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Abstract 

Braiding technology is nowadays commonly adopted to build stent-like devices. Indeed, these 

endoprostheses, thanks to their typical great flexibility and kinking resistance, find several 

applications in mini-invasive treatments, involving but not limiting to the cardiovascular field. 

The design process usually involves many efforts and long trial and error processes before 

identifying the best combination of manufacturing parameters. This paper aims to provide 

analytical tools to support the design and optimization phases: the developed equations, 

based on few geometrical parameters commonly used for describing braided stents and 

material stiffness, are easily implementable in a worksheet and allow predicting the radial 

rigidity of braided stents, also involving complex features such as multiple twists and looped 

ends, and the diameter variation range. Finite element simulations, previously validated with 

respect to experimental tests, were used as a comparator to prove the reliability of the 

analytical results. The illustrated tools can assess the impact of each selected parameter 

modification and are intended to guide the optimal selection of geometrical and mechanical 

stent proprieties to obtain the desired radial rigidity, deliverability (minimum diameter), and, 

if forming processes are planned to modify the shape of the stent, the required diameter 

variations (maximum and minimum diameters). 
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1. Introduction 

Mini-invasive procedures involving implant of stent-like devices are playing an increasingly 

important role in the treatment of several diseases (White et al., 2016). Cardiovascular 

prosthesis are nowadays commonly exploited in different anatomical areas: to restore the 

physiological flow in coronaries (Schmidt and Abbott, 2018), peripheral arteries (Kokkinidis 

and Armstrong, 2020), or veins (Murphy, 2019); in the presence of aortic aneurysms and 

dissections (Maeda et al., 2018); as flow diverter to promote thrombus formation in 

intracranial aneurysms (Cagnazzo et al., 2017); to occlude the atrial septal defect (Yang and 

Wu, 2018) or the left atrial appendage in patients affected by non-valvular atrial fibrillation 

(Pacha et al., 2019); to replace the mitral (Flynn et al., 2018) or aortic native valve (Mahmaljy 

et al., 2020). Moreover, stents are used to treat pathology affecting the esophagus 

(Vermeulen and Siersema, 2018), urethra (De Grazia et al., 2019) and tracheobronchial 

conduit (Grewal et al., 2019).  

Based on the specific target, the device must comply with multiple contrasting requirements 

(Chichareon et al., 2019; Watson et al., 2017), including position stability and appropriate 

radial stiffness, flexibility, and permeability. In general, it should be possible to implant the 

stent through a mini-invasive procedure involving the crimping of the device, delivery at the 

region of interest, and deployment. Based on the principle behind the last phase, the stents 

are subdivided into balloon-expandable and self-expanding (Schmidt and Abbott, 2018). In 

the former category, the deployment is forced by a pressurized balloon, for the latter one, 

featuring large recoverable deformations, the expansion is driven by the elastic recoil, 

resulting in a lower impact on the vessel. Once in-situ, the stent should be flexible to comply 

with vessel anatomy and movements, should adequately adhere to the wall, and, in case of 
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stenotic pathologies, should also provide the radial strength needed to restore the 

physiological flow (Watson et al., 2017). 

The design process aims to optimize the geometrical and material parameters providing the 

best compromise among all the requirements at issue (Bressloff et al., 2016). In-silico 

simulations have proved to be a valuable support tool during the design stage, investigating 

the impact of the involved parameters with a significant saving of money and time with 

respect to a similar experimental procedure (Kumar et al., 2019), providing additional levels 

of detail, and expanding the analyses to scenarios resembling in-vivo conditions (Karanasiou 

et al., 2017; Morlacchi and Migliavacca, 2013; Roy et al., 2012). However, concerning 

innovative design, the efforts needed to implement and validate the numerical model may 

not be negligible, and the analyses of each variable impact may be quite expensive. In this 

light, the advantage deriving from applying simplified analytical models at an early 

development stage, aiming to identify a suitable range of variation for each parameter, 

becomes evident. 

This work focuses on braided stents, self-expandable endoprosthesis consisting of interlaced 

wires, and featuring great flexibility and kinking resistance, which make them suitable for 

several applications (Bishu and Armstrong, 2015; Cremonesi et al., 2015; Madhkour et al., 

2019; Seigerman et al., 2019; Subramaniam et al., 2019). The numerical or experimental 

studies available in the literature on braided stent behavior are very few and very recent 

(Zaccaria et al., 2020a, Shanahan et al., 2017, McKenna and Vaughan, 2020, McKenna and 

Vaughan, 2021). In this context, the prediction of mechanical properties through analytical 

models is not trivial. Jedwab and Clerc (1993) illustrated how to evaluate the longitudinal and 

radial properties of a cylindrical basic braided structure and validated the results with respect 

to experimental tests. Moreover, the equations proposed were subsequently used as a 
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comparator to validate finite element simulations (Shanahan et al., 2017). However, so far, 

no indications have been presented to predict the radial strength when more complicated 

features are introduced, like multiple twists and looped ends (Fig. 1a). Moreover, a crucial 

aspect in the design of braided stents is the definition of the diameter variation range given 

the initial configuration. On one side, the minimum diameter that can be reached during 

crimping impacts the device’s deliverability. On the other side, complex shapes are usually 

obtained by deforming an original cylindrical braided texture. Thus, a priori knowledge of the 

diameter variation range enables estimating (on the basis of predefined geometrical 

parameters) if a specific configuration is achievable, reducing the trial-and-error efforts. 

