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Abstract— Prolonged remote tele-locomanipulation of multi
degrees-of-freedom mobile manipulators requires a compro-
mise between the system’s performance and the operator’s
ergonomics. Neglecting this demand can significantly affect
either the task completion or the level of comfort to achieve it.
However, the simultaneous consideration of these key factors
has received less attention in the literature. To respond to this
demand, in this work, we introduce a new teleoperation setup,
which integrates the features of an ergonomic and a highly
maneuverable interface into a unified solution. The ergonomic
part of the interface implements a 3D mouse-like functionality,
enabling the execution of long navigation tasks for the floating
base. The highly manoeuvrable interface instead, enables the
operator to perform dynamic or more precise manipulation by
moving his/her arm in space. The locomotion and manipulation
modes of the follower robot are controlled separately, which
can be easily and seamlessly switched by the operator by
pressing a button at any moment. Furthermore, due to the
follower manipulator’s redundancy, this robot is controlled by
a hierarchical quadratic programming technique which enables
the definition of a set of secondary tasks to be executed in the
robot’s nullspace. Finally, to demonstrate the advantages and
disadvantages of the proposed user interfaces, five participants
are asked to perform two different experiments: (i) target
selection task on a moving surface and (ii) remote path tracking
on a fixed surface. The quantitative and qualitative analyses
show the effectiveness of the proposed interface during the
teleoperation tasks, especially when it comes to the precise and
dynamic task execution.

I. INTRODUCTION

Over the past decades, teleoperation systems have captured
the attention of many research studies from a theoretical
point of view. In particular, the stability and tracking [1],
communication [2], autonomy [3], and interaction [4], are the
topics covered broadly in the literature. Besides, the recent
advancements in hardware and computing technologies have
also opened up new possibilities such as extended realities
[5] and learning techniques [6] to improve the remote ex-
ecution of multi-Degrees-of-Freedom (DoF) robotic tasks.
Despite these advancements, the usability of the teleoperation
interfaces, in terms of ergonomics, ease-of-use, and the
achieved performances, when controlling multi-DoF follower
robots has received little attention.

Recent studies have made an attempt to approach these
usability factors separately (e.g., see [3], [7], [8]), often
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resulting in unbalanced solutions. For instance, when design-
ing comfortable interfaces for prolonged/repetitive operations
(e.g., by using grounded systems such as a 3D mouse [9]),
the maneuverability and the dynamic response of the operator
are undermined. On the contrary, agile interfaces that exploit,
for instance, body tracking suits [10], are inefficient for
everyday or prolonged operations due to the one-to-one repli-
cation of the operator movements and the underlying fatigue.
Indeed, a compromise between the system’s performance and
ease-of-use, and the operator’s ergonomics must be reached
to confront this big challenge.

A. Related work

Regarding the few available works on the ergonomics
evaluation of teleoperation interfaces, the authors in [7]
explored the ergonomics aspects of their developed setup
for minimally invasive surgery through natural orifices. This
includes the surgeon’s pose, movement scaling, visual feed-
back, and haptic feedback. For the performance analyses,
on the other hand, different criteria and interpretations are
investigated by the researchers. For instance, in [11], the
authors investigated the effects of shared autonomy on
the user’s physical workload during a whole-body motion-
mapping teleoperation of a complex robot based on their
previous studies on the muscles’ fatigue [12]. As a result,
they reported better user experience and task performance,
which are justified by a set of subjective and objective
indices. Besides, the virtual fixture approach was employed
in [13] to enhance the system’s control performance which,
in turn, reduced the operator’s pressure during the remote
tasks, evaluated by tracking errors and task execution time.

Moreover, the “teleoperation manipulability index” was
introduced in [14] as a quantifiable manipulability measure of
leader-follower surgical systems, focusing on both design and
performance levels. Using this in a simulation environment,
an overall performance improvement was reported in terms
of surgeon’s control over the follower robot’s force and
velocity, leader robot’s footprint, surgeon’s control effort, and
singularity avoidance. Also, [15] proposed a manipulability
optimisation control method of a redundant manipulator to be
used in robot-assisted minimally invasive surgeries. Here, the
Manipulability Index (MI) and keeping the Remote Center
of Motion (RCM) fixed were the constraints of the optimisa-
tion problem. Consequently, the system’s performance was
assessed in respect of MI and RCM status in an augmented
reality environment, indicating significant improvements.

