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Abstract. The aim of this work is to introduce and analyze a finite element discontinuous6
Galerkin method on polygonal meshes for the numerical discretization of acoustic waves propaga-7
tion through poroelastic materials. Wave propagation is modeled by the acoustics equations in the8
acoustic domain and the low-frequency Biot’s equations in the poroelastic one. The coupling is real-9
ized by means of (physically consistent) transmission conditions, imposed on the interface between10
the domains, modeling different pores configurations. For the space discretization we introduce and11
analyze a high-order discontinuous Galerkin method on polygonal and polyhedral meshes, which is12
then coupled with Newmark-β time integration schemes. A stability analysis for both the continuous13
and semi-discrete problem is presented and error estimates for the energy norm are derived for the14
semi-discrete one. A wide set of numerical results obtained on test cases with manufactured solutions15
are presented in order to validate the error analysis. Examples of physical interest are also presented16
to investigate the capability of the proposed methods in practical scenarios.17
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1. Introduction. The paper deals with the numerical analysis of the coupled21

poro-elasto-acoustic differential problem modeling an acoustic/sound wave impacting22

a poroelastic medium and consequently propagating through it. Coupled poro-elasto-23

acoustic problems model the combined propagation of pressure and elastic waves24

through a porous material. Pressure waves propagate through the saturating fluid25

inside pores, while acoustic ones through the porous skeleton. The theory of propa-26

gation of acoustic waves with application to poroelasticity has been developed mainly27

by Biot [14] in 1956, by introducing general equations and proposing different ways28

to treat coupling between acoustic and poro-elastic domains. Pioneering advances29

of Biot’s theory concerned with slow compressional waves, whose study carried on30

the analysis on fast compressional waves, introduced in 1944 by Frenkel. Coupled31

poro-elasto-acoustic models find application in many science and engineering fields.32

For example, in acoustic engineering, for the study of sound propagation through33

acoustic panels, whose main intent is to intercept and absorb acoustic waves for noise34

reduction [49]; in civil engineering, for the study of passive control and vibroacoustics,35

where plastic foams and fibrous or granular materials are mainly used with this intent36

[35]; in aeronautical engineering, where air-saturated porous materials are employed37

[22]; in biomedical engineering, for the study of ultrasound propagation throughout38

bones to diagnose osteoporosis and study its evolution [32] and to model soft tissues39

deformation, such as the heart tissue [33], the skin [39] and the aortic tissue [34].40
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Poro-elasto-acoustic models find a wide strand of literature also in computational41

geosciences: we refer the reader to [21] for a comprehensive review.42

In order to model the poroelastic domain, the concept of pores is necessary. Pores43

can be seen as ”holes” in the material where a fluid is able to move. They can be44

classified into open, sealed, and imperfect pores: the first ones share a part with the45

outer surface of the material, the second ones are totally locked in, while the latter46

ones represent an itermediate state between the former two, as shown in Figure 1a47

below. From the modeling viewpoint, the difference between them is the way in which48

interface conditions are formulated, as detailed later on.49

Concerning the numerical discretization of poro-elasto-acoustic models, we men-50

tion the Lagrange Multipliers method [44, 2, 29], the finite element method [13, 28]51

the spectral and pseudo-spectral element method [38, 45], the ADER scheme [25, 23],52

the finite difference method [36], and references therein.53

To accurately simulate wave propagation in coupled poro-elasto-acoustic domains54

the numerical scheme should take into account the following observations: (i) in the55

low-frequency range the evolution problem become stiff [25], and therefore, explicit56

time integration schemes might become computationally too demanding due to the57

strict stability constraint; (ii) the diffusive slow compressional waves are localized near58

the interfaces, and therefore, mesh refinements are needed to capture the phenomenon;59

(iii) an accurate geometrical description of the arbitrary complex interfaces is crucial;60

(iv) a proper representation of the hydraulic contact at the interfaces is also mandatory61

to correctly capture the physics of the problem.62

By taking into consideration the aforementioned difficulties, the aim of this paper63

is to propose and analyze a high-order discontinuous Galerkin method on polygonal64

and polyhedral grids (PolyDG) for the space discretization of a coupled poroelasto-65

acoustic problem, by extending the theory carried out in [4], where a coupled system66

of elasto-acoustic equations is analyzed. We point out that the geometric flexibility67

due to mild regularity requirements on the underlying computational mesh together68

with the arbitrary-order accuracy featured by the proposed PolyDG method are cru-69

cial within this context as they ensure at the same time a high-level of flexibility70

in the representation of the geometry and an intrinsic high-level of precision and71

scalability that are mandatory to correctly represent the solution fields. Moreover,72

in the proposed semi-discrete formulation, the coupling between the acoustic and73

the poroelastic domains is introduced by considering (physically consistent) interface74

conditions, naturally incorporated in the scheme.75

For early results in the field of dG methods we refer, for example, to [11, 7, 20,76

18, 24, 17] for second-order elliptic problems problems, to [16] for parabolic differ-77

ential equations, to [6] for flows in fractured porous media, to [3] for fluid structure78

interaction problems, cf. also [19] for a comprehensive monograph. In the framework79

of dG methods for hyperbolic problems we mention [43, 30] for scalar wave equation80

on simplex grids, while more recent dG discretizations on polytopic meshes can be81

found in [8] for elastodynamics problems, in [9] for non-linear sound waves and in82

[4, 5] for coupled elasto-acoustic problems. To the best of our knowledge, the present83

approach is proposed and analyzed here for the first time in the context of multi-84

physics poroelasto-acoustic problems, and it provides a flexible and accurate scheme85

that can be employed in real applications.86

The remaining part of the paper is structured as follows: in Section 2 we introduce87

the mathematical model, present the weak formulation of the problem, and prove88

suitable stability estimates. In Section 3 we introduce the PolyDG approximation and89

prove its stability. Section 4 is devoted to the analysis of the semi-discrete problem90
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(a) Pores classification in a
poroelastic domain.

(b) Ω = Ωp ∪ Ωa.

Fig. 1: (1a) Pores clas-
sification in a poroelas-
tic domain: sealed (1),
open (2) and imperfect
(3) pores. (1b) Simplified
graphic representation of
the domain Ω = Ωp ∪ Ωa
for d = 2.

and the proof of hp−version a-priori error estimates. The time integration schemes91

are introduced in Section 5. In Section 6 we present some two-dimensional numerical92

experiments to validate the theoretical results and show the performances of the93

proposed method in examples of physical interest. Finally, in Section 7 we draw some94

conclusions. The existence and uniqueness for the strong formulation of the problem95

and additional technical results are established in Appendix A.96

2. The physical model and governing equations. Let Ω ⊂ Rd, d = 2, 3,
be an open, convex polygonal/polyhedral domain decomposed as the union of two
disjoint, polygonal/polyhedral subdomains: Ω = Ωp∪Ωa, representing the poroelastic
and the acoustic domains, respectively, cf. Figure 1b. The two subdomains share part
of their boundary, resulting in the interface ΓI = ∂Ωp ∩ ∂Ωa. The boundary of Ω is
denoted by ∂Ω, and we set ∂Ωp = ΓpD ∪ ΓI and ∂Ωa = ΓaD ∪ ΓI , with ΓpD ∩ ΓI = ∅
and ΓaD∩ΓI = ∅. Surface measures of ∂Ω, ∂Ωp, ∂Ωa and ΓI are assumed to be strictly
positive. The outer unit normal vectors to ∂Ωp and ∂Ωa are denoted by np and na,
respectively, so that np = −na on ΓI . In the following, for X ⊆ Ω, the notation
L2(X) is adopted in place of [L2(X)]d, with d ∈ {2, 3}. The scalar product in L2(X)
is denoted by (·, ·)X , with associated norm ‖ · ‖X . Similarly, H`(X) is defined as
[H`(X)]d, with ` ≥ 0, equipped with the norm ‖ · ‖`,X , assuming conventionally that
H0(X) ≡ L2(X). In addition we will use H(div, X) to denote the space of L2(X)
functions with square integrable divergence. In order to take into account essential
boundary conditions, we also introduce the zero-trace subspaces, defined as

H1
0 (Ωa) = {ψ ∈ H1(Ωa) |ψ|ΓaD = 0},

H1
0 (Ωp) = {v ∈H1(Ωp) |v|ΓpD = 0},

H0(div,Ωp) = {z ∈H(div,Ωp) | (z · np)|ΓpD = 0}.

Given k ∈ N and a Hilbert space H, the usual notation Ck([0, T ];H) is adopted for97

the space of H-valued functions, k-times continuously differentiable in [0, T ]. The98

notation x . y stands for x ≤ Cy, with C > 0, independent of the discretization99

parameters, but possibly dependent on physical coefficients and the final time T .100

2.1. The poro-elasto-acoustic problem. To model wave propagation in a101

poro-elastic domain Ωp we consider the two-displacement formulation of [37], written102

in the solid and filtration displacements, denoted by u and w, respectively. For a103
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final observation time T > 0, we consider the low-frequency Biot’s equations:104

(2.1)

ρü+ ρf ẅ −∇ · σ = fp, in Ωp × (0, T ],

ρf ü+ ρwẅ + η
k ẇ +∇p = gp, in Ωp × (0, T ].