In this paper, approximated analytical formulae for the prediction of the radial strength of 

different braided structures are presented and compared with a numerical model validated 

in a previous work (Zaccaria et al., 2020a). Moreover, equations based on the braided 

geometrical parameters to obtain the minimum and maximum diameter are illustrated and 

validated comparing with numerical simulations on a repetitive braided unit.  
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Fig. 1. (a) braided features exemplification: multiple twist (double and triple), looped end. 

(b) braided geometrical parameters: average stent diameter (D), stent length (L), pitch angle 

(β), wire diameter (d). The initial values are marked with the subscript ‘0’. The stent 

longitudinal axis is indicated by the dashed line. On the right, the single unwound wire is 

represented in cyan (constant length = Lwire) to clarify the relationships among the 

geometrical parameters.  
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2. Materials and methods 

In the following paragraphs, the analytical formulae developed to predict the radial rigidity of 

a braided stent are outlined, as well as the equations to derive the minimum and maximum 

diameter. Finally, the finite element models used as comparators and the numerical analyses 

performed for validation purposes are presented. 

2.1. RADIAL PRESSURE 

2.1.1. Cylindrical braided stent 

First, the formulae proposed by Jedwab and Clerc (1993) are summarized. These equations 

allow for calculating longitudinal and radial properties of a cylindrical braided stent, providing 

the material elastic modulus (E) and Poisson coefficient (ν), and the following geometrical 

parameters (Fig. 1b):  

- single wire diameter (d); 

- initial average stent diameter (D0): easily obtainable by summing 2d to the 

initial internal diameter, defined by the mandrel used during the braiding procedure; 

- initial pitch/braid angle (β0): defining, in this study, the slope of the wires with 

respect to the circumferential axis;  

- initial length (L0): longitudinal stent length; 

- total number of wires (N): involving both clock-wise and counter clock-wise 

wires.  

Given these values, the initial pitch and the number of coils can be calculated as: 

p0 = πD0 tan(β0) (1) 

c = L0/p0 (2) 
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Assuming that the wire length (Lwire) remains constant, and so the sides length of the braided 

cells (Fig. 1b), and that the wire rotation around the longitudinal axis is prevented by wires 

intertwining, the deformed stent diameter and length (D, L) are related to the pitch angle (β) 

through the following equations (Fig. 1b): 

D =
D0 cos(β)

cos(β0)
 (3) 

L =
L0 sin(β)

sin(β0)
 (4) 

Thus, a longitudinal elongation is necessarily associated with a diameter reduction, and it is 

possible to obtain the same deformed configuration applying a longitudinal force or radial 

pressure. Considering the stent undergoing a tension test and focusing on the single wire, it 

is possible to represent it as a helical spring with fixed ends (Fig. 2a) subject to a longitudinal 

force (Fwire) and a moment (Mwire), preventing the rotation around the longitudinal axis. Thus, 

the bending and twisting moments on the wire (mB, mT) are calculated as: 

mB = Mwire cos(β) − FwireR sin(β) (5) 

mT = Mwire sin(β) + FwireR cos(β) (6) 

Where R is the average radius of the stent (D/2). Moreover, it is possible to connect the 

bending and twisting moment to the change in curvature (Δκ) and the twist (Δθ) of the wire. 

mB

EI
= ∆κ =

cos2(β)

R
−
cos2(β0)

R0
 (7) 

mT

GIP
= ∆θ =

cos(β)sin(β)

R
−
cos(β0)sin(β0)

R0
 (8) 

To obtain the curvature and twist definition reported above, the natural parametrization of 

the helix γ(t) should be considered γ(t) = [R ∙ cos(t ∙ cos (β)/R) ;  R ∙ sin(t ∙ cos (β)/R) ;  t ∙
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cos (β) ∙ tan(β)]. Then, the curvature κ is calculated as κ = ‖γ′′(t)‖ = cos2(β)/R, while the 

twist θ can be obtained as θ = ‖b′(t)‖ where b(t) = γ′(t) × γ′′(t)/‖γ′′(t)‖. 

Thus, the force and moment applied on the wire extremities are related to the pitch angle 

based on the following equations: 

Fwire =
GIPcos(β)

R
(
cos(β)sin(β)

R
−
cos(β0)sin(β0)

R0
) −

EIsin(β)

R
(
cos2(β)

R
−
cos2(β0)

R0
) (9) 

Mwire = GIPsin(β) (
cos(β)sin(β)

R
−
cos(β0)sin(β0)

R0
) + EIcos(β) (

cos2(β)

R
−
cos2(β0)

R0
) (10) 

In the whole stent, the moment reflects the internal action exerted by the intertwined 

structure, while the total force F = FwireN can be represented by substituting the terms 

involving initial geometrical parameters with three constants: 

K1 =
sin(2β0)

D0
          K2 =

2cos2(β0)

D0
         K3 =

D0
cos(β0)

 (11) 

F = 2N [
GIP
K3

(
2sin(β)

K3
− K1) −

EI ∙ tan(β)

K3
(
2cos(β)

K3
− K2)] (12) 

Where I and Ip are the moment of inertia and the polar moment of inertia, and G is the shear 

modulus. To extend or compress the stent, the work done by the external force is equal to 

dW = F ∙ (L − L0). The same deformation can be obtained applying a radial pressure P over 

the lateral surface πDL, corresponding to an energy equal to dW = P ∙ πDL ∙ (D − D0)/2. 

