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A B S T R A C T   

In this study, a numerical methodology for the optimization of the combustion chamber in compression ignited 
engines using OME as fuel is presented. The objective is to obtain a dedicated combustion system for an engine 
that is fueled with this alternative fuel improving the efficiency and reducing the emissions of NOx. This article 
proposes the integration between the optimization algorithm and CFD codes to evaluate the behavior of an 
engine fuelled with the low sooting fuel OME. Based on a diesel model validated against experimental data, a 
further model for OME fuel was implemented for evaluating the performance of the engine. The particle swarm 
algorithm (PSO) was modified based on the Novelty Search concepts and used as optimization algorithm. Several 
tools are coupled in order to create each CFD case where all the tools and optimization algorithm are coupled in a 
routine that automates the entire process. The result is an optimized combustion system that provides an increase 
of the efficiency (about 2.2%) and a NOx reduction (35.7%) in comparison with the baseline engine with con-
ventional fuel. In addition, a neuronal network was trained with all the results of all simulations performed 
during the optimization process, studying the influence of each parameter on the emissions and efficiency. From 
this analysis it was concluded that the EGR rate and injection pressure affects the NOx emissions with a range of 
variability of 63% and 38% respectively.   

1. Introduction 

Modern society is in continuous search of solutions for reducing 
Greenhouse Gases (GHG) emissions, especially in the industrial and 
transport sectors, in a sustainable way. These two sectors contributed in 
about 75 % of CO2 emissions in the last decade as appraised in a recent 
works [1]. To control these emissions, strict regulations have been 
established promoting great effort in research and in the industry fields, 
where new technologies and systems are being developed, such as the 
implementation of electrified powertrains and the utilization of different 
fuels as hydrogen or with low carbon content [2]. 

An alternative for reducing GHG emissions is to replace conventional 
propellant by synthetic fuels from renewable sources. Among the 
various renewable fuels, the Oxymethylene Ethers (OMEs) have gained 
attention since they produce lower levels of particulate matter (PM) and 
Carbon Oxide (CO) emissions as is reported in previous studies [3–8]. 
The production of OME starts from methanol, where methanol is 

produced by the reaction of H2 and CO2 [9,10]. 
OMEs are liquid fuels that can be used in substitution or as blend 

with conventional diesel fuel using engine architectures that are avail-
able in the market nowadays with minor modifications. In comparison 
with conventional diesel, OME contains a high quantity of oxygen, 
which avoids soot emission production during the combustion process 
[6,11]. Due to this higher oxygen content it is possible to work with a 
high EGR level being possible to reduce Nitrous Oxides (NOx) emissions 
as well [12]. However, other difference with respect to conventional fuel 
is that they have a lower heating value, which has to be compensated 
with longer injections, higher rail pressures or nozzles with larger di-
ameters if an equivalent energy release to that of a traditional fossil fuel 
is required [13]. Most of previous studies done with these fuels have 
been carried out for pre-existing conventional engine architectures, 
however recent studies report that the performance could be further 
improved by adapting the combustion system configuration to the 
chemical requirements of this renewable fuel. In this regard, Gaukel 
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et al. [14] reported an experimental and computational study on an 
engine fueled with OME, where they tested 10 different piston bowl 
shape configurations. From all the bowl piston configurations that were 
evaluated, they found a combination that reduced the NOx emissions 
and maintained the indicated efficiency at the same time. They 
concluded that the piston design has a strong influence on the com-
bustion performance, and recommended further research to explore 
other geometries, combined with different injection and EGR strategies, 
simultaneously. It is possible to perform multivariate studies experi-
mentally but it is expensive and requires many hours in the test-bench. A 
common approach, is to combine the experimental activities with the 
use of Computational Fluid Dynamics (CFD) tools in the design process 
of the combustion systems. Once the model is validated with experi-
mental data, it is possible to generate different engine configurations 
and to test them computationally at an affordable time and cost [15]. 
Furthermore, the use of computer-aided methodologies will help not 
only to reduce the costs of engine development but also to redirect ef-
forts to optimize other industrial procedures derived from its develop-
ment, contributing to reduce the environmental footprint of all involved 
activities. 

In the analysis of the combustion process for a system configuration, 
designers should take into account that combustion itself is a complex 
phenomenon due to the high dependence of several parameters, which 
are generally non-linear and with cross-interaction between them. 
Finding the right combination of all the factors that provides an optimal 
engine design is a challenge nowadays. As an alternative, different al-
gorithms for optimization as Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), or combinations between them are used in recent 
engines design works. 

Broatch et al. in [15] presented an approach that combines CFD 
modeling with GA to optimize the combustion system of a compression 
ignited engine fueled with conventional diesel, reducing both fuel con-
sumption and combustion noise. They selected eight variables related to 
piston bowl geometry, nozzle angle, number of injector nozzle holes and 
in-cylinder swirl motion intensity. After seven hundreds simulations 
approximately they found an optimum configuration that showed a 
lower combustion noise and improved efficiency compared to the 
baseline system, and within the limits of soot and NOx emissions. 
Another optimization process was proposed by Bertram et al. in [16], 
based on a hybrid method between GA and PSO for optimizing a con-
ventional diesel engine performance. Results show the benefits and 
weaknesses of both algorithms. They reported that the enhanced hybrid 
approach offered a faster convergence because of the PSO aggressive 
acceleration towards the best case. 

Concerning optimization procedures for alternative low sooting fuels 
from renewable sources like Dimethyl Ethet (DME) or OMEs, few recent 
studies can be found. Zubel et al. in [17] performed an investigation 
using GA to optimize the piston bowl shape and injector nozzle geom-
etry of an engine fuelled with DME. Since the lower heating value of 
DME is lower than the diesel value, new larger nozzle holes were pro-
posed. Their numerical optimization predicted an improvement on ef-
ficiency and a reduction of HC and CO emissions simultaneously. 
Although they found promising results, they also suggested to include 
more parameters on the evaluation of the system such as the swirl level. 
Based on their conclusions, it can be deducted that more efforts can be 
done in this regard to maximize the benefits of these promising fuels. 

