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Characterizing the nonclassicality of mesoscopic optical twin-beam states
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We present a robust tool to analyze nonclassical properties of multimode twin-beam states in the mesoscopic
photon-number domain. The measurements are performed by direct detection. The analysis exploits three different
nonclassicality criteria for detected photons exhibiting complementary behavior in the explored intensity regime.
Joint signal-idler photon-number distributions and quasidistributions of integrated intensities are determined
and compared with the corresponding distributions of detected photons. Experimental conditions optimal for
nonclassical properties of twin-beam states are identified.
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I. INTRODUCTION

Quantum nature of an optical state is mandatory for
exploiting the state in many useful applications including those
in quantum information and metrology [1–5]. By definition, a
state is nonclassical whenever it cannot be written as a positive
superposition of coherent states. Using the Glauber-Sudarshan
representation of a statistical operator [6,7], nonclassical states
are described by negative or even singular probability P func-
tions (quasidistributions). However, as P functions introduced
in this representation cannot be directly observed, also other
nonclassicality criteria based on measurable quantities have
been derived [8–12]. For instance, the negativity of the Wigner
function of a state available experimentally is commonly
used as a nonclassicality indicator [13–15]. Unfortunately,
this function is defined only for single-mode states and
so it cannot be used to describe the usual spectrally and
spatially multimode fields [16,17]. Moreover, the retrieval of
Wigner function, typically obtained through optical homodyne
tomography, is in general challenging as it requires optimal
spatiotemporal matching between the state under investigation
and a local oscillator [18–20].

An alternative approach to investigate the quantum prop-
erties of a state is provided by the direct detection of the
number of photons in the state. Direct detection offers the
possibility to reconstruct the photon-number distribution and
evaluate possible correlations between the components of
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a bipartite state [21–23]. The nonclassicality of a photon-
number distribution can be indicated by the values of its
Fano factor F = σ 2(n)/〈n〉 (σ 2 and 〈 〉 stand for variance
and mean value, respectively): F < 1 means nonclassical
sub-Poissonian statistics [24,25]. On the other hand, when
a bipartite state exhibits photon-number correlations, a noise
reduction factor R = σ 2(n1 − n2)/〈n1 + n2〉 (n1 and n2 are
the signal and idler photon numbers) having values lower than
1 indicates nonclassicality [26–30].

As one has no direct access to photons, it is of paramount
importance to define nonclassicality criteria in terms of
detected photons. In fact, the introduction and exploitation
of nonclassicality conditions for measurable quantities give
the possibility to avoid the use of photon-number recon-
struction methods that are in general complex. In this paper,
we experimentally investigate optical multimode twin-beam
(TWB) states containing sizable numbers of photon pairs. We
report on the characterization of their quantumness by means
of a direct detection scheme involving two photon-counting
detectors that are able to operate in the mesoscopic photon-
number domain, in which more than one pair of photons is
produced at each laser shot. In particular, we compare three
different nonclassicality criteria based on detected photon-
number correlations and discuss the conditions suitable for
their application. Moreover, we compare these criteria with the
genuine definition of nonclassicality using both the measured
joint signal-idler detected-photon distributions and recon-
structed joint signal-idler photon-number distributions and the
corresponding quasidistributions of integrated intensities [31].
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Even if the overall detection efficiency of our apparatus is
relatively low, we demonstrate that quantities determined for
detected photons are sufficient to reveal the quantum features
of the generated TWB states. The presented comprehensive
approach can thus be considered as a robust tool for dis-
criminating nonclassical TWB states in different experimental
regimes.

The paper is organized as follows. The experimental setup
is described in Sec. II. Nonclassical characteristics of twin
beams derived for detected photons are analyzed in Sec. III.
Section IV is devoted to the reconstruction of joint signal-idler
photon-number distributions, the determination of quasidis-
tributions of integrated intensities, and their nonclassical
features. Conclusions are drawn in Sec. V.

