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The recovery of symmetric and efficient walking is one of the key goals of a rehabilitation

program in patients with stroke. The use of overground exoskeletons alongside

conventional gait training might help foster rhythmic muscle activation in the gait cycle

toward a more efficient gait. About twenty-nine patients with subacute stroke have

been recruited and underwent either conventional gait training or experimental training,

including overground gait training using a wearable powered exoskeleton alongside

conventional therapy. Before and after the rehabilitation treatment, we assessed: (i) gait

functionality by means of clinical scales combined to obtain a Capacity Score, and

(ii) gait neuromuscular lower limbs pattern using superficial EMG signals. Both groups

improved their ability to walk in terms of functional gait, as detected by the Capacity

Score. However, only the group treatedwith the robotic exoskeleton regained a controlled

rhythmic neuromuscular pattern in the proximal lower limb muscles, as observed by

the muscular activation analysis. Coherence analysis suggested that the control group

(CG) improvement was mediated mainly by spinal cord control, while experimental group

improvements were mediated by cortical-driven control. In subacute stroke patients, we

hypothesize that exoskeleton multijoint powered fine control overground gait training,

alongside conventional care, may lead to a more fine-tuned and efficient gait pattern.

Keywords: rehabilitation robotics, electromyography, coherence, exoskeletons, capacity score

1. INTRODUCTION

Stroke is the leading cause of chronic disability in adults (Gorelick, 2019). Stroke survivors often
present deficits in mobility, balance, and coordination, drastically limiting their activities of daily
living (ADLs) and social interaction (Rössler et al., 2020). The recovery of independent ambulation
is without any doubt one of the key ADLs to be targeted with the rehabilitation program. From a
functional perspective, it has been largely demonstrated that important ingredients for a successful
neurorehabilitation program might be identified in early intervention, high dose, high intensity,
and task-specific practice. Indeed, during the acute stages of post-stroke recovery, repetitive, high
dose, task-specific training has been found to enhance beneficial neuroplasticity that may accelerate
functional recovery and restore healthy gait after stroke (Kwakkel et al., 2004; Langhorne et al.,
2011; Maier et al., 2019). With a particular focus on gait, it has been demonstrated that a particular
effect can be obtained by increasing the number of repetitions, characterized by a kinematic close to
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a physiological pattern able to induce a proper inter-joint and
inter-limb coordination (Esquenazi and Talaty, 2019).

Current conventional therapy can produce remarkable
improvements in ambulation and motor functions. However,
given the increasing population needing rehabilitation assistance
and lack of time and human resources, physical therapists may
not always be able to provide enough high dose, task-specific
repetitive gait training during the acute stages of recovery, where
maximum physical assistance is required (Louie and Eng, 2016).
In this context, recent researchers developed technologies to
support the work of physical therapists and to be mainly focused
on delivering a high number of gait repetitions in the post-acute
phase. In the attempt to early verticalize patients, devices like
body-weight supported treadmill were developed to increase the
delivered dose. However, these devices showed limited evidence
of efficacy (Nilsson et al., 2001; Mehrholz et al., 2017). This could
be due to the lack of the task-oriented bit, which is to cover an
even short distance in the case of walking (Nolan et al., 2020).

Technological advancements focused on the development
of powered wearable robotic exoskeletons, electromechanical
devices with bilateral motorized assistance at the knee and
hip joints in the sagittal plane, including commercial devices
such as Ekso (https://eksobionics.com), Re-Walk (https://rewalk.
com/), and Indego (www.indego.com). In addition to body-
weight supported treadmills, exoskeletons may be used in the
early phase after injury. They can provide tunable high intensity
and high dose rehabilitation sessions with effective over-ground
ambulation, reducing the effort of the therapist. Indeed, the
therapists may focus on training cues and feedback to drive gait
quality in a stabilized system that is provides upright support to
the trunk and lower limb.

When comparing conventional therapy (control group)
and exoskeleton-based therapy (experimental group), clinical
trials have demonstrated that the experimental group showed
comparable or slightly increased improvements, mainly using
clinical evaluation or tests (Peurala et al., 2009; van Nunen
et al., 2015; Cho et al., 2018; Molteni et al., 2018; Nolan
et al., 2020). This may support the use of such technologies
in the standard rehabilitation pathway. However, such a
technology should be delivered to specific patients, and
little is known about the underlying mechanisms that drive
robotic-mediated neural plasticity during the rehabilitation
process. Indeed, a deep understanding of the underlying motor
relearning mechanisms may contribute toward effective patient
stratification in rehabilitation treatments. Since MRI, functional
MRI, EEG, and similar solutions are difficult to be routinely
performed in clinical settings, surface electromyography (sEMG)
may be an option for an indirect investigation of neural
plasticity. Despite its potential demonstrated in the literature,
sEMG has been demonstrated to have several limitations
toward effective clinical application (Campanini et al., 2020;
Goffredo et al., 2020). Indeed, the sEMG signal is influenced
by several factors, including inter-electrodes distance, skin-
electrode impedance, or electrode placement with respect to
underlyingmuscle fibers, which surface electromyography for the
non-invasive assessment of muscles (SENIAM) directions, have
however, well addressed. Most of the current limitations are for

effective and meaningful signal processing. Indeed, signal pre-
preprocessing is well-defined and quite common toward different
applications to obtain an sEMG envelope. Still, difficulties
within the community may be identified in reliable real-time
muscle activation onset and movement identification procedure
(e.g., steps identification). Moreover, repeatability and signal
normalization between different sessions have limited the use
of sEMG as the primary outcome measure. Despite all these
reasons, if carefully acquired and analyzed, sEMG signals have
been demonstrated to be a key-hole to human nervous system
plasticity (Kitatani et al., 2016).