The aim of this work is to provide the best combustion system design 
for the integration of OME fuel in a compression ignited engine using a 
novel optimization methodology. Part of this study consists on devel-
oping a computational fluid dynamics engine model with detailed 
chemistry, at full load operating condition in a traditional engine ar-
chitecture. Once the model is validated, it is included in a PSO optimi-
zation algorithm, where 12 parameters are evaluated simultaneously, 
such as piston geometry (defined by 6 control points), number of 
injector nozzles, included spray angle, swirl number, injection pressure, 
EGR rate and pressure at the intake valve closing (IVC), therefore 

adapting the geometry characteristics of the combustion chamber to the 
requirements of this renewable fuel. The target during the optimization 
will be to maximize the engine efficiency while decreasing NOx emis-
sions, taking advantage of the low sooting nature of this fuel. 

The article is structured as follows. Section 2 describes the fuel 
characteristics and properties. Section 3 presents all the tools and 
methodology used in this work. In this section the engine configuration, 
computational approach, CFD models and its validation, optimization 
algorithm and tools are described. In the Section 4 the obtained results 
are presented and discussed. Section 5 presents a parametric study 
performed with a neuronal network methodology to evaluate the opti-
mized case. Finally, Section 5 present the conclusions of the work. 

2. Investigated fuel characteristics 

In this study Oxymethyl Ether (OME) is used, which is a fuel that 
produces an almost soot free combustion, even at stoichiometric air/fuel 
conditions. Among other oxygenates, OME seems to be convenient in 
engine application since its general physico-chemical properties are 
relatively similar to conventional diesel, not requiring major modifica-
tions. However, as well as other oxygenated compounds, OME has some 
different properties in comparison to conventional diesel (viscosity, 
density, lower heating value). The key properties of the fuels used in this 
study are listed in the Table 1. 

In particular, the lower heating value (LHV) of OME needs to be 
compensated to obtain the same amount of released energy during the 
combustion compared to the one obtained with diesel fuel. Different 
strategies can be employed for compensating this decrease in LHV. One 
of them is to extend the duration of the injection in order to deliver more 
fuel mass amount into the combustion chamber, but this results in a 
decrease of the combustion efficiency because part of the combustion 
occurs late. A second possibility could be to increase the rail pressure in 
order to deliver a higher mass flow rate, keeping the injection duration 
short enough. However, this strategy might have an effect on the spray 
structure and on the wall impingement, together with the limitation on 
the maximum pressure that the pump system can supply. The third 
option is to increase the total area of the nozzle, either by increasing the 
hole number, scaling the hole diameter, or both simultaneously. For this 
option the limitation is on the maximum hole number due to 
manufacturing and material constrains. For this investigation a combi-
nation of the total area scaling is considered in the design of the system 
during the optimization process. The scaling factor for the same energy 
flow rate of OME and Diesel is determined by Eqs. (1) and (2) based on 
the energy available in the fuel and the Bernoulli’s principle for 
incompressible flows (assuming that the velocity of the flow would be 
similar when the pressure difference is the same). 

ṁome⋅LHVome = ṁd⋅LHVd (1)  

Aome⋅ρome⋅u⋅LHVome = Ad⋅ρd⋅u⋅LHVd, (2)  

where A is the total area of the nozzle, LHV is the lower heating value, 
ρthe density of the fuel, and u the flow velocity in the nozzle exit. The 
subscripts ome and d denote OME an diesel fuel respectively. The total 
area is defined as Eq. (3), being n the number of holes and do the exit 
hole diameter. 

Table 1 
Physical and chemical properties of the fuel.  

Fuel OME Diesel 

Density (15oC [kg/m3]) 860 830 
Viscosity (40oC [mm2/s]) 1.18 ≈3 

Oxygen content [wt%] 42.1 [4] ≈0 
LHV [MJ/kg] 22.4 43 

Boiling point [oC] 42 180–350  
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A =
n⋅π⋅d2

o

4
(3)  

3. Tools and methodology 

In this section, the methodology and the tools are presented in detail. 
The sequence of the description corresponds to the workflow followed 
during the study, and it is divided in two blocks. The first block is related 
to the development of the CFD model and validation of the reference 
engine, where data from an experimental engine was used. Later on, in 
the same block, an explanation of the model configuration for OME fuel 
and preliminary results are shown. Afterwards, the second block details 
the mathematical approach used for the optimisation process which is 
based on the PSO algorithm, where all the additional tools programmed 
for an automatic process are also explained. 

3.1. Engine configuration 

The engine used is a medium-duty diesel engine for goods trans-
portation. The tests were carried out in an experimental facility avail-
able at the laboratories of CMT Motores Termicos. It is a four-cylinder 
diesel engine with a compression ratio (CR) of 16, equipped with a 
turbocharger and a common-rail injection system. The operating con-
ditions reproduced in the CFD model are representative of max power, 
running the engine at 3750 rpm and 18 bar of IMEP. The injection 
system is a common rail system with a ten-hole injector with diameter of 
112 μm and an included spray angle of 154◦. The engine specifications 
are summarized in Table 2. The simulations were performed in a closed 
cycle, it means from the instant of intake valve closing (IVC) until 
exhaust valve opening (EVO) involving the piston motion and a volume 
variation during the simulation. The parameters considered for the 
boundary conditions at IVC are the gas pressure and temperature, initial 
gas concentration, all wall temperatures and the injection settings (mass 
flow, rail pressure, start of injection). 

3.2. Computational approach 

For the combustion system simulation the Lib-ICE code was used, 
which is on the basis of OpenFOAM® technology [18], and includes a set 
of libraries and solvers for internal combustion engine simulations. Due 
to the high number of simulations that are done in the optimization 
stage, a robust model with enough performance in terms of computa-
tional time is required. For this reason, the domain is simplified based on 
the axy-symmetry of the combustion chamber, defining a sector of the 
geometry that is a function of the number of orifices of the injector 
nozzle. For the reference case the sector was 1/10 of the geometry. The 
piston movement is considered and is reproduced by the dynamic mesh 
layering technique available in Lib-ICE [19,20]. As the combustion 
process depends of physical and chemical phenomena several sub- 
models were used to reproduce correctly each phenomena during the 
CFD engine simulation. 