As mentioned earlier, the common issue with most of the
aforementioned studies is the missing balance between the



usability factors such as ergonomics, task performance, and
ease-of-use, in the final design of the teleoperation interface.

B. Contributions

In this work, we introduce a new tele-locomanipulation
setup, which integrates the features of an ergonomic and a
dynamic/maneuverable interface into a unified solution. The
former implements a 3D mouse-like function, enabling long-
distance locomotion control of the follower robot. The latter
permits the operator to move his/her arm freely in space to
create dynamic movements or generate precise trajectories
during manipulation. Both modes are implemented on a
torque controlled robot arm, whose functionalities can be
chosen at any time using a button. The design of the
ergonomic interface is inspired by [9], in which a 3D mouse
interface is used for a comfortable execution of remote
loco-manipulation tasks. The second mode implements a
zero-torque tracking mode (with gravity compensation) to
compensate for the missing capabilities of the ergonomic
interface, i.e., the creation of dynamic and precise motion
profiles (following a circular path, creating physical impacts,
etc.).

The follower robot is Mobile Collaborative Robot Assis-
tant (MOCA), which is composed of an omni-directional
mobile base and a torque controlled arm. The arm is con-
trolled using an Hierarchical Quadratic Programming (HQP)
based technique [16], to exploit the kinematic redundancy
to achieve a set of secondary tasks such as singularity
avoidance, joint limits avoidance etc. The proposed interface
is validated by five subjects in two different experiments,
and the results are compared with respect to an ergonomic
interface called 3D mouse interface.

II. PROBLEM STATEMENT

A. The studied teleoperation user interfaces

The unified evaluation scheme for comparing the proposed
reconfigurable (arm) interface and the 3D mouse interface, is
illustrated in Fig. 1. Apart from the mentioned interfaces, the
MObile Collaborative Robotic Assistant (MOCA), which is
an integration of a Robotnik® SUMMIT-XL STEEL mobile
platform and a 7-DoF Franka Emika robot manipulator (here,
with the default gripper), is used as the follower mobile
manipulator, whose robotic arm and mobile platform are
controlled separately. Indeed, the arm is controlled by the
HQP-based controller and the mobile base with its embedded
low-level velocity controller. In what follows, the main
elements of this block diagram are discussed in detail.

1) 3D mouse interface (user interface I): this interface
enables the users to control a complicated multi-DoF fol-
lower robot with a simple and cheap 3D mouse device,
namely SpaceMouse® Compact (3Dconnexion, UK). This
device has two push buttons and a 6-DoF motion axis sensor.
Here, the buttons are programmed for toggling the control
modes (i.e., locomotion and manipulation) and motion modes
(i.e., translation and rotation). The mouse’s DoF are highly
sensitive and coupled, making the generation of precise and

decoupled reference trajectories, to be sent to the follower
robot, nearly impossible. Hence, first, the motion modes
are implemented in a way to separate the translational and
rotational motions in the manipulation control mode. Second,
the reference trajectories are generated after processing the
raw mouse’s motion axis information in the “motion axis
processor” block (see Fig. 1).

More precisely, the mouse’s raw displacement data are
read and encapsulated in a vector δxr = [δpTr , δε

T
r ]

T with
the frequency of 50.0 Hz. δpr ∈ R3 and δεr ∈ R3 are the
input translational and rotational displacements along and
around the mouse’s motion axis, respectively. These are,
then, normalized to signed percentage values and assigned
to a vector, denoted by δx†r ∈ R6. Afterwards, and if the
manipulation control mode is chosen, the motion mode is
checked, assigning δε†r or δp†r to zero when the translation
or rotation motion mode is activated, respectively. For the
locomotion control mode, however, the elements of δx†r are
reorganised as δx†r = [δp†rx, δp

†
ry, δε

†
rz, 01×3]

T . Then, a
moving average filter, with the moving window of size N ,
i.e., Φ ∈ R6×N populated with the current δx†r and its
last N − 1 values, is applied. Using this, the average value
of each mouse’s motion axis j over the past N samples,
δx̄j , is calculated by δx̄j(k) = 1

N

∑k
i=k−N−1 Φji where

j ∈ {1, · · · , 6}. At last, the maximum value of δx̄j and its
corresponding axis j? are fetched and the other values are
set to zero. Consequently, the desired displacement δxd =

[δpTd , δε
T
d ]

T is generated, where only the j?-th element is
non-zero.