The present study investigates the gait rehabilitation process
and evaluates motor re-learning in patients with subacute
post-stroke by analyzing and comparing lower limb muscular
activation patterns. Two different rehabilitation strategies
were considered: (i) conventional physical therapy, and (ii)
exoskeleton-assisted rehabilitation, in addition to standard
therapy sessions. A quantitative index that summarizes the
clinical outcomes of patients was computed to compare the
clinical assessments and the results obtained from the muscular
activity analysis. Three gait performance indexes [i.e., GaitMetric
(GM) Ricamato and Hidler, 2005, Burst Duration Similarity
Index (BDSI) Androwis et al., 2018, and agonist-antagonist
coherence function Kitatani et al., 2016] were extracted from
patients’ surface EMG signals of lower limbs before and at the
end of the treatment, to compare changes in muscular activation
resulting from the two different rehabilitation therapies. In
particular, GM (Ricamato andHidler, 2005) and BDSI (Androwis
et al., 2018) were used to analyze muscular activation during gait
in terms of amplitude and timing. The investigation of agonist-
antagonist muscles coherence (Kitatani et al., 2016) allowed a
preliminary evaluation of changes in corticospinal neural drives
consequent to stroke, and possible neural plasticity promoted
by rehabilitation.

2. METHODS

A single-blinded pilot study was conducted at the Villa Beretta
Rehabilitation Center (Costa Masnaga, LC, Italy). The study was
approved by the ethical committee of the rehabilitation center
(Comitato Etico Interaziendale delle Province di Lecco, Como e
Sondrio, Prot. 48892/15 23/11/2015). All subjects gave informed
written consent in accordance with the Declaration of Helsinki.
Patients were recruited between March 2016 and March 2018.
The present study is part of a multicenter, parallel study about
the effects of exoskeleton-assisted training on patients with post-
stroke, whose details can be found in Goffredo et al. (2019a).

2.1. Participants
This study involved both patients with post-stroke and healthy
subjects. Considering patients with post-stroke, inclusion criteria
were as follows: (i) the first-ever stroke affecting the lower limbs;
(ii) level of spasticity at the hip, knee, and ankle levels <3, as
detected by Modified Ashworth Scale (Blackburn et al., 2002);
(iii) stroke event happened from 2 weeks up to 6 months post
the acute event (i.e., subacute patients); (iv) age between 18 and
80 years; (v) ability to fit into the exoskeleton; (vi) no significant
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limitation of hip and knee joints range of motion; (vii) ability
to tolerate upright standing for at least 60 s without loss of
pressure due to verticalization; (viii) sufficient upper extremity
strength and balance for walking with the device; and (ix) ability
to give written consent and comply with the study procedures.
Moreover, a group composed of healthy volunteers with no
neurological or orthopedic impairment was recruited to derive
the reference physiological gait pattern.

2.2. Experimental Set-Up
This study involved the overground wearable powered
exoskeleton Ekso GTATM, Ekso Bionics, USA. Ekso is a
wearable bionic suit, which enables individuals with lower limb
disabilities and minimal forearm strength to stand, sit, and walk
over a flat hard surface under the supervision of a therapist.
It is equipped with four battery-powered motors at the hips
and knees. Considering the type of actuation, in the present
study, ProStepPlus and Bilateral Max Assist were used as default
settings. Therefore, each step of the patient was triggered by the
lateral weight shift by the user, and Ekso provided full power
to both legs. No strength was required from the patient to
achieve walking, but only proper balance and weight shifts. Ekso
was adjusted to fit the anthropometric data of patients. Before
starting the training period, a physiotherapist checked for correct
alignment of the joints of the subject with the robot and areas of
increased skin pressure, adjusting the fit accordingly.

The gait cycle kinematic parameters of the exoskeleton were
fine-tuned using sEMG to define a customized and tailored
robotic treatment, as proposed in Gandolla et al. (2018).
Bilateral muscle activity was recorded during overground
walking with the FREEEMG wireless electromyograph (BTS
Bioengineering, Garbagnate Milanese, Milano, Italy). In
particular, we bilaterally recorded the Tibialis Anterior (TA),
Soleus (SOL), Rectus Femoris (RF), and Semitendinosus (ST).
We chose a couple of agonist and antagonist muscles in the
distal and proximal compartment, respectively. In particular, in
the distal compartment, we recorded the SOL because it is the
only calf muscle mono-joint, and its action is performed at ankle
level, and the TA Anterior, since it is the principal ankle flexor,
and it is important for the foot clearance.

2.3. Functional Outcomes
A functional assessment has been performed before (i.e., T0)
and after the treatment (i.e., T1) with multiple clinical scales
combined into a comprehensive index called Capacity Score,
as described in Gandolla et al. (2015). This comprehensive
index allowed to evaluate the overall impact of the rehabilitation
processes on the motor capabilities of the subjects and their
abilities to perform everyday life activities. In particular, six of the
most significant clinical scales for gait assessment were included:
the 5-item modified Barthel Index (Hobart and Thompson,
2001), the Motricity Index (Cameron and Bohannon, 2000),
the 10 meters walk test (Tyson and Connell, 2009), the 6 min
walk test (Tyson and Connell, 2009), the Functional Ambulation
Category (Mehrholz et al., 2007), and the Trunk Control Test
(Duarte et al., 2002). For what concerned the 5-item Barthel
Index, the Motricity Index, the Functional Ambulation Category,

and the Trunk Control Test, mean values for healthy subjects
were set equal to the maximum score achievable during the
test. For the 6 min walk test and the 10 meter walk test,
mean values referred to a healthy population were derived
from literature (Steffen et al., 2002; Bohannon and Andrews,
2011). Minimum Detectable Change (MDC) for the Functional
Ambulation Category and the Trunk Control Test were set as the
minimum difference between two consecutive scores according
to the structure of each test. MDC for the 6 min walk test and
the 10 meter walk test were, respectively, equal to 60.98 m and
0.11 m/s (Perera et al., 2006). According to literature, the MDC
in the score of the 5-item Barthel Index was 7.84 (Park, 2018),
while for the Motricity Index it was 12.92 (Fayazi et al., 2012). All
outcomes were equally weighted to compute the final score. The
higher the Capacity Score is, the higher the functional capacities
of the patient are. Therefore, the difference between the Capacity
Score at T1 and T0 assesses the functional improvement.