Two different fuels were tested: N-heptane was used as diesel sur-
rogate in the initial CFD model that was used as a reference and for 
validation against experimental data. The second one was OME, that 
was also employed in the engine optimization. For both fuels, the liquid 

spray was simulated using a Lagrangian particle tracking model, 
assuming a “Blob” injection method [20,21]. The spray field and 
behavior inside the combustion chamber was created by grouping liquid 
droplets into parcels that can represent statistically the spray from a 
specific rate of injection (ROI) profile from a virtual injector model [22]. 
To reproduce the liquid atomization, heat transfer, break-up and evap-
oration, both, Kelvin–Helmholtz (KH) and Rayleigh–Taylor (RT) algo-
rithms were used for the secondary break-up process [23,24]. The in- 
cylinder turbulence used in all simulation was modeled by Reynolds- 
Averaged Navier Stokes (RANS) based in re-normalized group (RNG 
k − ∊) [25]. To calculate the heat transfer Angelberger model was used 
coupled with the turbulence model. To reproduce the chemistry of the 
fuels two different chemical kinetic mechanism were implemented, for 
N-heptane the reduced mechanism containing 162 species and 1543 
reactions and for OME it is composed by 534 species and 2901 reactions. 

For the combustion and emissions predictions the Multi Represen-
tative Interactive Flamelet (mRIF) model approach was used, which is 
available in the Lib-ICE code. The model configures the flames structures 
as a set of unsteady diffusion flames that represents diesel combustion. 
The reaction–diffusion equations are solved in the mixture fraction 
space where species and energy equations are solved and the turbulence- 
chemistry interaction is governed by the scalar dissipation rate. Also, it 
is possible to predict the flame stabilization. The model development 
and validation is available in [26–30]. The models and sub-models used 
in this study are listed in Table 3. 

3.3. Validation of the model 

The CFD model was validated using data from an engine fueled with 
diesel, running at 3750 rpm and full power conditions. All the boundary 
conditions used in the model were obtained from the experimental data 
using an in-house methodology developed by Benajes et al. in [31]. The 
values are summarized in Table 4. 

Different mesh configurations were appraised, to evaluate their 
impact on computational time and accuracy of the results. For instance, 
an initial simulation was performed with a well refined mesh in order to 
fit the experimental results with good accuracy. Later on, the mesh was 
coarsened until reaching a point that provides a better compromise 
between results precision and computational time. Both meshes, the fine 
and coarse mesh, can be seen in Fig. 1. The fine mesh counts with 52000 
cells at TDC and the coarse mesh counts with 26900 and cells at TDC. 

The comparison between in-cylinder pressure and heat release rate 
(HRR) results of experimental data against simulation results are shown 
in Fig. 2. In this figure the black, blue and red lines represent the 
experimental data, fine mesh and coarse mesh results respectively. 
Analyzing the results, the CFD predictions provide good agreement be-
tween experimental and simulations for both fine and coarse mesh. 
Moreover, with the fine mesh it is possible to obtain a better prediction 
between experiment and simulation but costs more in terms of a 
computational time. The coarse mesh presents minor differences respect 
to the fine mesh, but with lower computational time. Taking into ac-
count that for the optimization stage a large number of simulations are 
required, the coarse mesh was chosen as baseline mesh for all upcoming 
simulations, also this is used as the reference for further comparisons. 

The next step consists of evaluating the performance of the engine 

Table 2 
Engine specifications.  

Number of cylinders [–] 4 
Volume [l] 2.2 
Bore - stroke [mm] 85–96 
Compression ratio [–] 16:1 
Injector number of holes 10 
Injector total area [m2] 9.85e-06 
Spray angle [deg] 154 
Engine speed [rpm] 3750  

Table 3 
Models specifications.  

Injection Blob Injector 
Break-up KH-RT 
Collision off 
Evaporation standard 
Turbulence RNG k − ∊ RANS  
Wall Heat transfer Angelberger 
Combustion RIF 
Soot Leung Lindstedt Jones  
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when OME is used as a fuel. The engine configuration in terms of 
boundary conditions were maintained equal than the baseline case. 
Though, all physical and chemical properties related to the fuel are 
updated accordingly, as well as the amount of fuel. The quantity of OME 
injected in the combustion chamber is adjusted to reach an equivalent 
amount of energy, since OME has a lower LHV than conventional diesel 
as was commented in Section 2. Fig. 3 shows the results obtained from 
the case running with OME against the diesel model previously cali-
brated. Analyzing the heat release rate traces it is confirmed that the 
mass fuel adjusted provides a similar quantity of energy released. The 
pressure trace when OME fuel is injected is slightly higher, but still 
below the limit of 180 bar recommended by the manufacturer to pre-
serve the structural integrity of the cylinder. The heat release rate traces 
are comparable in terms of ignition delay, however, in the combustion 
diffusion phase OME presents a faster combustion and shows a short 
burn out phase, related to the higher volume of injected fuel. Regarding 

the pollutant emissions, Table 5 shows the predicted results of soot and 
NOx. As expected, soot emissions almost disappear when the engine is 
fueled with OME, although the NOx levels are more than double than the 
diesel reference case. From this initial analysis it can be seen that the 
combustion with OME has an acceptable performance when it is used in 
a traditional architecture for a conventional fuel. Nevertheless, it seems 
that there is room for improvement if the combustion system is adapted 
to the OME fuel requirements by means of the optimization procedure. 

3.4. Details of the computational optimization 

To perform the optimization of the engine the Particle Swarm 
Optimization (PSO) algorithm was used. This algorithm was first pro-
posed by Kennedy and Eberhart [32] and it is inspired in the behavior of 
birds flocking. Some advantages of the PSO include a fast rate of the 
convergence in the optimal solution, simple implementation, low cost to 
evaluate an objective function and can be applied in problems with a 
large parameters search spaces of candidates solutions. However, a few 
drawbacks of the algorithm are that it is not guaranteed that the optimal 
solution will be found because that the PSO can be stuck in a local 
minimum and the algorithm has a strong sensitivity to meta-parameters 
values [16]. During the execution of the algorithm search for the 
optimal, the PSO just requires a little information about position xi 
update according the expression: 

xi(t+ 1) = xi(t)+ vi(t+ 1), (4)  

and, the velocity is updated of each particle according the expression: 

Table 4 
Boundary conditions.  

