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A HIGH-ORDER DISCONTINUOUS GALERKIN METHOD FOR
THE PORO-ELASTO-ACOUSTIC PROBLEM ON POLYGONAL AND
POLYHEDRAL GRIDS*

PAOLA F. ANTONIETTI, MICHELE BOTTI', ILARIO MAZZIERIT, AND SIMONE NATI
POLTRI'

Abstract. The aim of this work is to introduce and analyze a finite element discontinuous
Galerkin method on polygonal meshes for the numerical discretization of acoustic waves propaga-
tion through poroelastic materials. Wave propagation is modeled by the acoustics equations in the
acoustic domain and the low-frequency Biot’s equations in the poroelastic one. The coupling is real-
ized by means of (physically consistent) transmission conditions, imposed on the interface between
the domains, modeling different pores configurations. For the space discretization we introduce and
analyze a high-order discontinuous Galerkin method on polygonal and polyhedral meshes, which is
then coupled with Newmark-£3 time integration schemes. A stability analysis for both the continuous
and semi-discrete problem is presented and error estimates for the energy norm are derived for the
semi-discrete one. A wide set of numerical results obtained on test cases with manufactured solutions
are presented in order to validate the error analysis. Examples of physical interest are also presented
to investigate the capability of the proposed methods in practical scenarios.

Key words. poroelasticity; acoustics; discontinuous Galerkin method; polygonal and polyhedral
meshes; convergence analysis

AMS subject classifications. 656M12, 65M60

1. Introduction. The paper deals with the numerical analysis of the coupled
poro-elasto-acoustic differential problem modeling an acoustic/sound wave impacting
a poroelastic medium and consequently propagating through it. Coupled poro-elasto-
acoustic problems model the combined propagation of pressure and elastic waves
through a porous material. Pressure waves propagate through the saturating fluid
inside pores, while acoustic ones through the porous skeleton. The theory of propa-
gation of acoustic waves with application to poroelasticity has been developed mainly
by Biot [14] in 1956, by introducing general equations and proposing different ways
to treat coupling between acoustic and poro-elastic domains. Pioneering advances
of Biot’s theory concerned with slow compressional waves, whose study carried on
the analysis on fast compressional waves, introduced in 1944 by Frenkel. Coupled
poro-elasto-acoustic models find application in many science and engineering fields.
For example, in acoustic engineering, for the study of sound propagation through
acoustic panels, whose main intent is to intercept and absorb acoustic waves for noise
reduction [49]; in civil engineering, for the study of passive control and vibroacoustics,
where plastic foams and fibrous or granular materials are mainly used with this intent
[35]; in aeronautical engineering, where air-saturated porous materials are employed
[22]; in biomedical engineering, for the study of ultrasound propagation throughout
bones to diagnose osteoporosis and study its evolution [32] and to model soft tissues
deformation, such as the heart tissue [33], the skin [39] and the aortic tissue [34].
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2 P. F. ANTONIETTI, M.BOTTI, I. MAZZIERI, AND S. NATI POLTRI

Poro-elasto-acoustic models find a wide strand of literature also in computational
geosciences: we refer the reader to [21] for a comprehensive review.

In order to model the poroelastic domain, the concept of pores is necessary. Pores
can be seen as "holes” in the material where a fluid is able to move. They can be
classified into open, sealed, and imperfect pores: the first ones share a part with the
outer surface of the material, the second ones are totally locked in, while the latter
ones represent an itermediate state between the former two, as shown in Figure 1la
below. From the modeling viewpoint, the difference between them is the way in which
interface conditions are formulated, as detailed later on.

Concerning the numerical discretization of poro-elasto-acoustic models, we men-
tion the Lagrange Multipliers method [44, 2, 29], the finite element method [13, 28]
the spectral and pseudo-spectral element method [38, 45], the ADER scheme [25, 23],
the finite difference method [36], and references therein.

To accurately simulate wave propagation in coupled poro-elasto-acoustic domains
the numerical scheme should take into account the following observations: (i) in the
low-frequency range the evolution problem become stiff [25], and therefore, explicit
time integration schemes might become computationally too demanding due to the
strict stability constraint; (ii) the diffusive slow compressional waves are localized near
the interfaces, and therefore, mesh refinements are needed to capture the phenomenon;
(iii) an accurate geometrical description of the arbitrary complex interfaces is crucial;
(iv) a proper representation of the hydraulic contact at the interfaces is also mandatory
to correctly capture the physics of the problem.

By taking into consideration the aforementioned difficulties, the aim of this paper
is to propose and analyze a high-order discontinuous Galerkin method on polygonal
and polyhedral grids (PolyDG) for the space discretization of a coupled poroelasto-
acoustic problem, by extending the theory carried out in [4], where a coupled system
of elasto-acoustic equations is analyzed. We point out that the geometric flexibility
due to mild regularity requirements on the underlying computational mesh together
with the arbitrary-order accuracy featured by the proposed PolyDG method are cru-
cial within this context as they ensure at the same time a high-level of flexibility
in the representation of the geometry and an intrinsic high-level of precision and
scalability that are mandatory to correctly represent the solution fields. Moreover,
in the proposed semi-discrete formulation, the coupling between the acoustic and
the poroelastic domains is introduced by considering (physically consistent) interface
conditions, naturally incorporated in the scheme.

For early results in the field of dG methods we refer, for example, to [11, 7, 20,
18, 24, 17] for second-order elliptic problems problems, to [16] for parabolic differ-
ential equations, to [6] for flows in fractured porous media, to [3] for fluid structure
interaction problems, cf. also [19] for a comprehensive monograph. In the framework
of dG methods for hyperbolic problems we mention [43, 30] for scalar wave equation
on simplex grids, while more recent dG discretizations on polytopic meshes can be
found in [8] for elastodynamics problems, in [9] for non-linear sound waves and in
[4, 5] for coupled elasto-acoustic problems. To the best of our knowledge, the present
approach is proposed and analyzed here for the first time in the context of multi-
physics poroelasto-acoustic problems, and it provides a flexible and accurate scheme
that can be employed in real applications.

The remaining part of the paper is structured as follows: in Section 2 we introduce
the mathematical model, present the weak formulation of the problem, and prove
suitable stability estimates. In Section 3 we introduce the PolyDG approximation and
prove its stability. Section 4 is devoted to the analysis of the semi-discrete problem
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Q, Tap Fig. 1: (la) Pores clas-
sification in a poroelas-
tic domain: sealed (1),
0, open (2) and imperfect

Tpo) . .
a (3) pores. (1b) Simplified
graphic representation of
(a) Pores classification in a (b) Q@ =Qp UQ,. the domain @ = €, U,
poroelastic domain. for d = 2.

and the proof of hp—version a-priori error estimates. The time integration schemes
are introduced in Section 5. In Section 6 we present some two-dimensional numerical
experiments to validate the theoretical results and show the performances of the
proposed method in examples of physical interest. Finally, in Section 7 we draw some
conclusions. The existence and uniqueness for the strong formulation of the problem
and additional technical results are established in Appendix A.

2. The physical model and governing equations. Let Q C R?, d = 2,3,
be an open, convex polygonal/polyhedral domain decomposed as the union of two
disjoint, polygonal/polyhedral subdomains: {2 = Q,U€Q,, representing the poroelastic
and the acoustic domains, respectively, cf. Figure 1b. The two subdomains share part
of their boundary, resulting in the interface I'r = 99, N 9Q,. The boundary of 2 is
denoted by 99, and we set 9, =T',p UT'; and 0, = Typ ULy, with Tpp NT; =0
and I',pNI'; = (). Surface measures of 99, 982, 9, and I'; are assumed to be strictly
positive. The outer unit normal vectors to 9, and 02, are denoted by n, and n,,
respectively, so that n, = —n, on I';. In the following, for X C , the notation
L%(X) is adopted in place of [L?(X)]¢, with d € {2,3}. The scalar product in L%(X)
is denoted by (-,-)x, with associated norm || - ||x. Similarly, H*(X) is defined as
[H*(X)]¢, with £ > 0, equipped with the norm || - ||¢,x, assuming conventionally that
H°(X) = L?*(X). In addition we will use H(div, X) to denote the space of L*(X)
functions with square integrable divergence. In order to take into account essential
boundary conditions, we also introduce the zero-trace subspaces, defined as

H(%(Qa) = {1/’ € Hl(Qa) | ¢|rw = 0}7
H&(Qp) ={ve HI(QP) |'U\FpD = 0},
Hy(div, ) = {z € H(div,2,)| (2 - ny)ir,, = 0}.