2.4. Instrumental Outcomes
2.4.1. Muscular Activity Assessment and Steps

Segmentation
Electromyography signals were acquired with a frequency of
1 kHz. A standard pre-processing (Solnik et al., 2008) was applied
to the sEMG signals for all included participants, including
high-pass filtering with a 3rd order Butterworth filter at 20 Hz,
rectification, and low-pass filtering with a 3rd order Butterworth
filter at 4 Hz. The step segmentation was obtained from EMG
signals. We implemented a moving window algorithm with
an adaptive threshold, as detailed in Gandolla et al. (2018).
The algorithm was used to identify the deactivation of SOL
muscle, which was then used to trigger the step segmentation.
The algorithm was based on the monophasic activation of SOL
during the physiologic gait cycle. Since this property was also
proved reliable in the non-paretic leg of patients with stroke
(Gandolla et al., 2018), a non-paretic SOL activation profile
was used to segment both patients’ steps (i.e., paretic and non-
paretic limbs sEMG signals). For the healthy subjects, the right
SOL deactivation was arbitrarily selected to segment steps. The
accuracy of the step identification technique was evaluated by
comparing the number of steps obtained by the algorithm with
that coming from footswitches placed under the shoes of the
subjects. This signal was available for all healthy volunteers and
only for a reduced number of patients.

For each subject, EMG signals from the segmented single
steps were rescaled in time to obtain the same duration of
the mean step duration of the healthy group. Then, data were
averaged in amplitude and normalized to their own maximum
amplitude. This pre-processing phase allowed to obtain for each
muscle of each subject a muscular activation profile normalized
in amplitude between 0 and 1 and normalized in time between 0
and 100% of the gait cycle. As a consequence of this segmentation
algorithm, the obtained step cycle for the non-paretic limb
started from the toe-off phase, and the step cycle of the paretic
limb started from its loading response phase. Thus, normative
physiologic activation profiles of the analyzed muscles were
obtained by average within the muscular profiles of seven healthy
subjects. Through qualitative inspection of the morphology of
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the muscle activation profiles in healthy subjects and taking into
account muscular dynamics reported in the literature define, the
40% of amplitude peak was chosen to define a threshold to obtain
the activation and deactivation phases of each muscle during a
single step cycle.

2.4.2. Gait Metric
The GM compares the dynamic properties (i.e., amplitude
and timing) of locomotor EMG patterns to normative gait-
related EMG patterns generated under comparable walking
conditions (Ricamato and Hidler, 2005). In particular, the GM
index provides a quantitative measure of the EMG pattern by
calculating two parameters: (i) the magnitude of the area of
normative activation and (ii) the phase shift with respect to
the normative gait-related EMG pattern. Specifically, the metric
rewards EMG activity when the muscle is active (i.e., greater
than the set threshold) in the portion of the gait cycle where it
is physiologically active, and also when EMG activity is inactive
(i.e., below the threshold) when the muscle is in the portion of
the gait cycle where it is normally inactive. In the case of the
magnitude component, the metric also penalizes the opposite
conditions corresponding to the situation where the muscle is
active when it should be silent and vice-versa. The normative
activation was obtained by thresholding normative EMG profiles,
as explained in section 2.4.1. The GM index was computed as
described in the literature (Ricamato and Hidler, 2005).

2.4.3. BDSI
The BDSI quantifies the similarity between two muscles
activations timing by measuring co-activation (i.e., common
active regions between the patient and the normative profile)
and co-deactivation (i.e., common inactive regions between
the patient and the normative profile) during the gait cycle
(Androwis et al., 2018). Once active/inactive regions referred to
single step cycle have been defined for each muscle as in section
2.4.1, we quantified the match between the two EMG signals. The
BDSI was calculated as Equation (1):

BDSI =
sum(ON_timing)+ sum(OFF_timing)

N
∗ 100 (1)

where BDSI is the computed index, ON_timing was a binary
vector of length N with 1 indicating simultaneous activation of s1
and s2 and 0 otherwise;OFF_timing was a binary vector of length
N with 1 indicating simultaneous inactivation of s1 and s2 and
0 otherwise.