IVC [deg] − 112 
EVO [deg] 116 
Number of injections [–] 1 
SOI [deg] − 11 
Injection pressure [bar] 1800 
Temperature at IVC [K] 470 
Pressure at IVC [bar] 3.89  

Fig. 1. Mesh comparison between fine mesh (left side) and coarse mesh 
(right side). 

Fig. 2. Comparison between experimental data (black curve) and simulation results for fine and coarse meshes (blue and red curves respectively). Left side: Evo-
lution of the in-cylinder pressure. Right side: Estimated Heat Release Rate. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 3. Comparison between conventional diesel and OME fuel. Left side: Evolution of the in-cylinder pressure. Right side: Estimated Heat Release Rate.  

Table 5 
Pollutant emissions results – Baseline Diesel and OME fuel.  

Fuel NOx Soot  
[mg/s] [mg/s] 

Diesel 230.9 0.354 
OME 773.6 1e-14  
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vi(t+ 1) = w β⋅vi(t)+ c1 τ⋅(pi − xi(t))+ c2 γ⋅(g − xi(t)), (5)  

where, t means the iteration, w is the inertia weight, c1 and c2 are the 
individual weight and social weight respectively referred to the indi-
vidual factor. Generally the values used for w, c1 and c2 depend on the 
problem. The usual value for w is in the range of [0.5,1.5] and the co-
efficients c1 and c2 are in the range of [1,3]. The pi represents the current 
best position of xi and g is the global best position of all particles. The 
unknowns β, τ and γ are random vectors where each element of the 
vector is random of a uniform distribution in the range [0,1]. 

As already explained, the PSO algorithm has some drawbacks. Thus, 
seeking to improve the convergence issues in the PSO, an additional 
approach is implemented in the algorithm routine. In [33] the use of 
Nolvety Search concepts is proposed to improve the exploration of the 
search space and, based in these concepts the generated particles are 
divided in, a first family, formed by “conquerors” particles and ruled by 
Eq. (1) as in the regular PSO and, the second family, formed by “ex-
plorers” particles where the Novelty Search (NS) concept is used. The 
names of conquerors and explorers particles are defined by their func-
tion in the algorithm, that is “to conquer” the optimum solution and the 
close regions and the “explorers” means that these particles must 
“explore” all the search space, even the regions that provide bad results. 
This approach aims to avoid that the PSO be stuck in a local minimum. 

To ensure the correct implementation of this concept, a repository to 
store all explorer particles and the first conqueror particles was created 
avoiding that the explorer particles visit regions close to those already 
created. This repository is mathematically defined by: 

MC(t) =
∑

x∈R (t)x
card(R (t))

, (6)  

where R (t) is the repository in the iteration t, card(R (t)) is the number 
of elements of R (t) and MC(t) is the point that summarizes the behavior 
of the system in the iteration t. Since it was created to be analogous to a 
center of mass of an object the MC(t) is defined as a centre of mass. 

Also, it is necessary a new velocity equation that can rule the new 
explorer behavior in this modification, so the Eq. (7) was defined in 
order to change the particle dependency from the old global best posi-
tion to the new centre of mass, 

vi(t + 1) = w δ⋅vi(t) + c1 ϕ⋅(pi − xi(t))+

c3 ρ⋅exp
(

− α⋅
⃒
⃒
⃒
⃒
xi(t) − MC(t)

xmax − xmin

⃒
⃒
⃒
⃒

)

⋅(xi(t) − MC(t)),
(7)  

where xmax, xmin are vectors of dimension D that represent the bound-
aries of the search space and δ,ϕ and ρ are random vectors like in Eq. (5). 
The quotient is given by Eq. (8) and should be carried out 
componentwise. 

xi(t) − MC(t)
xmax − xmin

(8) 

Besides, a set of Neural Networks (NN) were trained and coupled 
with the novelty swarm algorithm as an additional step in order to 
enhance the convergence. A specific NN for each output parameter 
(NOx, soot and efficiency) was trained every 30 iterations of the algo-
rithm using all inputs (geometrical inputs, injection and air management 
systems inputs) and outputs of all cases. 

The optimization flow chart can be seen in the Fig. 4. 

3.5. Tools 

In order to perform many simulations automatically in the optimi-
zation process several tools were used. The first one is a tool to generate 
the combustion chamber geometry through Bezier polynomial curves 
[34] using six different parameters. Each one of these six geometry 
parameters are independent, dimensionless and have their own range in 

different parts of the geometry. Fig. 5 shows different examples of bowl 
geometries that are obtained by this method. Changes in the bowl ge-
ometry have a direct influence on the volume of the combustion 
chamber, then the squish height was adjusted in order to maintain the 
CR in 16, as in the original engine. 

In the next step, after the bowl profile geometry is configured, it is 
necessary to generate the mesh that is used to perform the simulations. 
This process is performed by a python code that generates the mesh 
automatically using the dynamic mesh layering technique developed by 
Lucchini et al. in [19] and, this method keeps fixed the cells in the spray 
region and move the cells close to the piston bowl. This tool divides the 
domain in several regions or blocks that are defined by control points. 
The position of these control points is adapted to each bowl profile in 
order to obtain a mesh that fulfils the orthogonality and cell skewness 
criteria. Moreover, it configures the cell orientation near the nozzle exit 
accordingly with the included spray angle of the spray, so the cells are 
oriented with the injection plume. An example of the control points and 
block definition is presented in Fig. 6. Finally, the mesh sector is con-
structed as a function on the number of holes of the injector, since each 
simulation is carried out for a region of the combustion chamber with 
only one spray, based on the axy-symmetric assumption that was 
mentioned before. 