Thus, the pressure needed to vary the average stent diameter can be calculated as follows: 

P =
2F

πDL

(L − L0)

(D − D0)
 (13) 

And given the relation among length, diameter and pitch angle: 
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P =
2Fc

DLtan(β)
 (14) 

Or, if the length is unknown, considering the formulae (1,2)  

P =
2F

πD2tan2(β)
 (15) 

 

 

Fig. 2. (a) Open-coiled helical spring with end fixed against rotation: external load and 

corresponding internal actions acting on a generic element along the helical spring. (b) 

Double twist geometrical parameters: standard braided length (𝐡�̃�), twist length (𝐡𝐭𝐰𝐢𝐬𝐭), 

twisted cell length (𝐡𝐭𝟎), circumferential dimension (𝐛𝐭𝟎) and twist pitch angle (𝛃𝐭𝐰𝐢𝐬𝐭𝟎). (c) 

Quadruple twist geometrical parameters: twist length (3𝐡𝐭𝐰𝐢𝐬𝐭), twisted cell length (𝐡𝐭𝟎), 

circumferential dimension (𝐛𝐭𝟎). (d) Looped end geometrical parameters: length (𝐡𝐥𝐞𝟎), 

circumferential dimension (𝐛𝐥𝐞𝟎) and looped end pitch angle (𝛃𝐥𝐞𝟎). (e) Double twist: 

comparison between 1 and 2 standard braided cells between adjacent multiple twist layers.   
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2.1.2. Double twist 

The double twist geometry is illustrated in Fig. 1a and 2b and is obtained by inverting once 

the braiding direction. The geometrical parameters defining this feature are: bt0, ht0, htwist 

and βtwist0. While the first variable is directly deducible from the braiding parameters as bt0 =

2
πD0

N
,  the value ht0  was measured on real devices. In the specific case, this entity was 

observed to be related to the length of a standard braided texture as ht0 = 1.24 h0̃ =

1.24 bt0tan (β0) (Fig. 2b). Similarly, htwist was measured, and, in the specific case, this entity 

was observed to be related to the wire diameter as htwist = 1.84 d (Fig. 2b). Finally, βtwist0 

was evaluated starting from the previous parameters as βtwist0 = arccos(bt0/Ldt) where 

Ldt = √bt0
2 + (ht0 + htwist)

2. 

During the crimping, the pitch angle should change according to the formula (3). However, at 

the double twists, the wires are not free to rotate (Fig. 3a). It is possible to compare this 

segment, involving two crossing points, to a beam subject to a concentrated load whose 

length is approximated with Ldt. Then, the load can be evaluated assuming that the pitch 

angle variation in correspondence of the extremity (red dot in Fig. 3a) should equalize to the 

standard braided texture (β − β0). For the displacement, no conditions were imposed since 

the double twist wires can separate and, thus, the length of the cell sides (Fig. 1b) is not 

required to remain constant. Thus, given a diameter variation, it is possible to deduce the 

deformed pitch angle (β) from Eq. (3) and, based on the linear theory of elasticity (Fig. 3d), 

the concentrated force acting perpendicular on the wire extremity can be calculated as: 

Fwire =
(β − β0) ∙ 2EI

Ldt
2  (16) 

The total force acting on the stent in the longitudinal direction should be equal to 
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F =
NFwire
cos (β)

 (17) 

and, starting from the energy equivalence presented by Jedwab and Clerc (1993), Eq. (13), 

the average radial pressure can be calculated as follows. 

P =
2F

πDhdt
∙
hdt − (ht0 + htwist)

D − D0
 (18) 

Where hdt can be deduced based on the linear theory of elasticity (Fig. 3d, ∆l = hdt − (ht0 +

htwist)) as a projection of the displacement connected with the angle variation. 

hdt = (ht0 + htwist) +
2

3
Ldt(β − β0)cos (βtwist) (19) 

Note that the displacement was projected with respect to the twist angle (Fig. 2b) evaluated 

as 

βtwist = βtwist0 + (β − β0) (20) 

2.1.3. Triple/Quadruple twist 

The same logic could be applied to more complex geometries involving additional crossings. 

Note that the triple twist (Fig. 1a) does not allow to increase the radial rigidity of the standard 

braided stent since its design does not oppose the wire’s rotation due to radial compression, 

allowing the pitch angle variation (Fig. 3b.1). Concerning the quadruple twist, the geometrical 

parameters considered are the same: bt0, ht0, htwist and βtwist0 (Fig. 2c). However, the 

deformable length is calculated as Lqt = √bt0
2 + (ht0 + 3htwist)

2. The rationale is similar to 

the previous case, except for the condition imposed on the cantilevered beam extremity. 