2.4.4. EMG-EMG Coherence
We conducted a coherence analysis of paired surface EMG
recordings to quantitatively evaluate the descending neural drive
from the Sensory-Motor Cortex during gait (Halliday et al.,
2003). In particular, we computed the coherence between agonist
and antagonist muscles, taking into account a couple of proximal
muscles (RF-ST) and a couple of distal muscles (TA-SOL). To
perform coherence extraction, it is necessary to set a fixed-
length window in which the two agonist-antagonist muscles are
expected to be both active (Halliday et al., 2003). According
to normative muscular activation patterns described in the

literature (Winter and Yack, 1987; Gandolla et al., 2018), a 200
ms slot was selected in the initial part of the mid-stance phase
for the TA-SOL couple, while an epoch belonging to the terminal
swing phase was chosen for the RF-ST couple. The coherence was
computed as described in Kitatani et al. (2016). The coherence
function was evaluated in three frequency bands: (i) 5–10 Hz
(i.e., alpha band), (ii) 15–30 Hz (i.e., beta band), and (iii) 30–
45 Hz (i.e., gamma band). According to the literature (Halliday
et al., 2003; Kitatani et al., 2016), healthy subjects have coherence
between agonist-antagonist muscles in the alpha band but not
in beta and gamma bands. Conversely, in patients with post-
stroke, agonist-antagonist muscle coherence has been shown to
be reduced in the alpha band, but it is present in beta and
gamma bands. The alpha band has been shown to be related
to the spinal drive, while the beta and gamma bands to cortical
activity (Kitatani et al., 2016). To quantitatively evaluate the
magnitudes of the coherence, we computed the magnitude-
squared coherence and calculated the area under the coherence
curve within the three frequency bands.Moreover, coherence was
considered significant if higher than the 95% confidence limit
under the hypothesis of independence, calculated as Equation (2)
(Halliday et al., 1995):

ConfidenceLimit95% = 1− (0.05)
1

L−1 (2)

where L was the number of steps. The same number of steps was
used to compare coherence results from the same subject between
T0 and T1.

2.5. Experimental Protocol
In this study, enrolled patients were divided into two groups: i)
CG, which performed conventional rehabilitation therapy, and
ii) EG, which underwent exoskeleton-assisted gait rehabilitation
in addition to conventional therapy. Both groups underwent
five training sessions per week, for 4 weeks resulting in 20
rehabilitation sessions. For the EG, the number of exoskeleton-
assisted rehabilitation sessions was 12 over 20 sessions, and
it was provided three times per week. During the other eight
sessions, the EG underwent conventional therapy as the CG.
The duration of every single session was 60 min, including the
exoskeleton donning and doffing. Ekso fine-tuning was defined
during the first evaluation session, and did not change during the
12 trial sessions. It included the setting of the three main setting
parameters: (i) lateral shift (displacement of body weight under
the foot of the patient), (ii) swing time, and (iii) step length. We
used ProStep Plus Ekso setting program, through which steps
are triggered by the lateral weight shift of the user, and Bilateral
Max Assist, in which Ekso provides full power to both legs and
no strength is required. Starting from this configuration, Ekso
parameters were chosen using sEMG (Gandolla et al., 2018). The
definition started with the first parameter to be set (i.e., lateral
shift). A series of overground gait trials were performed, while
setting the parameter to different values. The gait trials were
minimum of three, where the default value, and higher and lower
settings were tested. By observing the gait quality and sEMG
signals acquired during walking, the expert Ekso therapist and
the rehabilitation team selected the best parameter setting. The
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first parameter was then fixed, and the next parameters were
considered in a recursive procedure until Ekso was properly set.

Clinical outcomes and sEMG signals were acquired before
(i.e., T0) and after the treatment (i.e., T1). sEMG signals
were recorded during a single trial of overground walking
performed by patients indoors, along a long, flat straight enclosed
corridor with a hard surface. During clinical and instrumental
measurements, patients from the EG were not wearing the
exoskeleton. When coming to healthy subjects, sEMG signals
were recorded during five consecutive autonomous walking trials
in the same environmental situation. During the recording,
healthy subjects were not wearing the exoskeleton.

2.6. Statistical Analysis
Mann-Whitney U-test for independent samples for continuous
outcome measures and Pearson chi-squared test for frequencies
were used to compare the characteristics of participants at
baseline between the two groups. For Capacity Score, GM
index and BDSI, generalized linear mixed-model analyses were
performed, with group and time entered as fixed effects, time
by the group as the interaction term, age, time since stroke
and Motricity Index at T0 as covariates, patients as a random
factor, and the outcome measurement (i.e., Capacity Score, GM
index, and BDSI) as a dependent variable. A post-hoc analysis
considering the groups independently was performed to estimate
T1-T0 changes in case of a significant time effect. In case
of significant group or interaction effects, the between-group
changes at T1 were also estimated, with age, time since stroke,
and Motricity Index at T0 as covariates. We conducted these
analyses for each muscle of both paretic and non-paretic leg
and the couples of proximal (i.e., RF-ST), distal (i.e., TA-SOL),
agonist (i.e., RF-SOL), and antagonist (i.e., ST-TA) muscles. For
the coherence analysis, the Wilcoxon test for paired samples
was used to compare the area under the curve between T1
and T0. Percentages of clinically improved patients at T1 were
finally computed. Specifically, the clinical improvement related
to coherence was considered significant if the patient had no
significant coherence at T0 and significant coherence at T1 for
the alpha band, and vice-versa for the beta and gamma bands.
The Pearson chi-squared test was used to compare percentages of
improved subjects between groups. The statistical analyses were
performed using SPSS v27.

3. RESULTS

3.1. Participants
About 29 patients with subacute stroke were recruited. The CG
and EG were composed of 14 and 15 patients, respectively.
Table 1 shows the group comparison at the baseline (i.e., T0).
No significant differences have been observed. The median time
since stroke was 34.50 days [28–51] for the CG and 40 [30–64]
days for the EG. Both groups were unbalanced, with a higher
percentage of men, ischemic stroke, and the most frequently
affected size was the left one. However, we did not detect between
groups unbalances (p > 0.05). Considering clinical scales at
T0, we can observe greater scores for the CG than the EG.
Nevertheless, they were not significantly different (p> 0.05). The
healthy group was composed of seven healthy subjects, with a

median age of 30 [23–32] years, and it included four men and
three women.