The rate of injection (ROI) profile was defined using a virtual injector 
model (VIM), which is an in-house code that builds a mass flow rate 
curve from a combination of various injection parameters [35,22]. In 
this work the parameters used are the total mass fuel injected in one 
cycle, injection pressure and the number of orifices of the injector, which 
affects the hole diameter. Since the nozzle permeability was kept con-
stant, it was necessary to correct the nozzle diameter for all cases and 
this property defines the nozzle flow capacity and the injection duration. 
The total mass per cylinder is considered constant for all the cases and 
the other two parameters are variables of the optimization process. The 
VIM code assumes that the flow is incompressible across the nozzle holes 
and applies the equations of continuity and Bernoulli between the inlet 
and outlet of the orifices, providing a ROI based on a trapezoidal form as 
can be observed in the Fig. 7. The model is also calibrated for the OME 

Fig. 4. Flow chart of optimization process.  
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fuel used in this study, adjusting the ROI to compensate the LHV and the 
density as was indicated in Section 2. 

After the generation and the simulation of each case, it is post- 
processed for extracting the values of efficiency, NOx and soot emis-
sions, among others. The performance of the combustion system is 
evaluated by means of a merit function that considers simultaneously an 
increase in efficiency and a reduction of pollutant emissions, compared 
to the reference case. At the same time, the merit function penalizes the 
cases that exceed the baseline NOx value and corroborates that the soot 
levels are below the diesel case, which is expected due to the low sooting 
nature of the fuel. To meet these requirements the merit function was 
formulated considering the importance of each output from the simu-
lation and the global function is composed by all the sub-functions of 
each output. Those functions are detailed in Eqs. (9)–(12). 

f1(NOx) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

NOx,CFD

NOx,lim
if NOx,CFD < NOx,lim

NOx,CFD

NOx,lim
+ 100⋅(NOx,CFD − NOx,lim)

2 if NOx,CFD⩾NOx,lim

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9)     

f3(eff ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− log(eff CFD)

− log(eff lim
if eff CFD > eff lim

− log(eff CFD)

− log(eff lim)
+ 100⋅(log(eff CFD) − log(eff lim))

2 if eff CFD⩽eff lim

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11)  

OF = f1(NOx)⋅coef NOx
+ f2(soot)⋅coef soot + f3(eff )⋅coef eff (12)  

where NOx,CFD, sootCFD and effCFD are the values obtained in the CFD 
simulation, and the NOx,lim, sootlim and eff lim refer to the outputs of the 
reference engine. Finally, coefNOx

, coefsoot and coefeff are coefficients 
used to adjust the equation according to the order of importance of the 
parameters in the optimization. 

As the main objective is to increase the efficiency of the engine at the 
same time as it reduces its NOx and soot emissions, the values of the 
coefficients used are: coefNOx

= 0.05, coefsoot = 0.001 and coefeff = 1. 
Aiming to optimize the combustion chamber, twelve relevant pa-

rameters of the combustion system were chosen, where six of them are 
related to the geometry definition of the bowl, three of them define the 
injection system (number of injection nozzle holes, spray angle and in-
jection pressure), and the other three to the in-cylinder gas conditions 
(swirl number at IVC, EGR, IVC pressure). The range of those inputs 
variables are shown in Table 6. 

4. Results and discussion 

In this section, the results obtained from the optimization process are 
presented and discussed. First, the convergence of the PSO-NS algorithm 
is shown and trends of the output parameters are analyzed. Then, the 
results of the optimized combustion system are compared against the 
experimental and baseline case for a better understanding of this new 
combustion system. 

4.1. Optimization results 

The initial step of the results analysis was the algorithm convergence 
verification. The analysis of the algorithm convergence is performed 
through the mathematical analysis of the objective function value for all 

particles calculated from the CFD data simulation. Fig. 8 shows how the 
PSO-NS algorithm consistently decreases the minimum objective func-
tion value, converging towards a minimum value. The best particle 
would be the one with the minimum value of the objective function until 
that iteration. At the beginning of the procedure it is observed how the 
objective function suddenly decreases, due to the PSO-NS rapid 
convergence capacity, until case number 780 where it reaches the 
minimum value of the objective function. 

To obtain the location of the particle that provides the best solution 
in the explored range, the efficiency and NOx were compared in a Pareto 
front that is presented in Fig. 9. In this plot all the simulated particles 

Fig. 5. Parameters definition for Bezier curves (Left-hand side) and examples of bowls that can be obtained for combustion chamber geometry (Right-hand side).  

Fig. 6. Mesh generator: control points and block definition.  

f2(soot) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− log(sootCFD)

log(sootlim
if sootCFD < sootlim

− log(sootCFD)

log(sootlim)
+ 1000000⋅(log(sootCFD) − log(sootlim))

2 if sootCFD⩾sootlim

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10)   
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were used to show the trade-off between both parameters to optimize. 
The optimum value is shown on the figure as a red dot. Moreover, from 
Fig. 9 it is possible to find particles that provide better results than the 
optimized particle for each output in separately, sacrificing part of the 
efficiency it is possible to obtain better NOx emissions and the opposite is 
also possible, sacrificing fractions of NOx it is possible to obtain better 
efficiencies. 

Based on the results of the objective function, the optimized 
configuration was compared with the reference diesel case that was used 
to reproduce the experimental conditions. In Fig. 10, the differences 
between bowl geometry and spray angle can be observed. Regarding the 
optimized geometry, a re-entrant bowl shape is used instead of a step- 
bowl profile. One of the purposes of the step-bowl geometry is to 
deflect the spray towards the cylinder head to prevent an excess of spray- 
wall impingement on the liner, avoiding soot-in-oil generation. Since 
OME is a low sooting fuel, this deflection is not required because there is 

negligible risk for generating soot particles near the liner region. This 
new geometry may also decrease the heat transfer through the cylinder 
head, preserving the mechanical integrity of this component and 
contributing to a better efficiency. Furthermore, the spray angle is 
adjusted with the bowl piston shape. 

