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Abstract—Approximate stability boundaries for Constant ON-
Time buck converters are derived and verified against numerical
results obtained by bifurcation analysis. These boundaries are
given as analytical expressions involving the main Constant ON-
Time (COT) buck converter parameters. They allow the designer
to avoid the appearance of the pulse bursting phenomenon. A
case study is proposed having in mind automotive applications,
which are charaterized by a wide input-voltage range. The input-
voltage and the output-capacitor equivalent series resistance, that
is typically poorly controlled for many types of capacitors, were
chosen as bifurcation parameters.

Index Terms—Constant on time buck converter, COT, pulse
bursting, hybrid dynamical systems, bifurcation analysis.

I. INTRODUCTION

Constant ON-Time (COT) buck converters are popular in
wide input-voltage range applications for many reasons, e.g.,
the ease of control design over varying input voltage con-
ditions, the absence of jittery ON-time behavior which af-
fects constant-frequency control methods when incurring in
minimum controllable ON-time limitations, and, provided that
the ON-time is adapted to the input voltage, the ability to
maintain a reasonably constant switching frequency over the
input-voltage range. Many wide-input-range adaptive COT
regulators, targeted to automotive and other wide-input-range
applications, are available from various IC vendors [1]–[4].

It was found, both experimentally and from circuit simula-
tions, that the architecture described in Fig. 1 can experience
some stability issues at high duty cycle values, especially when
the converter nominal switching frequency is intentionally
lowered to maximize the duty cycle range achievable under
minimum ON-time limitations. Instability is experienced in
terms of pulse-bursting [5]–[8], viz. sub-harmonic oscillations.

It is well known that for a given output capacitor value, its
equivalent series resistance (ESR) (Re in this paper) is a critical
parameter for stable operation. Unfortunately, Re is typically
poorly controlled for ordinary types of capacitors, and might
also be heavily affected by temperature variations.

Using space-state and bifurcation analysis, this paper reveals
an articulated relationship between the allowable input voltage
range and the Re of the output capacitor(s) for stable operation
of the COT buck converter. Notably the stability boundaries,
involving bifurcations of the circuits dynamics, were approx-
imately derived in closed form, and presented in graphical

Figure 1. Schematic of the buck COT converter.

form. This is a significant added-value for the designer since
these formulae are easy to handle and quite accurate w.r.t. the
exact results from time-consuming bifurcation analysis.

II. THE BUCK COT CONVERTER DYNAMICS

The dynamic evolution of the vC and ıL state variables
of the COT converter in Fig. 1 is governed by the hybrid
planar dynamical system [9] yielding the following ordinary
differential equations (ODEs)
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where the dot is a shorthand for the time derivative (i.e., ı̇L =
dıL/dt), the r.h.s. can be collected in the f ($,ξ)(ıL, vC) vector
field, and both ξ and $ can be either 0 or 1. These binary
variables can be interpreted as digital state variables [10]. In
particular, $ is ruled by the D diode in Fig. 1, which avoids
a negative ıL current1. This component is modeled through a
piecewise-linear ideal driving-point characteristic, ıD = 0 for
vD ≤ 0 and vD = 0 for ıD ≥ 0. Whenever the switch S is
open, and ıL = 0, we have $ = 0 and consequently ı̇L = 0.
In the (ıL, vC) state-plane, the solution of system (1) starts
sliding on the vertical axis ıL = 0. The $ control variable
is set to 1 as soon as ıL > 0 and this occurs since a further
control logic is implemented by the cntr block in Fig. 1. If
the COT converter admits a periodic steady-state, i.e., a limit
cycle, during which $ = 0 for a certain time interval, the

1Actually, in modern architectures such as synchronous buck converters,
to enhance converter efficiency the diode is replaced by a low-side MOSFET
which is operated as a synchronous rectifier.