3.2. Functional Outcomes Results
The Table 2 shows the results of the Capacity Score analysis. We
detected a significant time effect (p < 0.001), while we did not
observe significant group nor interaction effects. The post-hoc
analysis confirmed that both groups improved at T1 (p < 0.001)
and that a between-group difference was not present (p = 0.350).
These results confirmed those obtained in the clinical study of
Goffredo et al. (2019a), which observed that robotic gait training
can produce significant improvement in clinical outcomes a the
conventional therapy.

3.3. Instrumental Outcomes Results
The step segmentation algorithm was characterized by an
accuracy of 100% for the healthy group. Considering patients,
instead, the footswitches signal were available for 21 sessions.
The median accuracy was 100% [93.75–100%]. The algorithm
correctly identified all steps in 12 recordings. The maximum
error was equal to three steps, and it occurred in one
patient. Figure 1 reports an example of the segmentation
algorithm results together with the corresponding signal from the
footswitches on the SOL filtered muscle.

The EMG analysis on the healthy CG was conducted to derive
normative reference profiles and indices. The normative results
for the GM index were: 0.73 ± 0.10 for the TA, 0.83 ± 0.03 for
the SOL, 0.66 ± 0.08 for the RF, and 0.74 ± 0.05 for the SM. For
the BDSI, we obtained the following mean results: 80.22 ± 12.11
for the TA, 92.38± 5.55 for the SOL, 68.13± 6.79 for the RF, and
81.89± 11.01 for the SM.

The average profile of the ST muscle of both groups of non-
paretic and paretic legs before and after the intervention is shown
in Figure 2.

The results of the GM index for the patients are reported in
Table 3. We observed a significant time effect for the SOL of the
non paretic leg (p = 0.035) and the couple ST-TA (p-value =

0.015). The post-hoc analysis demonstrated that the improvement
between T0 and T1 was significant only for the EG in both
cases (p = 0.034 for SOL, p = 0.018 for ST-TA). A significant
group effect was detected at T1 for the non-paretic ST and the
non-paretic proximal muscles (ST-RF). Finally, we obtained a
significant interaction effect for the ST muscle and the paretic leg
proximal muscles. A between-group change of 0.094 (p= 0.025),
and 0.057 (p = 0.043) in favor of the EG was found at T1 for the
paretic ST muscle and paretic ST-RF, respectively.

The results of the BDSI confirmed what we observed for the
GM index, except the non-paretic SOL muscle (Table 4). Indeed,
we obtained a significant time effect for the non-paretic ST (p =
0.033) and the couple of non-paretic ST-TA (p= 0.009). The post-
hoc analysis confirmed that the time effect was present only in
the EG. For the non-paretic ST, as well as for the non-paretic
proximal muscles couple, we also detected a significant group
effect. A significant interaction effect was revealed for the paretic
ST (p = 0.039) and for the paretic ST-RF couple (p = 0.042).
At T1, we observed greater changes in favor of the EG for the
following comparisons: non-paretic ST (p= 0.041), paretic ST (p
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TABLE 1 | Demographic characteristics and functional outcome measures at baseline (N = 29).

Control group (N = 14) Experimental group (N = 15) p-value

Agea 68 [64–70] 65 [52.25–73.75] 0.813b

Time since stroke (days) 34.50 [28–51] 40 [30 –64] 0.451c

Sex (Male/Female) 11/3 10/5 0.474c

Affected size (Left/Right) 8/6 9/6 0.876c

Etiology (Hemorrhagic/Ischemic) 2/12 5/10 0.231c

Motricity index (0–100)a 55 [26.50–68.50] 29 [18.75–43.13] 0.085b

5-item barthel index (0–55)a 19 [9–25] 12 [9–14] 0.164b

10 meters walk test (m/s)a 0.22 [0.11–0.59] 0.17 [0.12–0.22] 0.603b

6 min walking test (m)a 40 [6–150] 29 [15–49] 0.571b

Functional ambulation category (0–5)a 1 [0–3] 0.50 [0 – 1] 0.094b

Trunk control test (0–100)a 49 [37–75] 43 [36–61] 0.285b

aMedian [I–III Quartile]; bMann-Whitney U-test; cPearson chi-squared test.

TABLE 2 | Changes over time and between group for Capacity Score (N = 29).

Outcome Group T0a T1a
p-valueb p-valueb p-valueb T1–T0 Group change at T1

(Time) (Group) (Time * Group) Change (SE)c p-valued Change (SE)c p-valuee

Capacity Score
CG 5.06 [3.63–9.63] 9.06 [6.97–13.83]

<0.001 0.326 0.459
3.547 (0.331) <0.001

–1.070 0.350
EG 3.99 [3.29–5.50] 6.63 [5.76–7.61] 3.052 (0.273) <0.001 (1.122)

Significant differences (p-value < 0.05) are reported in bold.

T0, Assessment before the intervention; T1, Assessment after the intervention; CG, control group; EG, experimental group.
aMedian [I-III Quartile]; bGeneralized linear mixed model; cMean difference (SE); dGeneralized linear mixed model on each group separately; eGeneralized linear mixed model to compare

groups at T1.

FIGURE 1 | Step segmentation algorithm results. Black line represents the pre-processed soleus (SOL) signal of the non-paretic leg, green dashed line represents

footswitch signal placed under the shoe of the patient, blue dash-dot line represents EMG-based step segmentation.
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FIGURE 2 | Mean gait cycle of the Semitendinosus (ST) muscle before the intervention (T0) and after the intervention (T1). Blue line = Mean patients’ activation; Grey

area = Patients’ SD; Black dashed line = Normative activation profile; Blue dashed line = Patients’ activation profile (active/non-active muscle window). Profile are

represented as a function of the gait cycle. In the non-paretic leg, the gait cycle starts from the toe off, in the paretic leg, it starts from the loading response phase.
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TABLE 3 | Changes over time and between group for gait metric (N = 29).