Additionally, Table 7 lists the complete parameters of the combus-
tion system for both cases. The number of injector nozzle holes are 
decreased to 9 which leads to larger orifice diameters in order to 
maintain the same nozzle area. The spray angle is 10 degrees greater 
which enables the spray to better adjust to the geometry of the bowl. The 
injection pressure is higher than the reference value, enhancing the 
mixing rate due to a higher spray momentum, improved atomization 
and faster evaporation. Apart from that, the optimized case has an EGR 
rate of 17.3% and an IVC pressure slightly higher than the initial 

Fig. 8. Objective function convergence.  

Fig. 9. Pareto front of NOx emissions vs. efficiency of the engine. The blue dots 
are the results of all cases simulated in the optimization process and the red dot 
is the optimized case. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 10. Bowl profile comparison between reference diesel case and optimized 
OME case. 

Table 7 
Inputs comparison between baseline OME and optimized OME cases.   

OME Baseline case Optimized case 

Number of holes [–] 10 9 
Spray angle [deg] 154 164 
Swirl number [–] 2.00 2.83 
Injection pressure [bar] 1800 2216 
EGR rate [%] 0 17.3 
IVC pressure [bar] 3.89 4.04  

Table 6 
Parameters and ranges considered in the optimization process.  

Parameter Range 

Geometrical parameter 1 [–] [− 0.5, 1.0] 
Geometrical parameter 2 [–] [− 1.0, 1.25] 
Geometrical parameter 3 [–] [− 1.0, 1.0] 
Geometrical parameter 4 [–] [0.0, 1.0] 
Geometrical parameter 5 [–] [− 1.4, 0.1] 
Geometrical parameter 6 [–] [− 0.5, 1.0] 
Number of injector nozzles [–] [4,12] 
Spray angle [◦]  [155, 170] 
Swirl number at IVC [–] [1.0, 3.0] 
Injection pressure [bar] [1500, 2000] 
EGR [%] [0, 30] 
IVC pressure [%] [0, 30]  

Fig. 7. Virtual injector model: comparison between the rate of injection profile 
between conventional fuel and OME. 
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baseline configuration. 
In Fig. 11, the in-cylinder pressure and rate of heat release compar-

ison between the reference diesel case, baseline OME case and the 
optimized OME case are shown. The baseline OME case has the same 
configuration of the diesel reference case while using OME as the fuel. 
The optimized OME case obtained from the PSO-NS using OME as fuel is 
presented in this figure as well. By examining the pressure trace, it is 
possible to note the differences between all cases. The differences 
related to the maximum peak of pressure obtained for the cases using 
OME can be a result of the greater amount of fuel needed to compensate 
the lower LHV of the OME. A combination of the higher injection 
pressure together with the larger nozzle holes leads to a faster energy 
delivery causing a higher cylinder pressure level. 

The heat release rate of the optimized case with OME presents a 
higher burn rate compared with the reference diesel case, showing a 
higher peak of the premixed phase, and for the rest of the combustion 
duration. Furthermore, the heat release rate is slightly shortened since 
the injection pressure is higher, decreasing the duration of the injection 
event to ensure that the same amount of fuel is injected for all cases. The 
high levels of heat release combined with a shorter duration improves 
the combustion performance, and leads to thermodynamic advantages, 
such as improved combustion efficiency and a thermodynamic cycle 
closer to the ideal one. The enhanced combustion process is related to a 
better distribution of the mixture within the system as is discussed later 
on. 

The results obtained from the optimized case are shown in Table 8 
where they are compared against the reference diesel case and the OME 
baseline case. Comparing the reference diesel against the optimized 
case, a combustion system was obtained that produces 35.7% less NOx, 
2.2% higher efficiency and a great reduction of soot due to the non- 
sooting characteristics of OME. Even though the baseline OME case 
has a higher efficiency than the other two cases, the NOx value is un-
acceptable, therefore it is necessary to sacrifice part of the efficiency in 
order to reduce the NOx level. In general, the combination of a higher 
injection pressure with higher swirl ratio contributes to better atomi-
zation and evaporation and shortens combustion duration. With the new 
configuration there is more space between the sprays avoiding spray 
interaction resulting in NOx reduction with better efficiency. The great 
NOx reduction can be explained principally by the EGR rate of the 
optimized case. The EGR reduces the local temperature near the flame 
regions leading to a lower NOx concentration. 

The temporal evolution of the NOx emission as the combustion 

progresses is shown in Fig. 12 (right-hand side). Compared to the 
reference diesel case, the NOx formation in the baseline OME case has 
the highest values, and correlates well with the maximum mean tem-
perature in the cylinder between 12 and 40 CAD, as can be seen on the 
left-hand side of the same figure. This increment can be attributed to an 
excess of local temperature above 1800 K promoting an exponential NOx 
formation as previously demonstrated by Turns in [36] and Drake in 
[37]. Regarding the optimized case the mean temperature overlaps that 
of the OME baseline during the premixed phase of the combustion. 
However, during the later stages, the temperature of the optimized case 
is lower due to the EGR rate used that provides an increase in the heat 
capacity of the mixture acting as NOx controller. The vertical dashed 
lines in Fig. 12 represent four crankangles (0, 12, 40, 27 and 60) selected 
for comparing the temperature distribution in the combustion chamber 
for the analyzed cases. 

Fig. 13 shows the temperature contours for the diesel reference diesel 
case, the baseline OME case (with the same geometry of the initial diesel 
engine) using OME as fuel and the best case obtained from the optimi-
zation. Mainly, the changes in the bowl profile increases the distance 
between the nozzle hole outlet and the walls of the piston bowl, which is 
in agreement with previous studies [17,14], that presented larger 
combustion chambers when oxygenated fuels are used due to the longer 
mixing lengths for those fuel sprays. In addition, the optimized case 
exhibits a faster jet penetration, which occurs due to bigger orifice di-
ameters and higher injection pressure. The included spray angle that 
matches the bowl profile is wider than the reference case, directing the 
spray towards the inferior side of the re-entrant edge of the profile when 
the piston is at top dead center, as can be seen from the first image at the 
bottom left side. The onset of combustion appears to mainly consume 
the air present in the piston bowl. As the piston moves towards the 
bottom dead center, the spray impacts on the edge of the bowl, splits, 
and then finds the air available in the outer regions of the bowl 
increasing the mixing rate and improve the distribution of the flame 
inside the combustion chamber. Moreover, the optimized case has a 
higher swirl number that could produce an overlap of the plumes pro-
moting unfavorable combustion conditions, however this inconvenience 
is surpassed by using a nozzle with one less hole compared to the initial 
configuration. The use of the 9 hole configuration restricts the plume-to- 
plume interaction and avoids the formation of fuel-rich zones. There-
fore, in the last stage of the combustion a more homogeneous temper-
ature distribution is found leading to a better performance of the system, 
corroborating the behaviour previously shown in Fig. 12. 