Indeed, in this case, the wires are not free to separate (Fig. 3b.2), and the sides of the cells 

preserve their original length. Thus, besides the pitch angle, the displacement should also 
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comply with the geometry constraints. It is possible to assume the beam subject to a 

concentrated moment and force (Fig. 3b) and, through the superposition principle, deduce 

their value by imposing at the wire extremity the angle variation, equal to (β − β0), and the 

displacement obtained considering the twist hindrance. Indeed, at a given diameter D, while 

the circumferential dimension for a standard braided cell is equal to  2πD/N, for the multiple 

twist geometry, the same dimension would vary according to the formula:  

bqt = bt0
cos (βtwist)

cos (βtwist0)
 (21) 

Where βtwist is calculated as in Eq. (20), with β depending on the current D value (Eq. (3)). 

Thus, the displacement of the extremities was calculated based on the difference between 

the circumferential dimension calculated through Eq. (21) and the braided texture constraint. 

Fwire =
6EI

Lqt
3 (

2

sin(βtwist)
(bqt −

2π

N
D) + Lqt(β − β0)) (22) 

Mwire =
EI

Lqt
(β − β0) +

1

2
FwireLqt (23) 

The boundary conditions were applied in the second overlapping point, corresponding to a 

length estimated with Lqt, assuming that the wires may be able to slightly adjust their position 

in the correspondence of the first intersection (Fig. 3b.2): 

The total force acting on the stent in the longitudinal direction is obtained as previously based 

on Eq. (17), and the average radial pressure may be calculated as: 

P =
2F

πD(hqt + 2htwist)
∙

hqt − ((ht0 + htwist)
sin (βtwist)
sin (βtwist0)

)

D − D0
 

(24) 

 

 

hqt can be deduced projecting the displacement imposed at the wire extremity and summing 

the elongation derived from the rotation in the cylindrical plane. Note that the length 
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variation in the second factor was calculated with respect to the length resulting from the 

rigid rotation in the cylindrical plane. 

hqt = (ht0 + htwist)
sin (βtwist)

sin (βtwist0)
+

1

tan(βtwist)
(bqt −

2π

N
D) (25) 

 

2.1.4. Multiple twist: two separation layers 

While in the previous sections only one layer of standard braided cells was assumed to 

separate the subsequent multiple twists, this section aims to extend the formulae to stent 

designs featuring an additional separation layer (Fig. 2e). In this case, the twist is assumed to 

behave as previously, considering the same geometrical parameters, while the surface on 

which the average pressure is evaluated is modified by including the length of the additional 

braided layer ((πD/N)tan (β)(sin(β) / sin(β0))). Thus, only the Eq. (18,24) were adjusted as 

follows: 

P =
2F

πD (hdt +
πD
N tan (β)

sin(β)
sin(β0)

)
∙
hdt − hdt0
D − D0

 (26) 

P =
2F

πD (hqt + 2htwist +
πD
N tan (β)

sin(β)
sin(β0)

)
∙

hqt − (hqt0
sin (β𝑡𝑤𝑖𝑠𝑡)
sin (β𝑡𝑤𝑖𝑠𝑡0)

)

D − D0
 (27) 
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2.1.5. Looped end 

The looped end geometry is illustrated in Fig. 1a and 2c. The geometrical parameters defining 

this feature are: ble0, hle0  and βle0. As previously, the first variable was calculated as ble0 =

2πD0/N, while hle0  was measured on real devices. In the specific case, this entity was 

observed to be related to the length of a standard braided texture as hle0 =

0.714 h0̃ = 0.714 ble0tan (β0) (Fig. 2c). Finally, βle0 was evaluated starting from the previous 

parameters as βle0 = arccos(ble0/Lle) where Lle = √ble0
2 + hle0

2. 

Like the quadruple twist feature, the looped end was approximated with a beam subject to a 

concentrated moment and force, since the boundary conditions involve both angle variation 

and displacement (Fig. 3c). As previously, the beam was assumed to cover two overlapping 

points (Fig. 3c), corresponding to the deformable length Lle. The angle variation at its 

extremity is equal to (β − β0). Concerning the displacement, the same process applied for 

the quadruple twist was followed. First, the pitch angle characteristic of the looped end beam, 

βle0, was calculated. As previously, the circumferential dimension due to the pitch angle 

variation would vary according to the formula:  

ble = ble0
cos (βle)

cos (βle0)
 (28) 

With βle = βle0 + (β − β0). Thus, the force and moment acting at the extremity was 

calculated as: 

Fwire =
6EI

Lle
3 (

2

sin(βle)
(ble −

2π

N
D) + Lle(β − β0)) (29) 

Mwire =
EI

Lle
(β − β0) +

1

2
FwireLle (30) 
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It can be observed that a lower looped end length (↓ hle0) corresponds to a lower looped end 

pitch angle (↓ βle0) and a higher circumferential dimension following the same rigid rotation 

(↑ ble at the same β), requiring higher displacement and force (↑ Fwire) to comply with the 

geometry restriction. 