Given k € N and a Hilbert space H, the usual notation C*([0,T]; H) is adopted for

the space of H-valued functions, k-times continuously differentiable in [0,7]. The
notation x < y stands for x < Cy, with C' > 0, independent of the discretization
parameters, but possibly dependent on physical coefficients and the final time 7.

2.1. The poro-elasto-acoustic problem. To model wave propagation in a

poro-elastic domain 2, we consider the two-displacement formulation of [37], written
in the solid and filtration displacements, denoted by w and w, respectively. For a

This manuscript is for review purposes only.
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4 P. F. ANTONIETTI, M.BOTTI, I. MAZZIERI, AND S. NATI POLTRI
final observation time T > 0, we consider the low-frequency Biot’s equations:

@.1) pu+ppw—V-0o=F, in Q, x (0,77,
2.1
Pt + ppw + F 4+ Vp =g,, in Q, x (0,77

Here, the average density p is given by p = ¢ps + (1 — ¢)ps, where p; > 0 is the solid
density, py > 0 is the saturating fluid density, p,, is defined as p,, = % pf, being ¢ the
porosity satisfying 0 < ¢g < ¢ < ¢1 < 1, and being a > 1 the tortuosity measuring
the deviation of the fluid paths from straight streamlines, cf. [46]. In (2.1), n > 0
represents the dynamic viscosity of the fluid and k > 0 is the absolute permeability.

Remark 2.1. As observed in [23], the second equation in (2.1) is valid under a
constraint on frequencies, i.e. the spectrum of the waves has to lie in the low-frequency
range. In what follows, we only consider frequencies lower than f. = n¢/(2rakpy).

In €, we assume the following constitutive laws for the stress o and pressure p:
(22)  o(wp) =C:ew)—fpI,  plu,w)=-m(V u+V w),

where the strain tensor €(-) is defined as €(u) = 3(Vu + VuT), and C is the fourth-
order, symmetric and uniformly elliptic elasticity tensor defined by

C: 7 =2ur + Mr(7), for all 7 € RI*4,

with tr(7) = 2?21 Ti. Here, A >0 and g > po > 0 are the Lamé coefficients of the
elastic skeleton. In (2.2), the Biot—Willis coefficient 8 and Biot modulus m are such
that ¢ < 8 < 1 and m > mg > 0. It can be shown that the dilatation coefficients
of the saturated matrix corresponds to Ay = A + 3?m. By plugging the constitutive
laws (2.2) into (2.1), we obtain the two-displacement formulation

oy [P =V (Cew) - BV W) V(T w) = £
) P+ pp + Fw — AmV(V -u) —mV(V - w) = g,.

Remark 2.2. We point out that the (w,w) formulation (2.3) is not the unique
possible choice. For example, one could write the equations considering the velocity
of the solid skeleton @ and the filtration velocity w as unknowns, cf. [23], or consider
a velocity-pressure (u, p) formulation, as in [2, 12, 15, 41]. Here, the two-displacement
formulation turns out to be convenient in view of the coupling conditions stated below.

In the fluid domain €2,, we consider an acoustic wave with constant velocity ¢ > 0
and mass density p, > 0. For a given source term f,, the acoustic potential ¢ satisfies

(2.4) 2 — p 'V - (paVp) = fa, in Q, x (0,T].

Finally, we discuss the transmission conditions on I';. The poro-elasto-acoustic cou-
pling is realized through interface conditions, cf. [31], expressing the continuity of
normal stresses and conservation of mass. The continuity of the pressure is prescribed
by writing the acoustic potential in terms of a pressure. Thus, on I'; we impose

(25) oy = ey,
(2.6) (w+w) -n,=—-Vo-n,,
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(2.7) Tlp] = (1 = 7)w - ny,

where [-] denotes the jump operator at the interface I'7, i.e. [p] = p(u, w)—p.(¢) with
Pa(®) = pap, and 0 < 7 < 1 is the hydraulic permeability at the interface and models
both open, sealed, and imperfect pores, cf. Figure la. The stress tensor o and the
pressure p(u, w) obey the constitutive equations (2.2). If 7 = 1 (open pores), equation
(2.7) reduces to the continuity of pressure at the interface, that is p(u, w) = p,. If
T = 0 (sealed pores), (2.7) simplifies to w - n, = 0, that implies that (2.6) imposes a
continuity only on the solid velocity, namely &-n, = —Ve-n,. If 7 € (0,1) (imperfect
pores) then an intermediate state between open and sealed pores occurs.
Supplementing the constitutive equations with suitable boundary conditions (here
supposed for simplicity to be of homogeneous Dirichlet type), the poro-elasto-acoustic
problem reads as: for any ¢t € (0,77, find (u,w, ) : Q, x Q, x Q; — R such that:

pi+ psw — V- (C:e(u)) — mV(LV - u+ V- -w) = f, in Q,,
pfﬂ+pwlb+%w—mV(ﬁV~u+V-w):gp, in Q,
(2.8) Pac 2 =V - (paV§) = pafa in Q,,

—(C: e(u) + m(BV -u+ V- w)I)n, = ppn,, on I'y,

(6 +w) -n,=-Ve-n, only,

—m(BV - u+V-w) — 71— 1) n, = pa, onI'y,
together with initial conditions u(-,0) = ug, w(-,0) = wy, @(-,0) = uy, w(-,0) = wy,
in Q, and ¢(-,0) = ¢, ¢(-,0) = ¢1 in Q,. Notice that the acoustic equation has been

multiplied by p,. The existence and uniqueness of a strong solution to (2.8) is proved
in Appendix A by employing the semigroup theory.

2.2. Weak formulation and stability estimates. In order to derive a unified
analysis for 0 < 7 < 1, we introduce the space

Hy(div, Q,), if 7=1,
(2.9) W, =4 {z e Hy(div,Q,)|{(1)2 (= ny)r, € L2(T'7)}, if 7€ (0,1),
{z € Hy(div,Q,) | (z - np)r, = 0}, if =0,

equipped with the norm || - ||y, defined, for all z € W, as
(2.10)
1 . =T for 7 € (0,1],
Izllw, = lzlle, +IV-zla, +¢(T)? z-ny[lp,,  with ((7) ={ 7 _
0 for 7 =0.
We also define the Hilbert space H = H}(Q,) x W, x H} (€,) and Q. = Q, xQ, x Q.
The weak form of (2.8) reads as: for any t € (0,7}, find (u,w, p)(t) € H s.t.

(2'11) M((uv ’lb, QD), (’U, Z,iﬁ)) + A((u7w7 90)7 (U, z>"/})> + B(w7 z)
=+ Cp(%bav + z) + Ca(u + wﬂﬁ) = ((fpagp,Pafa)a (Uv sz))ﬂ*

for all (v, z,4) € H, where for any { = (u, w, ¢), 0 = (v, z,1) € H we have set
(2.12)

M, D) = (pu+ prw, v)g, + (pru + puw, 2)a, + (Pac” >0, V),
AL D) = (C: e(u),€(v))q, + (mV - (Bu +w),V - (Bv + 2))a, + (pa Ve, Vi)a,,
B(w,z) = (nk™'w, z)q, + (((N)w - np, 2 - np)r,,

CP(p,2) = (patp, 2 - Mp)r, = —C"(2,9),

This manuscript is for review purposes only.
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6 P. F. ANTONIETTI, M.BOTTI, I. MAZZIERI, AND S. NATI POLTRI

with ¢(7) defined in (2.10). Notice that, if 7 = 0, the terms CP(¢p, z) and C*(w, ) in
(2.11) are null thanks to the definition of W, which strongly enforces condition (2.7).