105

Here, the average density ρ is given by ρ = φρf + (1− φ)ρs, where ρs > 0 is the solid106

density, ρf > 0 is the saturating fluid density, ρw is defined as ρw = a
φρf , being φ the107

porosity satisfying 0 < φ0 ≤ φ ≤ φ1 < 1, and being a > 1 the tortuosity measuring108

the deviation of the fluid paths from straight streamlines, cf. [46]. In (2.1), η > 0109

represents the dynamic viscosity of the fluid and k > 0 is the absolute permeability.110

Remark 2.1. As observed in [23], the second equation in (2.1) is valid under a111

constraint on frequencies, i.e. the spectrum of the waves has to lie in the low-frequency112

range. In what follows, we only consider frequencies lower than fc = ηφ/(2πakρf ).113

In Ωp, we assume the following constitutive laws for the stress σ and pressure p:114

σ(u, p) = C : ε(u)− βpI, p(u,w) = −m(β∇ · u+∇ ·w),(2.2)115116

where the strain tensor ε(·) is defined as ε(u) = 1
2 (∇u+∇uT ), and C is the fourth-117

order, symmetric and uniformly elliptic elasticity tensor defined by118

C : τ = 2µτ + λtr(τ ), for all τ ∈ Rd×d,119

with tr(τ ) =
∑d

i=1 τii. Here, λ ≥ 0 and µ ≥ µ0 > 0 are the Lamé coefficients of the120

elastic skeleton. In (2.2), the Biot–Willis coefficient β and Biot modulus m are such121

that φ < β ≤ 1 and m ≥ m0 > 0. It can be shown that the dilatation coefficients122

of the saturated matrix corresponds to λf = λ + β2m. By plugging the constitutive123

laws (2.2) into (2.1), we obtain the two-displacement formulation124

(2.3)

{
ρü+ ρf ẅ −∇ · (C : ε(u))− β2m∇(∇ · u)− βm∇(∇ ·w) = fp,

ρf ü+ ρwẅ + η
k ẇ − βm∇(∇ · u)−m∇(∇ ·w) = gp.

125

126

Remark 2.2. We point out that the (u,w) formulation (2.3) is not the unique127

possible choice. For example, one could write the equations considering the velocity128

of the solid skeleton u̇ and the filtration velocity ẇ as unknowns, cf. [23], or consider129

a velocity-pressure (u, p) formulation, as in [2, 12, 15, 41]. Here, the two-displacement130

formulation turns out to be convenient in view of the coupling conditions stated below.131

In the fluid domain Ωa, we consider an acoustic wave with constant velocity c > 0132

and mass density ρa > 0. For a given source term fa, the acoustic potential ϕ satisfies133

(2.4) c−2ϕ̈− ρ−1
a ∇ · (ρa∇ϕ) = fa, in Ωa × (0, T ].134

Finally, we discuss the transmission conditions on ΓI . The poro-elasto-acoustic cou-135

pling is realized through interface conditions, cf. [31], expressing the continuity of136

normal stresses and conservation of mass. The continuity of the pressure is prescribed137

by writing the acoustic potential in terms of a pressure. Thus, on ΓI we impose138

−σnp = ρaϕ̇np,(2.5)139

(u̇+ ẇ) · np = −∇ϕ · np,(2.6)140
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τ [p] = (1− τ)ẇ · np,(2.7)141142

where [·] denotes the jump operator at the interface ΓI , i.e. [p] = p(u,w)−pa(ϕ) with143

pa(ϕ) = ρaϕ̇, and 0 ≤ τ ≤ 1 is the hydraulic permeability at the interface and models144

both open, sealed, and imperfect pores, cf. Figure 1a. The stress tensor σ and the145

pressure p(u,w) obey the constitutive equations (2.2). If τ = 1 (open pores), equation146

(2.7) reduces to the continuity of pressure at the interface, that is p(u,w) = ρaϕ̇. If147

τ = 0 (sealed pores), (2.7) simplifies to ẇ · np = 0, that implies that (2.6) imposes a148

continuity only on the solid velocity, namely u̇ ·np = −∇ϕ ·np. If τ ∈ (0, 1) (imperfect149

pores) then an intermediate state between open and sealed pores occurs.150

Supplementing the constitutive equations with suitable boundary conditions (here151

supposed for simplicity to be of homogeneous Dirichlet type), the poro-elasto-acoustic152

problem reads as: for any t ∈ (0, T ], find (u,w, ϕ) : Ωp × Ωp × Ωa → R such that:153

(2.8)

ρü+ ρf ẅ −∇ · (C : ε(u))− βm∇(β∇ · u+∇ ·w) = fp, in Ωp,

ρf ü+ ρwẅ +
η

k
ẇ −m∇(β∇ · u+∇ ·w) = gp, in Ωp

ρac
−2ϕ̈−∇ · (ρa∇ϕ) = ρafa in Ωa,

−(C : ε(u) + βm(β∇ · u+∇ ·w)I)np = ρaϕ̇np, on ΓI ,

(u̇+ ẇ) · np = −∇ϕ · np, on ΓI ,

−m(β∇ · u+∇ ·w)− τ−1(1− τ)ẇ · np = ρaϕ̇, on ΓI ,

154

together with initial conditions u(·, 0) = u0, w(·, 0) = w0, u̇(·, 0) = u1, ẇ(·, 0) = w1,155

in Ωp and ϕ(·, 0) = ϕ0, ϕ̇(·, 0) = ϕ1 in Ωa. Notice that the acoustic equation has been156

multiplied by ρa. The existence and uniqueness of a strong solution to (2.8) is proved157

in Appendix A by employing the semigroup theory.158

2.2. Weak formulation and stability estimates. In order to derive a unified159

analysis for 0 ≤ τ ≤ 1, we introduce the space160

(2.9) Wτ =


H0(div,Ωp), if τ = 1,

{z ∈H0(div,Ωp) | ζ(τ)
1
2 (z · np)|ΓI ∈ L2(ΓI)}, if τ ∈ (0, 1),

{z ∈H0(div,Ωp) | (z · np)|ΓI = 0}, if τ = 0,

161

equipped with the norm ‖ · ‖Wτ
defined, for all z ∈Wτ , as162

(2.10)

‖z‖Wτ = ‖z‖Ωp +‖∇·z‖Ωp +‖ζ(τ)
1
2 z ·np‖ΓI , with ζ(τ) =

{
1−τ
τ for τ ∈ (0, 1],

0 for τ = 0.
163

We also define the Hilbert space H = H1
0 (Ωp)×Wτ×H1

0 (Ωa) and Ω∗ = Ωp×Ωp×Ωa.164

The weak form of (2.8) reads as: for any t ∈ (0, T ], find (u,w, ϕ)(t) ∈ H s.t.165
166

(2.11) M((ü, ẅ, ϕ̈), (v, z, ψ)) +A((u,w, ϕ), (v, z, ψ)) + B(ẇ, z)167

+ Cp(ϕ̇,v + z) + Ca(u̇+ ẇ, ψ) = ((fp, gp, ρafa), (v, z, ψ))Ω∗168169

for all (v, z, ψ) ∈ H, where for any U = (u,w, ϕ),V = (v, z, ψ) ∈ H we have set170

(2.12)
M(U,V) = (ρu+ ρfw,v)Ωp + (ρfu+ ρww, z)Ωp + (ρac

−2ϕ,ψ)Ωa ,

A(U,V) = (C : ε(u), ε(v))Ωp + (m∇ · (βu+w),∇ · (βv + z))Ωp + (ρa∇ϕ,∇ψ)Ωa ,

B(w, z) = (ηk−1w, z)Ωp + (ζ(τ)w · np, z · np)ΓI ,

Cp(ϕ, z) = 〈ρaϕ, z · np〉ΓI = −Ca(z, ϕ),

171
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with ζ(τ) defined in (2.10). Notice that, if τ = 0, the terms Cp(ϕ̇, z) and Ca(ẇ, ψ) in172

(2.11) are null thanks to the definition of Wτ which strongly enforces condition (2.7).173

Before presenting a stability estimate for the solution of problem (2.11) we define,174

for all U = (u,w, ϕ) ∈ C1([0, T ];L2(Ω?)) ∩ C0([0, T ];H), the energy norm175

(2.13) ‖U‖2E = max
t∈[0,T ]

‖U(t)‖2E = max
t∈(0,T ]

(
M(U̇, U̇)(t) +A(U,U)(t) + B(w,w)(t)

)
.176

As a result of the next Lemma, ‖ · ‖E is a norm on C1([0, T ];L2(Ω?))∩C0([0, T ];H).177

Lemma 2.3. The bilinear forms M, A, and B defined in (2.12) are such that178

M(U,V) . ‖U‖Ω∗‖V‖Ω∗ ,(2.14)179

M(U,U) & ‖U‖2Ω∗
,(2.15)180

A(U,V) + B(w, z) . ‖u‖1,Ωp‖v‖1,Ωp + ‖w‖Wτ
‖z‖Wτ

+ ‖ϕ‖1,Ωa‖ψ‖1,Ωa ,(2.16)181

A(U,U) + B(w,w) & ‖u‖21,Ωp + ‖w‖2Wτ
+ ‖ϕ‖21,Ωa ,(2.17)182

183

for any U = (u,w, ϕ),V = (v, z, ψ) ∈ H.184

Proof. Inequalities (2.14) and (2.16) are readily inferred by applying the Cauchy–
Schwarz and triangle inequalities, while (2.15) is obtained by noting that ρρw−ρ2

f > 0

and ρac
−2 > 0. The last inequality (2.17) represents the H-coercivity of A(·, ·)+B(·, ·).