In the locomotion control mode, the scalars δpdx , δpdy ,
and δεdz are mapped to the reference twist vector of the fol-
lower mobile platform, denoted by ve = [vex, vey, ωez]

T .
vex, vey , and ωez are the linear velocities along x and y
axes, and the angular velocity around z axis, respectively.
This is carried out by the “velocity planner” block (Fig. 1)
based on the pre-selected maximum values, i.e., vmax

ex , vmax
ey ,

and ωmax
ez . Consequently, the built-in low-level velocity

controller indirectly regulates the 2D pose (x-y position and
heading angle) of the omni-directional mobile base.

For the manipulation control mode, on the other hand, all
of the elements of δxd may be used based on the chosen
motion mode. To be more specific, the operator can adjust
the desired end-effector’s movements with respect to (w.r.t.)
its own frame (at previous time instant k − 1, denoted by
EEk−1). This is done using δxd and the maximum pre-set
values for the follower robot’s Cartesian displacements, re-
sulting in EEk−1δxf

EEk
= [ EEk−1δpfEEk

, EEk−1δεfEEk
]
T 1.

Thus, the new pose of the robot’s end-effector w.r.t. the world
frame {W} is obtained by the following homogeneous trans-
formation matrix: WT f

EEk
= WT f

EEk−1

EEk−1T f
EEk

where

1Hereafter, to distinguish the follower’s and leader’s variables, the f and
l superscripts are used, respectively.



FRANKA CONTROL 

INTERFACE

FRANKA EMIKA 

MANIPULATOR

SUMMIT-XL STEEL  

MOBILE PLATFORM 

POSE PLANNER

HQP CONTROLLER

VELOCITY PLANNER

CONTROL MODE

DETECTION ?

LEFT BUTTON

RIGHT BUTTON

MOTION AXIS MOTION AXIS 

PROCESSOR
MOTION GENERATION

MANIPULATION MODE

LOCOMOTION MODE

SENSORS

TORQUES

POSE

TWIST COMMAND

MANIPULATION

YES

NO

ARM INTERFACE

3D MOUSE INTERFACE 

LEADER SYSTEM

FOLLOWER SYSTEM
MOTION 

PROCESSINGHANDLE

KEYBOARD 

BUTTONS

LOW-LEVEL CONTROL

Fig. 1: Block diagram of the studied teleoperation interfaces, for controlling a mobile robotic manipulator.

EEk−1T f
EEk

is updated with the elements of EEk−1δxf
EEk

:

EEk−1T f
EEk

=

[
EEk−1Rf

EEk

EEk−1δpfEEk

01×3 1

]
,

EEk−1Rf
EEk

= Rx

(
δεfx
)
Ry

(
δεfy
)
Rz

(
δεfz
)
,

(1)

where δεfx, δεfy , and δεfz are the first, second, and last
element of vector EEk−1δεfEEk

.
2) The reconfigurable (arm) interface (user interface II):

this utilises a redundant Franka Emika manipulator with 7-
DoF to capture the desired user’s input motions. For this
robot, a simple handle is designed as its end-effector to help
the user during the motion generation. These motions are,
then, mapped and sent to the follower robot as reference
trajectories. Here, the control modes are selected by the
buttons of a keyboard device. In what follows the separate
controllers utilised for each control mode are explained.