As previously the total longitudinal force (F) is calculated through Eq. (17) and, finally, the 

radial pressure can be obtained as: 

P =
2F

πD (hle + 2
πD
N tan (β)

sin(β)
sin(β0)

)
∙

hle − (hle0
sin (βle)
sin (βle0)

)

D − D0
 (31) 

 

 

where: 

hle = hle0
sin (βle)

sin (βle0)
+

1

tan(βle)
(ble −

2π

N
D) (32) 

 

The pressure was calculated on a larger surface involving two more crossing layers (Fig. 3c) to 

facilitate the comparison with the FE model.  
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Fig. 3. (a-b-c) Beam approximation for double twist, multiple twists (triple and quadruple) 

and looped end (black). In yellow the length involved in the radial pressure calculation. (d) 

Linear theory of elasticity: displacement and rotation for a beam subject to an external 

concentrated force or a moment. 
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2.2. MINIMUM AND MAXIMUM DIAMETER 

The intertwined structure of the braided allows the wires to rotate and relatively easily adjust 

their position, elongating or compressing the stent, under external radial loads. However, 

each device presents a specific limit, both considering crimping and expansion deformations, 

after which, to further deform it, significant forces would be required. This stiffening is due 

to the activation of contacts among the wires in points distant from the overlapping area (Fig. 

4b). If higher forces are applied, the stent may deform further but never exceed the physical 

limit defined by the wires’ diameter (Fig. 4c). 

The pitch angle related to the maximum compressed configuration (βmin in Fig. 4c) is obtained 

assuming that between two crossing points (circumferential distance ≈ πD/N), the 

longitudinal displacement should be equal to the diameter of the wires. 

βmin = arctan (
dN

πD
) (33) 

As regards the pitch angle at which the first contact among the wires appeared (β1c in Fig. 

4b), the intertwined geometry plays the main role. It is possible to assume that the contact 

occurs on the mean plane (cylindrical surface with diameter equal to the average stent 

diameter: orange surface in Fig. 4d). The width of the wire footprint on this surface (FP) is 

determined by the radial coordinate oscillation trend (ΔR) based on the following equation 

FP =
d

2
 cos (asin (

2∆R

d
)) (34) 

Thus, β1c corresponds to the arctangent of FP first derivative with respect to the wire length 

(l1/l2 coordinate in Fig. 4d) at the origin. Considering a sinusoidal intertwining, meaning a 

radial coordinate oscillation equal to 
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∆R =
d

2
 cos(θN)             θ ∈ [0,

π

N
] (35) 

And observing that the wire length is related to the circumferential coordinate θ through the 

initial stent diameter and pitch angle 

l = θ
D0

cos (β0)
             θ ∈ [0,

π

N
] (36) 

It is possible to obtain the first derivative of FP with respect to l from Eq. (34,35,36) 

δFP

δ∆R
= − sin (asin (

2∆R

d
))

1

√1 − (
2∆R
d
)
2
= −cos(θN)

1

sin(θN)
 

(37) 

δ∆R

δθ
= −

d

2
N sin(θN) (38) 

δθ

δl
=
cos (β0)

D0
 (39) 

δFP

δl
=
δFP

δ∆R

δ∆R

δθ

δθ

δl
= dN

cos (β0)

2D0
 cos(θN) (40) 

δFP

δl
(l = 0) = dN

cos (β0)

2D0
 (41) 

Thus, β1c is equal to 

β1c = atan (dN
cos (β0)

2D0
) (42) 

Finally, it is possible to obtain the higher and lower diameter at which the first contact is 

recorded as 

Dmin1c = D0
cos (

π
2 − β1c)

cos (β0)
 (43) 

Dmax1c = D0
cos (β1c)

cos (β0)
 

(44) 
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Fig. 4. (a-b-c) Braided texture in the longitudinal-radial plane (zr, top) and in the 

longitudinal-circumferential plane (zθ, bottom): (a) undeformed configuration; (b) 

deformation at which the lateral contact among the wires is first recorded; (c) maximum 

deformation. (d) Detection of the pitch angle corresponding with the first contact 

deformation (β1c), based on the radial coordinate trend.  



21 
 

2.3. NUMERICAL SIMULATIONS 

 

2.3.1. Radial pressure 

The validation was performed comparing the results of the analytical formulae with output 

of numerical simulations performed in Abaqus/Explicit 2019 (Dassault Systemes Simulia, 

Providence, RI, USA). Four braided models were built, using 3D parametric equations 

(Zaccaria et al., 2020b) and starting from the geometrical and material properties of the 

braided component of the ID Venous System (ID NEST MEDICAL, Strasbourg, FR), named ID 

Branch, that was deeply analyzed and validated with respect to experimental tests in previous 

works (Zaccaria et al., 2020a): a cylindrical braided stent, a braided stent with one looped end, 

the ID Branch design (involving one looped end and five double twist layers), the ID Branch 

design with triple and quadruple twists instead of double twists. 

The standard braided design was compared with the analytical formulae already proposed 

and validated by Jedwab and Clerc (1993) to assess the finite element model reliability in 

predicting the average contact pressure on the wall, similar to Shanahan et al. (2017). The 

remaining were exploited to validate the newly proposed equations. Moreover, the 

predictions on multiple twists and looped ends were also validated considering design 

variations: lower stent diameter (internal diameter = 10 mm), variable wire diameter, 

increased pitch angle (length x1.5), two standard braided cells between multiple twist layers. 