To prove this property we apply Poincaré’s and Korn’s inequalities in H1
0 (Ωa) and

H1
0 (Ωp), respectively, to infer ‖u‖21,Ωp + ‖ϕ‖21,Ωa . A(U,U). Then, using the triangle

inequality and recalling definition (2.10) of the Wτ -norm we get

‖w‖2Wτ
. ‖∇ · (βu+w)‖2Ωp + ‖β∇ · u‖2Ωp + B(w,w) . A(U,U) + B(w,w)

and the conclusion follows.185

Theorem 2.4 (Stability of the continuous weak formulation). Assume that the186

problem data satisfy (fp, gp, ρafa) ∈ L2((0, T );L2(Ω∗)), U(0) = (u0,w0, ϕ0) ∈ H, and187

U̇(0) = (u1,w1, ϕ1) ∈ L2(Ω∗). For any t ∈ (0, T ], let U(t) = (u,w, ϕ)(t) ∈ H be the188

solution of (2.11). Then, it holds189

‖U(t)‖2E . ‖U(0)‖2E +

∫ T

0

‖(fp, gp, ρafa)(s)‖2Ω∗
ds,190

with the hidden constant depending on the observation time t ≤ T and on the material191

properties, but independent of τ .192

Proof. Taking U̇ = (u̇, ẇ, ϕ̇) as test functions in (2.11), using Ca(u̇ + ẇ, ϕ̇) +
Cp(ϕ̇, u̇+ ẇ) = 0, and integrating in time between 0 and t ≤ T , it is inferred that

M(U̇, U̇)(t)+A(U,U)(t)+

∫ t

0

2B(ẇ, ẇ) ds =M(U̇, U̇)(0)+A(U,U)(0)+

∫ t

0

2(F, U̇)Ω∗ ds,

where we have adopted the abridged notation F = (fp, gp, ρafa). Hence, applying the
Cauchy–Schwarz and Young inequalities to bound the third term in the right-hand
side, using that B(w,w)(t) ≤ B(w,w)(0) +

∫ t
0
B(ẇ, ẇ)(s) ds, and recalling definition

(2.13) of the energy norm, for all t ∈ (0, T ] one has

‖U(t)‖2E . ‖U(0)‖2E +

∫ t

0

‖F(s)‖2Ω∗
ds+

∫ t

0

‖U̇(s)‖2Ω∗
ds.

Finally, owing to (2.14), we obtain ‖U̇‖2Ω∗
. ‖U‖2E , so that the thesis follows by193

applying the Gronwall’s Lemma [42].194
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3. The semi-discrete formulation and its stability analysis. We introduce195

a polytopic mesh Th made of general polygons (in 2d) or polyhedra (in 3d) and write196

Th as Th = T ph ∪T ah , where T #
h = {κ ∈ Th : κ ⊆ Ω#}, with # = {p, a}. Implicit in this197

decomposition there is the assumption that the meshes T ah and T ph are aligned with198

Ωa and Ωp, respectively. Polynomial degrees pp,κ ≥ 1 and pa,κ ≥ 1 are associated199

with each element of T ph and T ah , respectively. The discrete spaces are introduced as200

follows: V p
h = [Ppp(T ph )]d and V ah = Ppa(T ah ), where Pr(T #

h ) is the space of piecewise201

polynomials in Ω# of degree less than or equal to r in any κ ∈ T #
h with # = {p, a}.202

In the following, we assume that C, ρa and m are element-wise constant and203

we define Cκ = (|C1/2|22)|κ, mκ = (m)|κ for all κ ∈ T ph and ρa,κ = ρa|κ for all204

κ ∈ T ah . The symbol | · |2 stands for the `2-norm on Rn×n, with n = 3 if d = 2205

and n = 6 if d = 3. In order to deal with polygonal and polyhedral elements, we206

define an interface as the intersection of the (d − 1)-dimensional faces of any two207

neighboring elements of Th. If d = 2, an interface/face is a line segment and the208

set of all interfaces/faces is denoted by Fh. When d = 3, an interface can be a209

general polygon that we assume could be further decomposed into a set of planar210

triangles collected in the set Fh. We decompose Fh as Fh = FIh ∪ F
p
h ∪ Fah , where211

FIh = {F ∈ Fh : F ⊂ ∂κp ∩ ∂κa, κp ∈ T ph , κa ∈ T ah }, and Fph and Fah denote all the212

faces of T ph and T ah , respectively, not laying on ΓI . Finally, the faces of T ph and T ah can213

be further written as the union of internal (i) and boundary (b) faces, respectively,214

i.e.: Fph = Fp,ih ∪ F
p,b
h and Fah = Fa,ih ∪ F

a,b
h .215

Following [19], we next introduce the main assumption on Th.216

Definition 3.1. A mesh Th is said to be polytopic-regular if for any κ ∈ Th,217

there exists a set of non-overlapping d-dimensional simplices contained in κ, denoted218

by {SFκ }F⊂∂κ, such that for any face F ⊂ ∂κ, the following condition holds:219

(3.1) hκ . d|SFκ | |F |−1.220

Assumption 3.1. The sequence of meshes {Th}h is assumed to be uniformly poly-221

topic regular in the sense of Definition 3.1.222

As pointed out in [19], this assumption does not impose any restriction on either the223

number of faces per element nor their measure relative to the diameter of the element224

they belong to. Under Assumption 3.1, the following trace-inverse inequality holds:225

||v||L2(∂κ) . ph−1/2
κ ||v||L2(κ) ∀ κ ∈ Th ∀v ∈ Pp(κ).(3.2)226227

In order to avoid technicalities, we also make the following assumption.228

Assumption 3.2. For any pair of neighboring elements κ± ∈ Th. The following229

hp-local bounded variation property holds: hκ+ . hκ− . hκ+ , pκ+ . pκ− . pκ+ .230

Finally, following [10], for sufficiently piecewise smooth scalar-, vector- and tensor-231

valued fields ψ, v and τ , respectively, we define the averages and jumps on each232

interior face F ∈ Fp,ih ∪ F
a,i
h ∪ FIh shared by the elements κ± ∈ T ph as follows:233

JψK = ψ+n+ + ψ−n−, JvK = v+ ⊗ n+ + v− ⊗ n−, JvKn = v+ · n+ + v− · n−,234

{{ψ}} =
ψ+ + ψ−

2
, {{v}} =

v+ + v−

2
, {{τ}} =

τ+ + τ−

2
,235

236

where ⊗ is the tensor product in R3, ·± denotes the trace on F taken within κ±, and237

n± is the outer normal vector to ∂κ±. Accordingly, on boundary faces F ∈ Fp,bh ∪F
a,b
h ,238

we set JψK = ψn, {{ψ}} = ψ, JvK = v ⊗ n, JvKn = v · n, {{v}} = v, {{τ}} = τ .239

This manuscript is for review purposes only.



8 P. F. ANTONIETTI, M.BOTTI, I. MAZZIERI, AND S. NATI POLTRI

3.1. Semi-discrete PolyDG formulation. We are now ready to introduce the240

semi-discrete formulation: for t ∈ (0, T ], find (uh,wh, ϕh)(t) ∈ V p
h × V

p
h × V ah , s.t.241

242

(3.3) M((üh, ẅh, ϕ̈h), (vh, zh, ψh)) +Ah((uh,wh, ϕh), (vh, zh, ψh)) + B(ẇh, zh)243

+ Cph(ϕ̇h,vh + zh) + Cah(u̇h + ẇh, ψh) = ((fp, gp, ρafa), (vh, ξh, ψh))Ω∗244245

for all (vh, ξh, ψh) ∈ V p
h × V

p
h × V ah . As initial conditions we take the L2-orthogonal246

projections onto (V p
h × V

p
h × V ah )2 of the initial data (u0,w0, ϕ0,u1,w1, ϕ1). We247

define ∇h and ∇h· to be the broken gradient and divergence operators, respectively,248

set εh(v) = ∇hv+∇hvT
2 , σh(v) = C : εh(v), and use the short-hand notation (·, ·)Ω#

=249 ∑
κ∈T #

h

∫
κ
· and 〈·, ·〉F#

h
=
∑
F∈F#

h

∫
F
· for # = {a, p}. Then, for all u,v,w, z ∈ V p

h250

and ϕ,ψ ∈ V ah , the bilinear forms appearing in the above formulation are given by251

Ah((u,v, ϕ), (v, z, ψ)) = Aeh(u,v) +Aph(βu+w, βv + z) +Aah(ϕ,ψ),(3.4)252

Cph(ϕ,v) = 〈ρaϕ,v · np〉FIh = −Cah(v, ϕ),(3.5)253
254

with255

Aeh(u,v) = (σh(u), εh(v))Ωp − 〈{{σh(u)}}, JvK〉Fph
− 〈JuK, {{σh(v)}}〉Fph + 〈αJuK, JvK〉Fph ,

Aph(w, z) = (m∇h ·w,∇h · z)Ωp−〈{{m(∇h ·w)}}, JzKn〉F?h
− 〈JwKn, {{m(∇h · z)}}〉F?h + 〈γJwKn, JzKn〉F?h ,

Aah(ϕ,ψ) = (ρa∇hϕ,∇hψ)Ωa − 〈{{ρa∇hϕ}}, JψK〉Fah
− 〈JϕK, {{ρa∇hψ}}〉Fah + 〈χJϕK, JψK〉Fah ,

256

and F?h = Fph in the case τ ∈ (0, 1], while F?h = Fph ∪ FIh in the case τ = 0. The257

stabilization functions α ∈ L∞(Fph), γ ∈ L∞(Fph) and χ ∈ L∞(Fah), are defined s.t.258