Locomotion mode: the locomotion control of the follower
robot is achieved through the Cartesian impedance control
scheme for the leader’s robotic arm. This is done by simulat-
ing the 3D mouse behaviour around/along an ergonomically
selected pivot point of the leader’s arm. To implement this
behaviour, the following impedance control law is used [17]:

τc = g(q) + JT [HX(x)ẍd +CX(x, ẋ)ẋd]

− JT [Kd ∆x+Bd ∆ẋ] +N (q) τn,
(2)

where ∆x := x − xd. x ∈ Rm is the end-effector’s
pose. xd ∈ Rm is the virtual equilibrium pose. This pose
is set before the task based on the users’ body structure
to help them accomplish the remote locomotion task er-
gonomically. Bd ∈ Rm×m and Kd ∈ Rm×m represent
the symmetric positive-definite desired damping and stiffness
matrices, respectively, to model the external interaction with
the user’s hand. J ∈ Rm×n is the analytical Jacobian
matrix. HX(x) ∈ Rm×m and CX(x, ẋ) ∈ Rm×m are

the robot’s inertia, and the Coriolis and centrifugal matrices
in the operational space, respectively, and g(q) ∈ Rn is
the gravitational torques. τn ∈ Rn is the desired nullspace
behaviour, and N (q) ∈ Rn×n is the projection matrix
which projects τn into the robot’s nullspace. Considering the
“dynamically consistent nullspace mapping” [17], we have:

τn = − [Kn (q − qn, d) +Bn q̇] ,

N (q) =
(
In − JT (q)HX(x)J(q)H−1(q)

)
.

(3)

Kn ∈ Rn×n and Bn ∈ Rn×n are the symmetric positive-
definite desired nullspace stiffness and damping matrices re-
spectively, and qn, d ∈ Rn is the nullspace virtual equilibrium.

Finally, the translational element of ∆x, i.e., ∆xx, ∆xy ,
and ∆xz , are mapped to the elements of the reference
velocity ve for the follower mobile base (“velocity planner”).

Manipulation mode: the following joint torques, on the
other hand, are generated during the manipulation con-
trol mode in which the user freely moves the leader
arm’s end-effector (handle) in the Cartesian space: τc =
g(q) + C(q, q̇) q̇. While the user exerts force on the
handle, the consequent translational displacement vector
EEk−1δplEEk

= WplEEk
− WplEEk−1

and the handle’s ab-
solute orientation w.r.t. the world frame {W}, i.e., WREEk

,
are sent to the remote follower controller (see Section II-B).
So, the desired reference trajectories are retrieved from the
homogeneous transformation matrix as:

EEk−1T f
EEk

=

[
WRl

EEk

WpfEEk
+ EEk−1δplEEk

01×3 1

]
. (4)

B. HQP controller

Dealing with redundant robots allows to define a set of
secondary tasks that can be executed in the robot nullspace
without affecting the performance of the primary ones. This
leads to the possibility of generating a stack of tasks that can
be executed hierarchically, exploiting the whole redundancy



of the robot. Indeed, by considering k ∈ {1, . . . p} levels
of priority where the importance decreases with k down
to the last task p, we ensure that the solutions found at
level k are always strictly enforced at lower priority levels,
which constitutes the main reason why we choose a strict
priority scheme [18]. Another common approach is instead
to adopt soft priorities, a simple solution that weights each
task as in [19] and that does not require the solution of
nested QP problems. In addition to some of our latest
work [20], here a strict priority scheme is implemented
together with weighting strategies to define the importance
between tasks at the same hierarchical level, so that all
the solutions are influenced by each other proportionally
to their weights. Using the same structure of [20], the kth

hierarchical problem is defined as:

min
χ

1

2
||Akχ− bk||2

s.t.C1χ ≤ d1, . . . , Ckχ ≤ dk

E1χ = f1, . . . , Ekχ = fk

(5)

with generic matrices Ak,Ck,Ek ∈ Rn×n, and vectors
bk,dk,fk ∈ Rn, while χ ∈ Rn is the generic variable
to optimise, subject to equality and inequality constraints.
The previous 1, . . . , k − 1 solutions are considered with the
optimality condition between successive tasks Ak−1χ =
Ak−1χ

∗
k−1, whose demonstration is reported in [18]. In this

way, the optimality of the tasks with higher priority is not
altered by the actual solution, and it can be added in (5) as
a set of equality constraints by considering E1 = 0,f1 = 0,
up to Ek = Ak−1,fk = Ak−1 χ

∗
k−1.