COT converter is said to work in discontinuous current mode
(DCM). In this paper we focus on the continuous current mode
(CCM) working condition only, which is obtained if the sliding
condition $ = 0 is never observed.
The cntr block governs the ξ control variable as follows.
Step 1: ξ is set to 1 any time the output of the comparator
becomes positive, i.e., the controller catches the positive edge
of the vref − vo signal. The S switch is closed for the ∆tON

fixed time interval (ON-phase). In adaptive COT control (i.e.,
pseudo constant-frequency in CCM operation and low losses),
the duration of this interval is given by

∆tON =
k

fsw

vref
vin

, (2)

where vref is the desired output voltage, vin is the input
voltage, fsw is the maximum nominal switching frequency,
and k ∈ [1, kMAX]. k allows an optional adjustment of the
desired switching frequency below its maximum nominal
value, and it is under user control (typically implemented
by adding or changing external resistors). In wide-input-range
applications, this adjustment is frequently used to extend the
maximum achievable duty cycle under given minimum OFF-
time constraints, to maintain output voltage regulation even
at the lower end of the input voltage range. It is also used
to optimize the switching frequency for best efficiency in a
particular (i.e., nominal) operating condition and under given
circuit size constraints.
Step 2: At the end of the ON-phase, S is opened and is kept
open for the ∆tmin

OFF fixed time interval (minimum OFF-phase).
ξ is set to 0. This phase is necessary in practical designs
for various reasons, which include, for example, reliable
implementation of anti-cross conduction control of the power
switches, the recharge of the bootstrap capacitor in N-channel
high-side topologies, or the acquisition of the current signal
during the OFF-phase for circuit protection purposes.
Step 3: At the end of the ∆tON + ∆tmin

OFF time interval, the
controller checks the output of the comparator. If vref − vo <
0, the S switch remains open (OFF-phase with ξ = 0) until the
condition at Step 1 becomes true. Otherwise, if vref − vo
is still positive, the S switch is immediately re-closed and a
new ON-phase starts. The overall duration of the OFF-phase is
∆tOFF ≥ ∆tmin

OFF. To be able to properly and efficiently adjust
the vo output voltage, keeping it as close as possible to the
vref reference voltage, it is necessary to avoid ∆tOFF = ∆tmin

OFF

minimum duration OFF-phases.
The vref −vo > 0 condition naturally induces the manifold

Σ = {(ıL, vC)|h(ıL, vC) = 0} (see Fig. 2), where

h(ıL, vC) = vref − vo = vref −
Ro(ıLRe + vC)

Re +Ro
, (3)

whose normal vector is η = (1, Re)
T. The Σ′ manifold in

Fig. 2 is a straight line and it is the locus of points that can
be reached in the ∆tON time interval, starting from Σ.

On the whole, the dynamics of the COT converter is des-
cribed by an autonomous piecewise linear dynamical system
whose γ1 simplest steady-state trajectory, in CCM, generically

Figure 2. (a)-(c) Sketches of CCM γ1 limit cycles whose positioning w.r.t.
Σ depends on the sign of the f (1,1)

j ·η (j ∈ {1, 2, 3}) scalar product (for
compactness the (1,1) superscript is dropped). The scalar product is null at
θ. (d) A limit cycle made up of four “segments”and one of those (from α1

1

to β1
1 ) lasts ∆tmin

OFF . (e) A γ2 limit cycle is not allowed if f (1,1) ·η > 0
in the neighborhood of δ1

1 and δ2
1 . To have δ3

1 ≡ δ1
1 the dashed trajectories

should intersect. (f) A γ2 limit cycle is potentially admitted if δ1
1 a δ2

1 are
sufficiently close to θ.

belongs to the ıL > 0 half-plane. Some examples of this
kind of dynamics are sketched in Fig. 2(a,b,c). In particu-
lar, three different situations are depicted in which at δj ,
which corresponds to the beginning of the ON-phase, we have
f

(1,1)
j ·η S 0 (j ∈ {1, 2, 3}). The sign of this scalar product

reveals whether the orbit, during the ON-phase, is allowed to
visit theR− region or it is confined inR+. This scalar product
is null at θ, negative in the dashed portion of the manifold,
and positive in the solid one.