Before presenting a stability estimate for the solution of problem (2.11) we define,
for all $ = (u,w, p) € C1([0,T]; L*(Q,)) N C°([0,T]); H), the energy norm

(213)  JUIE = max ()] = max (ML) + AL E) + Blw, w) (1))

As a result of the next Lemma, || -||g is a norm on C1([0,T7]; L?(Q2,)) N C°([0, T]; H).
LEMMA 2.3. The bilinear forms M, A, and B defined in (2.12) are such that
(2.14) MELY) < V|l
(2.15) M) 2
(2.16) AMLY) + B(w,z) <
(2.17)  AQLY) + B(w,w) 2
for any L = (u,w, ),V = (v, z,9) € H.

Proof. Inequalities (2.14) and (2.16) are readily inferred by applying the Cauchy—
Schwarz and triangle inequalities, while (2.15) is obtained by noting that pp,, — p?c >0
and pgc~2 > 0. The last inequality (2.17) represents the H-coercivity of A(-,-)+B(:, -).
To prove this property we apply Poincaré’s and Korn’s inequalities in Hg(£2,) and
H (), respectively, to infer [[u]| o + [¢[f o, S AU, 40). Then, using the triangle
inequality and recalling definition (2.10) of the W -norm we get

lwlfy, <1V - (Bu+w)[§, + 18V - ull, + B(w, w) < AL ) + B(w, w)

and the conclusion follows. O

1ba snéa?

THEOREM 2.4 (Stability of the continuous weak formulation). Assume that the
problem data satisfy (£, Gps pafa) € L2((0, T); L3(2.)), £4(0) = (w0, wo, o) € H, and
4(0) = (u1, w1, 1) € L2(Q). For any t € (0,T), let 4(t) = (u,w, p)(t) € H be the
solution of (2.11). Then, it holds

T
IOIE < 1401z +/O 1(£5, Gp: Pafa)(5) ]G, ds,

with the hidden constant depending on the observation timet < T and on the material
properties, but independent of T.
Proof. Taking $1 = (u,, ) as test functions in (2.11), using C%(1t + w, $) +
CP(p, 1+ w) = 0, and integrating in time between 0 and ¢ < T, it is inferred that
t

M(EL L0 () + AL, ) (1) + /0 2B(w, ) ds = M (L1, £0)(0)-+.A(LL, £1) (0)+ /O 2(§,)q. ds,

where we have adopted the abridged notation § = (fp, gp, Pofa). Hence, applying the
Cauchy—Schwarz and Young 1nequaht1es to bound the thlrd term in the right-hand
side, using that B(w, w)(t) < B(w,w)(0) + fo s) ds, and recalling definition
(2.13) of the energy norm, for all t € (0 T] one has

t t
IOIE < 14012 +/O I5(s)11G. ds +/0 I1LL(s)II5,. ds.

Finally, owing to (2.14), we obtain ||Ll||?2* < |42, so that the thesis follows by
applying the Gronwall’s Lemma [42]. O
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3. The semi-discrete formulation and its stability analysis. We introduce
a polytopic mesh Ty, made of general polygons (in 2d) or polyhedra (in 3d) and write
Tr as T, = TP UT,, where 7;1# ={k € Tp : K C Qu}, with # = {p, a}. Implicit in this
decomposition there is the assumption that the meshes 7,* and 7,” are aligned with
Q, and Q,, respectively. Polynomial degrees p,, > 1 and p,,. > 1 are associated
with each element of 7;” and T,%, respectively. The discrete spaces are introduced as
follows: Vi = [P, (T}F)]? and V¢ = P, (T,%), where ’Pr(’n#) is the space of piecewise
polynomials in Q4 of degree less than or equal to r in any k € 7;1# with # = {p,a}.

In the following, we assume that C, p, and m are element-wise constant and
we define C, = (|C'23),, m, = (m), for all &k € T and D, . = pajx for all
k € T;*. The symbol |- |2 stands for the 2-norm on R"*", with n = 3 if d = 2
and n = 6 if d = 3. In order to deal with polygonal and polyhedral elements, we
define an interface as the intersection of the (d — 1)-dimensional faces of any two
neighboring elements of 7,. If d = 2, an interface/face is a line segment and the
set of all interfaces/faces is denoted by Fj,. When d = 3, an interface can be a
general polygon that we assume could be further decomposed into a set of planar
triangles collected in the set Fj. We decompose Fj, as Fp, = ]-',{ U Fy U Fy, where
Fl={F e F,:F CorPnNok® kP € TF k* € T}, and F} and F{ denote all the
faces of T and T,%, respectively, not laying on I';. Finally, the faces of 7;” and 7,* can
be further written as the union of internal (i) and boundary (b) faces, respectively,
Le: FP =FP UFP" and Ff = F UFP.

Following [19], we next introduce the main assumption on 7p.

D

DEFINITION 3.1. A mesh Ty, is said to be polytopic-reqular if for any k € T,
there exists a set of non-overlapping d-dimensional simplices contained in r, denoted
by {SEYpcon, such that for any face F C Ok, the following condition holds:

(3.1) he S dISEI|FI,
ASSUMPTION 3.1. The sequence of meshes {Tp}1, is assumed to be uniformly poly-
topic reqular in the sense of Definition 3.1.

As pointed out in [19], this assumption does not impose any restriction on either the
number of faces per element nor their measure relative to the diameter of the element
they belong to. Under Assumption 3.1, the following trace-inverse inequality holds:

(3.2) vl 22(0m) < Phe 2 [0]| 2 () V K € Th Vv € Py(k).

In order to avoid technicalities, we also make the following assumption.

ASSUMPTION 3.2. For any pair of neighboring elements k* € Tp,. The following
hp-local bounded variation property holds: hy+ S he- S hety Pt S Du- S Pt -

~

Finally, following [10], for sufficiently piecewise smooth scalar-, vector- and tensor-
valued fields 9, v and T, respectively, we define the averages and jumps on each
interior face F € FI'"' U F;" U F/ shared by the elements = € T as follows:

Wl=vnt+yv ™ n", pl=vien"+v on", [v,=v" -nT+v -n",
- + 4 + -
O O ==

where ® is the tensor product in R3, -* denotes the trace on F' taken within x*, and
n* is the outer normal vector to Ox*. Accordingly, on boundary faces F' € F{L”buf,‘j b

we set W]] =yYmn, {7/}}:7/)7 HUH:'U@TL’ [[’v]]n:v'n, {’U}:’U, {T}:T'

This manuscript is for review purposes only.
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8 P. F. ANTONIETTI, M.BOTTI, I. MAZZIERI, AND S. NATI POLTRI

3.1. Semi-discrete PolyDG formulation. We are now ready to introduce the
semi-discrete formulation: for t € (0,7, find (wn, wp, ¢r)(t) € Vi x VP x V2, s.t.