Considering now the Inverse Kinematics (IK) problem of a
redundant robot: q̇ = J†ẋ, this represents one of the possible
solutions to the problem:

min
q̇
‖Jq̇− ẋ‖2. (6)

Being written in least-squares form, it is possible to exploit
HQP based techniques to solve the robot kinematics problem,
even in fast and real-time control applications. In addition,
a Closed-loop IK (CLIK) scheme is used to recover from
position errors between the desired and actual behaviour,
rewriting equation (6) as:

min
q̇
‖Jq̇ − (ẋd +Kp(xd − xa))‖2, (7)

where xa ∈ Rm is the actual Cartesian position and
Kp ∈ Rm×m is the positive-definite diagonal gain matrix
that is responsible for the error convergence.

C. Stack of tasks definition

It is now possible to identify a set of objective functions
that define the hierarchical stack of tasks. In [21], the authors
present an exhaustive list of indices that can be useful in
evaluating the performance of robotic manipulators. Based
on this work, some of these indices are here formulated in QP
form as the possible objective functions of the HQP control
scheme, as it will be explained in this section.

1) Joint Range Availability: as mentioned in [21], the
Joint Range Availability index (JRA) follows the joint an-
gles’ deviation from their mid-range values. This is useful
to determine whether a joint reaches a stop point and to study
the status of joint range distribution. Thereby, the normalised
JRA is here expressed in QP form as:

min
q̇

∥∥∥∥ (q − q̄)

qmax

∥∥∥∥2

. (8)

where q̄, and qmax are the joint mid-range and joint limit
positions, respectively. Alternatively, the same definition can
be used to express a postural task, which exploits the
redundancy of the robot to keep the joint space configuration
as close as possible to a fixed target one. This can be achieved
by simply defining q̄ = qtarget as the target robot posture.

2) Joint Velocity Index: similar to JRA, the joint velocity
index can be formulated by making use of the joints’ current
velocities and their maximum values to track the joints’
velocities distribution and status in time. This is defined as:

Ψ? :=

n∑
i=1

q̇i
2

q̇max
i

, (9)

which reflects the regularization term

min
q̇
||q̇||2, (10)

useful for stability as discussed in [18], and that is then
weighted with other objectives at the same hierarchical level.

3) Manipulability Index: the vastly used Manipulability
Index (MI) is based on the Jacobian matrix J(q), and in
spite of its limitations [21], is defined as follows:

m(q) :=
√
|J(q)J(q)T |, or, m(q) := σ1 σ2 . . . σm. (11)

σi are the singular values of J such that σ1 ≥ σ2 · · · ≥ σm.
This index is important for improving the quality of the

task and the performances of the robot since it is proportional
to the volume of the manipulability ellipsoid, defined by the
singular values of J . Thereby, it is possible to maximize the
volume of the ellipsoid by formulating the problem:

min
q̇
−m(q), (12)

which becomes a nonlinear optimisation problem, hard to be
solved in real-time applications. Following [22], it is instead
possible to formulate this problem in QP form, by linearizing
the generic nonlinear function as follows:

m(q) = m(qt−∆t) + ∆t (∇m)T q̇+
1

2
∆t2 q̇T Hm q̇, (13)

where ∇m and Hm are the gradient vector and Hessian
matrix of m, respectively, while ∆t is the control loop
sampling time. Thus, the maximization problem can be
written in the standard form as:

min
q̇
−
(

1

2
∆t2q̇THmq̇ + ∆t(∇m)T q̇

)
. (14)



The authors in [22] also demonstrate how to obtain an
equivalent optimisation problem to account for nonlinear
functions:

min
q̇

1

2
∆t2 q̇T∇m (∇m)T q̇ −m∆t (∇m)T q̇, (15)

which allows to avoid the increased computational burden
due to the calculation of the Hessian matrix Hm, and thus
complying with real-time requirements.

4) Dynamic Manipulability: To consider the manipula-
tor’s dynamics in its manipulating capabilities, an extension
of the aforementioned index m is reported. This quantifies
the manipulator’s capacity to produce the acceleration in
response to the joints’ driving forces/torques [21]. Consid-
ering H as the manipulator’s inertia matrix, the Dynamic
Manipulability md is obtained with the following equation:

md(q) :=

√
|J(q) (H(q)H(q)T )

−1
J(q)T |. (16)

It is clearly possible to include this index in the stack of
tasks similarly as it was done for m(q) (11).