The comparison was based on crimping simulations in which the stent was surrounded by a 

cylindrical surface whose diameter is varied to reduce the initial average stent diameter down 

to 20%. The free open extremity was constrained to stabilize the stent and minimize the 

boundary effect by preventing the displacement along the circumferential and longitudinal 
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axis, as well as the rotation around the same axis. Differences due to this constraint are 

highlighted in the results and discussion sections. 

The general contact algorithm was exploited to describe the interaction among the wires 

(Zaccaria et al., 2020b), imposing a friction coefficient of 0.2 (Kelly et al., 2019; Ma et al., 

2012). Concerning the material model, the original stent is made of Nitinol, a super-elastic 

material whose properties were extracted from experimental tests on wire samples at both 

25°C and 37°C (Zaccaria et al., 2020a). However, for the purpose of this study, only the 

austenite behavior, defining the stress-strain relationship for low deformations, was 

considered. Indeed, since the interest is to predict the radial pressure on the wall when the 

stent is fully deployed (≈20% oversizing), it is fair to assume that the local stress remains in 

the linear elastic region, defined by an elastic modulus of 45000 MPa. In the results and 

discussion sections, attention was paid to verify the reliability of this approximation. 
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2.3.2. Minimum and maximum diameter 

A repetitive unit involving two crossing points was built to validate the formulae for the 

maximum and minimum diameter (Fig. 5). Since the equations proposed do not distinguish 

between a planar or a cylindrical braided structure, the unit was drawn considering both a 

planar (xyz) and a cylindrical (rϑz) average surface in order to identify potential unpredicted 

discrepancies. For the planar configuration, the drawing equations (Zaccaria et al., 2020b) 

were modified as follows: 

{
 
 

 
 x(ϑ) =

d

2
∙ cos(ϑN)

y(ϑ) =
D0ϑ

2

z(ϑ) =
D0ϑ

2
∙ tan(α)

               with ϑ ∈ [0,
2π

n
] (45) 

To simulate an elongation and compression deformation, boundary conditions and equation 

constraints, accounting for the effect of the adjacent hidden braided structure, were 

introduced at reference points placed in the center of the wires’ extremities and rigidly 

connected with these. Refer to Fig. 5 for the node labels and coordinate systems conventions. 

For the cylindrical structure, the rotation around the ϑ/z-axis and the translation along the ϑ-

axis were prevented. The longitudinal displacement was imposed at nodes 1 and 2, while 

nodes 5 and 6 were fixed in the same direction. Finally, to account for the repetitive braided 

texture, the equation constraints have been introduced to ensure that the radial 

displacement at nodes 1, 2 and 3 is equal to the one at nodes 6, 5 and 4, respectively, and to 

guarantee the same longitudinal translation at nodes 3 and 4. 

For the planar structure, the rotation around the y/z-axis and the translation along the x-axis 

were prevented. Moreover, nodes 2 and 5 were fixed in the y-direction to avoid unconfined 

motions. The displacement was imposed at nodes 1 and 2 in the z-direction, while nodes 5 
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and 6 were fixed in the same direction. Finally, to account for the repetitive braided texture, 

the equation constraints have been introduced to ensure that the displacement along y at 

nodes 1 and 3 is equal and opposite to the one recorded at nodes 6 and 4, respectively, and 

to guarantee the same translation along z at nodes 3 and 4. 

 

 

Fig. 5 Numerical boundary conditions to identify the maximum and minimum diameter for 

a standard braided unit.  
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3. Results 

3.1. RADIAL PRESSURE 

3.1.1. Cylindrical braided stent 

First, the FE model accuracy in predicting the contact pressure was assessed. More 

specifically, a crimping simulation on a standard braided texture was performed and 

compared with the analytical formulae proposed by Jedwab and Clerc (1993) and already 

validated with respect to experimental tests. The ID Branch geometrical parameters were 

used: D0= 13.77mm; d= 0.23mm; β0= 32°; N=26 (Fig. 6). The numerical average contact 

pressure at 20% oversizing differs from the analytical prediction for less than 1.39% in the 

central portion, proving the reliability of the simulation. Note that the FE model is also able 

to assess the extremity weakness. Indeed, the average pressure on the last three cells in 

proximity of the free open end is decreased by 21.95%. Moreover, the length variation in the 

model is equal to 38.73%, close to the 38.50% variation predicted by the formulae.  
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Fig. 6 Crimping of a standard braided sample. From left to right: undeformed configuration; 

stent deformed configuration with von Mises stress colored map (note that on one end only 

radial displacement and rotation around the radial axis are allowed); crimping surface with 

contact pressure colored map; comparison between FE results and analytical prediction in 

terms of average contact pressure (calculated for the model on the section enclosed by the 

black rectangle) and cell length. Lo indicate the cell length in the undeformed configuration. 

 

 

3.1.2. Double twist 

Concerning the double twist feature, the ID Branch original design, previously validated 

through the comparison with experimental tests (Zaccaria et al., 2020a), was used to assess 

the accuracy of the analytical predictions (Fig. 7 “Double twist”). The geometrical parameters 

of the braided texture are reported above, while the dimensions defining the double twist 

geometry are: hdt0=2.563mm, htwist=0.423mm, bdt0=3.327mm. The analytical and FE results 

show differences of 0.94% and 2.44% in terms of contact pressure and deformed length, 

respectively (Fig. 8 “ID Branch”).  