α|F =

c1 max
κ∈{κ+,κ−}

(
Cκ p2

p,κh
−1
κ

)
∀F ∈ Fp,ih , F ⊆ ∂κ+ ∩ ∂κ−,

Cκ p2
p,κh

−1
κ ∀F ∈ Fp,bh , F ⊆ ∂κ,

(3.6)259

260

γ|F =

c2 max
κ∈{κ+,κ−}

(
mκ p

2
p,κh

−1
κ

)
∀F ∈ Fp,ih , F ⊆ ∂κ+ ∩ ∂κ−,

mκ p
2
p,κh

−1
κ ∀F ∈ Fp,bh ∪ FIh , F ⊆ ∂κ,

(3.7)261

262

χ|F =

c3 max
κ∈{κ+,κ−}

(
ρa,κ p

2
a,κh

−1
κ

)
∀F ∈ Fa,ih , F ⊆ ∂κ+ ∩ ∂κ−,

ρa,κ p
2
a,κh

−1
κ ∀F ∈ Fa,bh , F ⊆ ∂κ,

(3.8)263

264

with c1, c2, c3 > 0 positive constants, to be properly chosen. The definition of the265

penalty functions (3.6)–(3.8) is based on [19, Lemma 35]. With this choice, the bilinear266

forms in (3.6) are symmetric and coercive, cf. Lemma A.3. Alternative stabilization267

functions can be defined in the spirit of [1]. The analysis of the latter is however268

beyond the scope of this work. See also [26] for the elliptic case.269

By fixing a basis for V p
h and V ah and denoting by (U , W ,Φ) the vector of the270

expansion coefficients in the chosen basis of the unknowns uh, wh and ϕh, respectively,271

the semi-discrete formulation (3.3) can be written equivalently as:272
273
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(3.9)

 ρMp ρfM
p 0

ρfM
p ρwM

p 0
0 0 ρac

−2Ma

 ÜẄ
Φ̈

+

 0 0 Cp

0 B Cp

Ca Ca 0

 U̇Ẇ
Φ̇

274

+

Ae + β2Ap βAp 0
βAp Ap 0

0 0 Aa

UW
Φ

 =

F pGp

F a

275

276

with initial conditions U(0) = U0, W (0) = W0, Φ(0) = Φ0, U̇(0) = U1, Ẇ (0) = W1,277

Φ̇(0) = Φ1. We remark that F p, Gp and F a are the vector representations of the278

linear functionals (fp,vh)Ωp , (gp, ξh)Ωp and (ρafa, ψh)Ωa , respectively.279

3.2. Stability analysis. To carry out the stability analysis of the semi-discrete280

problem, we introduce the energy norm281

282

(3.10) ‖(v, z, ψ)(t)‖2E =M((v̇, ż, ψ̇), (v̇, ż, ψ̇))(t) + B(z, z)(t)283

+ ‖v(t)‖2dG,e + |(βv + z)(t)|2dG,p + ‖ψ(t)‖2dG,a284285

for all (v, z, ψ) ∈ C1([0, T ];V p
h × V

p
h × V ah ), where286

‖v‖2dG,e = ‖C1/2 : εh(v)‖2Ωp + ‖α1/2JvK‖2Fph ∀v ∈ V p
h ,287

|z|2dG,p = ‖m1/2∇h · z‖2Ωp + ‖γ1/2JzKn‖2F?h ∀z ∈ V p
h ,288

‖ψ‖2dG,a = ‖ρa1/2∇hψ‖2Ωa + ‖χ1/2JψK‖2Fah ∀ψ ∈ V ah .289
290

291

Remark 3.2. The notation | · |dG,p is used instead of ‖ · ‖dG,p in order to highlight292

that | · |dG,p : V p
h → R+ is a seminorm. However, by proceeding as in the proof of293

(2.17), we can show that ‖v‖2dG,e + |βv + z|2dG,p + B(z, z) is a norm on V p
h × V

p
h .294

Remark 3.3. Notice that the norm defined in (3.10) represents the mechanical295

energy of the poroelasto-acoustic system. We observe that in the case of null external296

forces, i.e., fp = gp = 0 and fa = 0, estimate (3.11) reduces to ‖(uh,wh, ϕh)(t)‖E .297

‖(uh,wh, ϕh)(0)‖E for any t > 0, namely the dG formulation (3.3) is dissipative.298

The main stability result is stated in the following theorem.299

Theorem 3.4 (Stability of the semi-discrete formulation). Let Assumption 3.1300

and Assumption 3.2 be satisfied. For sufficiently large penalty parameters c1, c2 and301

c3 in (3.6), (3.7) and (3.8), respectively, let (uh,wh, ϕh)(t) ∈ V p
h × V

p
h × V ah be the302

solution of (3.3) for any t ∈ (0, T ]. Then, it holds303

(3.11) ‖(uh,wh, ϕh)(t)‖E . ‖(uh,wh, ϕh)(0)‖E +

∫ t

0

‖(fp, gp, ρafa)(s)‖2Ω∗
ds,304

where the hidden constant depends on time t and on the material properties, but is305

independent of τ .306

Proof. By taking (vh, zh, ψh) = (u̇h, ẇh, ϕ̇h) ∈ V p
h ×V

p
h × V ah in (3.3) and using307

the skew-symmetry of the coupling bilinear forms (3.5), we obtain308

309

1

2

d

dt

[
M((u̇h, ẇh, ϕ̇h), (u̇h, ẇh, ϕ̇h)) +Ah((uh,vh, ϕh), (uh,vh, ϕh))

]
310
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+ B(ẇh, ẇh) = ((fp, gp, ρafa), (u̇h, żh, ϕ̇h))Ω∗ .311312

Thus, integrating in time between 0 and t ≤ T , recalling definition (3.4) of Ah, using313

the coercivity results of Lemma A.3, and reasoning as in the proof of Theorem 2.4,314

one can easily obtain the thesis.315

4. Error analysis for the semi-discrete formulation. In this section we316

prove an a-priori error estimate for the semi-discrete problem (3.3). We first observe317

that by setting, for any time t ∈ (0, T ], eu(t) = (u − uh)(t), ew(t) = (w − wh)(t),318

and eϕ(t) = (ϕ − ϕh)(t) and by using the strong consistency of the semi-discrete319

formulation (3.3), the error equation reads as follows320

321

(4.1) M((ëu, ëw, ëϕ), (v, z, ψ)) +Ah((eu, ew, eϕ), (v, z, ψ)) + B(ėw, z)322

+ Cph(ėϕ,v + z) + Cah(ėu + ėw, ψ) = 0323324

for any (v, z, ψ) ∈ V p
h × V

p
h × V ah . Next, we introduce the following definition and a325

further mesh assumption; cf [20, 19].326

Definition 4.1. A covering T§ = {K} of the polytopic mesh Th is a set of regular327

shaped d-dimensional simplices K, d = 2, 3, s.t. ∀ κ ∈ Th, ∃ K ∈ T§ s.t. κ ⊆ K.328

Assumption 4.1. Any mesh Th admits a covering T§ in the sense of Defini-329

tion 4.1 such that i) maxκ∈Th card{κ′ ∈ Th : κ′ ∩ K 6= ∅, K ∈ T§ s.t. κ ⊂ K} . 1 and330

ii) hK . hκ for each pair κ ∈ Th, K ∈ T§ with κ ⊂ K.331

We also introduce the norm332

(4.2) |||(v, z, ψ)|||2E =M((v̇, ż, ψ̇), (v̇, ż, ψ̇)) + |||(v, z, ψ)|||2dG + B(z, z),333

where the seminorm |||(v, z, ψ)|||2dG = |||v|||2dG,e + |||z|||2dG,p + |||ψ|||2dG,a is defined by334

|||v|||2dG,e = ‖v‖2dG,e + ‖α−1/2{{C : εh(v)}}‖2Fph ∀v ∈H2(T ph ),335

|||z|||2dG,p = |z|2dG,p + ‖γ−1/2{{(m∇h · z)}}‖2F?h ∀z ∈H2(T ph ),336

|||ψ|||2dG,a = ‖ψ‖2dG,a + ‖χ−1/2{{ρa∇hψ}}‖2Fah ∀ψ ∈ H2(T ah ).337
338

For an open bounded polytopic domain Σ ⊂ Rd and a generic polytopic mesh Th339

over Σ satisfying Assumption 4.1, as in [20], we can introduce the Stein extension340

operator Ẽ : Hm(κ)→ Hm(Rd) [47], for any κ ∈ Th and m ∈ N0, such that Ẽv|κ = v341

and ‖Ẽv‖m,Rd . ‖v‖m,κ. The corresponding vector-valued version mapping Hm(κ)342

onto Hm(Rd) acts component-wise and is denoted in the same way. In what follows,343

for any κ ∈ Th, we will denote by Kκ the simplex belonging to T§ such that κ ⊂ Kκ.344