II. EXPERIMENTAL IMPLEMENTATION
OF MULTIMODE TWB STATES

According to the experimental setup shown in Fig. 1, meso-
scopic TWB states were obtained in spontaneous parametric
down-conversion (SPDC) in a nonlinear crystal with χ (2)

susceptibility. In particular, we sent the third harmonics (at
266 nm) of a cavity-dumped Kerr-lens mode-locked
Ti:sapphire laser (Mira 900, Coherent Inc. and PulseSwitch,
A.P.E.) to a type-I β-BaB2O4 crystal (BBO hereafter, 8 × 8 ×
5 mm3, cut angle ϑc = 48◦) tuned for slightly noncollinear
interaction geometry. 100-fs long pump-beam pulses were
delivered at frequency 11 kHz.

The TWB states generated by the apparatus are intrinsically
multimode, both in spatial and spectral domains. By assuming
that the output energy is equally distributed among μ modes
in each beam, the overall multimode state can be written as
a tensor product of μ identical single-mode twin-beam states
[32–35], i.e.,

|ψμ〉 =
∞∑

n=0

√
p

μ
n |n⊗〉 ⊗ |n⊗〉, (1)

where |n⊗〉 = δ(n − ∑μ

h=1 nh) ⊗μ

k=1 |nk〉 represents an n-
photon state coming from μ equally populated modes that
impinge on the detector and

pμ
n = (n + μ − 1)!

n!(μ − 1)!(N/μ + 1)μ(μ/N + 1)n
(2)

is a multimode thermal photon-number distribution having
N = 〈n〉 mean photons [36]. The TWB state in Eq. (1)
exhibits photon-number correlations that are provided by
pairwise character of SPDC. To investigate the nature of such
correlations and describe their properties, we collected two

FIG. 1. (Color online) Scheme of the experimental setup. HWP:
half wave plate; ND: neutral density filter; BBO: nonlinear crystal;
BPFj : bandpass filter; PHj : iris with variable aperture; Lj : lens; MFj :
multimode fiber; HPDj : hybrid photodetector.

frequency-degenerate (at 532 nm) parties of the TWB state
using two symmetric cage systems. The light in each arm was
spectrally filtered by a bandpass filter at high transmissivity,
spatially selected by an iris with variable aperture, focused
by a lens (f = 30 mm) into a multimode fiber (600-μm-core
diameter) and delivered to the photodetector. In particular, we
used a pair of hybrid photodetectors (HPD, mod. R10467U-40,
Hamamatsu, Japan). These detectors are composed of a
photocathode, whose quantum efficiency is about 50% in
the investigated spectral region [37,38], followed by an
avalanche diode operated below breakdown threshold. The
internal amplification has a gain profile narrow enough to
allow photon-number resolution. The output of each HPD was
amplified (preamplifier A250 plus amplifier A275, Amptek),
synchronously integrated (SGI, SR250, Stanford), and digi-
tized (ADC, PCI-6251, National Instruments). To perform a
systematic characterization of the generated TWB states, each
experimental run was repeated 200 000 times for fixed choices
of pump mean power and iris sizes.

III. NONCLASSICAL CHARACTERISTICS
OF DETECTED PHOTONS

By exploiting the self-consistent analysis method exten-
sively described in [37,39], we processed the output of each de-
tection chain, obtained detected-photon-number distributions,
and evaluated shot-by-shot photon-number correlations. In
accordance with Eq. (2) and by taking into account invariance
of the functional form of statistics under Bernoullian detection
[40], the detected photon-number distributions are described
by multimode thermal distributions, in which the number
of modes can be determined as μ = 〈m〉2/[σ 2(m) − 〈m〉]
[34,38], where m is the number of detected photons. Note that
〈m〉 = η〈n〉, where η is the detection efficiency. In Fig. 2 we
plot the experimental detected-photon-number distributions in
the signal arm for three different values of the pump-beam