Outcome Group T0a T1a
p-valueb p-valueb p-valueb T1–T0 Group change at T1

(Time) (Group) (Time * Group) Change (SE)c p-valued Change (SE)c p-valuee

SOL non paretic
CG 0.59 [0.50–0.65] 0.64 [0.53–0.67]

0.035 0.861 0.389
0.028 (0.031) 0.373

−− −−
EG 0.52 [0.47–0.58] 0.57 [0.53–0.65] 0.065 (0.30) 0.034

ST non paretic
CG 0.40 [0.36–0.44] 0.46 [0.39–0.51]

0.080 0.017 0.607
−− −− 0.094

0.025
EG 0.46 [0.39–0.53] 0.54 [0.42-0.61] (0.039)

ST paretic
CG 0.44 [0.40–0.69] 0.42 [0.40-0.47]

0.845 0.086 0.041
−− −− 0.129

0.007
EG 0.41 [0.40–0.54] 0.50 [0.44–0.56] (0.043)

Proximal non paretic
CG 0.45 [0.43–0.50] 0.47 [0.44–0.53]

0.528 0.008 0.647
−− −− 0.057

0.035
EG 0.48 [0.45–0.54] 0.50 [0.46–0.60] (0.026)

Proximal paretic
CG 0.47 [0.44–0.63] 0.48 [0.44–0.51]

0.932 0.455 0.048
−− −− 0.057

0.043
EG 0.46 [0.43–0.52] 0.50 [0.45-0.55] (0.027)

Antagonists non paretic
CG 0.49 [0.45–0.52] 0.53 [0.50–0.55]

0.015 0.190 0.380
0.028 (0.024) 0.260

−− −−
EG 0.47 [0.46-0.55] 0.55 [0.47–0.61] 0.058 (0.024) 0.018

Significant differences (p-value < 0.05) are reported in bold.

T0, Assessment before the intervention; T1, Assessment after the intervention; CG, control group; EG, experimental group.
aMedian [I-III Quartile]; bGeneralized linear mixed model; cMean difference (SE); dGeneralized linear mixed model on each group separately; eGeneralized linear mixed model to compare

groups at T1.

TABLE 4 | Changes over time and between group for burst duration similarity index (N = 29).

Outcome Group T0a T1a
p-valueb p-valueb p-valueb T1–T0 Group change at

T1

(Time) (Group) (Time * Group) Change (SE)c p-valued Change (SE)c p-valuee

ST non paretic
CG 36.08 [36.08–38.08] 43.43 [30.64–60.73]

0.033 0.027 0.741
5.293 (3.404) 0.134 9.929

0.041
EG 36.08 [36.08–52.47] 46.66 [38.55–65.61] 7.190 (4.500) 0.023 (5.800)

ST paretic
CG 39.81 [37.81–71.15] 39.18 [38.10–46.27]

0.761 0.155 0.039
−− −− 15.236

0.014
EG 40.81 [33.83–53.75] 52.18 [41.00–60.85] (5.729)

Proximal non paretic
CG 42.96 [42.96–47.74] 45.78 [41.68–54.98]

0.476 0.009 0.745
−− −− 6.892

0.034
EG 46.31 [45.18–53.81] 50.39 [43.76–60.07] (3.876)

Proximal paretic
CG 47.53 [43.43–68.86] 46.58 [43.43–51.56]

0.790 0.878 0.042
−− −− 5.537

0.013
EG 43.43 [42.15–50.40] 49.96 [43.43–56.59] (3.363)

Antagonists non paretic
CG 45.98 [41.72–51.91] 54.84 [48.76–58.09]

0.009 0.278 0.465
4.560 (3.004) 0.143

−− −−

EG 44.48 [41.74–56.07] 57.93 [46.45–64.69] 7.921 (3.410) 0.029

Significant differences (p-value < 0.05) are reported in bold.

T0, Assessment before the intervention; T1, Assessment after the intervention; CG, control group; EG, experimental group.
aMedian [I-III Quartile]; bGeneralized linear mixed model; cMean difference (SE); dGeneralized linear mixed model on each group separately; eGeneralized linear mixed model to compare

groups at T1.

= 0.014), non paretic proximal muscles (p = 0.034), and paretic
proximal muscles (p= 0.013).

Considering the coherence, it was not possible to compute
it for each trial. Indeed, some participants did not show a slot
in the correct phase of the gait cycle where the agonist and the
antagonist muscles are supposed to be simultaneously active.
We considered only patients for whom it was possible to define
the coherence both at T0 and T1. Specifically, for the EG, we
were able to compute the coherence for 11 participants for the
non-paretic and the paretic TA-SOL couples, 14 subjects for the
non-paretic RF-ST couple, and nine participants for the paretic
RF-ST muscles. Instead, in the CG, we successfully calculated
the coherence for 9, 13, 11, and 10 patients for the non-paretic
TA-SOL, non-paretic RF-ST, paretic TA-SOL, and paretic RF-
ST couples, respectively. We firstly compared the area under the

coherence curve with the Wilcoxon test. We obtained significant
improvement in favor of the CG in the alpha band for the RF-
ST couple of the non-paretic leg (p = 0.041). The median area
increased from 0.76 [0.64–1.17] to 1.44 [0.73–1.61]. In the EG,
instead, we observed a slight improvement from 1.03 [0.63–2.14]
to 1.34 [0.89–1.88]. However, this change was not significant
(p = 0.397). For the beta band, we did not obtain significant
changes. For the gamma band, in the EG, the area underlying the
coherence curve physiologically decreased in the RF-ST couple
of the non-paretic leg (p = 0.017). Indeed, at T0 the area was
1.36 [0.73–2.16], while it decreased to 0.70 [0.47–1.56] after
the intervention. In the CG, instead, the area decreased from
1.02 [0.70–1.63] to 0.96 [0.54–1.83], but it was not a significant
change (p = 0.929) (Figure 3). The Pearson Chi-squared test
further confirmed this result. Indeed, the proportion of clinically
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FIGURE 3 | Area under the coherence curve for the couple of proximal agonist-antagonist muscles (Rectus Femoris-Semitendinosus). Significant differences