In order to handle the case of small interface permeability, i.e. 0 < τ << 1, we345

make an additional assumption on the discretization. This requirement is consistent346

with the observations of [23], showing that there is a threshold value τ such that the347

results for τ ≤ τ cannot be distinguished from the sealed pores case τ = 0.348

Assumption 4.2. In the case τ ∈ (0, 1), for each F ∈ FIh and κ ∈ T ph such349

that F ⊂ ∂κ ∩ ΓI , it holds ζ(τ) = τ−1(1 − τ) . h−1
κ p2

p,κ, with the hidden constant350

independent of τ . We point out that this assumption is used only for the following351

theoretical results but it is not needed in practice, cf. Section 6.352

The next Lemma provides the interpolation bounds that are instrumental for the353

derivation of the a-priori error estimate.354
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Lemma 4.2. For any (v, z, ψ) ∈Hm(T ph )×H`(T ph )×Hn(T ah ), with m, `, n ≥ 2,355

there exists (vI , zI , ψI) ∈ V p
h × V

p
h × V ah such that356

|||v − vI |||2dG,e .
∑
κ∈T ph

h
2(sκ−1)
κ

p2m−3
p,κ

‖Ẽv‖2m,Kκ ,357

|||z − zI |||2dG,p .
∑
κ∈T ph

h
2(rκ−1)
κ

p2`−3
p,κ

‖Ẽz‖2`,Kκ ,358

|||ψ − ψI |||2dG,a .
∑
κ∈T ah

h
2(qκ−1)
κ

p2n−3
a,κ

‖Ẽψ‖2n,Kκ ,359

360

where sκ = min(m, pp,κ+1), rκ = min(`, pp,κ+1) and qκ = min(n, pa,κ+1). Moreover,361

if (u,w, ϕ) ∈ C1([0, T ]; Hm(T ph )×H`(T ph )×Hn(T ah )), with m, `, n ≥ 2, there exists362

(uI ,wI , ϕI) ∈ C1([0, T ];V p
h × V

p
h × V ah ) s.t.:363

(4.3)

|||(u− uI ,w −wI , ϕ− ϕI)|||2E .
∑
κ∈T ph

h
2(sκ−1)
κ

p2m−3
p,κ

(
‖Ẽu̇‖2m,Kκ + ‖Ẽu‖2m,Kκ

)

+
∑
κ∈T ph

h
2(rκ−1)
κ

p2`−3
p,κ

(
‖Ẽẇ‖2`,Kκ + ‖Ẽw‖2`,Kκ

)

+
∑
κ∈T ah

h
2(qκ−1)
κ

p2n−3
a,κ

(
‖Ẽϕ̇‖2n,Kκ + ‖Ẽϕ‖2n,Kκ

)
.

364

365

Proof. The first part of the proof readily follows by reasoning as in [4, Lemma366

5.1] and observing that ||| · |||dG,p . ||| · |||dG,e. To infer estimate (4.3), we resort to the367

hp-approximation properties stated in [19, Lemmas 23 and 33], implying368

369

M((u̇− u̇I , ẇ − ẇI , ϕ̇− ϕ̇I), (u̇− u̇I , ẇ − ẇI , ϕ̇− ϕ̇I))370

.
∑
κ∈T ph

(
h2sκ
κ

p2m
p,κ

‖Ẽu̇‖2m,Kκ +
h2rκ
κ

p2`
p,κ

‖Ẽẇ‖2`,Kκ

)
+
∑
κ∈T ah

h2qκ
κ

p2n
a,κ

‖Ẽϕ̇‖2n,Kκ ,371

372

and, owing to Assumption 4.2,

B(w −wI ,w −wI) .
∑

κp∈T Ih,p

p2
p,κp

hκp
‖(w −wI) · n‖2∂κp .

∑
κ∈T ph

h2rκ−2
κ

p2`−3
p,κ

‖Ẽw‖2`,Kκ .

373

We are now ready to state the main result of this section.374

Theorem 4.3 (A-priori error estimates). Let Assumption 3.1, Assumption 3.2,
Assumption 4.1, and Assumption 4.2 hold and let the exact solution U = (u,w, ϕ) of
problem (2.8) be such that

U ∈ C2([0, T ];Hm(T ph )×H`(T ph ))×Hn(T ah ))∩C1([0, T ];H1
0 (Ωp)×Wτ ×H1

0 (Ωa)),
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with m,n, ` ≥ 2 and let (uh,wh, ϕh) ∈ C2([0, T ];V p
h × V

p
h × V ah ) be the solution of375

the semi-discrete problem (3.3), with sufficiently large penalty parameters c1, c2 and376

c3. Then, for any t ∈ (0, t], the discretization error E(t) = (eu, ew, eϕ)(t) satisfies377

‖E(t)‖E .
∑
κ∈T ph

hsκ−1
κ

p
m−3/2
p,κ

(
‖Ẽu̇‖m,Kκ+ ‖Ẽu‖m,Kκ+

∫ t

0

[
‖Ẽü‖m,Kκ + ‖Ẽu̇‖m,Kκ

]
(s) ds

)
378

+
∑
κ∈T ph

hrκ−1
κ

p
`−3/2
p,κ

(
‖Ẽẇ‖`,Kκ + ‖Ẽw‖`,Kκ +

∫ t

0

[
‖Ẽẅ‖`,Kκ + ‖Ẽẇ‖`,Kκ

]
(s) ds

)
379

+
∑
κ∈T ah

hqκ−1
κ

p
n−3/2
a,κ

(
‖Ẽϕ̇‖n,Kκ + ‖Ẽϕ‖n,Kκ +

∫ t

0

[
‖Ẽϕ̈‖n,Kκ + ‖Ẽϕ̇‖n,Kκ

]
(s) ds

)
,380

381

where the hidden constant depends on time t and on the material properties, but is382

independent of the discretization parameters and of τ .383

Proof. For any time t ∈ (0, T ], let (uI ,wI , ϕI)(t) ∈ V p
h × V

p
h × V ah be the inter-384

polants defined in Lemma 4.2. We split the error as E(t) = EI(t)−Eh(t), where385

EI(t) = (euI , e
w
I , e

ϕ
I )(t) = (u− uI ,w −wI , ϕ− ϕI)(t),386

Eh(t) = (euh, e
w
h , e

ϕ
h)(t) = (uh − uI ,wh −wI , ϕh − ϕI)(t).387388

From the triangle inequality we have ‖E(t)‖2E ≤ ‖Eh(t)‖2E+‖EI(t)‖2E, and Lemma 4.2389

can be used to bound the term ‖EI(t)‖E. As for the term ‖Eh(t)‖E, by taking390

(v, ξ, ψ) = (ėuh, ė
w
h , ė

ϕ
h) ∈ V p

h ×V
p
h ×V ah as test functions in (4.1), taking into account391

that E = EI − Eh, neglecting the coupling terms thanks to skew-symmetry and392

collecting a first time derivative, identity (4.1) can be rewritten as393
394

(4.4)
1

2

d

dt

(
M(Ėh, Ėh) +Ah(Eh,Eh)

)
+ B(ėwh , ė

w
h ) =M(ËI , Ėh)−Ah(ĖI ,Eh)395

+
d

dt
Ah(EI ,Eh) + B(ėwI , ė

w
h ) + Cph(ėϕI , ė

u
h + ėwh ) + Cah(ėuI + ėwI , ė

ϕ
h),396

397

where we have used Leibniz’s rule on the term Ah(EI , Ėh). Integrating (4.4) between398

0 and t ≤ T and observing that Eh(0) = (euh(0), ewh (0), eϕh(0)) = 0, it is inferred that399
400

M(Ėh, Ėh)(t) +Ah(Eh,Eh)(t) + 2

∫ t

0

B(ėwh , ė
w
h )(s) ds401

= 2

∫ t

0

M(ËI , Ėh)(s) ds− 2

∫ t

0

Ah(ĖI ,Eh)(s) ds+ 2

∫ t

0

B(ėwI , ė
w
h )(s) ds402

+ 2Ah(EI ,Eh)(t) + 2

∫ t

0

(Cph(ėϕI , ė
u
h + ėwh )(s) + Cah(ėuI + ėwI , ė

ϕ
h)(s)) ds.403

404

Applying the Cauchy–Schwarz and Young inequalities on the third and fourth terms405

in the right-hand side of the previous identity, we obtain406

(4.5)

1 =M(Ėh, Ėh)(t) +Ah(Eh,Eh)(t) +

∫ t

0

B(ėwh , ė
w
h )(s) ds

≤ 4

∫ t

0

M(ËI , Ėh)(s) ds− 4

∫ t

0

Ah(ĖI ,Eh)(s) ds+ 2

∫ t

0

B(ėwI , ė
w
I )(s) ds

+ 4Ah(EI ,EI)(t) + 4

∫ t

0

(Cph(ėϕI , ė
u
h + ėwh ) + Cah(ėuI + ėwI , ė

ϕ
h)) (s) ds = 2 .

407
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Now, using Lemma A.3 together with the fundamental theorem of calculus we estimate408

the left hand side as 1 ≥
(
M(Ėh, Ėh) +Ah(Eh,Eh) + B(ewh , e

w
h )
)

(t) = ‖Eh(t)‖2E.409

Plugging this into (4.5), using again the Young inequality and Lemma A.3 to bound410

the second and fourth terms in 2 , and recalling definition (4.2), yields411

(4.6)
‖Eh(t)‖2E ≤ 2

∫ t

0

‖Eh(s)‖2E +

|||ĖI(s)|||2E︷ ︸︸ ︷
(M(ËI , ËI) + |||ĖI |||

2

dG + B(ėwI , ė
w
I ))(s) ds

+ 4 |||EI(t)|||2dG + 4

∫ t

0

(Cph(ėϕI , ė
u
h + ėwh ) + Cah(ėuI + ėwI , ė

ϕ
h)) (s) ds.

412

Now, recalling the definitions of the coupling bilinear forms Cph and Cah and using the413

Cauchy-Schwarz inequality followed by the trace-inverse inequality (3.2), we infer414

Cph(ėϕI , ė
u
h + ėwh ) .

∑
F∈FIh

‖ρaėϕI ‖F ‖ė
u
h + ėwh ‖F .