D. Constraints definition

Task feasibility is limited in the real scenario of a robot
working in an environment with obstacles and interaction
bounds, in addition to the already existing technological
limits inherent to the machine. Kinematic constraints are
generally represented by the actuator range of motion, ve-
locity and acceleration constraints, which can be written as:

qmin ≤ q(t−∆t) + q̇(t)∆t ≤ qmax,

q̇min ≤ q̇ ≤ q̇max, (17)

q̈min ≤
q̇(t)− q̇(t−∆t)

∆t
≤ q̈max.

E. Overall control structure

In conclusion, in the overall optimisation problem that will
be used in the experiments (Section III), the first hierarchical
level is always occupied by the CLIK defined in (7), which is
followed by both the JRA and manipulability tasks described
in (8) and (15), respectively. These two objectives are con-
sidered together in a soft hierarchy fashion, using relative
weights, as it will be further discussed in the experiments
(Section III-B). The last task of the stack in strict sense is the
regularization term (10). The constraints are instead defined
as in (17). Finally, the obtained optimal joint velocities q̇∗ are
passed to a low-level decoupled joint impedance controller.

III. EXPERIMENTS

To investigate the cons and pros of each studied interface
(Section II-A), in terms of performance requirements, two
sets of subjective experiments were conducted using five
healthy subjects (four male and one female subjects). These
experimental sets were: (i) target selection on a moving
surface and (ii) path tracking. Each participant was asked
to perform the experiments in two independent trials, i.e.,
with the mouse interface and the reconfigurable interface.
In the next sections, the experimental setups and results are
reported.
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Fig. 2: The setup of experiment 1: the user selects the
moving targets one after another, using the arm interface.
The colorful targets are marked on the surface of a conveyor
belt which is running at constant speed (v = 0.28 m s−1).

A. Target selection on a moving surface

The objective of the first experimental set-up (see Fig.
2) is to evaluate, both qualitatively and quantitatively, the
user performance and acceptability during the use of each
aforementioned teleoperation interface (2 trials) in highly
dynamic tasks. To do so, the subjects were asked to carry
out a dynamic target selection task. The colorful targets,
highlighted on the surface of a conveyor belt, have different
sizes, and move with a constant velocity in the direction
specified in Fig. 2 (dotted white arrow v). aWe used three
colors in a fixed pattern to indicate the difficulty level. In
particular, each green target, i.e., the biggest filled circle,
has 1 point, the yellow one has 2 points, and the red one
has 3 points (the smallest). In a game-like experience, we
asked the participants to hit the targets as many as they can
in a given one-minute time window, taking the following
rules into account: (i) selecting the targets by moving the
end-effector along the x and y axes and (i) not hitting the
unmarked area. Neglecting these rules counts as 1 negative
point in the scoring system. In addition, after each trial
(each of the used interfaces), we asked the participants
to fill a NASA-TLX questionnaire form to evaluate the
effectiveness and performance of each leader system, which
in turn rate the user’s perceived workload during the task.
This assesses the workload based on mental demand (MD),
physical demand (PD), temporal demand (TD), performance
(PE), effort (EF), and frustration (FR) scales. Each scale
is scored from 1 to 21, indicating the strength with low,
medium, and high labels. An extra question is also added
to the standard form examining the naturality (NT) of the
motion-mapping system: “how natural was the interface
based on your desired input motions?”

The results of the qualitative NASA-TLX subjective anal-
yses are shown in Fig. 3. The participants appear to feel
more mental and temporal demands with the 3D mouse user
interface (MD and TD, respectively). However, the “physical
demanding” scale is quite similar for both systems with a



Fig. 3: NASA-TLX (plus naturality scale (NT)) results for
the first experiment, i.e., comparing the interfaces in doing
the target selection task on a moving surface.

slight higher score for the arm user interface. Regarding
the “performance” scale, and it was expected, the subjects
report a better state for the user interface which utilises a
robotic manipulator as its leader interface (for this partic-
ular measure, the scoring scale is reversed: 1.0 and 21.0
indicate “perfect” and “failure”, respectively). This is due
to the higher similarity between the generated motions of
the arm interface and the ones followed by the robot, which
might help the users feel better about their commands and
performances when this user interface was used. This is
also noticed in the last scale “naturality” for which the arm
interface has a better score. Moreover, the perceived “effort”
and “frustration” scales are higher in the trials with the
mouse interface, which is, again, because of the motion re-
targeting behaviour of the 3D mouse and its difference with
the follower robot.