To further validate the formulae, some design modifications were investigated. First, the stent 

diameter was modified keeping the same pitch angle (10 mm internal diameter), and three 
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different wires diameter were evaluated (0.16/0.17/0.18 mm). Moreover, the pitch angle 

impact was assessed by scaling the length of the original model by 3/2.  The analytical radial 

pressure and the final length differ from FE results for lower than 3.35% and 2.15%, 

respectively (Fig. 8 “D0 10.36 mm”, “D0 10.34 mm”, “D0 10.32 mm”, “L0 x 1.5”).  

 

3.1.3. Triple/Quadruple twist 

Concerning the triple twist, no significant variations were recorded with respect to the 

standard braided design (average contact pressure = 0.00322 MPa). For the quadruple twist 

(Fig. 7 “Quadruple twist”), the formulae proposed correctly predict the contact pressure and 

the final length of the designs investigated, showing differences with respect to the FE results 

below 6.2% (Fig. 8). Note that the average contact pressure is close to the double twist results 

(difference <6.7%).  
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Fig. 7. Crimping of the ID Branch model with double or quadruple twists. From left to right: 

undeformed configuration; stent deformed configuration with von Mises stress colored 

map (note that on the open end only radial displacement and rotation around the radial 

axis are allowed to minimize boundary effects); crimping surface with contact pressure 

colored map. 

 

 

 

3.1.4. Multiple twist: two separation layers 

As an additional validation, a second separation layer was introduced between two sequential 

multiple twist traits (Fig. 2d) and the equations were updated as outlined in the materials and 

methods section. The analytical formulae reliability is demonstrated by the low difference 

with respect to the FE model, below 5.1% and 2.9% in terms of radial pressure and elongation 

(Fig. 8, “2 cells”). 



29 
 

 

Fig. 8 Comparison for the double and quadruple twist designs between FE results and 

analytical prediction in terms of average contact pressure (calculated for the model on the 

sections enclosed by the black rectangles in Fig. 7) and unit length. 
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3.1.5. Looped end 

The Looped end prediction were validated based on the original ID Branch geometrical 

parameters (Fig. 9 “ID Branch”), the reduced stent diameter design with variable wires 

diameter (Fig. 9 “D0 10.36 mm”, “D0 10.34 mm”, “D0 10.32 mm”), and the elongated 

configuration (Fig. 9 “L0 x 1.5”). The differences in terms of average contact pressure and final 

length do not exceed 6.7%. Note that, in this case, the pressure was evaluated on the last two 

cell lines (Fig. 9 “Unstressed”). 

 

 
Fig. 9 Crimping of a standard braided sample with a looped end. From left to right: 

undeformed configuration; stent deformed configuration with von Mises stress colored 

map (note that on the open end only radial displacement and rotation around the radial 

axis are allowed); crimping surface with contact pressure colored map; comparison 

between FE results and analytical prediction in terms of average contact pressure 

(calculated for the model on the section enclosed by the black rectangle) and cell length. 
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3.2. MINIMUM AND MAXIMUM DIAMETER 

Both a tensile and compression simulation were performed on a planar and cylindrical 

braided unit involving two crossing points. Generic geometrical parameters were used: D0= 5 

mm; d= 0.2 mm; β0= 45°; N=40. 

Fig. 10 reports the total longitudinal force-diameter curves. The total longitudinal force was 

calculated as 

Fl =
N

4
((Fl

1
+ Fl2) − (Fl5 + Fl6)) (46) 

while the diameter in the planar configuration was calculated as 

D = D0 −
N ∆y

2π
 (47) 

where ∆y is half of the unit length variation in this direction (Fig. 10b). 

Observing the longitudinal force–diameter curves in all the simulations it can be identified a 

stiffening point, associated with the first contact diameter. The planar and cylindrical 

configurations differ due to the absence of force in the first case before the first contact 

appear. However, the point in which the slope variation appear does not vary, proving the 

reliability of the approximation considered. The first contact points are reported below and 

were calculated as the mean between the first point associated with a significant force 

increase and the point before: 

- Dmin1c cylindrical = 3.77 ± 0.24 mm; 

- Dmin1c planar = 3.77 ± 0.23 mm; 

- Dmax1c cylindrical = 13.62 ± 0.02 mm; 

- Dmax1c planar = 13.62 ± 0.02 mm. 
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The prediction based on the formulae proposed are within the identified range: Dmin1c = 

3.85 mm and Dmax1c = 13.61 mm. 

 

 

Fig. 10. Maximum and minimum diameter for a standard braided unit: (a) force-diameter 

curves for a planar and a cylindrical unit undergoing a traction and a compression test; (b) 

undeformed (left) and deformed configuration under compression (center) and tension 

(right) for the planar unit at the diameter corresponding with the first contact deformation 

(1c) and at the maximum compression and traction, and illustration of the Δy term used in 

Eq. (47). The black dashed lines in (c) indicates the longitudinal axis. 
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4. Discussion 

This work focuses on braided stent design and presents approximated formulae to predict the 

radial pressure and the diameter variation range. 