4.2. Parametric study for sensitivity analysis 

This section presents the results obtained from a parametric study 
realized using machine learning methods. The PSO-NS methodology 
enabled to obtain an optimum design in a reasonable number of simu-
lations and also generated a large data set with useful information about 
the combustion system. A neural network model (NN) was trained from 
the data generated by the optimization process. The model is a 

Fig. 11. Comparison of in-cylinder pressure and rate of heat release between reference diesel case, baseline OME case and optimized OME case.  

Table 8 
NOx, soot and efficiency comparison between reference, baseline and optimized 
cases.  

Case NOx [mg/s] Soot [mg/s] Efficiency [%] 

Reference case 230.95 0.355 40.2 
Baseline OME case 773.60 <0.0001  43.0 
Optimized OME case 148.32 <0.0001  42.4  
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mathematical approach that acts as a surrogate model for the CFD 
simulations. Two different NN were trained from the data generated 
during the optimization process where, the first one predicts the engine 
efficiency behavior and the second one reproduces the NOx emissions 
behavior. A NN model for soot emissions was neglected since the values 
obtained during the optimization process were imperceptible (as ex-
pected due to the low-sooting capability of this fuel). The NN used in this 
work was developed in Python [38] using packages as Numpy together 
with the open-source libraries Keras [39]. A kernel L2 regularization was 
used for all hidden layers to improve the accuracy of the prediction 
during the training phase [40]. Adam optimization algorithm [41] was 

used with the training algorithm for updating the NN weights. The 
maximum number of iterations of the algorithm was set to 500. In order 
to choose the best set of parameters for the NN, a KerasRegressor has 
been implemented. Also, a k-fold cross validation was used, which 
consists of an iterative division of the data used in the train process and 
another data for the testing. The NN was trained with 67% of the total 
data (that is two thirds of the 950 simulated cases) and tested with the 
33% of the remaining data, selected randomly. 

In order to evaluate the quality of the prediction both NNs were 
tested using the optimum case configuration, predicting the outputs of 
this case and comparing them against the results obtained from the CFD 

Fig. 12. In-cylinder mean temperature and NOx emissions, a comparison between the reference diesel case, baseline OME case and the optimized OME case.  

Fig. 13. In-cylinder temperature contours comparison between the reference diesel case, baseline OME case and the optimized OME case.  

Fig. 14. NN-based predicted vs CFD observed. The left-hand side plot: efficiency regression. The right-hand side plot: NOx prediction.  
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simulation. The predictions of efficiency and NOx emissions resulted in 
42.4% (42.415) and 155.67 mg/s respectively for the NN compared to 
the efficiency and NOx emissions from the CFD case of 42.4% (42.412) 
and 148.32 mg/s, which means a difference of 0.008% for the efficiency 
and 4.96% for NOx emissions. Moreover, Fig. 14 shows the predicted 
values obtained from the NN regression vs the CFD results for efficiency 
(left plot) and for the NOx values (right plot). In general, the prediction 
of the NOx concentration is more precise than the prediction of the ef-
ficiency. This behaviour was observed by other authors before. For 
instance, Owoyele et al. [42] also found that the NN predictions are 
more accurate for the NOx results than for other variables as ISFC or soot 
emissions. Overall, the NN reproduces the trend of the efficiency and 
NOx emissions quite well with a reasonable accuracy level. 

Aiming at a better understanding of the combustion system a sensi-
tivity analysis was performed based on the trained NN. For this part of 
the study, the piston bowl design was kept the same while other pa-
rameters were varied, such as: number of holes of the injector, the spray 
angle, the injection pressure, the EGR rate and the IVC pressure. The 
goal was to evaluate the behavior of the efficiency and NOx emissions of 
the optimum geometry with different parameters focusing on the engine 
settings and operation. The proposed parameters with their respective 
range for this sensitivity analysis are presented in Table 9. 

To isolate the effect of each parameter, a matrix of cases was created 
varying just one parameter each time, it means the cases used to the 
study influence of the number of holes in the combustion chamber have 
the same configuration than the optimized, except to the number of 
holes. The same procedure was applied to the others parameters that 
were tested in this analysis. 

Fig. 15 shows all the results obtained from this parametric study for 
efficiency and NOx emissions. From a general perspective, the parame-
ters that have a considerable influence are the injection pressure and the 
EGR rate on NOx emissions and efficiency, meanwhile, the nozzle 
configuration and the IVC pressure have a lower effect. The effect of 
nozzle hole number on NOx and efficiency is shown on Fig. 15 and it is 
possible to note that a maximum value was obtained for the efficiency 
when the injector has 9 holes. Hence, a compromise should be taken 
since reducing the number of holes would lead to bigger droplets being 
injected due to the larger hole diameters. This in turn worsens the at-
omization and mixing process between the fuel and air. On the contrary, 
increasing the number of holes would cause a significant plume-to- 
plume interaction which negatively impacts the combustion process. 
This could also lead to higher number of rich zones and a reduced effi-
ciency having a similar behavior to that presented by Mohiuddin in [43]. 
Regarding the NOx emissions trend, increasing the number of holes 
while maintaining the same operating conditions results in a smaller 
droplet size of fuel which means a better atomized spray enhancing the 
mixture, and leading to a reduction of emissions. 