(3.3)  M((dn, W, Pn), (Vn, zn,¥n)) + An((wn, wr, on), (Vn, 20, %n)) + B(ws, z1)
+ CY(bh, vn + 2zn) + Ci (Up + W, ¥Vn) = ((Fp, 9ps Pata), (U, Ens¥n))a.

for all (v, &n,¢n) € VP x VP x V2. As initial conditions we take the L2-orthogonal
projections onto (V! x VP x V,*)? of the initial data (ug,wo, o, w1, wr,e1). We

define Vj and Vj,- to be the broken gradient and divergence operators, respectively,

set €p(v) = W, on(v) = C: €,(v), and use the short-hand notation (-,-)q, =

Znen# J.-and (, ->F# = EFef# Jp - for # = {a,p}. Then, for all u,v,w,z € V}/
and ¢,v € Vi, the bilinear forms appearing in the above formulation are given by
(3.4) Ar((u, v, 90)7 (v, 2, ¢)) = A} (u, ’U) + AZ(BU +w, Bv + 2z) + A} (¢, ),

(3.5) Ch(p,v) = (pap, v - mp) ;1 = —Ci (v, ),

with

Aj(u,v) = (on(u), €n(v))e, — ({on(w)}, [v])Fr

—([u], {orn()} 72 + (a[u], [v]) 7,
Aj(w, z) = (mVy, - w, Vi - 2)a, —~({m(Vi - w)}, [2]n) 7

—([w]n. {m(Vr - 2) P 7 + (V[w]n, [2]n) 7,
Ay (0,0) = (pa Ve, Vib)a, — ({pa Vel [¥]) 72

— ([l {pa Vi Y 7p + (X[l [¥]) 7

and F; = F7 in the case 7 € (0,1], while 7 = FF U F/ in the case 7 = 0. The
stabilization functions a € L>(F}), v € L>(F}) and x € L>(F}'), are defined s.t.

¢ max (C.p2 hit) VF e FP F CoktNok™,
(3.6) alp=q retetand \

T p2, 07" VFeFP'  FCon,

o max (M, p2.ht) VE € ]:,IZ’i, F CoxktnNnok™,
(3.7 Alp=4q ret

M Py it VF € FPPUF], F C 0x,

3 max (P, P2 chit) VF € Fi', F Coktnok™,
(38) xlp =g reteeTd

ﬁa,n p?z,n ;1 VF c ]:;:71), F g 8[%7

with ¢1, co, c3 > 0 positive constants, to be properly chosen. The definition of the
penalty functions (3.6)—(3.8) is based on [19, Lemma 35]. With this choice, the bilinear
forms in (3.6) are symmetric and coercive, cf. Lemma A.3. Alternative stabilization
functions can be defined in the spirit of [1]. The analysis of the latter is however
beyond the scope of this work. See also [26] for the elliptic case.

By fixing a basis for V; and V}* and denoting by (U, W,®) the vector of the
expansion coefficients in the chosen basis of the unknowns wy, wy, and ¢y, respectively,
the semi-discrete formulation (3.3) can be written equivalently as:
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pM?P  p;MP 0 U 0 0 cr][U]
(3.9)  |pyMP  p,MP 0 Wl+|0 B c°||Ww
0 0  pac2M<| | & ce Cc* 0] ||
Ac+32A7 AP 0 [U F?
+ BAP AP 0| (W] =GP
0 0 Al |o Fo

with initial conditions U(0) = Uy, W(0) = Wy, ®(0) = &g, U(0) = Uy, W(0) = Wh,

®(0) = ;. We remark that F?, G and F® are the vector representations of the
linear functionals (fp,va)a,, (9p;&n)a, and (pafa,¥n)a,, respectively.

3.2. Stability analysis. To carry out the stability analysis of the semi-discrete
problem, we introduce the energy norm

(v, 2, ) ()| = M((9, 2,9), (9, 2,9))(¢) + B(=z, 2)(t)
+lv)lEg.e + 1(Bv + 2) ()i, + ¥ () lic.a

for all (v,z,v¢) € C([0,T]; Vi x VP x V%), where

(3.10)

[vll3c.e = IC? - en(v)d, + o' *[o]|% Yo € VY,
|2l3c,p = Im'2 Vi - 2|8, + |7/ *[2]nll%; vz eV,
19 136,0 = llpa' >V adbll, + Ix"[]1 %, Vi € Vi

Remark 3.2. The notation |- |qq,p is used instead of | - |lac,p in order to highlight
that |- lagp : V¥ — RT is a seminorm. However, by proceeding as in the proof of
(2.17), we can show that [|v[|3g . + v + 2[3¢ , + B(2,2) is a norm on V7 x V,/".

Remark 3.3. Notice that the norm defined in (3.10) represents the mechanical
energy of the poroelasto-acoustic system. We observe that in the case of null external
forces, i.e., f, = g, = 0 and f, = 0, estimate (3.11) reduces to ||(un, ws, ¢n)(t)|e S
(e, wp, ¢r)(0)||g for any ¢ > 0, namely the dG formulation (3.3) is dissipative.

The main stability result is stated in the following theorem.

THEOREM 3.4 (Stability of the semi-discrete formulation). Let Assumption 3.1
and Assumption 3.2 be satisfied. For sufficiently large penalty parameters c1, co and
cs in (3.6), (3.7) and (3.8), respectively, let (wp, wn, pr)(t) € VP x VP x V,* be the
solution of (3.3) for any t € (0,T]. Then, it holds

t
B11)  [[(wn, wh, on) () |e S |l (wn, wa, on) (0) || +/O 1(£p+ G- pafa) (s)II%, ds,

where the hidden constant depends on time t and on the material properties, but is
independent of T.

Proof. By taking (vh, zn, ¥n) = (U, Wh, ¢n) € V¥ x VP x V% in (3.3) and using
the skew-symmetry of the coupling bilinear forms (3.5), we obtain

1d

Sd M((tn, Wn, o), (Un, Wh, ¢n)) + An((Wh, On, 08), (Wh, Vhy @1))
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+ B(’lbh,’lbh) = ((fpagpa pa.fa)v (/l:l’ha Zp, @h))ﬂ*

Thus, integrating in time between 0 and ¢ < T, recalling definition (3.4) of A, using
the coercivity results of Lemma A.3, and reasoning as in the proof of Theorem 2.4,
one can easily obtain the thesis. ]

4. Error analysis for the semi-discrete formulation. In this section we
prove an a-priori error estimate for the semi-discrete problem (3.3). We first observe
that by setting, for any time ¢ € (0,T], e“(t) = (u — up)(t), €™ (t) = (w — wy)(1),
and e?(t) = (¢ — ¢n)(t) and by using the strong consistency of the semi-discrete
formulation (3.3), the error equation reads as follows

(41) M((6",6",é%), (v,2,0)) + An((e”,e”, %), (v, 2,1)) + B(é", 2)

+CR(E7 v+ 2) + C(e" +€%,9) =0
for any (v,z,v) € VP x VP x V}*. Next, we introduce the following definition and a
further mesh assumption; cf [20, 19].

DEFINITION 4.1. A covering Tg = {IC} of the polytopic mesh Ty, is a set of reqular
shaped d-dimensional simplices IC, d = 2,3, s.t. VK€ Tp, 3K € Tg s.t. &« C K.

ASSUMPTION 4.1. Any mesh Tn admits a covering Ts in the sense of Defini-
tion 4.1 such that i) max.c7, card{s’ € Tp : ' NK #0, K€ Tg s.t. k CK} S 1 and
i) hic S hy for each pair k € Ty, K € Ty with & C K.

We also introduce the norm

42) (. z,9)llE = M((0, 2,9), (9, 2,9)) + | (v, 2,9) |5 + B(z, 2),

where the seminorm [[(v, z,9)[3g = [[0ll3c.. + I2l[3c.p + 1 ]l3c . is defined by
vlli.e = Ivll3c.e + o™ /*{C : en(@)}[5s Yo € H*(TY)),
lIzll3e p = |2l3c,p + 172 {(mVn - 2)}I5 Vz € HX(T}),
I¥ll3g . = 10ll3c.a + X *{pa Vit % Vi € H(T;%).