FIG. 2. (Color online) Experimental detected-photon-number
distribution in the signal arm for three different values of pump
mean power (black dots: 49.2 μW, 〈m〉 = 0.60, and μ = 78; red
dots: 118.1 μW, 〈m〉 = 1.42, and μ = 112; magenta dots: 258.3 μW,
〈m〉 = 3.14, and μ = 295) for the fixed value of iris sizes (46 mm2);
lines: theoretical expectations. Fidelities in the figure are calculated
as f = ∑

m

√
p

μ
m,exptp

μ

m,theor, where the subscript expt (theor) denotes
experimental (theoretical) distributions. Error bars are smaller than
the symbol sizes.
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FIG. 3. (Color online) Mean number of detected photons in the
signal arm as a function of pump mean power PW for different values
of iris sizes (from top to bottom, black: 45.92 mm2; red: 20.58 mm2;
green: 10.63 mm2; blue: 5.67 mm2). Dots: experimental data; lines:
linear fitting curves.

power keeping fixed the value of iris size (dots). Lines are the
expected theoretical curves obtained from Eq. (2) by replacing
N by the measured mean number of photons. The mean
detected-photon numbers presented in Fig. 2 demonstrate
the capability of the detection apparatus to capture TWB
states in different intensity regimes. Nevertheless, it is worth
noting that the SPDC gain is linear in the whole investigated
photon-number domain. This is evident in Fig. 3, where we
show the mean values of photons detected in the signal arm as
functions of the pump mean power for different values of iris
sizes.

The observed detected-photon-number correlations were
quantified by means of the correlation coefficient

C = 〈m1m2〉 − 〈m1〉〈m2〉√
σ 2(m1)σ 2(m2)

(3)

that is plotted in Fig. 4(a) as a function of the value of
iris sizes [41]. However, as already demonstrated in [42],
the existence of correlations is not sufficient to discriminate
between quantum and classical states. For example, bipartite
states obtained by dividing classical super-Poissonian states
at a beam splitter also display photon-number correlations
[43,44]. The noise reduction factor R mentioned above is
an explicit marker of nonclassicality originating in photon-
number correlations. For detected photons it is determined
along the formula

R = σ 2(m1 − m2)

〈m1 + m2〉 . (4)

It has been shown [45] that whenever the value of R lies in
between 1 − η and 1 [41], the detected state is nonclassical.
In this case, we have sub-shot-noise correlations since the
fluctuations in the detected photon-number correlations are
below the shot-noise level [46–48]. The behavior of R as a
function of the value of iris sizes is quantified in Fig. 4(b),
in which the nonclassical character of all obtained data is
confirmed [49]. To produce the theoretical values shown in
Fig. 4, we inserted in Eqs. (3) and (4) the experimental values

(a)

(b)

FIG. 4. (Color online) (a) Intensity correlation coefficient C and
(b) noise reduction factor R as functions of iris sizes A for different
values (different colors) of pump mean power. Dots: experimental
data; lines: theoretical expectations. The lines are used to better guide
the eye.

of η, 〈m1〉, 〈m2〉, and μ obtained in a self-consistent way [33]
for each considered value of the iris sizes. This results in
the irregular behavior of the curve connecting the obtained
points in the graphs in Fig. 4. Comparison of the curves in
Figs. 4(a) and 4(b) reveals complementary behavior of values
of the correlation coefficient C and noise reduction factor R.
Moreover, it follows from the curves in Fig. 4(b) that the noise
reduction factor R attains its minimum for a certain value of
iris sizes.

This occurs when the irises are ∼3 mm wide and select
the largest possible portions of the twin-beam cones [50]. This
explanation is confirmed by the behavior of mean detected-
photon numbers 〈m1〉 in the signal arm depending on the iris
sizes. As shown in Fig. 5 the mean detected-photon numbers
〈m1〉 stop increasing linearly with the iris size at the same
value. Also the maximum extension of emission cones beyond
the filters was reached in the horizontal plane at this value.
Further increase in mean detected-photon numbers 〈m1〉 is
caused only by additional contributions in the vertical plane.