III. STABILITY ANALYSIS

Since the dynamical system in (1) is piecewise linear, limit
cycles exist thanks to the interaction between its discontinuous
vector field and the decision process governing the switching
events. Bifurcations inducing changes in the stability of these
limit cycles can be detected both through their Floquet mul-
tiplier (e.g., flip and fold bifurcations) and monitoring the
interaction between the orbits and the switching boundaries
in the state space (e.g., grazing, contact, and border collision
bifurcations) [9], [10]. Furthermore, the COT converter exhibits
delayed switching events too [11]. They are triggered (and
scheduled) as a consequence of the interaction between the
trajectory and a manifold in the state, but they actually occur
after a finite amount of time. More specifically, in our case
this happens at the beginning of the ON-phase, when the
Σ manifold is hit at δj (see Fig. 2(a)-(c)). This implies an
immediate effect, i.e., ξ is set to 1, and two delayed effects. (i)
ξ is set to 0 after the ∆tON fixed amount of time (see the αj
points); (ii) after ∆tON + ∆tmin

OFF (see the βj points) the cntr
block checks whether or not vref − vo is still lower than 0



(i.e., βj is below Σ as β1
1 in Fig. 2(d)), and this may trigger

the sudden beginning of a new ON-phase.
The stability boundaries the designer is interested in are

those corresponding to the appearance of the pulse-bursting
phenomenon [5], [6], viz. the generic γ1 limit cycle in
Fig. 2(a)-(c) becomes unstable, undergoing, for instance, a
period-doubling bifurcation.

The dynamics becomes more complex and the spectrum of
the vo output voltage becomes richer as shown in Sec. IV. This
may occur also in case a limit cycle as the one in Fig. 2(d)
appears through a global bifurcation. At β1

1 the trajectory is
still in R− and thus, according to Step 3 of the cntr block
logic, a new ON-phase begins. This is the reason why δ2

1 ≡ β1
1 .

The subsequent β2
1 belongs to R+ and the limit cycle finally

closes in its starting point δ1
1 . It is worth noticing that this kind

of trajectory can be observed only if visiting R− is allowed,
viz. f (1,1) ·η < 0 at δ1

1 .
From the applications’ perspective, it is profitable to choose

Re and the vin supply voltages as bifurcation parameters thus
deriving stability boundaries on the (Re, vin) plain. Despite
the fact that this approach provides accurate results, it is
not feasible to adopt it to derive simple design rules, viz.
closed form constraints involving circuit parameters, which
in turn could be easily used to (approximately) identify the
aforementioned bifurcation curves.

In [12], [13] a sufficient condition to avoid the arising of the
pulse-bursting phenomenon was presented by imposing that
θ ≡ ε in Fig. 2(d). The rationale of that condition is that if the
dynamics of the system can take place only in R+, one can
observe γ1 limit cycles only. Indeed, Fig. 2(e) and Fig. 2(f)
reveal that a γ2 limit cycle, viz. the simplest sub-harmonic
steady-state orbit that one could sketch, may exist only if it
appears in the neighborhood of the θ point. Furthermore, to
have a limit cycle as the one in Fig. 2(d), the trajectory must
penetrate Σ at the beginning of the ON-phase. The dynamics
of the systems is constrained in R+ by imposing that Σ is
fully reflective for ıL > 0, i.e.,

f (1,1)
∣∣∣

Σ|ıL>0

·ηT > 0 . (4)

In practice, whenever the OFF-phase ends on Σ, the vector
field pushes it to evolve above the manifold itself during the
subsequent ON-phase. The condition was derived without a
particular rule governing ∆tON, that remained a free parameter.
Here we assume that (2) holds and thus (4) is equivalent to