∑
κp∈T Ih,p, κa∈T

I
h,a

‖ėϕI ‖∂κa‖ė
u
h + ėwh ‖∂κp415

.
∑

κp∈T Ih,p, κa∈T
I
h,a

pp,κph
−1/2
κp ‖ėϕI ‖∂κa(‖ėuh‖Ωp + ‖ėwh ‖Ωp)416

417

where, to infer the last bound, we have also used Assumption 3.2. Therefore, we have418

∫ t

0

Cph(ėϕI , ė
u
h + ėwh )(s) ds .

∫ t

0

 ∑
κ∈T Ih,a

pa,κh
−1/2
κ ‖ėϕI (s)‖∂κ

 (‖ėuh‖Ωp + ‖ėwh ‖Ωp)(s) ds419

def
=

∫ t

0

Iah(ėϕI (s)) (‖ėuh(s)‖Ωp + ‖ėwh (s)‖Ωp) ds.420
421

Proceeding in the same way, we can conclude that422

∫ t

0

Cah(ėuI + ėwI , ė
ϕ
h)(s) ds .

∫ t

0

 ∑
κ∈T Ih,p

pp,κh
−1/2
κ (‖ėuI ‖∂κ + ‖ėwI ‖∂κ)(s)

 ‖ėϕh(s)‖Ωa ds423

def
=

∫ t

0

(Iph(ėuI (s)) + Iph(ėwI (s)))‖ėϕh(s)‖Ωa ds,424
425

Collecting the two previous bounds and applying Young’s inequality together with426

inequality (2.15), it is inferred that427

428 ∫ t

0

(Cph(ėϕI , ė
u
h + ėwh ) + Cah(ėuI + ėwI , ė

ϕ
h)) (s) ds429

.
∫ t

0

|||Eh(s)|||2E ds+

∫ t

0

(
Iah(ėϕI )2 + Iph(ėuI )2 + Iph(ėwI )2

)
(s) ds.430

431

Hence, plugging the previous bound into (4.6) and using Gronwall’s Lemma, we get

‖Eh(t)‖2E . |||EI(t)|||2E +

∫ t

0

|||ĖI(s)|||
2

E ds+

∫ t

0

(
Iah(ėϕI )2 + Iph(ėuI )2 + Iph(ėwI )2

)
(s) ds,
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To estimate the terms on the right hand side, we make use of Lemma 4.2 and the432

following bounds inferred from [19, Lemma 33]:433

Iah(ėϕI )2 .
∑

κ∈T ah,I

h2qκ−2
κ

p2n−3
a,κ

‖Ẽϕ̇‖2n,Kκ434

Iph(ėuI )2 + Iph(ėwI )2 .
∑

κ∈T ph,I

h2sκ−2
κ

p2m−3
p,κ

‖Ẽu̇‖2m,Kκ +
∑

κ∈T ph,I

h2rκ−2
κ

p2`−3
p,κ

‖Ẽẇ‖2`,Kκ .435

436

As a result, the thesis follows.437

Corollary 4.4. Under the hypotheses of Theorem 4.3, assume that h ≈ hκ for438

any κ ∈ T ph ∪ T ah , pp,κ = p for any κ ∈ T ph and pa,κ = q for any κ ∈ T ah . Then, if439

u ∈ C2([0, T ];Hm(Ωp)), w ∈ C2([0, T ];H`(Ωp)) and ϕ ∈ C2([0, T ];Hn(Ωa)), with440

m, ` ≥ p+ 1, n ≥ q + 1 the error estimate of Theorem 4.3 reads441

‖E(t)‖E .
hp

pm−3/2

(
‖Ẽu̇‖m,Kκ + ‖Ẽu‖m,Kκ +

∫ t

0

[
‖Ẽü‖m,Kκ + ‖Ẽu̇‖m,Kκ

]
(s) ds

)
442

+
hp

p`−3/2

(
‖Ẽẇ‖`,Kκ + ‖Ẽw‖`,Kκ +

∫ t

0

[
‖Ẽẅ‖`,Kκ + ‖Ẽẇ‖`,Kκ

]
(s) ds

)
443

+
hq

qn−3/2

(
‖Ẽϕ̇‖n,Kκ + ‖Ẽϕ‖n,Kκ +

∫ t

0

[
‖Ẽϕ̈‖n,Kκ + ‖Ẽϕ̇‖n,Kκ

]
(s) ds

)
,444

445

where the hidden constant depends on time t and on the material properties, but is446

independent of the discretization parameters and τ . The above bounds are optimal in447

h and suboptimal in p and q by a factor 1
2 , see [40].448

5. Time discretization. To integrate in time equation (3.9), we first discretize449

the interval [0, T ] by introducing a timestep ∆t > 0, such that ∀ k ∈ N, tk+1−tk = ∆t450

and define Xk as Xk = X(tk), with X = [U,W,Φ]T . Next, we rewrite equation (3.9)451

in compact form as AẌ +BẊ +CX = F and get452

(5.1) Ẍ = A−1(F −BẊ −CX) = A−1F −A−1BẊ −A−1CX = L(t,X, Ẋ),453

Finally, to integrate in time (5.1) we can apply the Newmark−β or the leap-frog454

scheme as follows. The Newmark−β scheme is defined by introducing a Taylor ex-455

pansion for displacement and velocity, respectively:456

(5.2)

X
k+1 = Xk + ∆tZk + ∆t2(βNLk+1 + ( 1

2 − βN )Lk),

Zk+1 = Zk + ∆t(γNLk+1 + (1− γN )Lk),
457

where Zk = Ẋ(tk), Lk = L(tk,Xk,Zk) and the Newmark parameters βN and γN458

satisfy, the following constraints 0 ≤ γN ≤ 1, 0 ≤ 2βN ≤ 1. The typical choices of459

parameters are γN = 1/2 and βN = 1/4, for which the scheme is unconditionally460

stable and second order accurate. Finally, by plugging the definition of L into (5.2),461

for k ≥ 0, the time integration reduces to:462 [
A+ ∆t2βNC ∆t2βNB
γN∆tC A+ γN∆tB

] [
Xk+1

Zk+1

]
=

[
A−∆t2β̃NC ∆tA−∆t2β̃NB
−γ̃N∆tC A− γ̃N∆tB

] [
Xk

Zk

]
463

+

[
∆t2βNF

k+1 + ∆t2β̃NF
k

γN∆tF k+1 + γ̃N∆tF k

]
,464
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465

where β̃N = ( 1
2 − βN ) and γ̃N = (1− γN ). By applying the leap-frog scheme to (5.1)466

we get467

(5.3) (A+
∆t2

2
B)Xk+1 = ∆t2F k + (2A−∆t2C)Xk + (

∆t

2
B −A)Xk−1,468

for k ≥ 1 with initial step469

(5.4) AX1 = (A− ∆t2

2
C)X0 + (∆tA− ∆t2

2
B)Z0 +

∆t2

2
F 0.470

Recall that (5.3)–(5.4) is explicit and second order accurate.471

Remark 5.1. The leap-frog method is often applied to wave propagation problems472

due to its ease of implementation, the reduced size of the system (compared to a473

Newmark-type scheme), and because typically the matrix of the linear system to474

be solved is easily invertible. The latter in fact turns out to be diagonal or block-475

diagonal when using a dG method for the approximation in space. We note that476

in equation (5.3) this does not occur due to the coupling conditions at the interface477

between the poro-elastic and acoustic domains. As a further constraint, the fact that478

in poroelastic-acoustic materials there is an additional compressional wave of second479

kind (slow P-wave) to be correctly propagated has an impact on the time integration480

scheme. Indeed, as a further outcome of the model, the amplitudes of the wavefield481

are attenuated because of energy loss due to the presence of a viscous fluid. In the482

case of low frequencies and a viscous fluid, the wave equations become stiff. In other483

words, the slow P-wave becomes the diffusive mode, which dominates the character484

of the equation and drastically restricts the stability condition for explicit methods.485

For these reasons we prefer to use an implicit time scheme, cf. also [23, 25].486

6. Numerical results. Numerical implementation has been carried out with487

Matlab. Meshes have been generated through the polymesher software, cf. [48].488

Test case 1. The model problem is solved in Ω = (−1, 1)× (0, 1), on a sequence489

of polygonal meshes as the one shown in Figure 2, and with physical parameters shown490

in Table 1. For the first test case, we choose as exact solution491

u(x, y; t) =

(
x2 cos(πx2 ) sin(πx)

x2 cos(πx2 ) sin(πx)

)
cos(
√

2πt), w(x, y; t) = −u(x, y; t),492

ϕ(x, y; t) = (x2 sin(πx) sin(πy)) sin(
√

2πt),493494

in order to have a null pressure in the whole poroelastic domain. Since the solution495

together with its first x−, y− and t− derivatives are identically zero at the interface496

Γ = 0 × (0, 1), interface coupling conditions are consequently null. This suggests to497

test the sealed pores (τ = 0), the imperfect pores (τ ∈ (0, 1)) and the open pores498

(τ = 1) cases with the same manufactured solution. A sequence of uniformly refined499

polygonal meshes have been considered, with uniform polynomial degree pp,κ = pa,κ =500

p = 1, 2, 3. The final time T has been set equal to 0.25, considering a timestep of501

∆t = 10−4 for the Newmark-β scheme, γN = 1/2 and βN = 1/4. The penalty502

parameters c1, c2 and c3 appearing in the definition (3.6)–(3.8) have been chosen equal503

to 10. In Figure 3 (left) we report the computed errors as a function of the inverse504
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16 P. F. ANTONIETTI, M.BOTTI, I. MAZZIERI, AND S. NATI POLTRI

Fig. 2: Test case 1. Polygonal mesh,
with N = 100 polygons.