The values of C and R plotted in Fig. 4 may be divided
into three groups depending on different values of iris sizes.
For small values of the iris sizes, C and R get smaller and
higher values, respectively, as only a small portion of the twin
beam is collected. For moderate values of the iris sizes, C and
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FIG. 5. (Color online) Mean number of detected photons 〈m1〉
in the signal arm as a function of iris sizes A for different values of
pump mean power (from top to bottom, black: 215 μW; red: 145 μW;
green: 95 μW; blue: 50 μW). Dots: experimental data; lines: linear
fitting curves.

R reach their highest and smallest values, respectively, due
to optimum collection conditions. For large values of the iris
sizes, smaller values of C together with greater values of R

are observed because the irises exceed the width of the cone.
We discuss advantages and limitations of the noise reduc-

tion factor R as a nonclassicality quantifier in comparison with
the other two quantities. In particular, we consider a ratio S

derived from the Schwarz inequality [51] for detected photons:

S = 〈m1m2〉√〈
m2

1

〉〈
m2

2

〉 . (5)

If S > 1 the state is nonclassical. The second analyzed quantity
is determined from a more recent criterion based on higher-
order detected-photon-number correlations [33]:

H = 〈m1〉〈m2〉 g22 − [g13]s

g11
+

√
〈m1〉〈m2〉 [g12]s

g11
, (6)

where g
jk
m = 〈mj

1m
k
2〉(〈m1〉j 〈m2〉k)−1 is the (j + k)th-order

correlation function and [gjk]s = (gjk + gkj )/2 represents its
symmetrized version. If H > 1 the state is nonclassical. In
Fig. 6, we show the results obtained by applying the above
nonclassicality criteria to the experimental data. The three
quantities are plotted as functions of the mean number of
photons detected in one of the two arms: good quality of
our data is confirmed by the fact that all criteria are satisfied
simultaneously. For each criterion the data are distributed into
three groups differing in iris sizes, as already mentioned in
the description of Fig. 4. It is also interesting to note that all
the experimental points (except a very few of them) obtained
for different values of pump mean powers and iris sizes are in
good agreement with the corresponding theoretical predictions
calculated for the actual values of experimental parameters. In
particular, the theoretical curve of noise reduction factor R

was drawn along the formula

R = 1 − 2η

√〈m1〉〈m2〉
〈m1〉 + 〈m2〉 + (〈m1〉〈m2〉)2

μ(〈m1〉 + 〈m2〉) , (7)

that represents a generalization of the expression derived
in [42] to the multimode case. In Eq. (7), μ gives the average

FIG. 6. (Color online) Noise reduction factor R, green color (light
gray), Schwarz-inequality factor S, red color (gray), and higher-order-
moments factor H , black color (black), as functions of mean number
of photons detected in the two arms. Dots: experimental data; lines:
theoretical expectations, indicated by subscript theor in the legend.

of the signal and idler mode numbers, 〈m1〉 and 〈m2〉 are the
experimental mean signal and idler detected-photon numbers,
and a common quantum detection efficiency η was determined
from the formula R = σ 2(m1 − m2)/(〈m1〉 + 〈m2〉) = 1 − η

valid for an ideal twin beam [33]. As the curves in Fig. 6
document, the values of noise reduction factor R are practically
independent of the mean detected-photon numbers. On the
other hand, quantities related to the other two nonclassicality
criteria depend strongly on the mean detected-photon numbers.
Whereas the Schwarz inequality is more suitable for detecting
nonclassicality for small mean detected-photon numbers, the
inequality based on higher-order moments is preferred for
larger mean detected-photon numbers. In fact, this criterion
is more sensitive to noise with respect to the other two
criteria because of the presence of higher-order moments. As a
consequence, when the mean numbers of photons are very low,
a lot of acquisitions are required for successful application of
this criterion.