(p-value<0.05) are reported with *. T0, Assessment before the intervention; T1, Assessment after the intervention.

improved patients was 85.71% for the EG and 7.69% for the CG.
This difference was significant (p < 0.001).

4. DISCUSSIONS

One of the key goals of lower limb rehabilitation after stroke
is the recovery of the symmetric and efficient gait pattern.
The physiological gait is indeed the reference for a functional
yet metabolically and dynamically fine-tuned lower limb motor
control to restore a biomechanical efficient gait. The gait
pattern of healthy individuals is characterized by a rhythmic
and coordinated activation of lower limb muscles to ensure
proper interlimb/joints coordination. After the rehabilitation
process, patients with post-stroke usually recover their walking
capacity, but the gait pattern often shows compensatory
strategies that produce an inefficient gait pattern due to non-
rhythmic and asymmetric gait, with relevant ipsilesional limb
compensations for the paretic one dysfunctions. In this study,
we identify the rhythmic sequence of muscular activation
within the gait cycle as detected by EMG signals as an index
of the similarity between the patients’ and the physiological
gait. The rehabilitation should pursue a double aim: (i) it
should induce a functional gain (quantifiable in terms of
velocity, endurance, safety, etc.), and (ii) it should guide
the patient toward the recovery of rhythmic efficient gait
control (quantifiable in terms of muscles activation pattern
within the gait cycle). In the context of neurorehabilitation,
the integration of wearable powered robotic exoskeletons, that
allows a fine-tuning of gait parameters during overground

training, with conventional physiotherapy could be essential
during the subacute phase of stroke rehabilitation, when plasticity
is high, to maximize functional positive adaptive plasticity
of motor control, avoid maladaptive plasticity, and enhance
training benefits and long-term outcomes (Androwis and
Nolan, 2017). Conventional trials in this field assess relearning,
usually reporting results on standard clinical scales, i.e., they
usually report only on functional gain. However, they do
not provide information on gait efficiency or the central and
corticospinal pathways.

This study evaluated the impact of wearable powered
robotic (Ekso Bionics) overground gait therapy compared to
conventional care alone on patients with subacute post-stroke. In
particular, we focused on the timing, amplitude, and frequency
analysis (i.e., coherence) of the EMG profiles of four key muscles:
TA, SOL, RF, and ST. Together with the instrumental outcomes,
we computed the Capacity Score, a comprehensive index that
summarizes six clinical scales related to lower limbmotor abilities
and functionality during daily life.

Both treatment and CG improved from a functional
perspective (i.e., Capacity Score results). This is in line with
previous studies on robotic-assisted rehabilitation (Mazzoleni
et al., 2017; Bruni et al., 2018; Goffredo et al., 2019b; Taki et al.,
2020).

However, the strategies used by the two types of treatments are
different. Conventional therapy primarily aims at the recovery
of the driven strategy of a patient. In other words, the therapy
included muscle strengthening exercises and stretching of the
lower limb, and static and dynamic exercises for the recovery
of balance in the supine and standing positions using assistive
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devices; training gait exercises with parallel bars or in open
spaces performed both with and without assistive devices;
training to climb up and down stairs; exercises to improve
proprioception in the supine, sitting and standing positions,
using a proprioceptive footboard; exercises to improve trunk
control to recover overground gait according to the self-driven
strategy of the patient.

Overground wearable powered exoskeleton-assisted
rehabilitation as well aims at functional recovery, but it
guides lower limb joints (and, in particular, hip and knee joints
in the sagittal plane) toward a physiological gait control in terms
of lower limb muscle rhythm and timing. Indeed, analyzing
the superficial EMG measurements, we have demonstrated
a selective improvement of muscular activation strategies
toward the normative pattern only in the treatment group.
The improvement was especially observed in the ST muscle.
This muscle is primarily responsible for knee flexion and hip
extension during gait (Burnfield, 2010). Before the intervention,
in both groups, this muscle was generally always contracted
during the swing and stance phase. After the intervention,
instead, in the group treated with Ekso, we observed a regain of
the controlled activation and deactivation cycle in both paretic
and non-paretic legs. The ST is relaxed during the stance while it
is contracting to start from the toe-off phase (Burnfield, 2010).
Considering the amplitude and timing of activation, we observed
a significant interaction effect for this muscle in the paretic leg,
as detected by the GM and the BDSI. In particular, the BDSI
index demonstrated that the ST regained the correct timing of
activation (i.e., alternation of correct activation and deactivation
phases) in the paretic leg. This normative pattern was, instead,
not observed for the group treated with conventional care.

