconstructed HNN coefficients in431

the prediction step of the EKF, i.e. adopting the Spherical Harmonics Expansion432

as gravitational model in the filter process model. Nevertheless, for coefficient re-433

construction purposes, the performance results to be equivalent if the point-mass434

gravity is adopted instead of the SHE, as shown in Fig. 13. In particular, the figure435

presents the difference in the convergence in the case in which the network receive436

the state vector from the true dynamics propagation (red), the EKF estimation437

with a point mass gravity model (blue) and the EKF estimation with SHE model438

(coupled case, grey). It can be noticed that not major differences are present in439
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Figure 13: HNN convergence comparison of the effect of different input sources to the network.

case the point-mass of the SHE model are considered within the EKF.440

2. Augumented EKF: the EKF is used both for estimating the state and the un-441

known coefficients. Thus, the augmented state of the filter comprises the set of442

coefficients to be identified.443

In order to compare the performance of the HNN approach for estimating spherical444

harmonics coefficients, an EKF-based estimation algorithm has been developed as in [34]445

for both cases and are specified in the following sections.446

5.1. Augmented filter formulation447

In this section the augmented filter formulation is presented. In particular, the state448

vector of the EKF is augmented as follows:449

X =


r

v

Cnm

 (37)
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where r and v are the position and velocity vectors respectively; {Cnm} is a stacked vector450

containing the SHE coefficient, whose length depends on the application scenario being451

NC the number of coefficient. The dynamics of the augmented state space resembles the452

one presented for the HNN-based algorithm, namely:453

Ẋ =


v

∇U (r, Cnm) + 2Ω× ṙ + Ω× (Ω× r)

0nm

 (38)

where it is important to note that the gradient of the potential is dependent on the454

estimated SHE coefficients. This guarantees system observability for estimating the455

aforementioned internal parameters. The state transition matrix is approximated using456

the first order Taylor expansion [28], so that the Jacobian of the dynamics, which is457

calculated analytically, can be constructed as follows:458

J =


03×3 I3×3 03×p

∇2U MΩ A(r)

0p×3 0p×3 0p×p

 (39)

where MΩ = ∂∇U
∂v = 2[Ω×].459

For the sake of simplicity, in this paper the EKF measurement equation is assumed460

to be linear, with the measurement matrix reading:461

H = [I6×6 0nm] (40)

Therefore the complete algorithm, including the update step, is reported in Algo-462

rithm 1.463
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Algorithm 1 EKF

1: X̂−k =
∫ tk
tk−1

f(X(τ))dτ , Xk−1 = X̂k−1, X̂+
0 = X0

2: Jk = ∂f
∂X

∣∣∣∣
X̂k−1

, Hk = H

3: P−k = Φ(tk, tk−1)P+
k−1Φ

T (tk, tk−1) + Q, P+
0 = P0

4: Kk = P−k HT
k (HkP

−
k HT

k + Rk)−1

5: X̂+
k = X̂−k + Kk(Yk −HX−k )

6: P+
k = (I−KkHk)P−k (I−KkHk)T + KkRKT

k

Here the process covariance matrix Q is assumed to be fixed in time and after a brute

force tuning process, is considered to be equal to:

Q = diag(
[
s2
r · ones(3), s2

v · ones(3), s2
C · ones(Np)

]
) (41)

where Np is the number of coefficients to be estimated, ones(x) is an operator that464

provide a vector of ones of length x, sr = 1e-1, sv = 1e-3 and sC = 0. Real application465

scenarios of an asteroid mission will require more sophisticated measurement function466

and behavioural model relying on low-observability measurements, as described in [28].467

5.2. Numerical results and comparison468

The dynamical environment described in Section 2.1 is used for numerical simulations.469

The measurements are generated through propagation of the aforementioned dynamical470

models. Furthermore, the state measurements are assumed to be perturbed with zero-471

mean white Gaussian noise. In particular, position and velocity are perturbed using472

σr = 102 m and σv = 10−2m
s . For the sake of comparison, three test cases have been473

assessed, namely asteroids Castalia, Kleopatra and the moon Phobos.474

For the parametric identification of gravitational field coefficients, being the number475
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(a) Castalia

(b) Case Kleopatra (c) Phobos

Figure 14: SHE coefficients estimation using EKF.