IV. NONCLASSICAL CHARACTERISTICS OF THE
RECONSTRUCTED PHOTON FIELDS

The generated TWB states are highly nonclassical as
they are composed of photon pairs. The amount of their
nonclassicality decreases during their propagation towards the
detectors as some of photons lose their twins. However, by far
the largest loss of nonclassicality occurs during the detection
by hybrid photodetectors as their actual overall detection
efficiencies lie around 17%, as confirmed by the minimum
value achieved by R. Despite this and in accordance with
the results of the previous section, even the detected photons
exhibit strong pairwise correlations that guarantee nonclassical
behavior of the detected-photon fields. Nevertheless, the
amount of nonclassicality found in the detected-photon fields
is considerably lower compared to that of the original TWB
containing photon pairs.

For this reason, it is important to reconstruct the original
TWB in terms of photon numbers starting from the exper-
imental detected-photon distributions fm(ms,mi) in order to
reveal the quantum nature of state emitted in the nonlinear
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process. The reconstructed joint signal-idler photon-number
distributions p(ns,ni) can be obtained either by applying
the maximum-likelihood approach [52–55] or by fitting the
experimental detected-photon distributions using a special
analytical form of the photon-number distribution p(ns,ni)
[35,54]. The second approach is more convenient as it allows
us to determine also quantum detection efficiencies ηs and ηi of
the signal and idler beams, respectively [55]. The method only
assumes that the detected nonideal TWB can be decomposed
into three statistically independent parts, namely the paired
part, the signal noise part, and the idler noise part, which
are all described by multimode thermal fields. According to
this model, the joint signal-idler photon-number distribution
p(ns,ni) [34] can be written as

p(ns,ni) =
min[ns ,ni ]∑

n=0

pMR(ns − n; μs,bs)

×pMR(ni − n; μi,bi)pMR(n; μp,bp), (8)

in which the Mandel-Rice distributions are written as
pMR(n; μ,b) = 	(n + μ)/[n! 	(μ)]bn/(1 + b)n+μ and 	 de-
notes the 	 function. In Eq. (8), mean photon (photon-pair)
numbers per mode bk and numbers μk of independent modes
for the paired part (k = p), noise signal part (k = s), and noise
idler part (k = i) as suitable characteristics of the analyzed
TWBs have been introduced. As the Mandel-Rice distributions
in Eq. (8) are defined for arbitrary non-negative real numbers
μ of modes, the same applies also to the distribution p(ns,ni)
in Eq. (8). This allows to consider a broader class of analytic
distributions when fitting the experimental data. We note that
formula (2) has been derived for an integer number μ of modes,
but its generalization to real non-negative μ is straightforward
[34].

The photon-number distribution p(ns,ni) is related to the
theoretical detected-photon distribution fm,theor(ms,mi) by
quantum detection efficiencies ηs and ηi [53]. Since detection
by hybrid photodetectors is characterized by the Bernoulli
distribution, we can express this relation as

fm,theor(ms,mi) =
∞∑

ns ,ni=0

Bs(ms,ns)Bi(mi,ni)p(ns,ni) (9)

using the Bernoulli coefficients Bk(mk,nk),

Bk(mk,nk) =
(

nk

mk

)
η

mk

k (1 − ηk)nk−mk . (10)

A fitting procedure that minimizes the declination between the
experimental histogram fm(ms,mi) and theoretical detected-
photon distribution fm,theor(ms,mi) under the assumption of
equality of the first and second experimental and theoretical
detected photon-number moments (for details, see [31]) allows
us to determine both quantum detection efficiencies ηk , k =
s,i, and parameters bk and μk , k = p,s,i, of the analyzed
TWB. To give a typical example, we consider the experimental
data obtained for pump mean power 49.2 μW and iris size’s
area 46 mm2 (see the marginal distribution plotted as black
dots in Fig. 2). The fitting procedure assigned the following
parameters to the experimental distribution fm: ηs = 0.147,
ηi = 0.150, μp = 31, bp = 0.13, μs = 1.2 × 10−3, bs = 24,
μi = 5.5 × 10−3, and bi = 13. First of all, we note that the