Jedwab and Clerc (1993) have already outlined and validated with respect to experimental 

data the equations that allow to connect the longitudinal and the radial deformation and 

predict the radial stiffness at a given oversizing. These formulae were illustrated in this work 

and applied to derive the average radial pressure at 20% oversizing for a standard braided 

stent using as reference the geometrical parameters of the ID Branch (the braided component 

of the ID Venous System, ID Nest Medica). Then, a FE simulation was performed to assess the 

numerical model capability in evaluating the contact pressure on the confined wall. Since the 

errors in terms of average contact pressure and length variation do not exceed 1.4%, the FE 

model is deemed reliable. Moreover, the simulation highlighted the weakness associated with 

open ends. In general, the free ends of the wires tend to collapse, decreasing the pressure 

recorded at this level. Thus, in the subsequent simulations, the open ends were constrained, 

as outlined in the material and methods section. Indeed, as visible in Fig. 6 for the standard 

braided model, the boundary effects at the constrained open end are significantly reduced 

with respect to the free extremity. 

Following, the FE simulations were used to validate the analytical predictions concerning 

multiple twists and looped ends with variable design parameters. Given the comparability of 

the results both in terms of average radial pressure and length variation, differing for less 

than 10%, the analytical formulae can be judged trustworthy. Note that, in the diameter 

variation range considered, the stress distribution within the wires do not exceed 450 MPa, 

complying with the assumption of linearity for the Nitinol stress-strain relationship. 



34 
 

Nevertheless, this hypothesis would not be valid at higher deformation, for example if the 

radial pressure on the delivery catheter has to be investigated.  

Concerning the multiple twist feature, it could also be interesting to observe the low variation 

in terms of radial pressure for double and quadruple twists. Indeed, even if the longitudinal 

force is higher for the quadruple twists, given the displacement constraint, this effect is 

balanced by the lower axial deformation of the cantilevered beam and the larger surface. 

Instead, as explained in the materials and methods section, the triple twist does not allow to 

increase the radial rigidity. Indeed, a similar simulation performed with a triple twist design 

showed an average radial pressure of 0.00322 MPa, 5.3% lower than the standard braided 

model result. This is due to the fact that at the triple twist, the wires are able to adjust their 

position, minimizing the bending and torsion moments that would arise in a standard 

helicoidal wire due to the curvature variation. For the looped end feature, observing the 

contact pressure distribution in Fig. 9, it becomes clear the need to evaluate the radial 

pressure on the last two cells layers instead of considering only the last one. Indeed, the 

contact pressure is localized in correspondence of the second and third crossing points.  

Note that, even if the formulae were presented starting from the ID Branch device geometry 

(Fig. 2b-c), specifically, on the cylindrical segment of the stent, involving one looped end and 

five double twist traits separated from each other by one braided layer (Fig. 2d “1 cell”), their 

extendibility to different design has been demonstrated. The most critical geometrical 

parameters to be defined are hdt0/hqt0 , htwist and hle0. If no data are available, the relations 

illustrated between these values and the braiding parameters could provide preliminary 

information. However, as soon as one sample is manufactured, these values should be 

measured and updated. 
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Concerning the diameter variation range, the formulae illustrated for a sinusoidal intertwining 

correctly identify the maximum and minimum diameter at which the first contact among the 

wires occurs. Further deformations beyond these limits are possible but require a significant 

compressive or tensile force increase. Note that the planar configuration does not record any 

force until that point. Indeed, without contacts among the wires, a longitudinal elongation 

reflects in a rigid rotation, in contrast with the cylindrical configuration where the z-

displacement modify the curvature of the beam, generating bending and twisting moments. 

The values identified are good estimators of the maximum and minimum diameter, the latter 

of which affect the system deliverability. However, during the braiding procedure, a tensile 

load is usually applied at the wire extremities, resulting in a more linear trend with respect to 

the sinusoidal oscillation and, subsequently, in a narrower diameter variation range (↑ β1c, 

Fig. 4). Thus, the β1c obtained with the sinusoidal approximation may be considered as the 

lower limit to which the actual device tends with decreasing load applied during the 

manufacturing. A more accurate result could be obtained by modifying the wire’s radial 

oscillation (ΔR, Fig. 4, Eq. (35)) based on the applied load. 
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5. Conclusion 

In this paper, analytical formulae, based on geometrical and mechanical parameters, have 

been developed for the prediction of the radial strength of different braided structures and 

the evaluation of minimum and maximum diameter, obtainable once defined the geometry. 

The efficacy of the proposed approach has been checked by comparing the analytical results 

with computational data obtained from a finite element model validated in previous work 

(Zaccaria et al., 2020a). 

The validity of the illustrated model, as a simplistic strategy, is limited. Indeed, non-linearities 

and manufacturing process specificity are not considered. Nevertheless, it can be deemed a 

helpful tool for the design and optimization phases, easy to be implemented, and associated 

with a significant reduction in terms of time and production cost thanks to the possibility to 

preliminary identify a suitable range for design parameters such as stent diameter, pitch 

angle, the number of wires and their diameter, as well as material stiffness and the 

introduction of multiple twists and looped end features. 
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