For an open bounded polytopic domain ¥ C R? and a generic polytopic mesh T
over ¥ satisfying Assumption 4.1, as in [20], we can introduce the Stein extension
operator € : H™ (k) — H™(R?) [47], for any & € Tj, and m € Ny, such that Ev|, = v
and ||(§'U||m7Rd < ||vllm,s- The corresponding vector-valued version mapping H™ (k)
onto H™(R?) acts component-wise and is denoted in the same way. In what follows,
for any x € Tj, we will denote by K,; the simplex belonging to 75 such that x C KC,..

In order to handle the case of small interface permeability, i.e. 0 < 7 << 1, we
make an additional assumption on the discretization. This requirement is consistent
with the observations of [23], showing that there is a threshold value 7 such that the
results for 7 <7 cannot be distinguished from the sealed pores case 7 = 0.

ASSUMPTION 4.2. In the case 7 € (0,1), for each F € Fl and x € T such
that F C Ok N Ty, it holds {(1) = 7 (1 —7) < h'pl ., with the hidden constant
independent of 7. We point out that this assumption is used only for the following
theoretical results but it is not needed in practice, cf. Section 6.

The next Lemma provides the interpolation bounds that are instrumental for the
derivation of the a-priori error estimate.
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355 LEMMA 4.2. For any (v,z,¢) € H™(TF) x HY(TF) x H"(T,2), with m,¢,n > 2,
56 there exists (vr, zr,¢r) € VP x VP x V)% such that

h2(s,€71)
- 2 r c,
357 llv—=villag.e < Z —sm €0l k.,
KETY Py,
h2(7‘,€71)
. 2 7"{ S
358 llz = zrllicp < Z 20—3 Hlelizcu
IiG'T,f Pp,k
9 hQ(QK*D
350 Il = villiaa. S D e IEYI3 k..

360 wETy

361  where s, = min(m, pp +1), re = min(¢, p, .+1) and g, = min(n, pa +1). Moreover,
362 if (u,w, ) € CH[0, ] H™(TP) x HY(T) x HY(T2)), with m,{,n > 2, there exists
363 (ur,wr, o) € CH0,T); VP x VP x V@) s.t.:

hZ(SK—l) N .
2 .
= wrw—wre—enlly S Y s (1€l x, + 1Eulx, )
wETP FPR
2(7",,—1) " "
364 (4.3) + Z T (||5w||§,ic,¢ + ||5w||§,/c,¢)
RETP Pp,x
qnfl) 5
Y e (1Bl k. + 18Ik, )
KET a’
365
366 Proof. The first part of the proof readily follows by reasoning as in [4, Lemma
367 5.1] and observing that || - [[4q,, < [l - llage- To infer estimate (4.3), we resort to the

368  hp-approximation properties stated in [19, Lemmas 23 and 33], implying

70 M((ufﬁ‘law*whgbfsbl) ('l:llf'l:l/],’l,l.)*’lbb()b*gb]))

B 2
371 Y ( 2 ||6’w||§7,<m) + > 20 “|1€ EGlIn k.

372 RET b P RET}!
and, owing to Assumption 4.2,
Pps 2 hare =2 5 o
B(w—wr,w—wr) < Z fp||(w — wy) 'n||anp = Z %||5w||e,m~
RoeTl, rey Por
373 O

374  We are now ready to state the main result of this section.

THEOREM 4.3 (A-priori error estimates). Let Assumption 3.1, Assumption 3.2,
Assumption 4.1, and Assumption 4.2 hold and let the exact solution U = (u,w, ) of
problem (2.8) be such that

se C*([0, T H™(T) x HY(TY)) x H™(T;1) N CH([0,T); Hy () x Wy x Hy (),
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with m,n,0 > 2 and let (wp, wp, pr) € C*([0,T]; VP x VP x V|*) be the solution of
the semi-discrete problem (3.3), with sufficiently large penalty parameters c1, co and
cs. Then, for any t € (0,t], the discretization error E(t) = (e“,e™,e?)(t) satisfies

hy™! (5 s s o
1B S 3 s (1l €l t [ (1B, + 1l ](5) )

RETP Dp,s

hin=t (o~ = bros. 5.
+ 3 2 (1l + Wl + | (1Bl + 1€l i) )

reTy Ppor
Joas).

where the hidden constant depends on time t and on the material properties, but is
independent of the discretization parameters and of T.

Proof. For any time t € (0,71, let (ur,wr, ¢r)(t) € V¥ x VI x V@ be the inter-
polants defined in Lemma 4.2. We split the error as E(t) = E;(t) — Ex(t), where

t
- Z = (nsmm el + / I

KET®

E;(t) = (e, ef,e])(t) = (u —up,w —wr,p — 1) (1),
Ep(t) = (ep, ey, ef)(t) = (un — ur, wp, — wr, pn — @1)(t).

From the triangle inequality we have |E(t)(|3 < | Exn(t)||3+ | Er(t)]|3, and Lemma 4.2
can be used to bound the term [|[E;(t)||g. As for the term | E}(t)||g, by taking
(v,&,¢) = (€}, €éF,¢7) € VP x VP x V) as test functions in (4.1), taking into account
that E = E; — Ej, neglecting the coupling terms thanks to skew-symmetry and
collecting a first time derivative, identity (4.1) can be rewritten as

1d .. o . .
— (M(Eh,Eh) + Ah(EmEh)) + B(éy, éy) = M(E;, Ey,) — An(Er, Ey)

(4.4) S€

d s - . v
+ o A(Er Br) + B(ef &) + CLET . &5 + €7 + Cil(ef + & €F),

where we have used Leibniz’s rule on the term Ay, (E;, Ep,). Integrating (4.4) between
0 and ¢ < T and observing that Fj(0) = (e}:(0),e}’(0),e; (0)) = 0, it is inferred that

M B)(0) + Au(B B(0) +2 [ Blegef)(s)ds
:2/0 M(EI,Eh)(s)ds—Q/O Ah(EI,Eh)(s)ds+2/0 B(e¥,er)(s)ds

t
9A (B Ey)(t) + 2 / (CE(E, &5 + &)(s) + CR(EY + &Y, é2)(s)) ds.
0

Applying the Cauchy—Schwarz and Young inequalities on the third and fourth terms
in the right-hand side of the previous identity, we obtain

(D) = M(Br, Bi) (1) + An(Br, Byt / B(ev, év)
(4.5) 34/0 M(E;, Ey)(s) ds—4/0 An(Er, Ey)(s) ds—|—2/0 B(eY, ev)(s) ds

+4Ah(E1,E1)(t)+4/O(C (€7, €l +€y)+Cr(ef +éf.€é))) (s )dsf@.
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Now, using Lemma A.3 together with the fundamental theorem of calculus we estimate
the left hand side as (1) > (M(Eh, Ep) + Ay (En, Ey) + Be, e’,f)) (t) = | Ex(t)]2.
Plugging this into (4.5), using again the Young inequality and Lemma A.3 to bound
the second and fourth terms in @, and recalling definition (4.2), yields

£ ()%

t
L .9 cw ew
1B (1)][5 < 2/0 1B ()l + (M(Er, Er) + | Bl + By €7))(s) ds

(4.6)

t
+ 4B ()ll3e + 4/0 (Ch(eT, &l + €5) + C(ef + €, ¢7)) () ds.

Now, recalling the definitions of the coupling bilinear forms C; and C{ and using the
Cauchy-Schwarz inequality followed by the trace-inverse inequality (3.2), we infer

creser+en) < S pacfllpler +exlr < > léflon, € + € llon,
FeF] kp€T L ka €T,
< S o PlET lon, (l€Rl0, + €7 l,)

I I
NPEThyp, Ka ET,L,Q

where, to infer the last bound, we have also used Assumption 3.2. Therefore, we have

t t
/Ocﬁ(é?véZﬂLéZ”)(S)ds,S/o Y ParhiPlEE (9)an | (eklla, + 1€k l0,)(s) ds

*ETH,q
def ¢
= /0 i (€7(5)) (len(s)lla, + l1€x (s)lle,) ds.