With regard to the quantitative subjective analyses, the
results are summarised in Table I. In this table, the number
of hits for each target and the number of wrong decisions
(i.e., neglecting the specified rules) are presented. The mean
values µ of the final “score” indicate a higher score (points)
for the arm user interface with the ratio of 2.21 with respect
to the other one. One interesting observation here is that
the statistical values related to the “wrong decisions” factor
are quite the same in both interfaces, i.e., 11.60± 2.30 and
10.00±2.54, respectively. One immediate conclusion is that
the human supervisory decisions and the perception feedback
perform similarly in both trials. However, the number of
correct hits is larger using the reconfigurable (arm) interface
which indicates faster end-effector motions (task execution)
in this trial.

B. Path tracking

The aim of the second experiment is to show the dif-
ferent accuracy between the two teleoperation interfaces,
and to eventually confirm the results already obtained in
the previous experiment. The goal is to first approach the
MOCA to the target location from a remote position, using
the locomotion mode of the interface related to the cur-

TABLE I: The subjective analyses of the first experiment.
Here, pts stands for points, and µ and σ represent the mean
and standard deviation, respectively.

Subject Interface Red
(3 pts)

Yellow
(2 pts)

Green
(1 pt)

Wrong
(-1 pt)

Score
(pts)

S1 3D mouse 3 3 8 9 14
arm 7 3 5 10 22

S2 3D mouse 1 2 7 10 4
arm 2 3 10 6 16

S3 3D mouse 5 4 5 12 16
arm 9 3 5 11 27

S4 3D mouse 4 2 4 15 5
arm 5 5 7 13 19

S5 3D mouse 5 2 6 12 13
arm 6 7 9 10 31

µ± σ
3D mouse 3.60± 1.67 2.60± 0.89 6.00± 1.58 11.60± 2.30 10.4± 5.50

arm 5.80± 2.58 4.20± 1.78 7.20± 2.28 10.00± 2.54 23.0± 6.04

TARGET PATH

Fig. 4: The setup of experiment 2: after approaching the
target location in locomotion mode, the user manipulates the
remote robot to follow the specified target path.

TABLE II: The quantitative experimental results for the
second subjective experiments. Here, the results are shown
as a “µ ± σ” pair among all the participants. Also, path
tracking error is defined as r̃ = rEE − rd, being rEE the
end-effector’s displacement w.r.t. the desired path center and
rd is the path’s radius.

Metric name Metric Definition Arm
without m(q)

Arm
with m(q)

3D Mouse
with m(q)

Path Tracking Error
(RMS) [m] eRMS =

√
1
T

∫ T
0 r̃2 dt 0.022± 0.008 0.029± 0.006 0.047± 0.006

Path Tracking Error
(average) [m] µe = 1

T

∫ T
0 r̃ dt 0.014± 0.006 0.015± 0.004 0.036± 0.028

Path Tracking Error
(standard deviation) [m] σe =

√
1
T

∫ T
0 (r̃ − µe)

2 dt 0.013± 0.009 0.016± 0.008 0.041± 0.021

Manipulability Index
(average) µm = 1

T

∫ T
0 mdt 0.07± 0.018 0.09± 0.006 0.08± 0.007

Task Execution Time [s] Ttask = tfinal − tinitial 63.1± 5.6 61.3± 6.9 94.5± 7.0

rent trial. Once the target area is approached (Fig. 4), the
user switches to the manipulation mode and tries to draw
along the target path for 5 consecutive turns. The user was
asked to perform this operation as accurately and as fast as
possible, in order to properly evaluate each interface both
in terms of accuracy and motion dynamics. Analogously
to the first experiment, five healthy subjects were asked
to carry out this task, and the results are analyzed using
the metrics reported in Table II, which are reported as
mean µ and standard deviation σ values considered among
all the subjects. Fig. 5 shows the comparison between the
experiments conducted using the reconfigurable arm (Fig.
5a) and the 3D mouse (Fig. 5b) interfaces, respectively, for



tm
A B

tm

Bz

(a) Experiment 2 while using the reconfigurable (arm) interface.
The first 5 turns are performed with the manipulability max-
imization task activated. After tm, the manipulability index is
deactivated and the same experiment is conducted for comparison.

tm
C

tm

Cz

(b) Experiment 2 while using the 3D mouse interface, and consid-
ering only the case in which the manipulability index is active (the
task is activated at tm).