Field Value
ρf , ρs 1
λ, µ 1
a 1
φ 0.5
η 0
ρw 2
β, m 1
c, ρa 1

Table 1: Test case 1. Physical parameters.

of the mesh-size (log-log scale), for the case p = 3. As predicted by Theorem 4.3 the505

errors decays proportionally to h3. Moreover, we have also computed the L2-errors506

on the pressure field p. These results are reported Figure 4 and show a convergence507

rate proportional to h3, as expected. We point out the that discrete pressure has508

been computed through equation (2.2). Finally, we compute the L2 norm of the error509

fixing a computational mesh of N = 100 polygons and varying the polynomial degree510

p = 1, 2, . . . , 5. The computed errors are reported in Figure 3 (right) (semi-log scale),511

and an exponential decay of the error is clearly attained.512

Test case 2. Oblique interface. The second test cases consider a domain513

Ω = (0, 400) × (0, 400) m2, with a straight interface with slope 60◦, cf. Figure 5a.514

Physical and dimensional parameters have been chosen as in [23] and listed in Table 2.515

Fluid Fluid density ρf , ρa 1000 kg/m3

Wave velocity c 1500 m/s
Dynamic viscosity η 0 Pa · s

Grain Solid density ρs 2690 kg/m3

Shear modulus µ 1.86·109 Pa
Matrix Porosity φ 0.38

Tortuosity a 1.8
Permeability k 2.79 · 10−11 m2

Lamé coefficient λ 1.2 · 108 Pa
Biot’s coefficient m 5.34 · 109 Pa
Biot’s coefficient β 0.95

Interface Interface permeability τ {0; 10−8; 1}

Table 2: Test case 2. Physical parameters.

516

Boundary and initial conditions have been set equal to zero both for the poroelastic517

and the acoustic domain. Forcing terms are null in Ωp, while in Ωa a forcing term is518

imposed until t = 0.05 s, by considering the following load: fa = r(x, y)h(t), where519

(6.1) h(t) =


∑4
k=1 αk sin(γkω0t), if 0 < t < 1

f0

0, otherwise,
520
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Fig. 3: Test case 1. Left: computed errors in the energy norm, at the final time T , as
a function of h (p = 3). Right: Computed errors in the L2-norm, at final time T, as
a function of the polynomial degree p on a computational mesh of N = 100 polygons.
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Fig. 4: Test case 1. Computed errors ||p− ph||Ω, at the final time T , as a function of
h (p = 3).

(a) Test case 2. (b) Test case 3.

Fig. 5: Test cases 2 and 3. Computational domains and computational grids. The
support of r(x, y) is also superimposed in cyan over the mesh.

with coefficients defined as: α1 = 1, α2 = −21/32, α3 = 63/768, α4 = −1/512,521

γk = 2k−1, ω0 = 2πf0 Hz, f0 = 20 Hz. The function r(x, y) is defined as r(x, y) = 1,522

if (x, y) ∈
⋃4
i=1B(xi, R), while r(x, y) = 0, otherwise, where B(xi, R) is the circle523

centered in xi and with radius R. Here, we set x1 = (250, 100) m, x2 = (250, 150)524

m, x3 = (250, 200) m, x4 = (250, 250) m and R = 10 m. Notice that, the support525

of the function r(x, y) has been reported in Figure 5a, superimposed with a sample526

of one of the computational meshes employed. Simulations have been carried out by527

considering: a polygonal mesh consisting in N = 6586 polygons, subdivided into Na =528

3564 and Np = 3022 polygons for the acoustic and poroelastic domain, respectively;529

a Newmark scheme with time step ∆t = 10−3 s and γN = 1/2 and βN = 1/4 in a530
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Fig. 6: Test case 2. Oblique interface. Computed pressure ph in the poroelastic-
acoustic domain at three time instants (from left to right t = 0.04, 0.08, 0.12s), with
∆t = 10−3 s. First line: τ = 0 (sealed pores). Second line: τ = 10−8 (imperfect
pores). Third line: τ = 1 (open pores).

time interval [0, 0.15] s; a polynomial degree pp,κ = pa,κ = p = 4. In Figure 6, we531

show the computed pressure ph considering the interface permeability τ = 0, 10−8532

and τ = 1, respectively. The latter values aim at modeling sealed, imperfect and open533

pores condition at the interface. Remark that ph = ρaϕ̇h in the acoustic domain while534

ph = −m(β∇ · uh +∇ ·wh) in the poroelastic one. As one can see, the pressure wave535

correctly propagates from the acoustic domain to the poroelastic one: the continuity536

at the interface boundary can be appreciated for the case τ = 1 (open pores).537
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Test case 3: Sinusoidal interface. Finally, with the same data of test case538

2, we consider a square domain Ω = [−1500, 1500]2m2 and a sinusoidal interface Γ539

defined through the relation Γ(x) = 40 sin
(
π

100x
)
, cf. Figure 5b. For this numerical540

experiment we consider the dynamic viscosity η = 0 and η = 0.0015. The number of541

polygons composing the mesh is N = 5441, subdivided into Na = 2713 and Np = 2728542

polygons for the acoustic and poro-elastic subdomains, respectively. Moreover, as543

shown in Figure 5b, we have set the initial conditions on the acoustic domain, by544

defining h(t) as before and r(x, y) = 1/ρa, if (x, y) ∈ B(x1, R), and equal to 0,545

otherwise, with x1 = (0, 150) m and R = 50 m. Here we consider the interface546

permeability τ = 1. In Figure 7 we show the propagation of the discrete pressure at

Fig. 7: Test case 3. Computed pressure ph at the time instants t = 0.2 s (left),
t = 0.4 s (center) and t = 0.6 s (right) with ∆t = 10−3 s: η = 0 (top line) η = 0.0015
(bottom line).

547

the time instants t = 0.2, 0.4 s and t = 0.6 s. Observe how the sinusoidal interface548

contributes to the diffraction of the acoustic wave in the poroelastic domain. This549

effect is more relevant when the viscosity is null while for η = 0.0015 the diffracted550

waves are attenuated in the poroelastic domain. In particular, we can observe the551

main wave front traveling towards the rigid walls of the domain followed by waves552

having smaller amplitude originated by the sinusoidal shape of the contact boundary.553

7. Conclusions. In this work we have presented and analyzed a PolyDG ap-554

proximation to the coupled poro-elasto-acoustic problem on polygonal and polyhedral555

grids. Well-posedness of the continuous problem has been established by employing556

the semigroup theory. We a have proved a stability result for both the continuous557

and the semi-discrete formulations together with a priori hp-version error estimates558
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for the semi-discrete solution in a suitable energy norm. Finally, a wide set of two-559

dimensional numerical simulations have been carried out.560

561

8. Acknowledgments. The authors are extremely grateful to the anonymous562

Reviewers and to the Associate Editor for their thorough and constructive comments563

which have greatly contributed to the improvement of the paper.564

Appendix A. Theoretical results. The existence and uniqueness of the565

solution to problem (2.8) as well as some technical results instrumental for the stability566

and error analysis are presented below.567

We establish the existence and uniqueness result in the framework of the Hille–568

Yosida theory by combining and adapting the arguments of [4, Theorem 3.1] and569

[27, Section 5.2] where the elasto-acoustic coupling and the poroelastic problem were570

analyzed, respectively. To do so, we additionally define the spaces H∆
C (Ωp) = {v ∈571

L2(Ωp) : ∇ · (C : ε(v)) ∈ L2(Ωp)}, H∇(Ωp) = {v ∈ L2(Ωp) : ∇(∇ · v) ∈ L2(Ωp)},572

and H∆(Ωa) = {v ∈ L2(Ωa) : ∆v ∈ L2(Ωa)}.573

Theorem A.1 (Existence and uniqueness of (2.8)). Assume that the initial574

data have the following regularity: u0 ∈ H∆
C (Ωp) ∩H1

0 (Ωp), u1 ∈ H1
0 (Ωp), w0 ∈575

Wτ ∩ H∇(Ωp), w1 ∈ Wτ , ϕ0 ∈ H∆(Ωa) ∩ H1
0 (Ωa), ϕ1 ∈ H1

0 (Ωa), and that the576

source terms are such that fp ∈ C1([0, T ];L2(Ωp)), gp ∈ C1([0, T ];L2(Ωp)) and fa ∈577

C1([0, T ];L2(Ωa)). Then, problem (2.8) admits a unique strong solution (u,w, ϕ) s.t.578

u ∈ C2([0, T ];L2(Ωp)) ∩ C1([0, T ];H1
0 (Ωp)) ∩ C0([0, T ];H∆

C (Ωp) ∩H1
0 (Ωp)),579

w ∈ C2([0, T ];L2(Ωp)) ∩ C1([0, T ];Wτ ) ∩ C0([0, T ];H∇(Ωp) ∩Wτ ),580

ϕ ∈ C2([0, T ];L2(Ωa)) ∩ C1([0, T ];H1
0 (Ωa)) ∩ C0([0, T ];H∆(Ωa) ∩H1

0 (Ωa)).581582

Proof. Let v = u̇, z = ẇ, λ = ϕ̇, and U = (u,v,w, z, ϕ, λ). We introduce the583

Hilbert space V = H1
0 (Ωp) × L2(Ωp) ×Wτ × L2(Ωp) ×H1

0 (Ωa) × L2(Ωa), equipped584

with the scalar product585

586

(U1,U2)V = (ρv1 + ρfz1,v2)Ωp + (ρfv1 + ρwz1, z2)Ωp + (ρac
−2λ1, λ2)Ωa587

+ (C : ε(u1), ε(u2))Ωp
+ (m∇ · (βu1 +w1),∇ · (βu2 +w2))Ωp

588

+ (ρa∇ϕ1,∇ϕ2)Ωa + (ηk−1w1,w2)Ωp + (ζ(τ)w1 · np,w2 · np)ΓI ,589590

where Wτ is defined in (2.9). We remark that the scalar product is positive definite591

in V× V, cf. [27]. We define the operator592

A : D(A) ⊂ V→ V AU =



−v
− 1
ρT

(
ρw∇ · σ +

ρfη
k z + ρf∇p

)
−z

1
ρT

(
ρf∇ · σ + ρη

k z + ρ∇p
)