values of quantum efficiencies obtained by the reconstruction
method are comparable with the value obtained from the noise
reduction factor for the same set of data [see points at 46 mm2

in Fig. 4(b)] [56]. Second, we remark that the paired part
of TWB representing more than 98% of the entire field is
described by a multithermal field with 31 independent modes.
We note that the mean number of photons in paired fields
equals 8, whereas the means of noisy signal and idler photon
numbers lay below 0.1. On the other hand, the noise signal
and idler parts have numbers μ of modes much less than 1
which means that their probability densities have appreciated
values only very close to the zero photon number. This is
a consequence of very low noise signal and idler intensities
observed in the experiment. We attribute the found numbers μ

of modes much less than 1 to distortions of electronic signals
inside the detection chains including HPDs.

Finally, we point out that whereas the joint signal-idler
experimental detected-photon histogram fm provided covari-
ance equal to 0.16, covariance of photon numbers in the
reconstructed photon-number distribution p is equal to 0.85.
The reconstruction also decreased the value of noise reduction
factor R to 0.2. This dramatic increase of correlations between
the signal and idler fields in a TWB after the reconstruction
also changes the shape of the corresponding joint signal-idler
(detected) photon-number distributions (see Fig. 7). In fact,
the presence of nonzero off-diagonal elements in the detected
photon-number distribution in Fig. 7(a) makes its nonclassical
character less evident compared to the reconstructed photon-
number distribution p(ns,ni) plotted in Fig. 7(b) and clearly
showing the prevailing pairwise character of the TWB (the
off-diagonal elements attain values lower than 1% of those
of diagonal elements). Also, the sum of diagonal elements
gives 98.2% of the entire joint signal-idler photon-number
distribution. This is in accord with the relative weights of
paired, noise signal, and noise idler parts of the TWB expressed
in mean pair-photon numbers. A substantial difference in the
nonclassical behavior of detected-photon-number and photon-
number distributions can be observed in the corresponding
distributions of the sum and difference of the signal and
idler detected-photon and photon numbers, respectively. The
resulting distributions are compared with those obtained by the
combination of two independent classical fields with Poisso-
nian statistics. This comparison applied to the experimental
detected-photon distribution reveals only weak signatures
of nonclassicality in the distributions fm,+(ms + mi) and
fm,−(ms − mi) of the sum ms + mi and difference ms − mi

of the signal and idler detected-photon numbers defined as

fm,+(m) =
∞∑

ms,mi=0

δm,ms+mi
fm(ms,mi),

(11)

fm,−(m) =
∞∑

ms,mi=0

δm,ms−mi
fm(ms,mi),

where δ denotes the Kronecker symbol. As shown in Fig. 8(a),
the experimental distribution fm,−(ms − mi) of the differ-
ence is slightly narrower than the reference distribution. On
the other hand, a slightly broader experimental distribution
fm,+(ms + mi) of the sum with respect to the reference
distribution is drawn in Fig. 9(a). The reconstruction of joint
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FIG. 7. (Color online) (a) Experimental joint signal-idler detected
photon-number distribution fm(ms,mi) and (b) reconstructed joint
signal-idler photon-number distribution p(ns,ni) for the pump power
49.2 μW.

photon-number distribution clearly reveals nonclassicality of
TWBs, as documented by the photon-number distributions
p−(ns − ni) and p+(ns + ni) plotted in Figs. 8(b) and 9(b).
The distribution p−(ns − ni) of photon-number difference
plotted in Fig. 8(b) demonstrates the prevailing pairwise
character of TWBs that is also confirmed by a “teethlike”
character of the photon-number distribution p+(ns + ni) of
the photon-number sum depicted in Fig. 9(b).