When coming to coherence analysis, we observed that the
two groups showed a significant overall coherence shift toward
a more physiological motor control in two different frequency
bands of the couple of muscles ST and RF. In particular, the
CG showed a significant increase in the alpha frequency band,
while the experimental group, a significant increase in the gamma
frequency band. A recovery in the alpha frequency band has
been linked to spinal relearning, while a recovery in the beta
and gamma frequency bands to a cortical relearning (Kitatani
et al., 2016). We, therefore, hypothesized that the CG showed a
motor control improvement in terms of functionality driven by
a spinal circuits adaptation. In contrast, the experimental group
shows a motor control improvement driven by cortical control-
driven re-learning adaptive plasticity. In particular, considering
the coherence analysis of the couple ST and RF, we focused on
the terminal swing phase, where these muscles are both active.
During this phase of the gait cycle, the subject is experiencing
the inversion of load from one leg to the other, and this
phenomenon is cortically modulated. The rhythmic motion
of human lower limbs is controlled by neural circuits (i.e.,
central pattern generators) that produce rhythmic activation of
muscles that control the limbs (Klarner and Zehr, 2018). Stroke
and central nervous system lesions can damage the descending
motor pathways. Walking in humans depends on the integrated
action of hierarchical levels of supraspinal and spinal neural
control (Kitatani et al., 2016). It has been demonstrated that

intensive rehabilitative training, such as robotic-assisted training
or body weight-supported treadmill training, can promote
supraspinal plasticity in the motor centers involved in the
locomotion (Winchester et al., 2005). When the subject is not
showing the cortical modulation, the muscles are characterized
by the tonic contraction, and they are always active. Indeed,
in this situation, the central pattern generator is modulated
only at the spinal level. When correctly working, the cortical
drive performs an inhibitory action that induces the muscles
relaxation and assures the control of rhythmic locomotor pattern
generation andmodulation (Guertin, 2013). Functional magnetic
resonance imaging studies demonstrated that the carryover effect
after a functional electrical stimulation-based treatment of TA
was cortically mediated by the capability of the subject to
correctly plan the movement at the cortical level and integrate
proprioception information induced by the external movement
assistance in their own control loop (Gandolla et al., 2016, 2021).
We did not observe any modulation of the distal muscles in
both the group of patients. TA fine control in gait is usually
recovered later in the rehabilitation process since less crucial
in terms of ambulation, as shown, for example, by foot drop
chronicity in post-stroke subjects (Bent and Lowrey, 2013).
Instead the SOL muscle has been shown to have monophasic
activation in neurological patients (Gandolla et al., 2018), which
may be driven by proprioceptive stimulation of the sole of
the foot induced by overground walking (Bent and Lowrey,
2013; Choi et al., 2013). However, these considerations further
support the hypothesis that muscular rhythm is primarily
induced by fine joint support during functional movements
in neurorehabilitation. In fact, Ekso motors only assist the
hip and knee joints, and we observed significant changes
in the muscles of the proximal compartment. In our study,
the group treated with Ekso regained this modulation after
the intervention. Indeed, we observed two distinct phases of
activation and deactivation during the gait cycle for the ST
muscle, and the coherence analysis confirmed this controlled
activation. Instead, the group undergoing conventional therapy
did not show this improvement, and, indeed, the ST muscle
activation was not modulated. Therefore, we hypothesize that
exoskeleton-mediated therapy, with its powered timed and
modulated fine control at a hip and knee level, can induce a
controlled and rhythmic locomotion in patients with subacute
post-stroke. In fact, according to these findings, we can conclude
that both groups regained the function of locomotion. However,
our results could suggest that the CG was characterized by
maladaptive compensatory mechanisms, while the EG showed
a centrally-mediated learning adaptive physiological control
mechanism. Consequently, the powered timed fine-tuning of the
gait kinematics parameter during overground training through
wearable powered robotic exoskeleton is essential to induce the
correct relearning process.

Besides the applicability to evaluate the rehabilitative
effectiveness, the EMG analysis could also be used for the step
segmentation during gait analysis. Indeed, we demonstrated
it to be an accurate alternative to the standard methods
generally used for the kinematic analysis (e.g., footswitches,
optoelectronic systems, inertial measurement units). Therefore,
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in the case of EMG analysis, the use of a single device could
allow both muscular activation analysis along with step
segmentation feature.

Despite the novelty of this study, some limitations can be
identified. First, this study is not a randomized controlled trial;
therefore, the absence of random allocation of patients could
have influenced the obtained results, even though the statistical
analysis of the baseline characteristics did not show significant
differences between groups. Another important limitation is
represented by the segmentation algorithm based on the EMG
signal. Kinematics data, indeed, were not available and might
allow step segmentation even for more impaired subjects.
Finally, the number of treatments performed with Ekso was
low. According to the literature, higher intensity could be
more effective, and it could induce improvements also in other
muscular districts.

According to the results of this study, we can hypothesize that
the integration of robotic-mediated gait rehabilitation alongside
standard therapy, although not showing superior performance in
terms of functional outcomes, helps the plasticity rehabilitation
process through a cortical-mediated relearning, which results in
more rhythmic muscles activation pattern. A more physiological
muscle activation pattern, in turn, may lead to a more metabolic
efficient gait, possibly leading to a healthier recovery and
long-term recovery.

5. CONCLUSIONS

This study investigated the muscular activation profiles
of patients with subacute post-stroke before and after the
rehabilitative process. Participants followed either standard
physiotherapy alone or standard physiotherapy combined
with wearable powered exoskeleton-assisted overground gait
training. Both groups improved their ability to walk in terms of
functional gait, as detected by standard clinical scales. However,
only the group treated with the wearable powered robotic
exoskeleton regained a rhythmic and controlled gait, as observed
by the muscular activation patterns of proximal lower limb
muscles, inducing the patient to regain a more physiological gait.
Future studies should include a follow-up to determine if the
improvement induced by the robotic training are maintained

after the end of the intervention. Moreover, the orthotic effect
of robotic devices in terms of muscular activation could be
investigated. The results of this kind of analysis could be used to
stratify patients and tailor their rehabilitative pathway.
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