Proceeding in the same way, we can conclude that

t t
/Oci(é?+é?’7éf)(8)d8§/o Y ponhi Pl€flon + N7 ax)(s) | €7 (s) I, ds

HET;{J,
d:ef/o (Zh(e5 () + TR (7 (9))éf (5) |, ds.

Collecting the two previous bounds and applying Young’s inequality together with
inequality (2.15), it is inferred that

t
/ (C2(E2, 60 + &) + CO(el + &Y, é0)) (s) ds
0
t t
< / 1B ()11 ds + / (Z0(69)? + T0(eY)? + T0(eY)?) (5) ds.

Hence, plugging the previous bound into (4.6) and using Gronwall’s Lemma, we get

IEL ()% < B ()l +/0 11 (5) I ds +/0 (Zh(e7)® + Z7(eD)* + I3 (e7)?) (s) ds,
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To estimate the terms on the right hand side, we make use of Lemma 4.2 and the
following bounds inferred from [19, Lemma 33]:

a(P\2 < hiqﬁ_2 S ol2
Ih(el) ~ Z 2n—3 ||‘c:<:0||n,ICh
/{ETha’I Pa,r
h2s'“_2 .
TEN*+Th(eN)’ S Y, gl &ull ., + Z .
KETP TP RETY g
As a result, the thesis follows. a

COROLLARY 4.4. Under the hypotheses of Theorem 4.3, assume that h = h,, for
any k € TP UTE, ppx =p for any k € T and p,,. = q for any k € T;*. Then, if
u € C2([0,T); H™(Q,)), w € C*([0,T]; HY(Q,)) and ¢ € C%([0,T); H"(Q)), with
m,{>p+1,n>q+1 the error estimate of Theorem 4.3 reads

h? = = fris 5.
B0l S (1Bl + 1Bl + [ (1Bl + [l ] ()5

o s . troa .
+o (Wl + 1wl + [ (1Bl + 1€l ] (o) ds)

ha ~ ~ tro
+ s (1860, + 1ol + [ | Jea).

where the hidden constant depends on time t and on the material properties, but is
independent of the discretization pammeters and 7. The above bounds are optimal in
h and suboptimal in p and q by afactor , see [40].

5. Time discretization. To integrate in time equation (3.9), we first discretize
the interval [0, T by introducing a timestep At > 0, such that Vk € N, t341 —tp = At
and define X* as X* = X (t¥), with X = [U, W, ®]T. Next, we rewrite equation (3.9)
in compact form as AX + BX + CX = F and get

(51) X=AYF-BX-CX)=A"'F-A'BX -A"'CX =L(t, X, X),

Finally, to integrate in time (5.1) we can apply the Newmark—/g or the leap-frog
scheme as follows. The Newmark—/ scheme is defined by introducing a Taylor ex-
pansion for displacement and velocity, respectively:

. X+t = Xk 4 AtZF + A2 (B LA + (5 — B)LF),
5.2
"),

ZM = ZF + At(yw L+ (1= yw)L

where ZF = X (t*), £¥ = L(t*, X*, Z*) and the Newmark parameters Sy and vy
satisfy, the following constraints 0 < vy < 1, 0 < 28y < 1. The typical choices of
parameters are vy = 1/2 and Sy = 1/4, for which the scheme is unconditionally
stable and second order accurate. Finally, by plugging the definition of £ into (5.2),
for k£ > 0, the time integration reduces to:

A+ APBNC  A*ByB | [XFT]  [A - A23nC  AtA — A2 By B [XF
YNALC A+yNAtB| | ZHY T | —FyAtC A—FyAtB | | Z*

L [APBNFR At2By FF
NALFF  FuALFE |
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where EN = (1 - Bn) and Yx = (1 — yn). By applying the leap-frog scheme to (5.1)

2
we get

At? At

(5.3) (A+ TB)X’f+1 = A’F* + 2A - At?PC) X" + (5B~ A)XFL
for k > 1 with initial step

N At? 0 At? AN
(5.4) AX'=(A - TC)X + (AtA — 7B)Z + TF )

Recall that (5.3)—(5.4) is explicit and second order accurate.

Remark 5.1. The leap-frog method is often applied to wave propagation problems
due to its ease of implementation, the reduced size of the system (compared to a
Newmark-type scheme), and because typically the matrix of the linear system to
be solved is easily invertible. The latter in fact turns out to be diagonal or block-
diagonal when using a dG method for the approximation in space. We note that
in equation (5.3) this does not occur due to the coupling conditions at the interface
between the poro-elastic and acoustic domains. As a further constraint, the fact that
in poroelastic-acoustic materials there is an additional compressional wave of second
kind (slow P-wave) to be correctly propagated has an impact on the time integration
scheme. Indeed, as a further outcome of the model, the amplitudes of the wavefield
are attenuated because of energy loss due to the presence of a viscous fluid. In the
case of low frequencies and a viscous fluid, the wave equations become stiff. In other
words, the slow P-wave becomes the diffusive mode, which dominates the character
of the equation and drastically restricts the stability condition for explicit methods.
For these reasons we prefer to use an implicit time scheme, cf. also [23, 25].

6. Numerical results. Numerical implementation has been carried out with
MATLAB. Meshes have been generated through the polymesher software, cf. [48].

Test case 1. The model problem is solved in 2 = (—1,1) x (0,1), on a sequence
of polygonal meshes as the one shown in Figure 2, and with physical parameters shown
in Table 1. For the first test case, we choose as exact solution

2 T

w(z,y;1) = Cz Eﬂig:i;) cos(Vart),  wlz,yit) = —ulz, i)

o(z,y;t) = (2% sin(mz) sin(ry)) sin(v/27t),

in order to have a null pressure in the whole poroelastic domain. Since the solution
together with its first z—, y— and t— derivatives are identically zero at the interface
' =0 x (0,1), interface coupling conditions are consequently null. This suggests to
test the sealed pores (1 = 0), the imperfect pores (t € (0,1)) and the open pores
(7 = 1) cases with the same manufactured solution. A sequence of uniformly refined
polygonal meshes have been considered, with uniform polynomial degree py, x = Pa,x =
p = 1,2,3. The final time T has been set equal to 0.25, considering a timestep of
At = 107% for the Newmark-3 scheme, vy = 1/2 and Sy = 1/4. The penalty
parameters ¢y, ¢2 and ¢z appearing in the definition (3.6)—(3.8) have been chosen equal
to 10. In Figure 3 (left) we report the computed errors as a function of the inverse
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Y Field | Value
Q, / ., o7 s I
7 : A 1
a 1
10) 0.5
n 0
Pw 2
-1 0 1z B8, m 1
¢, Pa 1

Fig. 2: Test case 1. Polygonal mesh,
with N = 100 polygons. Table 1: Test case 1. Physical parameters.

of the mesh-size (log-log scale), for the case p = 3. As predicted by Theorem 4.3 the
errors decays proportionally to h®. Moreover, we have also computed the L?-errors
on the pressure field p. These results are reported Figure 4 and show a convergence
rate proportional to h3, as expected. We point out the that discrete pressure has
been computed through equation (2.2). Finally, we compute the L? norm of the error
fixing a computational mesh of N = 100 polygons and varying the polynomial degree
p=1,2,...,5. The computed errors are reported in Figure 3 (right) (semi-log scale),
and an exponential decay of the error is clearly attained.

Test case 2. Oblique interface. The second test cases consider a domain
Q = (0,400) x (0,400) m?, with a straight interface with slope 60°, cf. Figure 5a.
Physical and dimensional parameters have been chosen as in [23] and listed in Table 2.