Fig. 5: Comparison between the studied user interfaces in manipulation mode while performing 5 turns around the target
path for a random subject: (a) reconfigurable (arm) interface and (b) 3D mouse interface. The top plots show the actual
trajectories followed by the end-effector xEE , while the bottom plots depict the behaviour of the manipulability index m.
Specific regions B and C are considered together with their magnified versions (Bz and CZ) to compare the trajectories’
smoothness when using the arm and 3D mouse interfaces, respectively. In addition, region A reflects the learning curve
period for the user to get acquainted to the employed interface, after which fewer fluctuations are observed in the trajectories.

an individual random subject. The top plots show the actual
end-effector trajectories of the follower robot xEE along
the x and y directions, while the bottom plots show the
behaviour of the manipulability index m(q). In particular,
in order to study the possible effects and improvements in
adopting an HQP control strategy, each subject was asked
to perform 5 turns along the specified target path for two
times with each interface. Indeed, as visible from Fig. 5a,
the first set of 5 turns is conducted with the maximum
manipulability objective defined in (15) already activated.
At tm instead, the manipulability task is deactivated, leaving
only the JRA task (8) as secondary priority. This is visible
from the reconfiguration of the kinematic chain that occurs
after tm leading to a drop of m(q), thus approaching an
arm configuration that is closer to singularity. The values
of Table II related to the averaged manipulability index µm

reflect the aforementioned improvement throughout all the
subjects, with an increase from µm = 0.072±0.018 to µm =
0.093 ± 0.006 when considering the arm interface without
and with m(q) activation, respectively. This is a remarkable
improvement, noticing that the manipulability index is robot-
dependant and not bounded, and thus to provide a normalized
value a mapping in the entire workspace is necessary [21].
For this reason we decided to only provide the relative values
for each configuration, despite the small range between
m(q)min and m(q)max. In addition, when repeating the
same experiments but with the target path in an harder-to-
reach location, and performing repetitive tasks without the

activation of the manipulability index, it is common that the
arm approaches near-singular configurations, physically hin-
dering the successful completion of the experiment. Thereby,
choosing an hierarchical scheme as the one proposed allows
to improve the overall task performances both quantitatively
in terms of accuracy and qualitatively in terms of successful
task completion and user’s satisfaction.

When considering the 3D mouse interface as well, the
same experiment is assigned to all the subjects. We report in
Fig. 5b only the experiment with active manipulability index,
for the sake of brevity. The path following task starts after
tm, when the manipulability task is activated and the robot
arm reconfigures in optimal sense. It is now visible from
both xEE and m(q) trajectories that the overall end-effector
trajectories are less smooth and more discontinuous (see
magnified region Cz in Fig. 5b) with respect to the previous
interface, i.e., the arm interface (see Bz in Fig. 5a). This
indicates a lower accuracy, also confirmed from the averaged
path tracking errors among all the subjects in Table II, which
is more than doubled with respect to the arm interface, going
from µe = 0.015 ± 0.004 m to µe = 0.036 ± 0.028 m. The
same goes for the standard deviation which increases from
σe = 0.016 ± 0.008 m to σe = 0.041 ± 0.021 m, indicating
much less accuracy and consistency throughout the tracking.
As expected, also the task execution time, shown in Table
II, undergoes a substantial increase of approximately 30 s on
average.



IV. CONCLUSION

In this work, we introduced a reconfigurable user inter-
face for remote loco-manipulation of mobile collaborative
robots. The proposed interface merged the advantages of an
ergonomic teleoperation system for prolonged locomotion
tasks, and a maneuverable one for more precise and/or
dynamic control of manipulation, into a unified solution.
Through a button, the users could easily reconfigure between
these two functionalities to implement a desired comfort-
performance trade-off. The experiments with quantitative and
qualitative analyses demonstrated the effectiveness of the
proposed interface in two real-world subjective experiments.
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