−λ
−c2ρ−1

a ∇ · (ρa∇ϕ)

 ,593

594

with ρT = ρρw − ρ2
f > 0, and595

D(A) = {U ∈ V : u ∈H∆
C (Ωp),v ∈H1

0 (Ωp),w ∈H∇(Ωp), z ∈Wτ ,596

ϕ ∈ H∆(Ωa), λ ∈ H1
0 (Ωa); (σ + ρaλI) · np = 0, on ΓI ,597
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τ(p− ρaλ)− (1− τ)z · np = 0, on ΓI , (∇ϕ+ v + z) · np = 0, on ΓI}.598599

With the above notation, problem (2.8) can be reformulated as follows: given F ∈600

C1([0, T ];V) defined as F(t) = (0, (ρwfp − ρfgp)/ρT ,0, (ρgp − ρffp)/ρT , 0, c2fa) and601

U0 ∈ D(A), find U ∈ C1([0, T ];V) ∩ C0([0, T ];D(A)) such that602 
dU
dt

+AU(t) = F(t), t ∈ (0, T ],

U(0) = U0.
603

Owing to the Hille–Yosida theorem, the above problem is well-posed provided the604

existence of µ > 0 such that A+µI is maximal monotone, i.e. (AU ,U)V +µ‖U‖2V ≥ 0605

∀ U ∈ D(A) and A + µI : D(A) → V is onto. The first condition follows from the606

definition of the scalar product in V, the definition of D(A) and integration by parts:607

(AU ,U)V =−
(
ρρw
ρT
∇ · σ +

ρρf
ρT

η

k
z +

ρρf
ρT
∇p,v

)
Ωp

− (C : ε(v), ε(u))Ωp
608

+

(
ρ2
f

ρT
∇ · σ +

ρρf
ρT

η

k
z +

ρρf
ρT
∇p,v

)
Ωp

− (∇ · ρa∇ϕ, λ)Ωa609

−

(
ρfρw
ρT
∇ · σ +

ρ2
f

ρT

η

k
z +

ρ2
f

ρT
∇p, z

)
Ωp

− (ρa∇λ,∇ϕ)Ωa610

+

(
ρwρf
ρT
∇ · σ +

ρwρ

ρT

η

k
z +

ρwρ

ρT
∇p, z

)
Ωp

−(ηk−1z,w)Ωp611

− (m∇ · (βv + z),∇ · (βu+w))Ωp
−(ζ(τ)z · np,w · np)ΓI612

= ‖(η/k)
1
2 z‖2Ωp+‖ζ(τ)

1
2 z · np‖2ΓI−((η/k)z,w)Ωp−(ζ(τ)z · np,w · np)ΓI ,613

614

where we have also used that all the terms on ΓI (except ‖ζ(τ)1/2z · np‖2ΓI for τ ∈615

(0, 1)) vanish. Thus, by choosing µ ≥ 1/2, and applying the Young’s inequality, we616

obtain (AU ,U)V + µ‖U‖2V ≥ 0. Now, we prove that A+ νI is surjective for all ν > 0.617

The surjectivity of A + νI is equivalent to verify that for any F ∈ V, there exists618

U ∈ D(A) s.t. AU + νU = F , i.e.619

νu− v = F1,(A.1a)620

νv − ρw
ρT
∇ · σ − ρf

ρT

η

k
z − ρf

ρT
∇p = F2,(A.1b)621

νw − z = F3,(A.1c)622

νz +
ρf
ρT
∇ · σ +

ρ

ρT

η

k
z +

ρ

ρT
∇p = F4,(A.1d)623

νϕ− λ = F5,(A.1e)624

νλ− c2ρ−1
a ∇ · (ρa∇ϕ) = F6.(A.1f)625626

Hence, by plugging v = νu − F1, z = νw − F3, and λ = νϕ − F5 respectively in627

(A.1b), (A.1d), and (A.1f) and rearranging, we rewrite the previous system as628 
ν2(ρu+ ρfw)−∇ · σ = ρ(νF1 + F2) + ρf (νF3 + F4) = G1,

ν2(ρfu+ ρww) +
νη

k
w +∇p = ρf (νF1 + F2) + ρw(νF3 + F4) +

η

k
F3 = G2,

ν2ρac
−2ϕ−∇ · (ρa∇ϕ) = ρac

−2(νF5 + F6) = G3.

629
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Owing to np = −na on ΓI , equations (A.1a), (A.1c) and (A.1e), and the transmission630

conditions on ΓI embedded in the definition of D(A), the variational formulation of631

the above problem reads: find (u,w, ϕ) ∈H1
0 (Ωp)×Wτ ×H1

0 (Ωa) s.t.632

A((u,w, ϕ), (v, z, λ)) = L(v, z, λ), for all (v, z, λ) ∈H1
0 (Ωp)×Wτ ×H1

0 (Ωa),633

with634

A((u,w, ϕ), (v, z, λ)) = ν2(ρu+ ρfw,v)Ωp + (Cε(u), ε(v))Ωp
+ ν2(ρfu+ ρww, z)Ωp635

+ (m∇ · (βu+w),∇ · (βv + z))Ωp
+ ν

(
ηk−1w, z

)
Ωp

636

+ ν (ζ(τ)w · np, z · np)ΓI
+ ν2(ρac

−2ϕ, λ)Ωa637

+ (ρa∇ϕ,∇λ)Ωa + ν(ρaϕ,v · np)ΓI − ν(u · np, ρaλ)ΓI ,638

and L(v, z, λ) = (G1,v)Ωp + (G2, z)Ωp + (G3, λ)Ωa−(F1 · np, ρaλ)ΓI639

+ (ζ(τ)F3 · np, z · np)ΓI
+ (ρaF5,v · np)ΓI .640

641

The well-posedness of the previous problem follows from the Lax-Milgram Lemma,642

since A is coercive for all ν > 0. In addition, owing to (A.1b), (A.1d), and (A.1f), we643

infer that u ∈ H∆
C (Ωp) ∩H1

0 (Ωp), w ∈ H∇(Ωp) ∩Wτ , and ϕ ∈ H∆(Ωa) ∩H1
0 (Ωa).644

Moreover, this gives (v, z, λ) ∈ H1
0 (Ωp) ×Wτ × H1

0 (Ωa) due to (A.1a), (A.1c), and645

(A.1e). Then U ∈ D(A) and the proof is complete.646

We conclude the Appendix with some technical results needed in the analysis.647

The first Lemma hinges on Assumption 3.1 and the trace inverse inequality (3.2).648

Lemma A.2. The following bounds hold:649

‖α−1/2{{σh(v)}}‖Fph .
1
√
c1
‖C1/2εh(v)‖Ωp ∀v ∈ V p

h ,(A.2)650

‖χ−1/2{{ρa∇hψ}}‖Fah .
1
√
c2
‖ρ1/2
a ∇hψ‖Ωa ∀ψ ∈ V ah ,(A.3)651

‖γ−1/2{{m∇h · z}}‖F?h .
1
√
c3
‖m1/2∇h · z‖Ωp ∀z ∈ V p

h ,(A.4)652

653

where c1, c2 and c3 are the constants appearing in (3.6), (3.7) and (3.8), respectively.654

655

The following Lemma establishes the coercivity and boundedness of the discrete bi-656

linear form Ah defined in (3.4).657

Lemma A.3. Let Assumption 3.1 and Assumption 3.2 be satisfied. Then,658

Aeh(u,v) . ‖u‖dG,e‖v‖dG,e Aeh(u,u) & ‖u‖2dG,e ∀u,v ∈ V p
h ,659

Aph(u,v) . |u|dG,p|v|dG,p Aph(u,u) & |u|2dG,p ∀u,v ∈ V p
h ,660

Aah(ϕ,ψ) . ‖ϕ‖dG,a‖ψ‖dG,a Aah(ϕ,ϕ) & ‖ϕ‖2dG,a ∀ϕ,ψ ∈ V ah ,661

Aeh(u,v) . |||u|||dG,e‖v‖dG,e ∀u ∈H2(T ph ) ∀v ∈ V p
h ,662

Aah(ϕ,ψ) . |||ϕ|||dG,a‖ψ‖dG,a ∀ϕ ∈ H2(T ah ) ∀ψ ∈ V a
h ,663

Aph(w, z) . |||w|||dG,p|z|dG,p ∀w ∈H2(T ph ) ∀z ∈ V p
h .664

665

The coercivity bounds hold provided that the stability parameters c1, c2 and c3 ap-666

pearing in (3.6),(3.7) and (3.8), respectively, are chosen sufficiently large.667
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Proof. The proof is based on employing Lemma A.2 and standard arguments.668

See also [8] and [4, Lemma A.2].669
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