Fluid Fluid density pfsPa 1000 kg/m?
Wave velocity c 1500 m/s
Dynamic viscosity n 0 Pa-s
Grain Solid density Ps 2690 kg/m3
Shear modulus I 1.86-10° Pa
Matrix Porosity 0] 0.38
Tortuosity a 1.8
Permeability k 2.79-1071  m?
Lamé coefficient A 1.2-108 Pa
Biot’s coefficient m 5.34 - 10° Pa
Biot’s coefficient B 0.95
Interface Interface permeability 7 {0; 107%; 1}

Table 2: Test case 2. Physical parameters.

Boundary and initial conditions have been set equal to zero both for the poroelastic
and the acoustic domain. Forcing terms are null in €2,,, while in Q, a forcing term is
imposed until ¢ = 0.05 s, by considering the following load: f, = r(z,y)h(t), where

4 . . .
(6.1) h(t) = > ket Qe sin(ywot), 0 <t < 4
0, otherwise,
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Fig. 3: Test case 1. Left: computed errors in the energy norm, at the final time 7', as
a function of h (p = 3). Right: Computed errors in the L?-norm, at final time T, as
a function of the polynomial degree p on a computational mesh of N = 100 polygons.
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Fig. 4: Test case 1. Computed errors ||p — pr||q, at the final time T', as a function of
h (p=3).
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(a) Test case 2. (b) Test case 3.

Fig. 5: Test cases 2 and 3. Computational domains and computational grids. The
support of r(x,y) is also superimposed in cyan over the mesh.

521  with coefficients defined as: a; = 1, ap = —21/32, a3 = 63/768, agy = —1/512,
522 e = 2871wy = 21 fy Hz, fo = 20 Hz. The function r(z,y) is defined as r(x,y) = 1,
523 if (z,y) € U?:l B(x;, R), while r(z,y) = 0, otherwise, where B(x;, R) is the circle
524 centered in x; and with radius R. Here, we set x; = (250, 100) m, xo = (250, 150)
525 m, x3 = (250,200) m, x4 = (250,250) m and R = 10 m. Notice that, the support
526 of the function r(x,y) has been reported in Figure 5a, superimposed with a sample
527 of one of the computational meshes employed. Simulations have been carried out by
528 considering: a polygonal mesh consisting in NV = 6586 polygons, subdivided into N, =
529 3564 and N, = 3022 polygons for the acoustic and poroelastic domain, respectively;
530 a Newmark scheme with time step At = 1072 s and vy = 1/2 and By = 1/4 in a
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pn [Pal pn [Pa] pn [Pa]
-1.0e+07-5e+6 0  5e+6 1.0e+07 -1.0e+07-5e+6 0 Se+6 1.0e+07 -1.0e+07-5e+6 0 5e+6 1.0e+07
— ] c—

pn [Pa] ph [Pa] pn [Pa]
-1.0e+07-5e+6 0 5e+6 1.0e+07 -1.0e+07 -5e+6 0 5e+6 1.0e+07 -1.0e+07 -5e+6 0 5e+6 1.0e+07
— e — — e ol—

Ppn [Pa] Ppn [Pa] Ppn [Pa]
-1.0e+07 -5e+6 0 5e+6 1.0e+07 -1.0e+07 -5e+6 0 5e+6 1.0e+07 -1.0e+07 -5e+6 0 5e+6 1.0e+07

Fig. 6: Test case 2. Oblique interface. Computed pressure py in the poroelastic-
acoustic domain at three time instants (from left to right ¢ = 0.04, 0.08, 0.12s), with
At = 1072 s. First line: 7 = 0 (sealed pores). Second line: 7 = 10~% (imperfect
pores). Third line: 7 =1 (open pores).

time interval [0,0.15] s; a polynomial degree p,x = por = p = 4. In Figure 6, we
show the computed pressure pj, considering the interface permeability 7 = 0,1078
and 7 = 1, respectively. The latter values aim at modeling sealed, imperfect and open
pores condition at the interface. Remark that p, = p,¢n in the acoustic domain while
pr = —m(BV - up + V - wy) in the poroelastic one. As one can see, the pressure wave
correctly propagates from the acoustic domain to the poroelastic one: the continuity
at the interface boundary can be appreciated for the case 7 = 1 (open pores).
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Test case 3: Sinusoidal interface. Finally, with the same data of test case

2, we consider a square domain € = [—1500, 1500]>m? and a sinusoidal interface I'
defined through the relation I'(z) = 40sin (fmaz), cf. Figure 5b. For this numerical

experiment we consider the dynamic viscosity n = 0 and n = 0.0015. The number of
polygons composing the mesh is N = 5441, subdivided into IV, = 2713 and N, = 2728
polygons for the acoustic and poro-elastic subdomains, respectively. Moreover, as
shown in Figure 5b, we have set the initial conditions on the acoustic domain, by
defining h(t) as before and r(z,y) = 1/pa, if (z,y) € B(x1,R), and equal to 0,
otherwise, with x; = (0,150) m and R = 50 m. Here we consider the interface
permeability 7 = 1. In Figure 7 we show the propagation of the discrete pressure at

pn [Pa] pn [Pa]
0

pn [Pa] P [Pa] pn [Pa]
8000, -5000 0 5000 8000, -8000, -5000 0 5000 8000,
— e —

Fig. 7: Test case 3. Computed pressure p, at the time instants ¢ = 0.2 s (left),
t =0.4 s (center) and t = 0.6 s (right) with At =102 s: = 0 (top line) 7 = 0.0015
(bottom line).

the time instants t = 0.2,0.4 s and ¢ = 0.6 s. Observe how the sinusoidal interface
contributes to the diffraction of the acoustic wave in the poroelastic domain. This
effect is more relevant when the viscosity is null while for n = 0.0015 the diffracted
waves are attenuated in the poroelastic domain. In particular, we can observe the
main wave front traveling towards the rigid walls of the domain followed by waves
having smaller amplitude originated by the sinusoidal shape of the contact boundary.

7. Conclusions. In this work we have presented and analyzed a PolyDG ap-
proximation to the coupled poro-elasto-acoustic problem on polygonal and polyhedral
grids. Well-posedness of the continuous problem has been established by employing
the semigroup theory. We a have proved a stability result for both the continuous
and the semi-discrete formulations together with a priori hAp-version error estimates

This manuscript is for review purposes only.



559
560
561

562
563
564

(S
N O Ot

= (o))
S < oo

(S SIS IS, BN IS T

oot
J 090
[ N

3 3
Tt =

ot Or Ut Ut Ut
~N N 3

593

594

ot
©

5

596

A DG METHOD FOR THE PORO-ELASTO-ACOUSTIC PROBLEM 21

for the semi-discrete solution in a suitable energy norm. Finally, a wide set of two-
dimensional numerical simulations have been carried out.

8. Acknowledgments. The authors are extremely grateful to the anonymous
Reviewers and to the Associate Editor for their thorough and constructive comments
which have greatly contributed to the improvement of the paper.

Appendix A. Theoretical results. The existence and uniqueness of the
solution to problem (2.8) as well as some technical results instrumental for the stability
and error analysis are presented below.

We establish the existence and uniqueness result in the framework of the Hille—
Yosida theory by combining and adapting the arguments of [4, Theorem 3.1] and
[27, Section 5.2] where the elasto-acoustic coupling and the poroelabtic problem were
analyzed, respectively. To do so, we additionally define the spaces H&(Q,) = {v €
L) : V- (C:e(v) € L)}, HY(Q,) = {v € L*(Q,) : V(V - v) € L*(Q)},
and HA(QG) ={veL?(Q,):Ave Lz(Qa)}.