Ro(ıLΘ + CoRe(vin − vref ))− Lovref > 0 , (5)

where Θ = Lo − CoReRp. Under the reasonable assumption
Θ > 0, if (5) is verified for ıL = 0 then it is satisfied for any
ıL ≥ 0 and it can be written as:

vin − vref
(

1 +
Lo

CoReRo

)
> 0 . (6)

This condition, which induces the Γs boundary in Fig. 3,
despite being a sufficient condition to avoid pulse-bursting,
not subject to any approximation, as shown, is extremely

Figure 3. Stability boundaries on the (Re, vin) parameter plane. In all
the curves the superscript k reflects the value of the buck COT converter
parameter k. The value of the circuit constant parameter are specified in Table
I. The Γs and vkinlim

curves were derived from (6) and (8), respectively.
The ρk represent flip bifurcations of γ1. The χk curves were obtained by
imposing the border collision bifurcation condition β1

1 ∈ Σ (see Fig. 2) having
approximated the ıL current at δ as

vref
Ro
− ∆ıLON

2
(see Eq. (7)). The axes

in the inset are both in linear scale.

restrictive and it becomes more and more restrictive the
lower the ESR. To derive an approximate but less restrictive
condition, we computed (5) for an estimated value of the ıL
inductor current at the beginning of the ON-phase, viz. we
derived an estimate of the δ point. Unfortunately, this value
cannot be exactly derived analytically but it can be safely
approximated by writing it as the vref/Ro ideal output current
(assuming Co as an open-circuit) minus half the ∆ıLON

steady-
state ripple of the Lo inductor current. The latter is given by

∆ıLON
= k

vinRo − vref (Ro +Rp)

fswLoRovin
vref , (7)

approximating the charging of the inductor as linear w.r.t. time,
assuming vo fixed to vref during the overall periodic steady-
state evolution of the COT converter, and neglecting the voltage
drop across Re. Since in general we must have vin > vref for
step-down operation, and Rp � Ro, by using this approximate
value for ıL, the inequality in (5) turns out to be satisfied if

vin −
kΘvref

2CofswLoRe
> 0 , (8)

and on the (Re, vin) plane (see Fig. 3) this produces the vkinlim

curves. Here and in the following the superscript k refers to
the value of the k buck COT converter parameter2.

The vkinlim
curves are relevant only if the γ1 steady-state

solutions are not-minimal, i.e., ∆tOFF > ∆tmin
OFF (δ1 6= β1 in

2The well known stability boundary CoRe−∆tON/2 > 0 described in [8],
[14] reduces to (8) if Rp = 0, and ∆tON is chosen as in (2). Nevertheless, at
the best of the authors knowledge, in the literature ∆tON is left free and not
necessarily adapted for constant-frequency operation emulation. Therefore, it
should be used with care since it retains the dependency on Co and Re only.



Figure 4. First- and second-return maps (M1 in black and M2 in red)
obtained for vin = 23.21 V (left panel) and vin = 21.73 V (right panel)
and Re = 0.3 mΩ. The equilibrium point P1 in the left panel and in the right
panel, respectively, corresponds to the stable and unstable γs

1 limit cycle in
Fig. 5. I is the absorbing interval that appears after the flip bifurcation.

Fig. 2). This is due to the fact that, if this occurs, in the COT
buck converter the saturation of the controller is observed, viz.
the regulation of the output voltage is lost. The appearance
of a minimal γ1 limit cycle is due to a border collision
bifurcation corresponding to the boundary induced by the
β ∈ Σ condition. It can be estimated through δ: the f (1,ξ)

vector field can be explicitly integrated for a ∆tON+∆tmin
OFF time

interval, by properly switching ξ, thus obtaining an estimate
of β. On the (Re, vin) plane this yields the χk curves. The
generic ρk curve intersects the corresponding χk curve in the
codimension-2 πk point (see Fig. 3). For parameter values
below the χk-curves the system becomes unfeasible.