An ultimate criterion for discriminating quantum and
classical multimode fields is related to the properties of
quasidistribution P of integrated intensities, i.e., electric-field
intensities integrated over the detection interval, related to
normal ordering of field operators (for more details, see, e.g.,
[24,34,57]). The reason is that integrated intensities describe
the fields before detection that may conceal nonclassical
features of these fields. The relation between integrated
intensities and detected photons is provided by Mandel’s
detection formula [24]. This formula can be inverted [34]
and then used for the determination of quasidistributions of
integrated intensities from the photon-number distributions
obtained from experimental data. According to quantum
theory of radiation [34,58] if the quasidistribution P attains
negative values or is even singular, the field is nonclassical.

(a)

(b)

FIG. 8. (Color online) (a) Detected photon-number distribution
fm,−(ms − mi) (bars) and (b) photon-number distribution p−(ns − ni)
(bars) of the difference between signal and idler detected-photon and
photon numbers, respectively, for the data shown in Fig. 7. In the two
panels we also show the distributions obtained by the combination
of two independent classical fields with Poissonian statistics (dashed
line + symbols).

The quasidistribution P (Ws,Wi) of signal (Ws) and idler
(Wi) integrated intensities can be written in the form of
twofold convolution, which is a consequence of Eq. (8) for
the photon-number distribution p(ns,ni) [31]:

P (Ws,Wi) =
∫ ∞

0
dW ′

s

∫ ∞

0
dW ′

i Pp(Ws − W ′
s ,Wi − W ′

i )

×Ps(W
′
s)Pi(W

′
i ). (12)

Quasidistributions Pk of integrated intensities introduced in
Eq. (12) describe the paired (k = p), signal noise (k = s), and
idler noise (k = i) parts of the TWB. More details can be found
in [31,35].

As we have demonstrated, many nonclassicality criteria
indicate quantum behavior of even experimental distribu-
tions written in terms of detected photons. Following the
genuine definition of nonclassicality, we can define a qua-
sidistribution Pm of “detected-photon intensities” following
the approach developed for photons and assuming perfect
quantum detection efficiencies (ηs = ηi = 1) [29]. Of course,
the obtained quasidistribution Pm characterizes a fictitious
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(a)

(b)

FIG. 9. (Color online) (a) Detected photon-number distribution
fm,+(ms + mi) (bars) and (b) photon-number distribution p+(ns +
ni) (bars) of the sum of signal and idler detected-photon and photon
numbers, respectively, for the data shown in Fig. 7. In the two panels
we also show the distributions obtained by the combination of two
independent classical fields with Poissonian statistics (dashed line +
symbols).

“detected-photon” boson field, as it contains only those
photons that are captured by the detectors. As in the case
of quasidistribution of integrated intensities, the existence
of negative regions in the quasidistribution Pm for detected
photons confirms the nonclassical character of the state. The
quasidistribution Pm(Ws,Wi) of detected-photon intensities
determined from the analyzed experimental distribution fm

is shown in Fig. 10. In order to see a detained behavior
of this quasidistribution and in particular to investigate in
which regions it attains values close to zero, we plot only
a part of the function in Fig. 10(a) and remark that the
maximum of the peak in the origin reaches the value 7×105.
The smallest negative values, equal to −0.2, are found close
to the Ws and Wi axes. The highly prevailing positive part
of quasidistribution Pm indicates that the measured state is
close to a classical one. However, the presence of a negative
part (even small) shows that the low detection efficiency has
preserved the pairwise character of TWB. The comparison of
the quasidistribution Pm of detected-photon intensities with
the genuine quasidistribution P of photon intensities [see
Fig. 10(c)] reveals much stronger nonclassicality in the case

(a)

(b)

(c)

(d)

FIG. 10. (Color online) (a) Quasidistribution of “detected-photon
intensities” Pm(Ws,Wi) and its topograph, (b). (c) Quasidistribution
of photon integrated intensities P (Ws,Wi) and its topograph, (d).
Topo graphs in (b) and (d) have the same scales as in (a) and (c),
respectively. In (b) and (d) black contours mark the zero level.

of photons. We note that the peak value of P in Fig. 10(c)
equals 0.99 which is considerably lower than the peak value
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of quasidistribution Pm shown in Fig. 10(a). Nevertheless,
both quasidistributions attain negative values and so both
describe a nonclassical field. The contour plots of both
quasidistributions depicted in Figs. 10(b) and 10(d) reveal that
negative values of these distributions are localized in parallel
strips whose orientation originates in the pairwise character
of TWBs.