THEOREM A.l (Existence and uniqueness of (2.8)). Assume that the initial
data have the following reqularity: ug € HE () N HE(), ui € H(Q,), wo €
W.NHY(Q,), wi € Wy, oo € H(Q4) N HY(QW), p1 € HE(Q), and that the
source terms are such that f, € C*([0,T); L*()), g, € C1([0,T]; L*(Q,)) and f, €
CL([0,T); L*>(Q4)). Then, problem (2.8) admits a unique strong solution (u,w, ) s.t.

u € CZ([O,T]; L2(Qp)) n Cl([O,T]; H&(QP)) n CO([(LT]; H(CA(QP) n H(%(Qp)%
w € C*([0,T}; L*(,)) N CH([0,T); W) N CO([0, T); HY (,) N W),
p € C2([0,T]; L*(Qa)) N CH ([0, T]; Hy () N CO([0, T); HA(Qa) N Hy ().

Proof. Let v =4, z = w, A = ¢, and U = (u,v,w, z,p, \). We introduce the
Hilbert space V = H}(Q,) x L?(,) x W, x L?(Q,) x H}(Qa) x L*(Q4), equipped
with the scalar product

(U, Uz)v = (pv1 + prz1,v2)q, + (pfv1 + pwzi, 22)o, + (PaC_2)\1, A2)a,
+ (C: e(ur), €(uz))g + (mV - (Bur +w1), V- (Buz + w2))q
+ (paV(Ph v<p2)9a + (nkilwlan)Qp + (C(T)wl * Ny, W3 - np)FU

where W is defined in (2.9). We remark that the scalar product is positive definite
in VxV,cf. [27]. We define the operator

—v
—7r (PuV o+ 522 4y VD)
—z
(V-0 Jr)\%z + pVp) ’
—cp 'V (paVep)

A:DA)CcV -V AU =

with pr = ppyw — pfc > 0, and

DA)={UeV:uec HEQ,),v e H (), we HY(Q,),z € W,,
© € HA(Q),\ € HY (W); (6 + poM) -m, =0, on Ty,
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T(p—pa\)—(1—7)z-np, =0, 00Ty, (Vo+v+2) n,=0, onI}

With the above notation, problem (2.8) can be reformulated as follows: given F €
C([0,T]; V) defined as F(t) = (0, (pufp — pr9p)/ P, 0, (pgp — P fp)/ 7,0, c* fa) and
Uy € D(A), find U € C1([0,T]; V) N C°([0,T]; D(A)) such that

du

5 AU = F(2), t€ (0,77,

Owing to the Hille-Yosida theorem, the above problem is well-posed provided the
existence of > 0 such that A+ ul is maximal monotone, i.e. (AU, U)y + u||U|% >0
VU € D(A) and A+ ul : D(A) — V is onto. The first condition follows from the
definition of the scalar product in V, the definition of D(A) and integration by parts:

P

(AU U)y = — (ppwv o+ &gz + %Vp, 'u) —(C:e(v),e(u))g
pr pT PT Q

P

2

p

4+ (v o+ P20 L PPIgp v) = (V- paVip, N,
pT pr k pT o

P

2 2
—(Ley o PN PGy ) — (0N V),
T pr k pr o

P

pr pr k pr
—(mV - (Bv+2), V- (Bu+w))g —(((7)z np,w-nyp)r,

= [(n/k)2 2l3, +IC(1) 2 2 - |3, —((n/ k)2, w)a,— (((7)2 - np, w - 1),

+ (f’wpfv o4 el Pulyy, Z) —(nk ™'z, w)aq,
Q

P

where we have also used that all the terms on I'; (except ||¢(7)Y/?z - nyl|f, for 7 €

(0,1)) vanish. Thus, by choosing u > 1/2, and applying the Young’s inequality, we
obtain (AU,U)v + pllU||3 > 0. Now, we prove that A+ vI is surjective for all v > 0.
The surjectivity of A + vI is equivalent to verify that for any F € V, there exists
UeDA)st. AU+VU=TF,ie.

(A.la) l/u—v:f'17

(A.1b) w-tey. g LN, _Pig,_F,
pT prk  pr

(A.lc) vw — z = Fjg,

(A.1d) yz_y_pifv.o-_‘_ﬁﬁz_i_ﬁvp:]:%
pT pr k pT

(A.le) vp — A= Fs,

(A.1f) VA= 2p 'V - (0 Vi) = Fe.

Hence, by plugging v = vu — F1, z = vw — F3, and A = vy — F; respectively in
(A.1b), (A.1d), and (A.1f) and rearranging, we rewrite the previous system as

vi(pu + ppw) — V-0 = p(vF1 + Fa) + py(vF3 + Fa) = Gi,
vi(pru+ ppw) + %w +Vp=ps(vF1+ F2) + pu(vF3+ Fa) + %73 = G,
V20ac” 9 =V - (paV9) = pac > (vF5 + Fo) = G3.
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Owing to n, = —n, on I'7, equations (A.la), (A.lc) and (A.le), and the transmission
conditions on I'; embedded in the definition of D(A), the variational formulation of
the above problem reads: find (u,w, ) € H}(S2,) x W, x H}(Qy) s.t.

A((u,w, ), (v,2,)\) = L(v,2,)), forall (v,2,\) € Hy(Q) x W, x H}(Q,),
with

A((w,w,9), (v, 2,)) = > (pu+ prw,v)q, + (Ce(u), €(v))g, + V(pru+ puw, 2)q,
+(mV - (Bu+w), V- (B +2))g, +v (k™ w z)
+r(C(rw-np, z-ny)p + V¥ (pac 20, N,
+ (panO, V)‘)Qa + V(Pa‘P, v - np)FI - V(’LL c Ny, pa)\)F17

and E(Ua Z, )‘) = (Gla U)Qp + (G27 Z)Qp + (G?n )\)Qa_(—Fl : 'n’pvpa)\)FI

+ (C(T)]'-B TNy, 2 - np)r, + (Pa}—f’)av : np)FI'

The well-posedness of the previous problem follows from the Lax-Milgram Lemma,

since A is coercive for all v > 0. In addition, owing to (A.1b), (A.1d), and (A.1f), we

infer that w € HA () N HE(,), w € HY(Q,) N W,, and ¢ € H>(Q,) N H}(Q).

Moreover, this gives (v, z,\) € H(Q,) x W, x Hj(Qq) due to (A.la), (A.lc), and
(A.le). Then U € D(A) and the proof is complete. |

We conclude the Appendix with some technical results needed in the analysis.
The first Lemma hinges on Assumption 3.1 and the trace inverse inequality (3.2).

LEMMA A.2. The following bounds hold:

(A2) lo=2{on ()} 5 < fncl/?eh( e, Vo € Vi,
(A3) X {pa Vit Fe < fnp V29,9 q, vy € ViE,
(A.4) ||ff1/2{mvh-z}||f*~fllm“2vh zlla, vz e VY,

where c1, co and c3 are the constants appearing in (3.6), (3.7) and (3.8), respectively.

The following Lemma establishes the coercivity and boundedness of the discrete bi-
linear form Aj, defined in (3.4).

LEMMA A.3. Let Assumption 3.1 and Assumption 3.2 be satisfied. Then,

Ap(u,v) 5 Af(u,w) 2 [lullic o Vu,v € V7,
Ap(u,v) S |ulag plvlac p Ap (u,u) 2 ufie , Vu,v € V)7,
Ap(p,¥) S | A (e,9) 2 ll¢llac Vo, v € Vi,
A (w,0) S lulllag o[[vllac e Vu € H*(T;) Vo eV,
Ai(2:9) S llellag all¥llac Vo € H*(Ty)) Vi) € Vi,
Ap(w, 2) S llwllag p|2lac.p Vw € H*(TY) vz eV

The coercivity bounds hold provided that the stability parameters c1, ca and c3 ap-
pearing in (3.6),(3.7) and (3.8), respectively, are chosen sufficiently large.
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