IV. NUMERICAL RESULTS AND DISCUSSION

The stability boundaries presented in Sec. III are verified
against the results obtained through bifurcation analysis.

The estimated boundaries vkinlim
shown in Fig. 3 turned out

to be a good approximation of the corresponding bifurcation
curves ρk, especially for k ∈ 1, 2. This can be noticed in the
inset in Fig. 3. The discrepancies for low values of Re and
extremely high values of vin are negligible since the latter are
significantly larger than realistic operation limits of the COT
buck converter even in wide input-voltage range applications.

The ρk curves represent flip bifurcations of γ1 limit cycles.
In a smooth system this would imply the presence, in the
neighborhood of a given γ1, of either a stable (supercritical
bifurcation) or an unstable (subcritical bifurcation) γ2 limit
cycle [15]. Also in our piece-wise smooth system, a flip
bifurcation occurs. A numerical analysis has been performed
via the one-dimensional first- and second-return maps (M1

andM2, respectively) from Σ to Σ in the neighborhood of γ1

close to the bifurcation value, vertically crossing the ρ1 curve
from the νs to the νu point in Fig. 3. Fig. 4 (left panel) shows
the shape of the map just before the bifurcation of γ1, and
P1, the equilibrium point of M1, denotes the limit cycle, still
attracting. Since the mapM2 is convex (resp. concave) before
(resp. after) the point P1 the flip bifurcation is of supercritical
type. Fig. 4 (right panel) shows the shape of the map after
the bifurcation of γ1, and the repelling equilibrium point
P1 now shows an unstable limit cycle. Moreover, one more

Figure 5. The γs
1 (in black) and γu

1 (in red) were derived for vin = 23.21 V
and vin = 21.73 V, respectively. The former is stable (with the second
Floquet multiplier µ2 = −0.99) and the latter is unstable (µ2 = −1.01).
The chaotic trajectory is obtained for vin = 21.73 V.

Table I
COT CONVERTER CIRCUIT PARAMETER VALUES

Name Value Name Value Name Value
Co 300µF Re [0.1, 10] mΩ k [1, 3]
Lo 12µH Ro 0.55 Ω vref 3.3 V
Rp 20 mΩ UVLO 3.6 V vin [UVLO, 75 V]

∆tmin
OFF 230 ns fsw 800 kHz

unstable limit cycle exists, due to another (decreasing) branch
of map M1, and an invariant absorbing interval I is clearly
observable, denoting the existence of bounded dynamics. Since
the slopes of the map M1 in I seem larger that one in
modulus, the dynamics inside I is chaotic. Fig. 5 shows
γ1 before and after the bifurcation, and the chaotic attractor
corresponding to the dynamics inside I.

As a major consequence of this mechanism, the pulse
bursting phenomenon is characterised by electrical variables
whose frequency spectrum is very rich. Of course this effect
mainly involves ıL since the inductor current ripple is much
more significant than both the vo and vC ones.

The analysis reveals that the safe region for stable operation
exhibits an additional dependency on the input voltage. In
particular, the additional limitation coming from the input
voltage starts to be relevant where the total ESR approaches
values which are typically achieved when ordinary multilayer
ceramic capacitors are connected in parallel. As an example,
referring to Fig. 3, it should be noted that even the normal
operating range of 12 V battery systems (8 − 9 V to 16 V)
might fall below the vkinlim

and ρk curves in a region which
is potentially unstable for Re values achieved by the pa-
rallel combination of a few (namely, three) 100µF ceramic
capacitors (capacitance vs. voltage bias effects having been
neglected for simplicity). This would be a reasonable output
capacitor combination for an automotive 12 V to 3.3 V, 6 A
buck converter exposed to load transients, but unfortunately
Fig. 3 predicts that it cannot be safely used with COT control,
at least without additional “helping” circuits such as ripple
injection. Alternatively, if output voltage ripple specifications
and other design/cost constraints permit, other capacitor types
providing higher Re (such as polymer) can be used.
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