of parameters always >1 and usually � 1, the use of a method other than the EKF can476

be beneficial from a computational point of view. In fact the computational cost of a477

filter step do increase at least linearly with the number of elements of the augmented478
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vector X. In Fig. 12 a comparison between the two methods is presented considering the479

case of asteroid Castalia (4 parameters):480

• In green, the computational time for a single step of the HNN is reported. The481

mean µhnn ∼ 15 µs while the standard deviation σhnn ∼ 12 µs.482

• In grey, the computational time for a single step of a EKF used for the state-only483

estimation is reported. In this case, the mean µhnn ∼ 600 µs while the standard484

deviation σhnn ∼ 386 µs. The gravitational model used in the EKF in this case is485

the pure Two-Body Problem.486

• In red, the computational time for a single step of a EKF used for both the state487

and the parameters estimation. In this case, the mean µhnn ∼ 6.25 ms while the488

standard deviation σhnn ∼ 2.15 ms.489

The previous results are computed on a machine with a quad-core, i7-7700, 3 GHz490

CPU and highlight that the computational time associated to a EKF+HNN in the state491

& parameters estimation is one order of magnitude smaller than the one associated to492

an augmented EKF, being beneficial also from a volatile memory point of view.493

From the parameters estimation point of view, instead, both the methods are capable494

to reconstruct the selected Stokes coefficients, as reported in Tab. 1. In particular, for495

asteroid Castalia, the HNN estimation results are presented in Fig. 7 while the one496

associated to the EKF in Fig. 14a: in this case the HNN exhibit better convergence497

properties with respect to the filter that converges slower. It is the opposite for the case498

of asteroid Kleopatra, Fig. 8, Fig. 14b. Finally, in the case of Phobos, that is critical499

for the highly perturbed environment associated to the large centrifugal forces, both500
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methods have troubles in the estimation, giving an offset on the final estimate. Note501

that, in general, the coefficients estimated by the EKF results to be more stable than the502

one computed by the HNN. This issue can be easily solved choosing a more conservative503

value for β and allowing the network to run longer in time.504

As a drawback, the HNN is not capable to quantify the uncertainty of the recon-505

structed coefficients. However, the temporal evolution of the reconstructed term may506

be used to derive the variance of the signal and therefore recover an indication on the507

uncertainty. Moreover, running more than one HNN in parallel, could be used as an508

unscented approach to estimate coefficients uncertainty.509

6. Conclusions510

In this paper, the exploitation of an HNN for spherical harmonics coefficients identi-511

fication and the comparison between EKF and an HNN for the parameter estimation of512

the gravitational field of small bodies were analysed. The criticalities of the HNN for this513

task have been highlighted and consist in the tuning of the activation function through514

a parameter β. This parameter β results to be dependant on the distance to the body515

mainly and to have a dependence on the degree of irregularity of the visited body. In516

particular, for high irregular cases, a conservative choice of β should be made. These517

results are then validated in the real gravitational environment of some selected bodies,518

namely Castalia, Kleopatra and Phobos. The case of a binary system (Didymos) is pre-519

sented too: the re-formulation of the network’ associated dynamics appears to be simple520

as well as all the consideration valid for a single body can be used for the tuning of the521

network. From the other hand, the same tests are performed with an augmented-EKF.522

The performance of the EKF, as expected, results to be good also in this task. However,523
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Table 1: HNN/EKF results compared for Castalia, Kleopatra and Phobos. The root mean square error

and the standard deviation are computed on the last 5 periods of a 10 periods simulation.

True HNN (RMSe) HNN (std) EKF (RMSe) EKF (std)

Castalia

C20 -0,089 2,0e-3 6,5e-4 1,93e-2 3,5e-3

C22 0,0362 7,0e-4 2.78e-3 8,0e-4 1,2e-3

C30 -0,0124 2,6e-3 7.35e-4 7,0e-3 1,3e-3

C40 0,0152 1,64e-3 5.46e-4 3,7e-3 1,2e-3

Kleopatra

C20 -0,149 1,1e-2 1,77e-3 0,0 1e-7

C22 0,0734 4,6e-3 4,52e-3 0,0 1e-7

C40 0,0405 7,0e-4 2,42e-4 0,0 4e-7

Phobos

C20 -0,0622 1,6e-2 2,67e-2 1,3e-2 4,8e-4
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from the computational point of view, the augmented-EKF result to be heavier than the524

couple EKF+HNN. Finally, from the previous results we can conclude that the use of a525

HNN online gravity field estimation is a good alternative to an EKF as well as can be526

use to validate the results of the filter itself.527

Future works include application of the presented methodology to autonomous guid-528

ance algorithms.529
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