V. CONCLUSIONS

Using SPDC in the linear gain regime, we generated
multimode twin-beam states in the mesoscopic photon-number
regime. We studied nonclassical properties of the twin beams
by applying three different nonclassicality criteria written
in terms of detected photons. Whereas the noise reduction
factor R is a suitable indicator of nonclassicality independent
of the twin-beam intensity, the Schwarz inequality is useful
for weak twin beams and the criterion derived from higher-
order detected-photon-number moments finds its application
for intense twin beams. To compare these criteria with the
genuine definition of nonclassicality we also determined

quasidistributions of detected-photon and photon integrated
intensities for normally ordered field operators. Despite the
low detection efficiency (around 17%) negative values of these
quasidistributions found in typical strips were observed both
for photons and detected photons, confirming nonclassicality
of the generated twin beams. The set of criteria we presented
can thus be considered as a robust tool for quantifying non-
classicality of multimode twin beams used in many schemes,
including that for conditional generation of nonclassical and
non-Gaussian states.
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[1] M. S. Kim, W. Son, V. Bužek, and P. L. Knight, Phys. Rev. A
65, 032323 (2002).

[2] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513
(2005).

[3] I. A. Walmsley and M. G. Raymer, Science 307, 1733 (2005).
[4] T. C. Ralph, Rep. Prog. Phys. 69, 853 (2006).
[5] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and

G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).
[6] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[7] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
[8] D. N. Klyshko, Phys. Lett. A 213, 7 (1996).
[9] Th. Richter and W. Vogel, Phys. Rev. Lett. 89, 283601 (2002).

[10] A. Zavatta, V. Parigi, and M. Bellini, Phys. Rev. A 75, 052106
(2007).

[11] A. Miranowicz, M. Bartkowiak, X. Wang, Y.-X. Liu, and F. Nori,
Phys. Rev. A 82, 013824 (2010).

[12] G. Brida, M. Bondani, I. P. Degiovanni, M. Genovese, M. G. A.
Paris, I. Ruo Berchera, and V. Schettini, Found. Phys. 41, 305
(2011).

[13] A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek,
and S. Schiller, Phys. Rev. Lett. 87, 050402 (2001).

[14] A. Zavatta, S. Viciani, and M. Bellini, Science 306, 660 (2004).
[15] A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, Phys. Rev.

Lett. 96, 213601 (2006).
[16] A. I. Lvovsky, W. Wasilewski, and K. Banaszek, J. Mod. Opt.

54, 721 (2007).
[17] W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, Phys.

Rev. A 80, 053815 (2009).
[18] W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz,

Phys. Rev. A 73, 063819 (2006).
[19] A. Zavatta, S. Viciani, and M. Bellini, Laser Phys. Lett. 3, 3

(2006).
[20] C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and

M. Bellini, Phys. Rev. Lett. 109, 053602 (2012).

[21] O. A. Ivanova, T. Sh. Iskhakov, A. N. Penin, and M. V. Chekhova,
Quantum Electron. 36, 951 (2006).

[22] M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn,
Phys. Rev. Lett. 104, 063602 (2010).

[23] A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and
C. Silberhorn, New J. Phys. 13, 033027 (2011).

[24] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, England, 1995).
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[30] J. Peřina, J. Křepelka, J. Peřina, Jr., M. Bondani, A. Allevi, and
A. Andreoni, Eur. Phys. J. D 53, 373 (2009).
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