Concerning the included spray angle, it must be noted that when the 
bowl design is decided the injector configuration is usually kept con-
stant. Nevertheless, small variations of the spray angle have very little 
consequences on the efficiency and NOx emissions. In addition, the 
impact of the IVC pressure on both efficiency and NOx emissions is 
negligible, as can be seen in the figures where the plot is constant. 
Regarding the EGR rate and the injection pressure, it is possible to 
observe that these parameters have a big influence on efficiency and 

NOx emissions in the range evaluated. When the EGR rate is increased, 
the burning rate of the non-premixed combustion phase is increased, 
leading to a reduction in efficiency and a reduction in NOx emissions. 
This effect was also observed in literature in some works presented by 
Shi and Reitz in [44], Benajes in [34] and Mohiuddin [43]. The last 
parameter evaluated was the injection pressure that shows a substantial 
influence on the efficiency and NOx emissions. The injection pressure 
increases the liquid phase momentum and the evaporation. When the 
injection pressure is increased a better mixing is expected, which pro-
motes a better combustion and leads to a higher temperature inside the 
combustion chamber. On one hand, the higher temperature improves 
the efficiency, and on the other hand, it promotes the formation of NOx. 
Based on this study, it is possible to predict the behavior of the engine 
and to further evaluate settings and configurations that can be used on 
an engine test bench. 

Finally, a variability study is shown in Table 10 where the variations 
for each parameter are calculated aiming to obtain an analytical rep-
resentation of the results showed in Fig. 15. From Table 10 it is possible 
to observe that the appropriate set of parameters could result in an 
improvement of efficiency up to 1.2%. For what concerns the NOx 
emissions, the correct set of the injection pressure and EGR can reduce 
the emissions in the engine by 60%. An interesting point is that these 
two parameters, injection pressure and EGR rate, can be changed 
directly during engine operation which allows a quick adjustment in the 
set of parameters in order to obtain better NOx emissions. The infor-
mation this part of the study offers is valid in the case the system is 
manufactured, a facilitates a better understanding of its sensitivity to the 
parameters, and could be useful even for guiding engine calibration 
strategies. 

5. Conclusion 

In this study, a methodology for CFD-guided optimization of the 
combustion system of an engine using OME as a fuel was performed. 
This methodology was based on the combination of PSO-NS algorithm 
and CFD modeling. This study aims to improve the efficiency and to 
reduce the NOx emissions of a CI engine through the optimization of the 
piston bowl geometry, injection and air-management systems. 

An initial validation against available experimental data of an engine 
fuelled with conventional diesel was performed. With the validated 
model the fuel was replaced by OME and the mass of fuel was corrected 
in order to maintain the same amount of energy available in the cycle. 

Different tools were used to create the CFD model for each case. The 
first tool creates the piston bowl profile from the geometrical parameters 
defined by the optimization algorithm. Another tool builds the mesh 
that is used in the simulations. The third tool generates the specific rate 
of injection of each case. Furthermore, a routine couples the optimiza-
tion algorithm and all the tools used to configure the CFD case, meaning 
that, the entire optimization process was performed automatically. 

A PSO algorithm adapted with the NS methodology was used for the 
optimization process. Thirteen inputs were used for this optimization: 6 
parameters for defining the piston bowl geometry, 3 parameters for the 
injection system description (number of holes of the injector, included 
spray angle, injection and injection pressure). The air-management 
system is defined by the swirl number, the pressure at IVC and the 
EGR rate. The evaluation of each simulation case was made by the 
evaluation of the objective function, which quantifies the set of inputs in 
value calculated using the values of the efficiency and NOx emissions 
obtained from the simulations for each case. 

During the optimization process around 1000 simulations were 
performed in order to obtain an optimized configuration. The injection 
system that matches the best case has one less nozzle orifice, a wider 
spray angle that better suits the piston bowl geometry, and a higher 
injection pressure. Concerning the air-management system, the opti-
mum configuration increases the EGR rate considerably, and in a smaller 
proportion the swirl number and the IVC pressure. With this new 

Table 9 
Parameters used to study the optimum combustion chamber 
behavior.  

Parameter Range 

Number of holes [–] [8, 10] 
Spray angle [def] [161, 165] 
Injection pressure [bar] [2000, 2400] 
EGR rate [%] [14, 20] 
IVC pressure [bar] [3.9, 4.1]  
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configuration it was possible obtain a better engine efficiency, around 
2.2% higher with a great reduction of the NOx emissions, around 35.7% 
in comparison with the reference diesel engine. 

Based on the optimized case a parametric study using NN was per-
formed to evaluate how each parameter affects the efficiency and NOx 
emissions. The optimized geometry was kept constant whereas the 
number of holes, spray angle, injection pressure, EGR rate and IVC 
pressure varied in a range close to the optimized design. The objective of 
this part of the study was to better understand the combustion chamber 
system and the influence of each parameter on efficiency and emissions. 
It was obtained that the number of holes, spray angle and IVC pressure 
factors have little impact on the engine efficiency. However, the injec-
tion pressure can provide a significant increase, up to 1.2% more effi-
ciency followed by the EGR rate. For the case of NOx emissions, the EGR 
rate shows a great influence on this emission value in the order of 63% 
followed by the injection pressure with 38% of influence. 

To summarize, the optimization process combined with CFD simu-
lations can help to develop a specific combustion system for an engine 
that aims to use OME as a fuel providing good results in terms of effi-
ciency and a NOx emissions. 
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Fig. 15. Efficiency and NOx results from the parametric study using machine learning tools.  

Table 10 
Variability of each parameter based on the optimum value.   

Efficiency variation [%] NOx variation [%] 

Number of holes [–] 0.27 9.59 
Spray angle [def] 0.20 1.79 
Injection pressure [bar] 1.23 37.99 
EGR rate [%] 0.90 63.08 
IVC pressure [bar] 0.03 1.49  
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[9] Burger J, Siegert M, Ströfer E, Hasse H. Poly(oxymethylene) dimethyl ethers as 
components of tailored diesel fuel: Properties, synthesis and purification concepts. 
Fuel 2010;89(11):3315–9. https://doi.org/10.1016/j.fuel.2010.05.014. 
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